JP2670265B2 - Method for manufacturing CMOS semiconductor device - Google Patents

Method for manufacturing CMOS semiconductor device

Info

Publication number
JP2670265B2
JP2670265B2 JP62071677A JP7167787A JP2670265B2 JP 2670265 B2 JP2670265 B2 JP 2670265B2 JP 62071677 A JP62071677 A JP 62071677A JP 7167787 A JP7167787 A JP 7167787A JP 2670265 B2 JP2670265 B2 JP 2670265B2
Authority
JP
Japan
Prior art keywords
film
conductivity type
semiconductor region
type
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62071677A
Other languages
Japanese (ja)
Other versions
JPS63239858A (en
Inventor
忠 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62071677A priority Critical patent/JP2670265B2/en
Publication of JPS63239858A publication Critical patent/JPS63239858A/en
Application granted granted Critical
Publication of JP2670265B2 publication Critical patent/JP2670265B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、nチャネル,Pチャネルトランジスタのどち
らか一方をLDD構造としたCMOS半導体装置の製造方法に
関する。 (従来の技術) 従来のCMOS半導体装置の製造方法について第2図を用
いて説明する。 結晶方位(100)のP型シリコン基板21の所定部分に
熱拡散等でnウェル層22を形成する。そして基板21およ
びnウェル層22に素子分離領域として、フィールド酸化
膜23を形成した後、このフィールド酸化膜23に囲まれた
基板21およびnウェル層22上に熱酸化膜24を形成する。
さらに全面に、例えばリンをドープした多結晶シリコン
膜25を堆積させる(同図(A)参照)。 多結晶シリコン膜25上にフォトレジスト(図示せず)
を積層させ、所定部分をパターニングし、残ったフォト
レジストをマスクにして、エッチングにより不用となる
部分の多結晶シリコン膜25を除去して、フィールド酸化
膜23に囲まれた素子領域に多結晶シリコン膜から成るゲ
ート電極28,29を形成する。次いでゲート電極28,29およ
びフィールド酸化膜23をマスクにして、エッチング除去
し、ゲート酸化膜26,27を形成する(同図(B)参
照)。 nウェル層22を覆うフォトレジストパターン30を形成
した後、このフォトレジストパターン30,ゲート電極28
およびフィールド酸化膜23をマスクとして、リン等のn
型不純物を加速電圧20KeV,ドーズ量1×1013cm-2でイオ
ン注入し、低濃度のn型不純物注入層311,312を形成す
る(同図(C)参照)。 つづいて、前記フォトレジストパターン30を除去した
後、今度はゲート電極28を有する方の、フィールド酸化
膜23に囲まれた素子領域を覆うフォトレジストパターン
32を形成する。このフォトレジストパターン32,フィー
ルド酸化膜23およびゲート電極29をマスクにして、ボロ
ン等のP型不純物を加速電圧40KeV,ドーズ量1×1015cm
-2でイオン注入し、P型不純物注入層331,332をnウェ
ル層22に形成する(同図(D)参照)。 フォトレジストパターン32を除去した後、全面に例え
ばCVD−SiO2膜37を厚さ4000Å堆積させ、900℃の窒素雰
囲気中で30分間熱処理する。これにより、低濃度のn型
不純物注入層311,312およびP型不純物注入層331,332
の活性化が行なわれ、低濃度のn-型拡散層341,342およ
びP+型のソース,ドレイン領域351,352が形成される
(同図(E)参照)。 CVD−SiO2膜37にRIE(反応性イオンエッチング)を行
ない、このCVD−SiO2膜37の膜厚程度エッチバックする
ことにより、ゲート電極28,ゲート酸化膜26の側面およ
びゲート電極29,ゲート酸化膜27の側面に自己整合的にC
VD−SiO2から成る壁体381,382を形成する(同図(F)
参照)。 nウェル層22上にフォトレジストパターン(図示せ
ず)を形成し、このフォトレジストパターン,フィール
ド酸化膜23,ゲート電極28および壁体381をマスクして、
砒素等のn型不純物を加速電圧40KeV,ドーズ量3×1015
cm-2でイオン注入する。この後、フォトレジストパター
ンを除去し、900℃の窒素雰囲気中で熱処理を行ない、
イオン注入したn型不純物を活性化させる。これにより
n+型拡散層391,392が形成される。このようにしてLDD
構造となるn-型拡散層341とn+型拡散層391から成るソー
ス領域40,n-型拡散層342とn+型拡散層392から成るドレ
イン領域41を形成することによりCMOS半導体装置を製造
していた。 (発明が解決しようとする問題点) 従来は上記方法によりCMOS半導体装置を製造していた
が、素子が微細化されるに従って不具合が生じることが
本願発明者の研究の結果明らかになった。従来の方法の
問題点について第2図(E)乃至第2図(F)を用いて
説明する。全面に形成されたCVD−SiO2膜37にRIEを行な
うと壁体381,382がゲート酸化膜26,27およびゲート電
極28,29の側面に形成される。この際、nウェル層22に
作られたソース・ドレイン領域となるP+型拡散層351,3
52の内、壁体382に覆われていない高濃度の表面がエッ
チングされてしまう。これによりP+型拡散層の抵抗が増
大し、それにより素子のスピードの低下が起こる。 本発明は上記のような従来技術の問題点の発見に基づ
いてなされたものであり、第1導電型の半導体領域の表
面のエッチングを防止するCMOS半導体装置を提供するこ
とを目的とする。 〔発明の構成〕 (問題点を解決するための手段) 上記目的を達成するために本発明においては、第1,第
2導電型の半導体領域全面に第1の被膜を形成し、さら
に第1導電型の半導体領域上の第1の被膜に選択的に第
2の被膜を積層したあと、この第2の被膜をマスクにし
てエッチングを行なうことを特徴とするCMOS半導体装置
の製造方法を提供する。 (作用) 第1,第2導電型の半導体領域全面に第1の被膜を形成
し、さらに第1導電型の半導体領域上の第1の被膜に選
択的に第2の被膜を積層したあと、この第2の被膜をマ
スクにしてエッチングを行なえば、第1導電型の半導体
領域表面のエッチングを防止することができる。 (実施例) 本発明の一実施例を第1図を用いて説明する。結晶方
位(100)のP型シリコン基板101の所定部分に熱拡散等
でnウェル層102を形成する。そして基板101およびnウ
ェル層102に素子分離領域として、フィールド酸化膜103
を形成した後、このフィールド酸化膜103に囲まれた基
板101およびnウェル層102上に熱酸化膜104を形成す
る。さらに全面に、例えばリンをドープした多結晶シリ
コン膜105を堆積させる(同図(A)参照)。 多結晶シリコン膜105上にフォトレジスト(図示せ
ず)を積層させ、所定部分をパターニングしたあと、残
ったフォトレジストをマスクにしてエッチングにより不
用となる部分の多結晶シリコン膜105を除去して、フィ
ールド酸化膜103に囲まれた素子領域に多結晶シリコン
膜から成るゲート電極108,109を形成する。次いでゲー
ト電極108,109およびフィールド酸化膜103をマスクにし
て、それ以外に形成された熱酸化膜104をエッチングに
より除去し、ゲート酸化膜106,107を形成する(同図
(B)参照)。尚、この工程において熱酸化膜104をパ
ターニングし、ゲート酸化膜106,107を形成したが、ゲ
ート酸化膜106,107を形成することなく、以降の工程を
行ってもよい。 nウェル層102を覆うフォトレジストバターン110を形
成した後、このフォトレジストパターン110,ゲート電極
108およびフィールド酸化膜103をマスクにして、リン等
のn型不純物を加速電圧20KeV,ドーズ量1×1013cm-2
イオン注入し、低濃度のn型不純物注入層1111,1112
形成する(同図(C)参照)。 フォトレジストパターン110を除去した後、今度はゲ
ート電極108を有する方のフィールド酸化膜103に囲まれ
た素子領域を覆うフォトレジストパターン112を形成す
る。このフォトレジストパターン112,フィールド酸化膜
103およびゲート電極109をマスクにして、ボロン等のP
型不純物を加速電圧40KeV,ドーズ量1×1015cm-2でイオ
ン注入し、P型不純物注入層1131,1132をnウェル層10
2に形成する(同図(D)参照)。 フォトレジストパターン112を除去した後、全面に例
えばCVD−SiO2膜117を厚さ4000Å堆積させ、900℃の窒
素雰囲気中で30分間熱処理する。これにより、低濃度の
n型不純物注入層1111,1112およびP型不純物注入層11
31,1132の活性化が行なわれ、低濃度のn-型拡散層11
41,1142およびP+型のソース,ドレイン領域115,116が
形成される(同図(E)参照)。 フィールド酸化膜103の一部分およびそれで囲まれた
nウェル層上にフォトレジストパターン118をCVD−SiO2
膜117に重ねて積層させる(同図(F)参照)。 フォトレジストパターン118をマスクにしてRIEを行な
い、このCVD−SiO2膜117の膜厚程度エッチバックするこ
とによりゲート電極108,ゲート酸化膜106の側壁に自己
整合的にCVD−SiO2膜である壁体119を残し、低濃度のn-
型拡散層1141,1142の表面を露出させる(同図(G)参
照)。 フォトレジストパターン118,フィールド酸化膜103お
よびゲート電極108,壁体119をマスクにして、砒素等の
n型不純物を加速電圧40KeV,ドーズ量3×1015cm-2でイ
オン注入する。この後、フォトレジストパターン118
(同図(G)参照)を除去し、例えば900℃の窒素雰囲
気中で熱処理を行ない注入したイオンを活性化させ、高
濃度のn+型拡散層1201,1202を形成する。これにより、
LDD構造となるn-型拡散層1141およびn+型拡散層1201
らなるソース領域121が形成されると共に、n-型拡散層1
142およびn+型拡散層1202からなるドレイン領域122が形
成される(同図(H)参照)。 全面に例えば5000ÅのCVD−SiO2膜123を堆積させる。
さらに、n+型拡散層1201,1202およびP+型拡散層115,11
6にコンタクトホールを設け、そして全面にAl膜を蒸着
し、かつコンタクトホールにも埋設し、各拡散層へ接触
させる。さらにこのAl膜のパターニングを行ないソース
電極124,126及びドレイン電極125,127とすることによ
り、CMOSトランジスタを製造する(同図(I)参照)。 このように構成されたCMOSトランジスタは同図(F)
で示すようにnウェル層102上の絶縁膜117に重ねてフォ
トレジストパターン118を形成してから、これをマスク
にしてRIEを行なうことにより、P+型拡散層115,116上に
形成された絶縁膜117のエッチングは行なわれない。よ
ってP+型拡散層115,116のエッチングによる損傷で生じ
る抵抗の増加およびそれによる素子スピードの低下を防
ぐことができる。 なお、本実施例においては第1図(C)および第1図
(D)に示したフォトレジストパターン110および112の
形成する順番を変えて、先にnウェル層102の所定部分
にボロン等のP型不純物のイオン注入を行なってもよ
い。 また、同図(G)に示したフォトレジストパターン11
8を除去してから絶縁膜117,フィールド酸化膜103および
ゲート電極108,壁体119をマスクにして、砒素等のn型
不純物をN-型拡散層1141,1142にイオン注入してもよ
い。 また、同図(F)に示したフォトレジストパターン11
8をマスクにして全面にRIEを行なった際、このフォトレ
ジストパターンは完全に除去されてもよい。 第1図(C)に示したフォトレジストパターン110を
形成する前に、全面にn型不純物、例えばリンをイオン
注入し、同図(D)に示したフォトレジストパターン11
2を形成し、P型不純物、例えばボロンをイオン注入し
てもよい。 〔発明の効果〕 以上詳述したように本発明においては、LDD構造にし
ないソース,ドレイン領域となる不純物拡散層のエッチ
ングによる損傷を防止し、素子特性の低下を防止するこ
とができる。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Industrial field of application) The present invention relates to a method of manufacturing a CMOS semiconductor device having an LDD structure of either one of an n-channel transistor and a P-channel transistor. (Prior Art) A conventional method of manufacturing a CMOS semiconductor device will be described with reference to FIG. An n-well layer 22 is formed on a predetermined portion of a P-type silicon substrate 21 having a crystal orientation (100) by thermal diffusion or the like. Then, a field oxide film 23 is formed on the substrate 21 and the n well layer 22 as an element isolation region, and then a thermal oxide film 24 is formed on the substrate 21 and the n well layer 22 surrounded by the field oxide film 23.
Further, a polycrystalline silicon film 25 doped with, for example, phosphorus is deposited on the entire surface (see FIG. 3A). Photoresist (not shown) on the polycrystalline silicon film 25
Are stacked, a predetermined portion is patterned, and the remaining photoresist is used as a mask, and the unnecessary portion of the polysilicon film 25 is removed by etching, so that the polysilicon region is formed in the element region surrounded by the field oxide film 23. Gate electrodes 28 and 29 made of films are formed. Then, the gate electrodes 28 and 29 and the field oxide film 23 are used as masks for etching to form gate oxide films 26 and 27 (see FIG. 7B). After forming a photoresist pattern 30 covering the n-well layer 22, the photoresist pattern 30 and the gate electrode 28 are formed.
And field oxide film 23 as a mask, n
Type impurities are ion-implanted at an accelerating voltage of 20 KeV and a dose amount of 1 × 10 13 cm −2 to form low-concentration n-type impurity implantation layers 31 1 and 31 2 (see FIG. 7C). Then, after removing the photoresist pattern 30, this time, the photoresist pattern covering the element region surrounded by the field oxide film 23, which has the gate electrode 28.
Form 32. Using the photoresist pattern 32, the field oxide film 23 and the gate electrode 29 as a mask, P-type impurities such as boron are accelerated at a voltage of 40 KeV and the dose is 1 × 10 15 cm.
Implanted at -2 to form a P-type impurity implanted layers 33 1, 33 2 to the n-well layer 22 (see FIG. (D)). After removing the photoresist pattern 32, for example, a CVD-SiO 2 film 37 having a thickness of 4000 Å is deposited on the entire surface and heat-treated in a nitrogen atmosphere at 900 ° C. for 30 minutes. Thus, low-concentration n-type impurity implanted layers 31 1, 31 2 and P-type impurity implanted layers 33 1, 33 2
Are activated to form low-concentration n -type diffusion layers 34 1 and 34 2 and P + -type source / drain regions 35 1 and 35 2 (see FIG. 7E). A CVD-SiO 2 film 37 subjected to RIE (reactive ion etching), by the film thickness about etchback of the CVD-SiO 2 film 37, the gate electrode 28, the side surface and the gate electrode 29 of the gate oxide film 26, the gate C is self-aligned on the side of oxide film 27
Walls 38 1 and 38 2 made of VD-SiO 2 are formed (Fig. (F)).
reference). The photoresist pattern (not shown) is formed on the n-well layer 22, the photoresist pattern, and a field oxide film 23, the gate electrode 28 and the wall 38 1 and the mask,
An n-type impurity such as arsenic is accelerated at an acceleration voltage of 40 KeV and a dose of 3 × 10 15
Ion-implant at cm -2 . After that, the photoresist pattern is removed, and heat treatment is performed in a nitrogen atmosphere at 900 ° C.
The ion-implanted n-type impurity is activated. This
n + -type diffusion layer 39 1, 39 2 are formed. In this way LDD
A CMOS is formed by forming a source region 40 composed of an n type diffusion layer 34 1 and an n + type diffusion layer 39 1 and a drain region 41 composed of an n type diffusion layer 34 2 and an n + type diffusion layer 39 2 as a structure. Manufactured semiconductor devices. (Problems to be Solved by the Invention) Conventionally, a CMOS semiconductor device was manufactured by the above method, but it was revealed as a result of the research conducted by the inventor of the present application that defects occur as elements are miniaturized. Problems of the conventional method will be described with reference to FIGS. 2 (E) to 2 (F). When RIE is performed on the CVD-SiO 2 film 37 formed on the entire surface, walls 38 1 and 38 2 are formed on the side surfaces of the gate oxide films 26 and 27 and the gate electrodes 28 and 29. At this time, the P + -type diffusion layers 35 1 , 3 serving as source / drain regions formed in the n-well layer 22
Of 5 2, high concentration surface of which is not covered with the wall 38 2 is etched. This increases the resistance of the P + -type diffusion layer, which causes the device speed to decrease. The present invention has been made on the basis of the discovery of the problems of the prior art as described above, and an object of the present invention is to provide a CMOS semiconductor device that prevents etching of the surface of the semiconductor region of the first conductivity type. [Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, in the present invention, a first coating film is formed on the entire surface of the first and second conductivity type semiconductor regions, and the first film is further formed. A method of manufacturing a CMOS semiconductor device, characterized in that a second film is selectively laminated on a first film on a semiconductor region of a conductivity type, and etching is performed using the second film as a mask. . (Function) After forming a first film on the entire surface of the first and second conductivity type semiconductor regions, and selectively laminating the second film on the first film on the first conductivity type semiconductor region, If the second film is used as a mask for etching, the surface of the semiconductor region of the first conductivity type can be prevented from being etched. (Example) An example of the present invention will be described with reference to FIG. An n-well layer 102 is formed in a predetermined portion of a P-type silicon substrate 101 having a crystal orientation (100) by thermal diffusion or the like. A field oxide film 103 is formed on the substrate 101 and the n-well layer 102 as an element isolation region.
Then, a thermal oxide film 104 is formed on the substrate 101 and the n-well layer 102 surrounded by the field oxide film 103. Further, a polycrystalline silicon film 105 doped with, for example, phosphorus is deposited on the entire surface (see FIG. 1A). After a photoresist (not shown) is laminated on the polycrystalline silicon film 105 and a predetermined portion is patterned, the unnecessary portion of the polycrystalline silicon film 105 is removed by etching using the remaining photoresist as a mask, Gate electrodes 108 and 109 made of a polycrystalline silicon film are formed in an element region surrounded by field oxide film 103. Next, using the gate electrodes 108 and 109 and the field oxide film 103 as a mask, the thermal oxide film 104 formed other than that is removed by etching to form gate oxide films 106 and 107 (see FIG. 3B). Although the thermal oxide film 104 is patterned and the gate oxide films 106 and 107 are formed in this step, the subsequent steps may be performed without forming the gate oxide films 106 and 107. After forming a photoresist pattern 110 covering the n-well layer 102, the photoresist pattern 110 and the gate electrode are formed.
Using the 108 and the field oxide film 103 as a mask, n-type impurities such as phosphorus are ion-implanted at an accelerating voltage of 20 KeV and a dose of 1 × 10 13 cm -2 to form low-concentration n-type impurity-implanted layers 111 1 , 111 2 . (See FIG. 3C). After removing the photoresist pattern 110, a photoresist pattern 112 that covers the element region surrounded by the field oxide film 103 having the gate electrode 108 is formed. This photoresist pattern 112, field oxide film
Using 103 and the gate electrode 109 as a mask, P such as boron
Type impurities are ion-implanted at an accelerating voltage of 40 KeV and a dose of 1 × 10 15 cm -2 to form P-type impurity implantation layers 113 1 and 113 2 in the n-well layer 10.
2 (see FIG. 3D). After removing the photoresist pattern 112, for example, a CVD-SiO 2 film 117 having a thickness of 4000 Å is deposited on the entire surface and heat-treated in a nitrogen atmosphere at 900 ° C. for 30 minutes. As a result, the low-concentration n-type impurity implantation layers 111 1 and 111 2 and the P-type impurity implantation layer 11 are formed.
3 1 , 113 2 is activated, and a low concentration n type diffusion layer 11
4 1, 114 2 and P + -type source and drain regions 115 and 116 are formed (see FIG. (E)). A photoresist pattern 118 is formed on a part of the field oxide film 103 and on the n-well layer surrounded by the CVD-SiO 2
The film 117 is overlaid and laminated (see FIG. 11F). RIE is performed using the photoresist pattern 118 as a mask, and the CVD-SiO 2 film 117 is etched back by about the film thickness to form a CVD-SiO 2 film in self-alignment with the sidewalls of the gate electrode 108 and the gate oxide film 106. leaving a wall 119, a low concentration of n -
The surfaces of the mold diffusion layers 114 1 and 114 2 are exposed (see FIG. 7G). Using the photoresist pattern 118, the field oxide film 103, the gate electrode 108, and the wall 119 as a mask, n-type impurities such as arsenic are ion-implanted at an acceleration voltage of 40 KeV and a dose of 3 × 10 15 cm -2 . After this, the photoresist pattern 118
(See FIG. 7G) is removed, and heat treatment is performed, for example, in a nitrogen atmosphere at 900 ° C. to activate the implanted ions to form high-concentration n + type diffusion layers 120 1 and 120 2 . This allows
A source region 121 composed of an n type diffusion layer 114 1 and an n + type diffusion layer 120 1 having an LDD structure is formed, and at the same time, an n type diffusion layer 1
14 2 and n + -type diffusion layer 120 second drain region 122 made of is formed (see FIG. (H)). A 5000Å CVD-SiO 2 film 123 is deposited on the entire surface.
Furthermore, n + type diffusion layers 120 1 and 120 2 and P + type diffusion layers 115 and 11
A contact hole is formed in 6, and an Al film is vapor-deposited on the entire surface and is also embedded in the contact hole to make contact with each diffusion layer. Further, by patterning this Al film to form the source electrodes 124 and 126 and the drain electrodes 125 and 127, a CMOS transistor is manufactured (see FIG. 1I). The CMOS transistor thus configured is shown in FIG.
As shown in FIG. 4, a photoresist pattern 118 is formed on the insulating film 117 on the n-well layer 102, and then RIE is performed using this as a mask to form an insulating film formed on the P + -type diffusion layers 115 and 116. 117 is not etched. Therefore, it is possible to prevent an increase in resistance caused by damage of the P + type diffusion layers 115 and 116 due to etching and a decrease in device speed due to the increase in resistance. In the present embodiment, the order of forming the photoresist patterns 110 and 112 shown in FIGS. 1C and 1D is changed, and boron or the like is first formed in a predetermined portion of the n-well layer 102. P-type impurity ions may be implanted. Further, the photoresist pattern 11 shown in FIG.
After removing 8 and using the insulating film 117, the field oxide film 103, the gate electrode 108, and the wall body 119 as a mask, n-type impurities such as arsenic are ion-implanted into the N -type diffusion layers 114 1 and 114 2. Good. In addition, the photoresist pattern 11 shown in FIG.
When RIE is performed on the entire surface using 8 as a mask, this photoresist pattern may be completely removed. Before forming the photoresist pattern 110 shown in FIG. 1C, an n-type impurity such as phosphorus is ion-implanted into the entire surface to form the photoresist pattern 11 shown in FIG.
2 may be formed, and a P-type impurity such as boron may be ion-implanted. [Effects of the Invention] As described in detail above, in the present invention, it is possible to prevent damage to the impurity diffusion layers, which are not the LDD structure, to be the source and drain regions due to etching, and prevent deterioration of device characteristics.

【図面の簡単な説明】 第1図は本発明の一実施例であるCMOS半導体装置の製造
方法の工程を示した図,第2図は従来のCMOS半導体装置
の製造方法の工程を示した図。 101…P型シリコン基板 102…nウェル層 103…フィールド酸化膜 104…熱酸化膜 105…リンをドープした多結晶シリコン膜 106,107…ゲート酸化膜 108,109…ゲート電極 110,112,118…フォトレジストパターン 1111,1112…低濃度のn型不純物注入層 1131,1132…P型不純物注入層 1141,1142…n-型拡散層 115…P+型ソース領域 116…P+型ドレイン領域 117,123…CVD−SiO2膜 119…壁体 1201,1202…n+型拡散層 121…ソース領域 122…ドレイン領域 124,125,126,127…Al膜
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing steps of a method for manufacturing a CMOS semiconductor device according to an embodiment of the present invention, and FIG. 2 is a diagram showing steps of a conventional method for manufacturing a CMOS semiconductor device. . 101 P-type silicon substrate 102 n-well layer 103 field oxide film 104 thermal oxide film 105 phosphorus-doped polycrystalline silicon films 106 and 107 gate oxide films 108 and 109 gate electrodes 110, 112 and 118 photoresist patterns 111 1 and 111 2 ... Low-concentration n-type impurity injection layers 113 1 , 113 2 ... P-type impurity injection layers 114 1 , 114 2 ... n - type diffusion layer 115 ... P + type source region 116 ... P + type drain region 117, 123 ... CVD-SiO 2 film 119 ... Wall bodies 120 1 , 120 2 ... N + type diffusion layer 121 ... Source region 122 ... Drain region 124, 125, 126, 127 ... Al film

Claims (1)

(57)【特許請求の範囲】 1.第1,第2導電型の半導体領域上にそれぞれゲート絶
縁膜,ゲート電極を選択的に形成する工程と,前記第1
導電型の半導体領域に第2導電型,前記第2導電型の半
導体領域に第1導電型の不純物をイオン注入する工程
と、前記各半導体領域全面に第1の被膜を形成し前記第
1導電型の半導体領域上の前記第1の被膜に選択的に第
2の被膜を積層する工程と、この第2の被膜をマスクに
してエッチングを行ない前記第2導電型の半導体領域上
に形成されたゲート絶縁膜,ゲート電極の側壁に前記第
1の被膜を残存させる工程と、前記第2導電型の半導体
領域に第1導電型の不純物をイオン注入する工程とを含
むことを特徴とするCMOS半導体装置の製造方法。 2.第1,第2導電型の半導体領域上に熱酸化膜を介しゲ
ート電極を選択的に形成する工程と、前記第1導電型の
半導体領域に第2導電型,前記第2導電型の半導体領域
に第1導電型の不純物をイオン注入する工程と、前記各
半導体領域全面に第1の被膜を形成し前記第1導電型の
半導体領域上の前記第1の被膜に選択的に第2の被膜を
積層する工程と、この第2の被膜をマスクにしてエッチ
ングを行ない前記第2導電型の半導体領域上に形成され
たゲート電極の側壁に前記第1の被膜を残存させる工程
と、前記第2導電型の半導体領域に第1導電型の不純物
をイオン注入する工程とを含むことを特徴とするCMOS半
導体装置の製造方法。
(57) [Claims] Selectively forming a gate insulating film and a gate electrode respectively on the first and second conductivity type semiconductor regions;
A step of ion-implanting an impurity of a second conductivity type into a semiconductor region of a conductivity type and an impurity of a first conductivity type into a semiconductor region of the second conductivity type; Selectively stacking a second film on the first film on the semiconductor region of the mold type, and etching the semiconductor film of the second conductivity type by etching using the second film as a mask. A CMOS semiconductor, comprising: a step of leaving the first film on a sidewall of a gate insulating film and a gate electrode; and a step of ion-implanting a first conductivity type impurity into the second conductivity type semiconductor region. Device manufacturing method. 2. A step of selectively forming a gate electrode on the first and second conductivity type semiconductor regions via a thermal oxide film; and a second conductivity type semiconductor region of the first conductivity type semiconductor region, and a second conductivity type semiconductor region of the first conductivity type semiconductor region. Ion implantation of impurities of the first conductivity type, and forming a first film on the entire surface of each semiconductor region and selectively forming a second film on the first film on the semiconductor region of the first conductivity type. Stacking, etching using the second coating as a mask, and leaving the first coating on the side wall of the gate electrode formed on the semiconductor region of the second conductivity type; And a step of implanting ions of a first conductivity type impurity into a conductivity type semiconductor region.
JP62071677A 1987-03-27 1987-03-27 Method for manufacturing CMOS semiconductor device Expired - Fee Related JP2670265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62071677A JP2670265B2 (en) 1987-03-27 1987-03-27 Method for manufacturing CMOS semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62071677A JP2670265B2 (en) 1987-03-27 1987-03-27 Method for manufacturing CMOS semiconductor device

Publications (2)

Publication Number Publication Date
JPS63239858A JPS63239858A (en) 1988-10-05
JP2670265B2 true JP2670265B2 (en) 1997-10-29

Family

ID=13467444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62071677A Expired - Fee Related JP2670265B2 (en) 1987-03-27 1987-03-27 Method for manufacturing CMOS semiconductor device

Country Status (1)

Country Link
JP (1) JP2670265B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0456318B1 (en) * 1990-05-11 2001-08-22 Koninklijke Philips Electronics N.V. CMOS process utilizing disposable silicon nitride spacers for making lightly doped drain transistors

Also Published As

Publication number Publication date
JPS63239858A (en) 1988-10-05

Similar Documents

Publication Publication Date Title
JPH0426542B2 (en)
EP0465045B1 (en) Method of field effect transistor fabrication for integrated circuits
EP0276292B1 (en) Process for fabricating stacked mos structures
US5028552A (en) Method of manufacturing insulated-gate type field effect transistor
US6368907B1 (en) Method of fabricating semiconductor device
US5185279A (en) Method of manufacturing insulated-gate type field effect transistor
JPH0766972B2 (en) Method for manufacturing semiconductor device
JP2802263B2 (en) Method for manufacturing semiconductor device
JP3586965B2 (en) Method for manufacturing semiconductor device
JP2596117B2 (en) Method for manufacturing semiconductor integrated circuit
JP2670265B2 (en) Method for manufacturing CMOS semiconductor device
JP2781913B2 (en) Method of manufacturing semiconductor device having LDD structure
US20040169224A1 (en) Semiconductor device and manufacturing method therefor
JP2931243B2 (en) Method for manufacturing semiconductor device
JP3088547B2 (en) Method for manufacturing semiconductor device
JPH07176639A (en) Semiconductor integrated circuit device and fabrication thereof
JP2659190B2 (en) Method for manufacturing semiconductor device
EP0878833B1 (en) Process for the selective formation of salicide on active areas of MOS devices
KR920009894B1 (en) Manufacturing method of high-voltage semiconductor device
JP2889246B2 (en) Semiconductor device
JP3134778B2 (en) Method for manufacturing semiconductor device
JP2926817B2 (en) Method for manufacturing semiconductor device
JPH04302170A (en) Manufacture of semiconductor device
JPH0346979B2 (en)
JPH0734453B2 (en) Method for manufacturing semiconductor integrated circuit device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees