JP2684426B2 - Color video system - Google Patents

Color video system

Info

Publication number
JP2684426B2
JP2684426B2 JP22937689A JP22937689A JP2684426B2 JP 2684426 B2 JP2684426 B2 JP 2684426B2 JP 22937689 A JP22937689 A JP 22937689A JP 22937689 A JP22937689 A JP 22937689A JP 2684426 B2 JP2684426 B2 JP 2684426B2
Authority
JP
Japan
Prior art keywords
color
red
image
green
blue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22937689A
Other languages
Japanese (ja)
Other versions
JPH0392888A (en
Inventor
雅利 田部井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP22937689A priority Critical patent/JP2684426B2/en
Publication of JPH0392888A publication Critical patent/JPH0392888A/en
Application granted granted Critical
Publication of JP2684426B2 publication Critical patent/JP2684426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、色再現域を拡大することにより、色再現性
を向上するカラー映像システムに関する。
TECHNICAL FIELD The present invention relates to a color image system that improves color reproducibility by expanding a color reproduction range.

〔従来の技術〕[Conventional technology]

従来、カラー映像システムは、カラー撮像装置(カラ
ーカメラ等)で被写体光学像の各部を赤、青、緑の三原
色に分光及び光電変換することにより該三原色の情報を
表す色信号を発生すると共に、該色信号に対して後述の
受像機の非直線性に鑑みた補正(例えば、γ補正)を施
して受像三原色信号SR,SG,SBを形成し、一方、トライカ
ラー管やトリニトロン管などの三色受像管を利用した受
像機の電子ビームを上記受像三原色信号SR,SG,SBで制御
することにより被写体像の色再現を行う。
Conventionally, a color image system generates a color signal representing information of the three primary colors by spectrally and photoelectrically converting each part of an optical image of a subject into three primary colors of red, blue, and green by a color imaging device (color camera or the like), The color signals are subjected to correction (for example, γ correction) in consideration of the non-linearity of a receiver, which will be described later, to form image receiving three primary color signals S R , S G , S B , while a tricolor tube or a trinitron tube is formed. The color reproduction of the subject image is performed by controlling the electron beam of the image receiving device using a three-color picture tube such as the above by the image receiving three primary color signals S R , S G , and S B.

そして、受像機の色再現域を決定するのは、三色受像
管の三原色(以下、受像三原色という)の色度であり、
カラー撮像装置が持つべき分光特性もこれによって定め
られている。
The color gamut of the image receiver is determined by the chromaticity of the three primary colors of the three-color picture tube (hereinafter referred to as the image reception three primary colors).
This also defines the spectral characteristics that the color image pickup device should have.

したがって、第6図の色度図に示すように、三色受像
管の蛍光面に配列された赤、緑、青の各蛍光体ドットが
発する光の色、即ち受像三原色を赤に対して(R)、緑
に対して(G)、青に対して(B)で示すものとする
と、これらの色度点が作る三角形(同図中、実線の三角
形で示す)の内側が、受像画面上で再現できる色度範囲
となる。
Therefore, as shown in the chromaticity diagram of FIG. 6, the colors of the light emitted by the red, green, and blue phosphor dots arranged on the phosphor screen of the three-color picture tube, that is, the three primary colors of the picture are relative to red ( R), (G) for green, and (B) for blue, the inside of the triangle formed by these chromaticity points (indicated by a solid triangle in the figure) is on the image receiving screen. The chromaticity range can be reproduced with.

更に、この三角形の範囲は理想的な最大の色度範囲で
あり、実際上は制限があることから、その内側の例えば
点線で示す三角形内が実際の色度範囲となる。尚、同図
中の点線で示す三角形の頂点が実際の赤(r)、緑
(g)、青(b)の色度点となる。
Furthermore, the range of this triangle is the ideal maximum chromaticity range, and since there is a limit in practice, the inside of the triangle, for example, shown by the dotted line, is the actual chromaticity range. The vertices of the triangle shown by the dotted line in the figure are the actual chromaticity points of red (r), green (g), and blue (b).

このように、理想的な色度範囲(以下、理想色度範囲
という)に対して実際の色度範囲は狭いが、この実際の
色度範囲を拡大することが色再現性向上のための重要な
課題となっている。
Thus, although the actual chromaticity range is narrower than the ideal chromaticity range (hereinafter referred to as the ideal chromaticity range), it is important to expand this actual chromaticity range to improve color reproducibility. Has become a problem.

従来、このような色再現域を拡大するための一手法と
して、エプスタイン(Epstein)氏が提唱する方法、即
ち、人間の目が負の分光特性を有することに鑑みて、こ
の負の分光特性を受像三原色に加味することにより、色
度範囲を拡大しようとする方法が知られている。
Conventionally, as a method for expanding such a color reproduction range, a method proposed by Epstein, that is, in view of the fact that the human eye has a negative spectral characteristic, A method for expanding the chromaticity range by adding the three primary colors of the image is known.

この方法の原理を第6図の色度図及び第7図の等色関
数に基づいて説明する。第7図における一点鎖線FRが人
間の目の赤に関する分光特性、破線FGが人間の目の緑に
関する分光特性、点線FBが人間の目の青に関する分光特
性であり、これらの分光特性(以下、理想撮像特性とい
う)は、赤に関して約460nm〜530nmの波長領域で赤の負
感度(βで示す)、緑に関して約400nm〜460nm及び約64
0ne〜680nmの波長範囲で緑の負感度(αとδで示す)、
青に関して約530nm〜620nmの波長範囲で青の負感度(γ
で示す)を有する。
The principle of this method will be described based on the chromaticity diagram of FIG. 6 and the color matching function of FIG. In FIG. 7, the alternate long and short dash line F R is the spectral characteristic of the red of the human eye, the broken line F G is the spectral characteristic of the green of the human eye, and the dotted line F B is the spectral characteristic of the blue of the human eye. (Hereinafter referred to as ideal imaging characteristics) is the negative sensitivity of red (indicated by β) in the wavelength range of about 460 nm to 530 nm for red, and about 400 nm to 460 nm and about 64 for green.
Green negative sensitivity (denoted by α and δ) in the wavelength range of 0ne to 680nm,
With respect to blue, the negative sensitivity (γ of blue) in the wavelength range of approximately 530 nm to 620 nm
Indicated by).

しかし、三色受像管では三原色の発光量を負にするこ
とができないので、これらの負感度の部分を理想撮像特
性の最寄りの正の部分のローブから削ることによって、
擬似的に負感度を含めた受像三原色信号S′R,S′G,S′
を形成し、これらの信号S′R,S′G,S′に従って三
色受像管の蛍光体ドットを発光させる方法である。
However, with a three-color picture tube, the amount of light emission of the three primary colors cannot be made negative, so by removing these negative sensitivity parts from the lobe of the nearest positive part of the ideal imaging characteristics,
Pseudo image receiving three primary color signals S including the negative sensitivity 'R, S' G, S '
Forming a B, and a method for emitting the phosphor dots of three colors picture tube in accordance with these signals S 'R, S' G, S 'B.

第7図中の実線F′がこの方法によって設定された
補正後の赤に関する撮像特性、実線F′が補正後の緑
に関する撮像特性、実線F′が補正後の青に関する撮
像特性であり、色毎の特性のローブを削った分だけ各波
長範囲が狭くなっている。
The solid line F 'R is an imaging characteristic related to red after correction set by this method, the solid line F' in FIG. 7 Green an imaging characteristics after G is corrected, the solid line F 'B in the imaging characteristics for the blue after correction Yes, each wavelength range is narrowed by removing the lobe of the characteristic for each color.

この方法に基づいた実際の処理を行うには、例えば、
先ず、カラー撮像装置のカラー撮像デバイスで被写体光
学像を撮像することにより、従来の赤(R)、緑
(G)、青(B)の色信号SR,SG,SBを発生する。したが
って、このときのカラー撮像デバイスにおける撮像特性
は、第7図に示す補正前の特性曲線FR,FG,FBの負感度部
分を除いた正のレスポンスの部分であり、これらの特性
に対応した色信号が得られることとなる。
To perform the actual processing based on this method, for example,
First, the color image pickup device of the color image pickup device picks up an optical image of an object to generate conventional red (R), green (G), and blue (B) color signals S R , S G , and S B. Therefore, the image pickup characteristic of the color image pickup device at this time is a positive response portion excluding the negative sensitivity portion of the characteristic curves F R , F G , and F B before correction shown in FIG. Corresponding color signals will be obtained.

次に、カラー撮像装置内のプロセス回路において、次
式(1)のマトリクス演算処理を行うことにより、撮像
特性の負感度の部分を含む色信号を近似的に形成する。
Next, in the process circuit in the color image pickup device, the matrix calculation processing of the following equation (1) is performed to approximately form the color signal including the negative sensitivity portion of the image pickup characteristic.

尚、上記式(1)の係数は撮像特性の正の部分にも誤
差が在ることに鑑みて、負感度部分と共に総合的に補正
するための係数となっており、その結果の撮像特性が上
述した第7図の特性曲線F′、F′、F′であ
る。
It should be noted that the coefficient of the above equation (1) is a coefficient for comprehensive correction together with the negative sensitivity portion in view of the fact that there is an error in the positive portion of the image pickup characteristic. characteristic curve F 'R, F' of Figure 7 described above G, an F 'B.

そして、上記式(1)による補正後の受像三原色信号
S′R,S′G,S′に基づいて三色受像管の蛍光体ドット
を発光させることにより、負感度の部分を加味した色再
現を擬似的に行うことができる。
Then, the image receiving three primary color signals S 'R, S' corrected by the formula (1) G, by causing the phosphor to emit light dots of the three color picture tube on the basis of the S 'B, color in consideration of the portion of the negative sensitivity Reproduction can be simulated.

もし仮にこの補正処理を行わない場合での色度範囲が
第6図中の点線で示す三角形の範囲内であるものとする
と、この負感度に関する補正を施すことにより、この点
線の三角形で理想撮像特性の間の中間色を再現すること
ができるようになり、色再現性を向上させるのに効果が
ある。
If the chromaticity range in the case where this correction processing is not performed is within the range of the triangle indicated by the dotted line in FIG. 6, by performing the correction related to this negative sensitivity, ideal imaging is performed using this dotted line triangle. It becomes possible to reproduce an intermediate color between the characteristics, which is effective in improving color reproducibility.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、このような従来の色度範囲を拡大する
方法を適用したカラー映像システムにあっては、近似処
理によるものであることから、その効果も自ずと限界が
あり、大幅な特性向上を得ることができない。
However, in a color image system to which such a conventional method of expanding the chromaticity range is applied, since it is based on the approximation processing, its effect is naturally limited, and a significant improvement in characteristics can be obtained. Can not.

本発明はこのような課題に鑑みて成されたものであ
り、従来とは異なる原理に基づいて色再現性の向上を図
ることができるカラー映像システムを提供することを目
的とする。
The present invention has been made in view of these problems, and an object thereof is to provide a color image system capable of improving color reproducibility based on a principle different from the conventional one.

〔課題を解決するための手段〕[Means for solving the problem]

このような目的に対し本発明は、色度点を設定する微
細な発色部を表示面に所定配列で形成し、所定のタイミ
ングでこれらの発色部を走査することにより色再現を行
う受像機を備えたカラー映像システムにおいて、前記受
像機の表示面に形成される各発色部を、原色の赤
(R)、原色の緑(G)、原色の青(B)と赤の負感度
部分の波長範囲の発色特性を有する第4の発色部の計4
個の発色部を一組として多数組を配列し、これら4種類
の発色部から発せられる光の加法混色によって色再現を
行うようにした。
For such an object, the present invention provides an image receiver that forms fine color-developing portions for setting chromaticity points in a predetermined array on a display surface, and performs color reproduction by scanning these color-developing portions at predetermined timing. In the provided color image system, each color forming portion formed on the display surface of the receiver is provided with a primary color of red (R), a primary color of green (G), a primary color of blue (B) and a wavelength of a red negative sensitivity portion. A total of four fourth color-developing portions having color-developing characteristics in a range
A large number of sets are arranged with one color forming part as one set, and color reproduction is performed by additive color mixing of light emitted from these four kinds of color forming parts.

一つの実施態様としては、上記発色部を蛍光体ドット
とする受像管で表示する受像機を適用する。
As one embodiment, an image receiver is used in which the color-developing portion is displayed by a picture tube using phosphor dots.

即ち、色度点を設定する蛍光体ドットを電子銃の電子
ビームで再生走査することにより色再現を行う受像管で
あって、該受像管の蛍光面に形成される各蛍光体ドット
を、原色の赤(R)、原色の緑(G)、原色の青(B)
と赤の負感度部分の波長範囲の発光特性を有する第4の
蛍光体ドットの4個のドットを一組として多数組を配列
し、これら4種類の蛍光体ドットに電子銃からの電子ビ
ームを照射して刺激する加法混色によって色再現を行
う。
That is, in a picture tube that reproduces color by reproducing and scanning a phosphor dot that sets a chromaticity point with an electron beam of an electron gun, each phosphor dot formed on the phosphor screen of the picture tube is a primary color Red (R), primary green (G), primary blue (B)
A large number of sets of four dots of the fourth phosphor dot having the emission characteristic in the wavelength range of the negative sensitivity region of red and red are arranged, and an electron beam from the electron gun is applied to these four kinds of phosphor dots. Color reproduction is performed by additive color mixing that is stimulated by irradiation.

又、これらの蛍光体ドットを発光させるための電子銃
を夫々に対応させて4個設けてもよいし、従来の3個の
電子銃で4種類の蛍光体ドットを走査するように走査制
御を行うようにしてもよい。要するに、電子銃の数に関
しては任意である。
Further, four electron guns for emitting these phosphor dots may be provided corresponding to each, or scanning control may be performed so that four types of phosphor dots are scanned by the conventional three electron guns. It may be performed. In short, the number of electron guns is arbitrary.

又、本発明の他の実施態様として、上記4種類の発光
体ドットに対応する4種類の発色部を一組として多数配
列したカラー液晶ディスプレイから成る受像機を適用し
てもよい。
Further, as another embodiment of the present invention, an image receiver including a color liquid crystal display in which a large number of four types of color forming portions corresponding to the above four types of luminous body dots are arranged as one set may be applied.

更に、本発明の原理を第1図に基づいて説明すると、
同図中の特性曲線fRが受像三原色の内の赤(R)の特性
を示し、このような波長範囲の発色特性を有する微細な
発色部を第1の発色部とし、特性曲線fGが受像三原色の
内の緑(G)の特性を示し、このような波長範囲の発色
特性を有する発色部を第2の発色部とし、特性曲線fB
受像三原色の内の緑(G)の発色特性を示し、このよう
な波長範囲の発色特性を有する発色部を第3の発色部と
し、これらの特性曲線fR,fG,fBは第6図に示した理想撮
像特性FR,FG,FBの負感度部分を除いた特性となってい
る。更に、第6図の負感度部分(斜線範囲βで示す約46
0nm〜約530nmの波長範囲)のレスポンスに相当する正の
発色特性(第1図中の曲線fRGで示す)を有する第4の
発色部を加え、これら4種類の発色部で発した光の混合
でもって色再現を行う。
Furthermore, the principle of the present invention will be described with reference to FIG.
The characteristic curve f R in the figure shows the characteristic of red (R) in the three primary colors of the image received, and the fine color developing portion having the color developing characteristics in such a wavelength range is used as the first color developing portion, and the characteristic curve f G is Characteristic of green (G) among the three image-receiving primary colors is shown, and a color-developing portion having such a color-developing characteristic in the wavelength range is used as a second color-developing portion, and a characteristic curve f B is the color of green (G) among the image-receiving three primary colors. The color-developing portion having the color-developing characteristic in such a wavelength range is defined as the third color-developing portion, and these characteristic curves f R , f G , and f B are ideal imaging characteristics F R , F shown in FIG. It has the characteristics excluding the negative sensitivity parts of G and F B. Furthermore, the negative sensitivity part of FIG. 6 (about 46 shown by the shaded range β)
A fourth color development part having a positive color development characteristic (shown by the curve f RG in FIG. 1) corresponding to a response in the wavelength range of 0 nm to about 530 nm) is added, and the light emitted by these four types of color development parts is added. Color is reproduced by mixing.

〔作用〕[Action]

このような構成を有する受像機で被写体の色再現を行
うカラー映像システムにあっては、第2図の色度図に示
すように、従来の色度点(G)と(B)を結ぶ外側に第
3の発色部による第4の色度点(GR)を設定することと
なるので、色度点(G)、(B)及び(GR)で囲まれた
色度範囲の分の拡大が可能となる。この結果、人間の目
の色分解能が特に優れている青(B)と緑(G)の間の
中間色の色再現性向上に大幅に寄与するこができる。
In a color image system that reproduces the color of an object with a receiver having such a configuration, as shown in the chromaticity diagram of FIG. 2, the outside connecting the conventional chromaticity points (G) and (B). Since the fourth chromaticity point (G R ) by the third color-developing unit is set to, the portion of the chromaticity range surrounded by the chromaticity points (G), (B) and (G R ) Can be expanded. As a result, it is possible to greatly contribute to the improvement of the color reproducibility of the intermediate color between blue (B) and green (G), which is particularly excellent in the color resolution of human eyes.

尚、第2図では、本発明の原理を理想的な場合で説明
したが、実際上は第2図に示す色度点(R)、(G)、
(GR)及び(B)の内側の狭い色度範囲に制限されるこ
ととなる。しかし、実際の色度範囲もこの理想的な色度
範囲に相似して拡大されるので、色再現性は従来と比較
して大幅に向上する。
In FIG. 2, the principle of the present invention has been described in an ideal case. However, in practice, the chromaticity points (R), (G), shown in FIG.
A (G R) and being limited to the inner narrow chromaticity range (B). However, since the actual chromaticity range is also expanded similarly to this ideal chromaticity range, the color reproducibility is significantly improved as compared with the conventional one.

〔実施例〕 以下、本発明の一実施例を図面と共に説明する。[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

まず、撮像装置と受像装置を含めたカラー映像システ
ムの全体構成を第3図に基づいて説明する。
First, the overall configuration of the color image system including the image pickup device and the image receiving device will be described with reference to FIG.

同図において、点線Aで示す領域内が撮像装置、点線
Bで示す領域内が受像装置の構成であり、1は撮像光学
系、2は撮像光学系1の後方に設けられた固体撮像デバ
イスである。
In the figure, the area indicated by the dotted line A is the image pickup apparatus, and the area indicated by the dotted line B is the image receiving apparatus. Reference numeral 1 is an image pickup optical system, and 2 is a solid-state image pickup device provided behind the image pickup optical system 1. is there.

固体撮像デバイス2は、例えば第4図に示すような構
成の電荷結合形固体撮像デバイス(CCD)が適用され、
受光領域2aに形成された垂直走査方向に1000行、水平走
査方向に800列の合計80万画素分の受光エレメント群に
は、第1図に示す分光特性を有する赤(fR)、緑
(fG)、青(fB)及び第4の色(fRG)の信号電荷を発
生させるための4種類の微小カラーフィルタR,G,B,GR
一組として配列されている。尚、このような分光特性を
有する光学フィルタはカゼインやゼラチン等の微細パタ
ーンを適宜の色素で染色することによって形成する。
As the solid-state imaging device 2, for example, a charge-coupled solid-state imaging device (CCD) configured as shown in FIG. 4 is applied,
In the light receiving element group formed in the light receiving region 2a, which has 1000 rows in the vertical scanning direction and 800 columns in the horizontal scanning direction for a total of 800,000 pixels, the red (f R ) and green ( Four types of minute color filters R, G, B, and G R for generating signal charges of f G ), blue (f B ), and fourth color (f RG ) are arranged as a set. The optical filter having such spectral characteristics is formed by dyeing a fine pattern such as casein or gelatin with an appropriate dye.

2b,2cは受光領域2aから水平ブランキング期間毎に転
送されてくる信号電荷を水平走査のタイミングに同期し
て読み出す水平電荷転送路であり、2行分の信号電荷を
一組として同時に読み出すために、1対の水平電荷転送
路2a,2bが設けられている。
Reference numerals 2b and 2c denote horizontal charge transfer paths for reading out signal charges transferred from the light receiving region 2a in each horizontal blanking period in synchronization with the timing of horizontal scanning, and are for simultaneously reading out signal charges for two rows as one set. In addition, a pair of horizontal charge transfer paths 2a and 2b are provided.

このような、信号読み出しを第3図の駆動回路3から
出力された垂直転送のための垂直駆動信号φV1〜φV4
水平転送のための水平駆動信号φH1H2に同期して行
う。即ち、受光領域2aの1000行の受光エレメントから発
生する信号電荷を標準テレビジョン方式の525TV本に適
合させて出力するために、水平ブランキング期間中に信
号電荷を二行一組として水平電荷転送路2b,2cに転送
し、水平電荷転送路2b,2cが水平走査期間中に点順次走
査のタイミングに同期した水平駆動信号φH1H2に従
って時系列的に各色信号を読み出すようにしている。
尚、水平電荷転送路2bが第1の行、即ちR,GR,R,GR,R,
GR,………のフィルタが設けられた受光エレメントに発
生した信号電荷を転送し、水平電荷転送路2cが第2の
行、即ちG,B,G,B,G,B,………のフィルタが設けられた受
光エレメントに発生した信号電荷を転送するように構成
されている。
Such signal reading is performed in synchronization with the vertical drive signals φ V1 to φ V4 for vertical transfer and the horizontal drive signals φ H1 and φ H2 for horizontal transfer output from the drive circuit 3 of FIG. . That is, in order to output the signal charges generated from the light receiving elements of 1000 rows in the light receiving region 2a in conformity with 525 TV lines of the standard television system, the signal charges are transferred as a set of two rows during the horizontal blanking period. The horizontal charge transfer paths 2b and 2c are read out in chronological order according to the horizontal drive signals φ H1 and φ H2 that are synchronized with the dot-sequential scanning timing during the horizontal scanning period. .
The first row is the horizontal charge transfer path 2b, i.e. R, G R, R, G R, R,
The signal charges generated in the light receiving element provided with the filter G R , ... Are transferred, and the horizontal charge transfer path 2c is in the second row, that is, G, B, G, B, G, B ,. The signal charge generated in the light receiving element provided with the filter is transferred.

水平電荷転送路2bから出力された赤(R)の色信号SR
と第4の色(GR)の色信号SGRについてはサンプルホー
ルド回路4aで、水平電荷転送路2cから出力された緑
(G)の色信号SGと青(B)の色信号SBについてはサン
プルホールド回路4bで、タイミング回路5から供給され
るサンプルホールド信号(上記点順次走査のタイミング
に同期している)に従って相関二重サンプリング方式の
サンプルホールド処理を行い、更に、マルチプレクサ回
路4c,4dで個々の色信号SR,SGR,SG,SBに分離した後、プ
ロセス回路4eに転送される。
Red (R) color signal S R output from the horizontal charge transfer path 2b
When the sample-hold circuit 4a for the color signal S GR fourth color (G R), the color signal S of the color signal S G and blue green output from the horizontal charge transfer path 2c (G) (B) B In the sample hold circuit 4b, the sample hold process of the correlated double sampling method is performed in accordance with the sample hold signal supplied from the timing circuit 5 (synchronized with the dot sequential scanning timing), and the multiplexer circuit 4c, After being separated into individual color signals S R , S GR , S G , and S B by 4d, they are transferred to the process circuit 4e.

プロセス回路4eでは、γ補正やホワイトバランス調整
などの処理を行った赤の色信号S′、第4の色に関す
る色信号S′GR、緑の色信号S′、青の色信号S′
を出力する。
In process circuit 4e, color signals of red performing the process such as γ correction, white balance adjustment S 'R, the color signal S relating to the fourth color' GR, green color signal S 'G, the color signal S blue' B
Is output.

第3図に戻って更に説明するに、6は信号処理回路4
より出力された時系列の色信号S′、S′GR
S′、S′をFM変調等の適宜の変調を行う変調回路
であり、変調信号を記録回路7において磁気記録媒体な
どに記録させる。
Returning to FIG. 3 for further explanation, 6 is the signal processing circuit 4.
Output time series color signals S ′ R , S ′ GR ,
A modulation circuit that performs appropriate modulation such as FM modulation on S ′ G and S ′ B , and the modulation signal is recorded on a magnetic recording medium or the like in the recording circuit 7.

7はエンコーダであり、色信号S′、S′GR、S′
、S′を送信可能な伝送信号に変換して出力する。
7 is an encoder, the color signal S 'R, S' GR, S '
G, and outputs the converted transmission signal capable of transmitting S 'B.

次に、受像装置Bの構成を説明する。8はエンコーダ
7から伝送された信号を受信すると、元の色信号
S′、S′GR、S′、S′に戻すデコーダであ
り、四色撮像管の電子銃を制御するための受像管回路9
へ出力する。そして、受像管回路9では、撮像装置Aに
おける固体撮像デバイス2の読取り走査タイミングと同
期した再生走査及び輝度調節等を行うことにより、電子
銃で発生した電子ビームを蛍光体ドットに照射して色再
現を行う。
Next, the configuration of the image receiving device B will be described. 8 receives the signal transmitted from the encoder 7, the original color signal S 'R, S' GR, S 'G, S' is a decoder back to B, for controlling the electron gun of the four-color image pickup tube Picture tube circuit 9
Output to Then, in the picture tube circuit 9, by performing reproduction scanning and brightness adjustment in synchronization with the reading scanning timing of the solid-state imaging device 2 in the imaging device A, the electron beam generated by the electron gun is applied to the phosphor dots to color them. Reproduce.

10は再生回路であり、記録回路7で記録媒体に記録し
た変調信号を復調して元の色信号S′、S′GR、S′
、S′に戻し、図示しない切換え回路を介して受像
管回路9へ供給するように成っている。
10 is a reproducing circuit, the original color signals S demodulates the modulated signal recorded on the recording medium by the recording circuit 7 'R, S' GR, S '
G, returned to S 'B, and supplies to the CRT circuit 9 via the switching circuit (not shown).

第5図は受像管回路9からの信号に従って色再現を行
うための四色受像管の構造を示し、各色信号S′
S′GR、S′、S′に対応した4個の電子銃を備え
ている。更に、蛍光面には電子銃からの電子ビームを受
けると、赤(R)、青(B)、緑(G)及び第4の色
(GR)を発光する4種類の蛍光体ドットを一組として多
数組みを垂直及び水平走査方向にマトリクス状に形成さ
れており、4個の電子銃から所定の走査制御に基づいて
発せられた4本の電子ビームをシャドウマスクを介して
蛍光体ドットに照射するように成っている。
Figure 5 shows the structure of four-color picture tube for performing color reproduction in accordance with a signal from the kinescope circuit 9, color signals S 'R,
S 'GR, S' G, includes four electron guns corresponding to S 'B. Further, when the phosphor screen receiving an electron beam from the electron gun, the red (R), blue (B), green (G) and the fourth color (G R) scratch four phosphor dots that emit A large number of sets are formed in a matrix shape in the vertical and horizontal scanning directions, and four electron beams emitted from four electron guns based on predetermined scanning control are made into phosphor dots through a shadow mask. Made to illuminate.

以上に説明したように、この実施例によれば、赤の蛍
光体ドット、緑の蛍光体ドット、青の蛍光体ドット、及
び赤の負感度部分の波長範囲の発光特性を有する第4の
蛍光体ドットの計4種類の蛍光体ドットを蛍光面に所定
配列で形成し、これらの蛍光体ドットを電子ビームで走
査して加法混色による色再現を行うようにした四色受像
管を適用することとしたので、第2図に示すように、従
来の三色受像管と較べて色度範囲を拡大することができ
る。特に、緑と青の間の中間色の色度範囲を拡大するこ
とができることから、人間の目の色感度に適合させるこ
とができる。又、エプスタイン氏が提唱した負感度部分
の近似処理を行う必要が無くなるので、システム構成を
簡素化することができる。
As described above, according to this embodiment, the fourth phosphor having the emission characteristics in the wavelength range of the red phosphor dot, the green phosphor dot, the blue phosphor dot, and the red negative sensitivity portion. Applying a four-color picture tube in which a total of four types of phosphor dots are formed on the phosphor screen in a predetermined array, and these phosphor dots are scanned with an electron beam to perform color reproduction by additive color mixing. Therefore, as shown in FIG. 2, the chromaticity range can be expanded as compared with the conventional three-color picture tube. In particular, since the chromaticity range of the intermediate color between green and blue can be expanded, it can be adapted to the color sensitivity of the human eye. In addition, since it is not necessary to perform the approximation processing of the negative sensitivity portion proposed by Mr. Epstein, the system configuration can be simplified.

尚、この実施例では4電子銃で再生走査を行うように
したが、電子銃の個数は適宜でよく、要は蛍光体ドット
を標準テレビジョン方式等に合わせて再生走査する制御
回路を設けた構成にしてもよい。
In this embodiment, four electron guns are used for the replay scanning, but the number of electron guns may be arbitrary, and the point is to provide a control circuit for replay scanning the phosphor dots according to the standard television system or the like. It may be configured.

又、この実施例では、電子ビームによる受像管を説明
したが、液晶デバイスを使用した受像装置であってもよ
い。即ち、蛍光体ドットに相当する部分を上記4色の光
を発する微細カラーフィルタとし、該カラーフィルタと
バックライトとの間に設けられた液晶デバイスの画素に
相当する電極の光透過量を信号S′、S′GR
S′、S′に基づいて制御してもよい。
Further, although the picture tube using the electron beam has been described in this embodiment, a picture receiving apparatus using a liquid crystal device may be used. That is, a portion corresponding to a phosphor dot is used as a fine color filter that emits light of the above four colors, and the light transmission amount of an electrode corresponding to a pixel of a liquid crystal device provided between the color filter and the backlight is represented by a signal S. ' R , S'GR ,
S 'G, S' may be controlled on the basis of the B.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、微細な赤の発
色部、緑の発色部、青の発色部、及び赤の負感度部分の
波長範囲の発色特性を有する第4の発色部の計4種類の
発色部を表示面に所定配列で形成し、これらの発色部を
再生走査して加法混色による色再現を行うようにした受
像機を適用したので、色度範囲を拡大して、色再現性を
大幅に向上させることができる。
As described above, according to the present invention, the total of the fourth color forming portion having the color forming characteristics in the wavelength ranges of the fine red color forming portion, the green color forming portion, the blue color forming portion, and the red negative sensitivity portion is used. Since we applied an image receiver in which four types of color-developing parts were formed in a predetermined arrangement on the display surface and these color-developing parts were reproduced and scanned to reproduce colors by additive color mixing, the chromaticity range was expanded and The reproducibility can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図は本発明の原理説明図; 第3図は一実施例の実施例構成説明図; 第4図は第3図中の一部分を詳細に示す詳細構成説明
図; 第5図は受像機の概略構成を説明する構成説明図; 第6図は第5図の蛍光面の構造を拡大して示す部分構成
説明図; 第7図及び第8図は従来技術の色再現の原理を説明する
説明図である。 図中の符号: 1;撮像光学系 2;電荷結合形固体撮像デバイス 2a;受光部 2b,2b;水平電荷転送路 3;駆動回路 4;信号処理回路 4a,4b;サンプルホールド回路 4c,4d;マルチプレクサ 4e;プロセス回路 5;タイミング回路; 7;エンコーダ 8;デコーダ 9;受像管回路
1 and 2 are explanatory views of the principle of the present invention; FIG. 3 is an explanatory view of an embodiment of one embodiment; FIG. 4 is an explanatory view of detailed structure showing a part of FIG. 3 in detail; FIG. 6 is a structural explanatory view for explaining a schematic structure of a receiver; FIG. 6 is a partial structural explanatory view showing an enlarged structure of a phosphor screen in FIG. 5; FIG. 7 and FIG. 8 are conventional color reproductions. It is explanatory drawing explaining a principle. Reference numeral in the figure: 1; imaging optical system 2; charge-coupled solid-state imaging device 2a; light receiving sections 2b, 2b; horizontal charge transfer path 3; drive circuit 4; signal processing circuits 4a, 4b; sample hold circuits 4c, 4d; Multiplexer 4e; process circuit 5; timing circuit; 7; encoder 8; decoder 9; picture tube circuit

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】色度点を設定する複数の微細な発色部を表
示面に配列し、所定のタイミングでこれらの発色部を走
査することにより色再現を行う受像機を備えたカラー映
像システムにおいて; 前記受像機の表示面に形成される各発色部を、原色の赤
(R)、原色の緑(G)、原色の青(B)と赤の負感度
部分の波長範囲の発色特性を有する第4の発色部の計4
個の発色部を一組として多数組を配列し、これら4種類
の発色部から発せられる光の加法混色によって色再現を
行うことを特徴とするカラー映像システム。
1. A color image system including a receiver in which a plurality of fine color-developing portions for setting chromaticity points are arranged on a display surface, and these color-developing portions are scanned at a predetermined timing to reproduce a color. Each color forming portion formed on the display surface of the receiver has color developing characteristics in a wavelength range of a primary color red (R), a primary color green (G), a primary color blue (B) and a red negative sensitivity portion. 4th color development part in total
A color image system characterized in that a large number of sets are arranged with one color forming part as one set, and color is reproduced by additive color mixing of light emitted from these four kinds of color forming parts.
JP22937689A 1989-09-06 1989-09-06 Color video system Expired - Fee Related JP2684426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22937689A JP2684426B2 (en) 1989-09-06 1989-09-06 Color video system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22937689A JP2684426B2 (en) 1989-09-06 1989-09-06 Color video system

Publications (2)

Publication Number Publication Date
JPH0392888A JPH0392888A (en) 1991-04-18
JP2684426B2 true JP2684426B2 (en) 1997-12-03

Family

ID=16891207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22937689A Expired - Fee Related JP2684426B2 (en) 1989-09-06 1989-09-06 Color video system

Country Status (1)

Country Link
JP (1) JP2684426B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2282928B (en) * 1993-10-05 1998-01-07 British Broadcasting Corp Method and apparatus for decoding colour video signals for display
JP2000338950A (en) * 1999-05-26 2000-12-08 Olympus Optical Co Ltd Color reproduction system
US8289266B2 (en) 2001-06-11 2012-10-16 Genoa Color Technologies Ltd. Method, device and system for multi-color sequential LCD panel
AU2002304276A1 (en) * 2001-06-11 2002-12-23 Moshe Ben-Chorin Device, system and method for color display
US7714824B2 (en) 2001-06-11 2010-05-11 Genoa Color Technologies Ltd. Multi-primary display with spectrally adapted back-illumination
US20030112863A1 (en) 2001-07-12 2003-06-19 Demos Gary A. Method and system for improving compressed image chroma information
JP4378927B2 (en) * 2001-10-23 2009-12-09 パナソニック株式会社 Video display device
CN1659620B (en) * 2002-04-11 2010-04-28 格诺色彩技术有限公司 Color display devices and methods with enhanced attributes
JP4211669B2 (en) 2004-04-26 2009-01-21 セイコーエプソン株式会社 Display device, color filter for display device, and electronic device

Also Published As

Publication number Publication date
JPH0392888A (en) 1991-04-18

Similar Documents

Publication Publication Date Title
JP2872759B2 (en) Solid-state imaging system
US2253292A (en) Color televistion system
US4851899A (en) Field-sequential color television camera
JP2684426B2 (en) Color video system
US6707494B1 (en) Solid-state image pickup apparatus free from limitations on thin-down reading in a four-field interline transfer system and method of reading signals out of the same
JPS62112491A (en) Driving method for solid state image pickup element
US4740820A (en) Method of and apparatus for producing hard copy of color picture adaptive to variations in characteristics of fluorescent screen of recorder CRT
US5276522A (en) Electronic film editing with system having telecine mode and film writing mode
US4984091A (en) Apparatus for photographing or projecting an image for a CRT or laser diode array
US2868870A (en) Color television signal conversion system
JP3223103B2 (en) Imaging device
EP0490682B1 (en) Small, high-resolution color display apparatus
JP4309505B2 (en) Imaging device and imaging apparatus
JPS59104880A (en) Image pickup device
JPS5843446A (en) Erasing method for raster in pick up device for television picture
JPS61103385A (en) White balance circuit of endoscope using solid-state image pickup element
JP2001189941A (en) Solid-state image pickup device and optical filter
JPH08223588A (en) Color camera device for night vision
Schreiber et al. Introduction to" Color Television-Part I"
CN102006399A (en) Method for eliminating image noise and device using same
JP2833652B2 (en) Image processing method and apparatus for color television
JP2000244931A (en) Digital still camera
JPH0149077B2 (en)
JPS58172086A (en) Color television receiver
JPH0622348A (en) Color cathode ray tube convergence measurement instrument

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20070815

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees