JP2680674B2 - Ocean / waste heat temperature difference power generation system - Google Patents

Ocean / waste heat temperature difference power generation system

Info

Publication number
JP2680674B2
JP2680674B2 JP1090779A JP9077989A JP2680674B2 JP 2680674 B2 JP2680674 B2 JP 2680674B2 JP 1090779 A JP1090779 A JP 1090779A JP 9077989 A JP9077989 A JP 9077989A JP 2680674 B2 JP2680674 B2 JP 2680674B2
Authority
JP
Japan
Prior art keywords
compressed air
power generation
temperature difference
waste heat
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1090779A
Other languages
Japanese (ja)
Other versions
JPH02271080A (en
Inventor
洋司 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP1090779A priority Critical patent/JP2680674B2/en
Publication of JPH02271080A publication Critical patent/JPH02271080A/en
Application granted granted Critical
Publication of JP2680674B2 publication Critical patent/JP2680674B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は発電システムに関する。更に詳述すると、本
発明は、発電設備やその他の設備から排棄される熱と深
層海水との温度差を利用して発電する海洋・廃熱温度差
発電システムに関する。
TECHNICAL FIELD The present invention relates to a power generation system. More specifically, the present invention relates to an ocean / waste heat temperature difference power generation system that generates electric power by utilizing the temperature difference between heat discharged from power generation equipment and other equipment and deep seawater.

(従来の技術) 従来、僅かの温度差を利用して発電するシステムとし
ては海洋温度差発電がある。この海洋温度差発電は、20
〜25℃の表層海水と600〜800mの深海からポンプによっ
て汲み上げられた4〜5℃程度の深層海水との温度差を
利用して動作流体であるフロンを蒸発、凝縮させて発電
するものである。
(Prior Art) Conventionally, there is ocean temperature difference power generation as a system for generating electric power using a slight temperature difference. This ocean temperature difference power generation is 20
It uses the temperature difference between the surface seawater of ~ 25 ℃ and the deep seawater of about 4-5 ℃ pumped from the deep sea of 600-800m to vaporize and condense the working fluid, Freon, to generate electricity. .

また、最近の電力需要は昼間と夜間とでは大きく異な
ることから、夜間の余剰電力を貯蔵する必要性が高まっ
ている。この電力貯蔵の一つの技術として、余剰電力を
圧縮空気に変えて貯蔵する技術が最近提案されている。
圧縮空気貯蔵発電システムは、ガスタービン発電が高圧
の燃料用空気を得るために発電電力の全体の約60〜70%
のエネルギーを圧縮機の稼動のための所内動力として消
費されていたものを、夜間の余剰電力を利用して貯蔵し
た圧縮空気に代替することによって、昼間の電力重要ピ
ーク時にタービン動力を100%電力として供給できるよ
うにしたものである。
In addition, since the recent demand for electric power greatly differs between daytime and nighttime, there is an increasing need to store surplus power at nighttime. As one of the technologies for this power storage, a technology for storing surplus power by converting it into compressed air has been proposed recently.
The compressed air storage power generation system uses gas turbine power generation to obtain high-pressure fuel air, which accounts for about 60-70% of the total generated power.
By replacing the energy that was consumed as in-house power for operating the compressor with the compressed air that was stored by using the surplus power at night, 100% of the turbine power is used during peak daytime power peaks. It can be supplied as.

(発明が解決しようとする課題) しかしながら、海洋温度差発電の場合、深層海水を汲
み上げるのにポンプを使うため、その消費電力が発電電
力の約50〜60%を占め、エネルギーの無駄が大きい。し
かも、温度差が20℃前後と小さいため発電効率も低い。
(Problems to be Solved by the Invention) However, in the case of ocean thermal energy conversion, since a pump is used to pump deep seawater, its power consumption occupies about 50 to 60% of the generated power, resulting in a large waste of energy. Moreover, since the temperature difference is small at around 20 ° C, the power generation efficiency is low.

また、夜間の余剰電力を圧縮空気に変えて深海に貯蔵
する場合、圧縮空気を冷却しなければならず、250〜300
℃の比較的高温の廃熱が無駄に捨てられている。また、
火力発電所のガスタービン等からも多量の廃熱が何も使
われずに無駄に放出されている。
In addition, when the surplus power at night is converted to compressed air and stored in the deep sea, the compressed air must be cooled.
Waste heat at a relatively high temperature of ℃ is wasted. Also,
A large amount of waste heat is also wasted without being used from gas turbines of thermal power plants.

本発明は、余剰電力をエネルギー形態を変えて蓄える
圧縮空気海底貯蔵システムの冷却熱やガスタービンの廃
熱を利用する経済的な発電効率の高い海洋・廃熱温度差
発電システムを提供することを目的とする。
The present invention provides an economically efficient ocean / waste heat temperature difference power generation system that utilizes cooling heat of a compressed air seabed storage system that stores surplus power by changing the energy form and waste heat of a gas turbine, and that has high economical power generation efficiency. To aim.

(課題を解決するための手段) かかる目的を達成するため、本発明の海洋・廃熱温度
差発電システムは、余剰電力を圧縮空気に変換して海底
の貯気槽に蓄える圧縮空気海底貯蔵設備と、廃熱を伴う
設備と、前記貯気槽に貯蔵される圧縮空気を利用して深
層海水を汲上げる取水装置と、余剰電力を変換した前記
圧縮空気の熱又は廃熱を伴う設備の廃熱と前記圧縮空気
によって汲上げられた深層海水との間の温度差を利用し
て発電する温度差発電設備とから構成されている。
(Means for Solving the Problem) In order to achieve such an object, the ocean / waste heat differential temperature power generation system of the present invention is a compressed air seabed storage facility for converting surplus power into compressed air and storing it in a seabed storage tank. A facility with waste heat, a water intake device for pumping deep seawater using compressed air stored in the air storage tank, and a facility with heat of the compressed air or waste heat with excess power converted The temperature difference power generation equipment is configured to generate electric power by utilizing the temperature difference between heat and the deep sea water pumped by the compressed air.

また、本発明において、前記深層海水は、圧縮空気を
貯気槽に貯蔵するこの際に貯気槽から排出される深層海
水と、海底貯気槽に貯蔵された圧縮空気の一部を海中に
噴出して得られるエアリフト効果によって汲上げられる
深層海水とを利用している。
Further, in the present invention, the deep seawater is the deep seawater discharged from the air storage tank when storing compressed air in the air storage tank, and a part of the compressed air stored in the seabed air storage tank to the sea. It uses deep seawater that is pumped up by the airlift effect obtained by jetting.

また、本発明において、前記廃熱を伴う設備は発電用
ガスタービンであり、圧縮機と発電機、発電機とガスタ
ービンとを夫々クラッチを介して接続し、余剰電力を利
用して前記発電機を回転させて前記圧縮機を駆動し、圧
縮空気を前記貯気槽に貯蔵すると共にこの貯気槽に蓄え
た圧縮空気を前記ガスタービンに供給するようにしてい
る。
Further, in the present invention, the facility accompanied by the waste heat is a gas turbine for power generation, the compressor and the generator, the generator and the gas turbine are respectively connected via a clutch, and the surplus power is utilized to generate the generator. Is rotated to drive the compressor to store compressed air in the gas storage tank and to supply the compressed air stored in the gas storage tank to the gas turbine.

(作用) したがって、余剰電力を変換した圧縮空気の熱又は廃
熱を伴う設備の廃熱と圧縮空気によって汲み上げられる
深層海水との温度差を利用して温度差発電を行なう。
(Operation) Therefore, temperature difference power generation is performed by utilizing the temperature difference between the waste heat of the equipment accompanied by the heat of the compressed air or the waste heat converted from the surplus power and the deep seawater pumped by the compressed air.

即ち、夜間にあっては、余剰電力を圧縮空気に変えて
海底の貯気槽に貯蔵する際の圧縮空気冷却熱と、圧縮空
気の貯蔵と同時に貯気槽から排出される深層海水との間
の温度差を利用して発電させ、日中にあっては、海底に
貯蔵されている圧縮空気の一部を海中に噴出させてエア
リフト効果によって汲み上げられる深層海水と廃熱を伴
う設備の廃熱との間の温度差を利用して発電させる。
That is, at night, between the compressed air cooling heat when the surplus power is converted to compressed air and stored in the storage tank on the seabed, and the deep seawater discharged from the storage tank at the same time when the compressed air is stored. Is used to generate electricity, and during the daytime, a portion of the compressed air stored on the seabed is ejected into the sea and is pumped up by the airlift effect. Power is generated by utilizing the temperature difference between and.

(実施例) 以下、本発明の構成を図面に示す実施例に基づいて詳
細に説明する。
(Examples) Hereinafter, the configuration of the present invention will be described in detail based on examples shown in the drawings.

第1図に本発明の海洋・廃熱温度差発電システムの原
理をシステム線図で示す。この海洋・廃熱温度差発電シ
ステムは、余剰電力を圧縮空気に変換して蓄える圧縮空
気海底貯蔵設備1と、廃熱を伴う設備例えばガスタービ
ン発電設備2と、深層海水を汲み上げる取水装置3と、
余剰電力によってつくられる圧縮空気の熱又はガスター
ビンの排ガスの熱と貯蔵された圧縮空気によって汲上げ
られる深層海水との間の温度差を利用して発電する温度
差発電設備4とから構成されている。
FIG. 1 is a system diagram showing the principle of the ocean / waste heat temperature difference power generation system of the present invention. This ocean / waste heat temperature difference power generation system includes a compressed air seabed storage facility 1 for converting surplus power into compressed air and storing it, a facility with waste heat, for example, a gas turbine power generation facility 2, and a water intake device 3 for pumping deep seawater. ,
And a temperature difference power generation facility 4 for generating electric power by utilizing a temperature difference between heat of compressed air generated by surplus power or heat of exhaust gas of a gas turbine and deep seawater pumped by stored compressed air. There is.

本実施例の場合、ガスタービン発電設備2と圧縮空気
海底貯蔵設備1とを一部共用し、ガスタービン発電設備
2の圧縮機5とガスタービン6を連結する送気管7を分
岐して貯気槽8と連結し、仕切弁9の操作によって圧縮
空気をガスタービン6に直接供給したり、貯気槽8に貯
蔵するようにしている。ガスタービン6と発電機10、発
電機10と圧縮機5とは夫々クラッチ11,12を介して接続
され、余剰電力が発生しているとき即ち夜間にはクラッ
チ11を切り、発電機10をモータにして圧縮機5を回転さ
せ、それ以外のときにはガスタービン6と発電機10と圧
縮機5とを連結してガスタービン6によって圧縮機5を
回転させるようにしている。尚、図中符号13はガスター
ビン用燃焼器、14は再生器、15は排ガスボイラ、16は煙
突であり、圧縮機5から吐出された圧縮空気は冷却装置
17において温度差発電設備4の動作流体を加熱した後再
生器14でガスタービン6の排ガスと熱交換した後燃焼器
13に供給される。そして、高温高圧のガスとされてガス
タービン6を回転させ、再生器14、排ガスボイラ15を経
て煙突から排棄される。排ガスボイラ15において温度差
発電設備4の動作流体と熱交換し、動作流体を蒸発させ
る。
In the case of the present embodiment, the gas turbine power generation equipment 2 and the compressed air seabed storage equipment 1 are partially shared, and the air supply pipe 7 connecting the compressor 5 and the gas turbine 6 of the gas turbine power generation equipment 2 is branched to store air. It is connected to the tank 8 and the compressed air is directly supplied to the gas turbine 6 by operating the sluice valve 9 or stored in the air storage tank 8. The gas turbine 6 and the generator 10, and the generator 10 and the compressor 5 are connected via clutches 11 and 12, respectively, and when excess power is being generated, that is, at night, the clutch 11 is disengaged to drive the generator 10 to a motor. Then, the compressor 5 is rotated, and at other times, the gas turbine 6, the generator 10 and the compressor 5 are connected to rotate the compressor 5 by the gas turbine 6. In the figure, reference numeral 13 is a gas turbine combustor, 14 is a regenerator, 15 is an exhaust gas boiler, 16 is a chimney, and the compressed air discharged from the compressor 5 is a cooling device.
After heating the working fluid of the temperature difference power generation facility 4 at 17, after exchanging heat with the exhaust gas of the gas turbine 6 at the regenerator 14, after-combustor
Supplied to 13. Then, the gas turbine 6 is turned into high-temperature and high-pressure gas and is discharged from the chimney through the regenerator 14 and the exhaust gas boiler 15. In the exhaust gas boiler 15, heat exchange is performed with the working fluid of the temperature difference power generation equipment 4, and the working fluid is evaporated.

圧縮空気海底貯蔵設備1は、夜間の余剰電力エネルギ
ーを圧縮空気に変換して海底に貯蔵し、電力需要ピーク
時等にそれを利用しようとするもので、圧縮空気供給源
たる圧縮機5と圧縮空気の冷却装置17と貯気槽8とこれ
らを連結しかつ他の設備と連結する送気管7,18及び送水
管19とから成る。圧縮空気の貯蔵は、海底に設置されて
いる貯気槽8を利用して行なわれる。貯気槽8は、貯蔵
効率を考慮すると、できるだけ海底深く設置するのが好
ましく、水深100m以上好ましくは水深200m以上で陸地か
ら比較的近くの潮流の影響が少ない大陸棚に設置され
る。例えば、好適な設置条件の湾としては、東京湾入口
部、相模湾、駿河湾、富山湾、若狭湾の北部及び鹿児島
湾、岬では、北海道の知床、積丹、茂津多、江差沖合
い、東北地方の下北半島尻屋崎と釜石の沖、紀伊半島の
潮岬及び四国の室戸岬などがある。
The compressed air seabed storage facility 1 converts surplus power energy at night into compressed air and stores the compressed air on the seabed and uses it at the time of peak power demand and the like. It is composed of an air cooling device 17, an air storage tank 8, and air supply pipes 7 and 18 and a water supply pipe 19 which connect them to each other and connect them to other equipment. Storage of compressed air is performed using the air storage tank 8 installed on the seabed. Considering storage efficiency, the storage tank 8 is preferably installed as deep as possible on the sea floor, and is installed on a continental shelf at a water depth of 100 m or more, preferably at a water depth of 200 m or more, which is relatively close to the land and is less affected by tidal current. For example, bays with suitable installation conditions include Tokyo Bay entrance, Sagami Bay, Suruga Bay, Toyama Bay, the northern part of Wakasa Bay and Kagoshima Bay, and Cape Shiretoko, Shakotan, Shizuta, Esashi, and Tohoku in Hokkaido. Off Shirikitazaki and Kamaishi in the Shimokita Peninsula in the region, Cape Shio on the Kii Peninsula and Cape Muroto on Shikoku.

尚、海底に据付けられる貯気槽8、送気管18及び送水
管19には、耐用年数が長く設置後の保守作業を必要とし
ない材料の選定と設計の工夫が必要である。例えば貯気
槽8としては鉄筋コンクリートが、送気管18としては鋼
鉄管にアスファルトがコーティングされたもの、また送
水管19としてはステンレススティール製管にアスファル
ト等のコーティングを施したものの使用が好ましく、運
転中の保守作業もほとんど必要なくかつ耐用年数も長く
することができる。
For the storage tank 8, the air supply pipe 18 and the water supply pipe 19 installed on the seabed, it is necessary to select materials and devise a design that has a long service life and does not require maintenance work after installation. For example, it is preferable to use reinforced concrete for the air storage tank 8, steel pipe coated with asphalt for the air supply pipe 18, and stainless steel pipe coated with asphalt for the water supply pipe 19. Maintenance work is almost unnecessary and the service life can be extended.

また、図示していないが、貯気槽8には蓄える圧縮空
気の浮力によって浮上したり、海底における設置状態が
不安定とならないようにするため重錘(図示省略)やバ
ラストタンク機構が設けられたり、海底に対して喰込む
スパイク等が設けられる。更に、この貯気槽8には陸上
の圧縮機5から圧縮空気を導入する際に閉じ貯気槽8内
から圧縮空気を放出する際に開いて海水を導入する逆止
弁20と、圧縮空気を貯気槽8に導入する際に開いて貯気
槽8内の深層海水を温度差発電設備4の熱交換器(コン
デンサ)26に供給すると共に貯気槽8内の圧縮空気を陸
上のガスタービン6等に供給する場合に閉じる逆止弁21
とが設置されている。貯気槽8と陸上の圧縮機5とは送
気管7,18によって接続され、夜間の余剰電力によってつ
くられる圧縮空気を貯蔵するように設けられている。
Although not shown, the storage tank 8 is provided with a weight (not shown) and a ballast tank mechanism so as not to float due to the buoyancy of the compressed air stored therein or to make the installation state on the seabed unstable. Or, spikes that bite into the sea floor are provided. Further, a check valve 20 which is closed when compressed air is introduced from the land-based compressor 5 and is opened when the compressed air is discharged from the storage tank 8 to introduce seawater into the storage tank 8, and compressed air. When the gas is introduced into the storage tank 8, the deep seawater in the storage tank 8 is supplied to the heat exchanger (condenser) 26 of the temperature difference power generation facility 4 and the compressed air in the storage tank 8 is supplied to the land gas. Check valve 21 to close when supplying to turbine 6 etc.
And is installed. The air storage tank 8 and the land-based compressor 5 are connected by air pipes 7 and 18, and are provided so as to store compressed air generated by surplus power at night.

尚、圧縮空気の流れの方向を切換える仕切弁9,25とし
ては電磁バルブ等のような遠隔操作可能なものが好まし
い。
As the sluice valves 9 and 25 for switching the direction of the flow of compressed air, those which can be operated remotely such as electromagnetic valves are preferable.

温度差発電設備4は、深層海水によって動作流体を冷
却するコンデンサ26と、動作流体を圧縮空気の熱によっ
て蒸発させる熱交換器・冷却装置17と、動作流体をガス
タービン6の排ガスによって蒸発させる熱交換器・排ガ
スボイラ15と、動作流体を循環させるポンプ27及びター
ビン28とによって構成される密閉ランキンサイクルであ
って、タービン28によって発電機29を回転させている。
動作流体としてはフロン系の有機媒体の使用が効率的で
あるが、温度差が200℃程度得られるので水やその他の
媒体の使用も可能である。また、密閉サイクルでなくと
も、開放サイクルであっても実施可能である。
The temperature difference power generation facility 4 includes a condenser 26 that cools the working fluid by the deep seawater, a heat exchanger / cooling device 17 that evaporates the working fluid by the heat of compressed air, and a heat that evaporates the working fluid by the exhaust gas of the gas turbine 6. It is a closed Rankine cycle composed of an exchanger / exhaust gas boiler 15, a pump 27 and a turbine 28 that circulate a working fluid, and a turbine 28 rotates a generator 29.
As a working fluid, it is efficient to use a CFC-based organic medium, but since a temperature difference of about 200 ° C. can be obtained, water or another medium can also be used. Further, it can be carried out not only in the closed cycle but also in the open cycle.

取水装置3は、深層海水(冷海水)を温度差発電設備
4のコンデンサ26の冷却水として供給するためのもの
で、貯気槽8に蓄えられる圧縮空気によって深層海水を
圧送する送水管19の系統と、貯気槽8に蓄えられた圧縮
空気を海中に噴出して得られるエアリフト効果によって
汲み上げる空気揚水ポンプ24の系統とを有する。これら
圧送系統は、コンデンサ26と貯気槽8、空気揚水ポンプ
24の揚水管22とを送水管19で連結することにより構成さ
れている。この圧送系統は、貯気槽8に圧縮空気が蓄え
られている間中、貯気槽8内の深層海水をコンデンサ26
側へ押送する。そして、圧縮空気が使用され始めると、
逆止弁21が閉じて送水管19を閉じる。
The water intake device 3 is for supplying deep seawater (cold seawater) as cooling water for the condenser 26 of the temperature difference power generation facility 4, and includes a water pipe 19 for sending the deep seawater under pressure by the compressed air stored in the storage tank 8. It has a system and a system of an air pump 24 that pumps up the compressed air stored in the air storage tank 8 into the sea by an air lift effect. These pumping systems consist of a condenser 26, an air storage tank 8, and an air pump.
It is configured by connecting 24 pumping pipes 22 with a water supply pipe 19. This pumping system allows the deep seawater in the air storage tank 8 to be condensed while the compressed air is being stored in the air storage tank 8.
Send to the side. And when compressed air begins to be used,
The check valve 21 is closed and the water pipe 19 is closed.

また、エアリフトによる取水装置は、揚水管とこの中
に圧縮空気を噴出するノズルとから成り、蓄えられた圧
縮空気の一部を噴出するようにしている。
Further, the water intake device by the air lift is composed of a pumping pipe and a nozzle for ejecting compressed air into the pipe, and ejects a part of the stored compressed air.

尚、上述の実施例は本発明の好適な実施の一例ではあ
るがこれに限定されるものではなく本考案の要旨を逸脱
しない範囲において種々変形実施可能である。例えば、
廃熱を伴う設備2としては、本実施例のガスタービン発
電設備に限定されず、燃料電池や原子力発電所等の他の
発電設備、あるいは高炉やその他の工業用ボイラ等を他
の廃熱を伴う設備を採用することもある。この場合、そ
れら熱源から得られる排ガス等を温度差発電設備4の熱
交換器例えば排ガスボイラ15に導入して、動作流体を蒸
発させる。そして、圧縮機5によって得られる圧縮空気
は、全量が貯気槽8に蓄えられ、温度差発電設備4のコ
ンデンサ26へ供給する深層海水の汲み上げの他、海上都
市のエアータービン発電機の駆動、深層海水の湾奥への
移動やばっ気による海洋汚染の清浄化等に使用される。
また、ガスタービン発電設備2と圧縮空気海底貯蔵設備
1とは設備を共用せず、別個に設置しても良い。
It should be noted that the above-described embodiment is an example of a preferred embodiment of the present invention, but the present invention is not limited to this, and various modifications can be made without departing from the scope of the present invention. For example,
The facility 2 accompanied by waste heat is not limited to the gas turbine power generation facility of this embodiment, but other power generation facilities such as a fuel cell and a nuclear power plant, or a blast furnace and other industrial boilers, etc. In some cases, accompanying equipment may be adopted. In this case, the exhaust gas and the like obtained from these heat sources are introduced into the heat exchanger of the temperature difference power generation facility 4, for example, the exhaust gas boiler 15, to evaporate the working fluid. The entire amount of compressed air obtained by the compressor 5 is stored in the air storage tank 8 and the deep seawater supplied to the condenser 26 of the temperature difference power generation facility 4 is pumped up, and the air turbine generator of a maritime city is driven. It is used for moving deep sea water to the back of the bay and for cleaning marine pollution due to aeration.
The gas turbine power generation facility 2 and the compressed air seabed storage facility 1 may not be shared and may be separately installed.

以上のように構成された海洋・廃熱温度差発電システ
ムによると、夜間にあっては例えば原子力発電所等から
送電されてくる余剰電力を使用して発電機10を回転させ
て圧縮機5を駆動し、圧縮空気を送気管7,18を通して海
底の貯気槽8に蓄える。このとき圧縮空気の熱は温度差
発電設備の動作流体によって冷却装置17において冷却さ
れ、低温にして蓄えられる。一方、貯気槽8内に圧縮空
気が送り込まれるとこの圧力によって貯気槽8内の深層
海水が逆止弁21を開けて排出され、送水管19を経て温度
差発電設備4のコンデンサ26に深層海水を供給し、サイ
クル内を循環する動作流体を冷却し、凝縮させる。した
がって、温度差発電設備4では圧縮空気の廃熱と深層海
水との温度によって作動流体を蒸発・凝縮させ、タービ
ン28を回転させて発電する。また、日中にあっては、貯
気槽8内に蓄えられた圧縮空気の大部分はガスタービン
発電設備2に送気管18,7を介して供給され、ガスタービ
ン6の燃焼用空気として使用される。圧縮空気は再生器
14において加熱されてから燃焼器13に送られる。また、
圧縮空気の一部は送気管18の分岐管23を経て空気揚水ポ
ンプ24に供給され、揚水管22内に噴出されエアリフト効
果によって揚水管22周辺の深層海水を汲み上げる。そし
て、温度差発電設備4のコンデンサ26に供給する。尚、
ガスタービン6の始動時には貯気槽8内に蓄えられた圧
縮空気は使用されず、ガスタービン6によって圧縮機5
を回転させてその圧縮空気をガスタービン6に供給す
る。そして、ガスタービン6が定常運転に達した後、ク
ラッチ12を切り圧縮機5を停止して貯気槽8内の圧縮空
気を使用する。
According to the ocean / waste heat temperature difference power generation system configured as described above, at night, the power generator 10 is rotated by using the surplus power transmitted from, for example, a nuclear power plant to drive the compressor 5 to operate. It is driven to store compressed air in the air storage tank 8 on the seabed through the air pipes 7 and 18. At this time, the heat of the compressed air is cooled in the cooling device 17 by the working fluid of the temperature difference power generation equipment, and is stored at a low temperature. On the other hand, when compressed air is sent into the air storage tank 8, this pressure causes the deep sea water in the air storage tank 8 to be discharged by opening the check valve 21, and to the condenser 26 of the temperature difference power generation facility 4 via the water supply pipe 19. Deep seawater is supplied to cool and condense the working fluid circulating in the cycle. Therefore, in the temperature difference power generation equipment 4, the working fluid is evaporated and condensed by the temperature of the waste heat of the compressed air and the deep seawater, and the turbine 28 is rotated to generate electricity. During the daytime, most of the compressed air stored in the storage tank 8 is supplied to the gas turbine power generation facility 2 via the air supply pipes 18 and 7, and is used as combustion air for the gas turbine 6. To be done. Compressed air regenerator
It is heated in 14 and then sent to the combustor 13. Also,
Part of the compressed air is supplied to the air pump 24 via the branch pipe 23 of the air supply pipe 18, is jetted into the pump pipe 22 and pumps up deep seawater around the pump pipe 22 by the air lift effect. Then, it is supplied to the condenser 26 of the temperature difference power generation equipment 4. still,
When the gas turbine 6 is started, the compressed air stored in the air storage tank 8 is not used, and the gas turbine 6 causes the compressor 5
Is rotated to supply the compressed air to the gas turbine 6. Then, after the gas turbine 6 reaches the steady operation, the clutch 12 is disengaged and the compressor 5 is stopped to use the compressed air in the storage tank 8.

(発明の効果) 以上の説明より明らかなように、本発明は、余剰電力
を蓄える圧縮空気海底貯蔵システムにおいて従来無駄に
廃棄されていた圧縮空気の熱又はその他の設備例えば火
力発電所のガスタービンの廃熱と、圧縮空気によって汲
み上げられる深層海水とを利用して温度差発電を行うの
で、廃熱エネルギー有効に回収でき経済的である。しか
も、本発明の海洋・廃熱温度差発電システムは、廃熱と
深層海水との間の温度差が大きいので発電効率も高い。
(Effects of the Invention) As is apparent from the above description, the present invention is directed to the heat of compressed air or other equipment that has conventionally been wastefully discarded in a compressed air seabed storage system that stores excess power, such as a gas turbine of a thermal power plant. Since the temperature difference power generation is performed by utilizing the waste heat of the above and the deep sea water pumped up by the compressed air, the waste heat energy can be effectively recovered and it is economical. Moreover, the ocean / waste heat temperature difference power generation system of the present invention has a large temperature difference between the waste heat and the deep seawater, and therefore has high power generation efficiency.

また、本発明の海洋・廃熱温度差発電システムは、ポ
ンプを使わず圧縮空気の圧力を利用することによって、
深層海水を汲み上げているので、深層海水を汲み上げる
ためのポンプが不要であると共に発電電力のほとんどを
供給できる。
Further, the ocean / waste heat temperature difference power generation system of the present invention uses the pressure of compressed air without using a pump,
Since it pumps deep seawater, it does not require a pump to pump deep seawater and can supply most of the generated power.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の海洋・廃熱温度差発電システムの原理
を示すサイクル線図である。 1……圧縮空気海底貯蔵設備、 2……廃熱を伴う設備・ガスタービン発電設備、 3……取水装置、4……温度差発電設備。
FIG. 1 is a cycle diagram showing the principle of the ocean / waste heat temperature difference power generation system of the present invention. 1 ... Compressed air seabed storage facility, 2 ... Facility with waste heat / gas turbine power generation facility, 3 ... Water intake device, 4 ... Temperature difference power generation facility.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F03G 7/05 521 F03G 7/05 521 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location F03G 7/05 521 F03G 7/05 521

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】余剰電力を圧縮空気に変換して海底の貯気
槽に蓄える圧縮空気海底貯蔵設備と、廃熱を伴う設備
と、前記貯気槽に貯蔵される圧縮空気を利用して深層海
水を汲上げる取水装置と、余剰電力を変換した前記圧縮
空気の熱又は廃熱を伴う設備の廃熱と前記圧縮空気によ
って汲上げられた深層海水との間の温度差を利用して発
電する温度差発電設備とから成ることを特徴とする海洋
・廃熱温度差発電システム。
1. A compressed air seabed storage facility for converting surplus power into compressed air for storage in a seabed storage tank, equipment accompanied with waste heat, and compressed air stored in the storage tank to form a deep layer. Electricity is generated by using the temperature difference between the water intake device for pumping seawater and the waste heat of the facility accompanied by the heat or waste heat of the compressed air that has converted excess power and the deep seawater pumped by the compressed air. An ocean / waste heat temperature difference power generation system comprising a temperature difference power generation facility.
【請求項2】前記深層海水は、圧縮空気を前記貯気槽に
貯蔵する際に前記貯気槽から排出される深層海水と、前
記貯気槽に貯蔵された圧縮空気の一部を海中に噴出して
得られるエアリフト効果によって汲上げられる深層海水
とを利用することを特徴とする請求項1記載の海洋・廃
熱温度差発電システム。
2. The deep seawater comprises the deep seawater discharged from the air storage tank when compressed air is stored in the air storage tank and a part of the compressed air stored in the air storage tank into the sea. The ocean / waste heat temperature difference power generation system according to claim 1, wherein deep seawater pumped by an airlift effect obtained by jetting is used.
【請求項3】前記廃熱を伴う設備は発電用ガスタービン
であり、圧縮機と発電機、発電機とガスタービンとを夫
々クラッチを介して接続し、余剰電力を利用して前記発
電機を回転させて前記圧縮機を駆動し、圧縮空気を前記
貯気槽に貯蔵すると共にこの貯気槽に蓄えた圧縮空気を
前記ガスタービンに供給することを特徴とする請求項1
又は2記載の海洋・廃熱温度差発電システム。
3. The facility accompanied by waste heat is a gas turbine for power generation, a compressor and a generator, and a generator and a gas turbine are connected via a clutch, respectively, and the surplus power is used to drive the generator. 2. The compressor is rotated to drive the compressor to store compressed air in the storage tank and to supply the compressed air stored in the storage tank to the gas turbine.
Alternatively, the ocean / waste heat temperature difference power generation system described in 2.
JP1090779A 1989-04-12 1989-04-12 Ocean / waste heat temperature difference power generation system Expired - Lifetime JP2680674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1090779A JP2680674B2 (en) 1989-04-12 1989-04-12 Ocean / waste heat temperature difference power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1090779A JP2680674B2 (en) 1989-04-12 1989-04-12 Ocean / waste heat temperature difference power generation system

Publications (2)

Publication Number Publication Date
JPH02271080A JPH02271080A (en) 1990-11-06
JP2680674B2 true JP2680674B2 (en) 1997-11-19

Family

ID=14008091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1090779A Expired - Lifetime JP2680674B2 (en) 1989-04-12 1989-04-12 Ocean / waste heat temperature difference power generation system

Country Status (1)

Country Link
JP (1) JP2680674B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013506078A (en) * 2009-09-23 2013-02-21 ブライト エナジー ストレージ テクノロジーズ,エルエルピー. Underwater compressed fluid energy storage system

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0816475B2 (en) * 1990-11-27 1996-02-21 工業技術院長 Temperature difference power generation method and device, and temperature difference power generation / marine organism aquaculture combined device
KR100473701B1 (en) * 2001-05-02 2005-03-07 이기두 Electric power generating system using compressed air, warm water and a seawater head
JP4418257B2 (en) * 2004-02-26 2010-02-17 独立行政法人海洋研究開発機構 Submersible and temperature difference power generation method
US20060112693A1 (en) * 2004-11-30 2006-06-01 Sundel Timothy N Method and apparatus for power generation using waste heat
US8991182B2 (en) 2009-02-17 2015-03-31 Mcalister Technologies, Llc Increasing the efficiency of supplemented ocean thermal energy conversion (SOTEC) systems
CN102713281B (en) * 2009-08-27 2015-08-19 麦卡利斯特技术有限责任公司 For the energy system that residence is supported
KR102176303B1 (en) 2010-01-21 2020-11-09 더 아벨 파운데이션, 인크. Ocean thermal energy conversion power plant
US9086057B2 (en) 2010-01-21 2015-07-21 The Abell Foundation, Inc. Ocean thermal energy conversion cold water pipe
US8899043B2 (en) 2010-01-21 2014-12-02 The Abell Foundation, Inc. Ocean thermal energy conversion plant
WO2012009541A2 (en) * 2010-07-14 2012-01-19 The Abell Foundation, Inc. Industrial ocean thermal energy conversion processes
WO2012009569A2 (en) 2010-07-14 2012-01-19 Brightearth Technologies, Inc. System and method for storing thermal energy
US9151279B2 (en) 2011-08-15 2015-10-06 The Abell Foundation, Inc. Ocean thermal energy conversion power plant cold water pipe connection
JP5555276B2 (en) * 2012-04-05 2014-07-23 川崎重工業株式会社 Gas turbine engine device equipped with Rankine cycle engine
JP6554036B2 (en) 2012-10-16 2019-07-31 ジ アベル ファウンデーション, インコーポレイテッド Heat exchanger including manifold
WO2020235497A1 (en) * 2019-05-21 2020-11-26 日揮グローバル株式会社 Electricity generating system, and electricity generation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013506078A (en) * 2009-09-23 2013-02-21 ブライト エナジー ストレージ テクノロジーズ,エルエルピー. Underwater compressed fluid energy storage system

Also Published As

Publication number Publication date
JPH02271080A (en) 1990-11-06

Similar Documents

Publication Publication Date Title
JP2680674B2 (en) Ocean / waste heat temperature difference power generation system
US6957536B2 (en) Systems and methods for generating electrical power from solar energy
US7685820B2 (en) Supercritical CO2 turbine for use in solar power plants
CA2292488C (en) Waste heat recovery in an organic energy converter using an intermediate liquid cycle
US8567195B2 (en) Deep ocean energy system with full sea water air conditioning and utility waste heat utilization
US20080022683A1 (en) Storing Thermal Energy and Generating Electricity
RU2435050C2 (en) Energy storage plant
JP6298072B2 (en) Centralized thermodynamic solar power plant or conventional thermal power plant
US3996749A (en) Method and plants for producing, storing, modulating and distributing energy
KR100799528B1 (en) A electric generating system using waste heat of from power generator
EP1577549A1 (en) Apparatus for storing thermal energy and generating electricity
US20190170025A1 (en) Renewable Energy Process and Method Using a Carbon Dioxide Cycle to Produce Work
GB2461101A (en) Power generation system
JP2004069197A (en) System using natural energy/underground heat together, and operating method thereof
US20100313874A1 (en) Energy Recovery System
JP2000297657A (en) Electric power storage type gas turbine generator facility
KR101419009B1 (en) Lng regasification apparatus having combined cycle power plant
Spencer A comprehensive review of small solar-powered heat engines: Part II. Research since 1950—“conventional” engines up to 100 kW
JP2002242694A (en) Energy storing type gas turbine generator
RU2125171C1 (en) Power generating plant and method of its operation
JP2005171861A (en) Rankine cycle power generation system
EP2492627B1 (en) Cooling system for a solar thermal Rankine cycle
CN219711735U (en) Energy storage system based on middle-deep geothermal energy
Kabus et al. Aquifer thermal energy stores in Germany
JP2002195101A (en) Cogeneration system