JP2662570B2 - Column and beam joint structure of concrete structure and its construction method - Google Patents

Column and beam joint structure of concrete structure and its construction method

Info

Publication number
JP2662570B2
JP2662570B2 JP62107691A JP10769187A JP2662570B2 JP 2662570 B2 JP2662570 B2 JP 2662570B2 JP 62107691 A JP62107691 A JP 62107691A JP 10769187 A JP10769187 A JP 10769187A JP 2662570 B2 JP2662570 B2 JP 2662570B2
Authority
JP
Japan
Prior art keywords
main
column
structural member
bars
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62107691A
Other languages
Japanese (ja)
Other versions
JPS63272825A (en
Inventor
稔 杉田
照幸 中辻
忠志 藤崎
精保 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASAHI GARASU MATETSUKUSU KK
Shimizu Construction Co Ltd
Original Assignee
ASAHI GARASU MATETSUKUSU KK
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASAHI GARASU MATETSUKUSU KK, Shimizu Construction Co Ltd filed Critical ASAHI GARASU MATETSUKUSU KK
Priority to JP62107691A priority Critical patent/JP2662570B2/en
Publication of JPS63272825A publication Critical patent/JPS63272825A/en
Application granted granted Critical
Publication of JP2662570B2 publication Critical patent/JP2662570B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、コンクリート構造物における柱と梁の接合
部構造およびその施工方法に関するものである。 「従来の技術およびその問題点」 たとえば、鉄筋コンクリート構造物を構築する場合、
柱と梁の接合部の配筋は、従来、現場組みされているの
が一般的であった。 しかしながら、このような現場での柱と梁の接合部の
配筋作業は、上下、左右、前後から配筋が複雑に交差す
る部分であることから極めて手間がかかり、しかも精度
確保(例えば剪断補強筋や梁主筋、柱主筋の配置間隔
等)が難しく、その改善が待たれていた。 ところで、現場組みに代わる配筋手段として、従来、
複数本の柱主筋もしくは梁主筋を、剪断補強筋(帯筋や
あばら筋等)により結束して所定の大きさを持つユニッ
ト(柱用構造部材、梁用構造部材)に組み上げ、この組
み上げられた柱主筋と梁主筋とのユニットを互いに組み
違えながら、建築物の柱部および梁部を構築する工法が
ある。 このような工法の作業手順の一例について説明する
と、まず、施工位置に1階層分の上端部の剪断補強筋を
取り付けていない柱用構造部材を建て、次に、この上端
部において2本の梁が同一平面上で互いに直交するよう
に予め組み上げられた、梁主筋の仕口ユニットを、クレ
ーン等により上方に吊持する。 そして、クレーン等により吊持された状態の梁主筋の
仕口ユニットを、柱主筋および梁主筋が互いに交差する
状態で、かつ梁主筋の形成する間隙を柱主筋が貫通する
ように、その位置を調整して、所定の位置まで梁主筋の
仕口ユニットを徐々に降下させた後、各主筋および補助
鉄筋によりその位置を固定する。このようにして複数の
梁主筋間に柱主筋が配置される。 この後、前記梁主筋の仕口ユニットに梁用構造部材を
接続して配置し、更に各主筋を継手により連結する。こ
れを繰り返して、鉄筋コンクリート構造物の柱および梁
が構築される。 しかしながら、このような工法にあっても、例えば次
のような点で問題が残されている。 複数の梁主筋間に柱主筋を配置する際に、梁主筋の
形成する間隙を柱主筋が貫通するように、柱主筋および
梁主筋が組み上げられるので、柱主筋および梁主筋に寸
法上のずれ等があると、ずれの調整が難しく、梁主筋の
仕口ユニットが所定の位置に降下設置しにくいこと。 柱主筋の上端(仕口とする部分)が、梁主筋の形成
する間隙を貫通するため、梁主筋の仕口ユニットの位置
調整に長時間を要し、かつ水平位置調整を行う作業員に
対する危険性も増大すること。 柱の仕口部内の剪断補強筋を配筋し得ない故、構造
上の弱点となること。 本発明は前記事情に鑑みてなされたもので、柱と梁の
接合部の配筋作業を短時間かつ高精度で行うことができ
るコンクリート構造物における柱と梁の接合部構造およ
びその施工方法を提供することを目的とする。 「問題点を解決するための手段」 そこで第1発明の接合部構造では、複数の柱主筋およ
び複数の剪断補強筋によって組み立てられた柱用構造部
材と、複数の梁主筋および複数の剪断補強筋によって組
み立てられた梁用構造部材と、前記柱用構造部材の所定
位置にセットされ柱用構造部材の長さ方向に直角な軸方
向に梁用構造部材を連結する仕口構成体とを具備し、前
記仕口構成体は、前記梁用構造部材の上下の梁主筋にそ
れぞれ対応する複数のジョイント部材を前記柱用構造部
材の幅方向に前記梁主筋の相互間隔と同等の間隔をおい
て並列させた状態で該柱用構造部材を貫通せしめた構成
とされ、前記ジョイント部材は、柱主筋と剪断補強筋と
の網目に差し込まれてその両端に梁用構造部材の上下の
梁主筋が接続される上下一対の梁連結主筋と、これら上
下一対の梁連結主筋の一端側にのみ設けられ上下の梁連
結主筋を一体化する接続筋とから構成されており、さら
に、前記梁連結主筋の長さ寸法は、柱主筋と剪断補強筋
との網目に差し込まれたときにその両端が柱用構造部材
の両側方に突出するように設定され、上下の梁連結主筋
どうしの間隔は、上下に離間する梁主筋の間隔とほぼ等
しく設定されていることを特徴とする。前記柱主筋、梁
主筋、剪断補強筋、梁連結主筋および接続筋はそれぞれ
連続繊維を樹脂材料により固めて形成したものとするこ
とが好適である。 また、第2発明の施工方法は、柱主筋と剪断補強筋と
からなる柱用構造部材を予め先組みしてその施工位置に
立設する工程と、上下の梁主筋にそれぞれ接続される上
下一対の梁連結主筋とこれら上下一対の梁連結主筋の一
端側にのみ設けられこれら梁連結主筋を上下の梁主筋の
間隔にほぼ等しく離間させて一体化する接続筋とからな
るジョイント部材を複数形成する工程と、これらジョイ
ント部材を縦置き姿勢として各梁連結主筋を柱主筋と剪
断補強筋との網目に差し込むことにより、その両端を柱
用構造部材の両側方に突出させた状態で各ジョイント部
材を前記梁主筋の間隔と同等の間隔をおいて柱用構造部
材の幅方向に複数セットする工程と、これらジョイント
部材の両端に梁主筋と剪断補強筋とからなる梁用構造部
材を連結する工程とを具備したことを特徴とする。 「作用」 本発明によれば、柱用構造部材を建て、その柱主筋と
剪断補強筋との網目にジョイント部材を差し込む単純作
業で、梁用構造部材のセット位置の位置決めができ、ま
たこれらジョイント部材を介して梁用構造部材を接合す
ることができるので、現場での施工性および安全性等を
向上させることができ、工期の短縮を図ることができ
る。 なお、各構成要素(柱主筋、梁主筋、剪断補強筋、梁
連結主筋および接続筋など)を、連続繊維を樹脂で被覆
した構造とすれば、柱用構造部材、梁用構造部材の軽量
化が図れて現場での作業性をさらに向上することができ
るので、好ましい。 「実施例」 以下、本発明によるコンクリート構造物における柱と
梁の接合部構造およびその施工方法について構築順序に
従って第1図ないし第5図を参照して説明する。 なお、一実施例では、構造物の内部中央に位置する柱
とそれに連結する梁の接合部を構築する場合に本発明が
適用された例を示している。 (i)柱用、梁用構造部材及びジョイント部材の形成図
中符号1は柱用構造部材、2は梁用構造部材、3はジョ
イント部材である。 前記柱用構造部材1は、上下方向に延びかつ四角形の
辺上に位置するようにして並列する複数(実施例では16
本)の柱主筋4と、それら柱主筋4を連結する形態の複
数の剪断補強筋5とによって例えば構築物の1層分の高
さに相当する長さに組み立てられている。なお、この柱
用構造部材1の上下端には、接続用ファスナー(例えば
スリーブジョイントなど)が取り付けられるようになっ
ており、その上下に同一構成の柱用構造部材1が連結さ
れるようになっている。 前記梁用構造部材2は、梁の長さ方向に延びかつ幅方
向に間隔をおいて並列する複数の梁主筋6が複数の接続
筋7aによって一定の間隔に保持された梁ユニット2aと、
これら梁ユニット2aの外周に巻かれる形態のリング状の
剪断補強筋8によって構成されている。 そして、梁用構造部材2の両端部には、第2図および
第3図などに示すように、重ね継手長Lが形成され、ジ
ョイント部材3に対して重ね継手として接続される構成
となっている。 なお、図面で示す実施例の場合、前記剪断補強筋8は
ジョイント部材3とのラップ部分(重ね継手の部分)を
残し、予め梁ユニット2aの長さ方向に所定の間隔をおい
て梁ユニット2aに一体化されており、また、ラップ部分
にはジョイント部材3との接合後に剪断補強筋8が配設
されるようになっている。なお、第2図に示すように、
上下の梁ユニット2a間にこれら上下の梁主筋6を連結す
る接続筋7aをそれぞれ設ける構成とすれば、梁用構造部
材2の強度を向上することができるとともに、ジョイン
ト部材3の挿入端9a側に対する梁用構造部材2の位置決
めが容易にできるので、好ましい。 一方、これら剪断補強筋8の内複数個おきに配される
剪断補強筋8には、その下面に突出する突出部8aが突設
されており、梁型枠のセット後に該梁型枠と梁主筋6と
の間にコンクリート被覆厚を保持するようになってい
る。 なお、図面で示す実施例では、前記剪断補強筋8を予
め梁ユニット2aに一体化する構成としているが、前記剪
断補強筋8を予め梁ユニット2aに固定せずにおき、梁ユ
ニット2aの外周に挿入される形態で取り付け、ジョイン
ト部材3との接合後、剪断補強筋8を一定間隔に配置し
て梁ユニット2aの外周に一体化するような構成としても
良い。 次いで、柱用構造部材1に梁用構造部材2を接合する
ジョイント部材3について説明すると、これは、柱用構
造部材1の幅方向に所定間隔をおきかつその軸方向に直
角に貫通して柱用構造部材1の両側に位置する梁用構造
部材2を連結するもので、一実施例では、梁用構造部材
2の梁主筋6の数(12本)だけ備えられて、梁用構造部
材2を、柱用構造部材1の長さ方向に直角な2軸方向に
連結する仕口構成体Aを構成している。 そして、このジョイント部材3の具体的な構成は、前
記梁用構造部材2の上下の梁主筋6に沿って配設されこ
れら梁主筋6にそれぞれ接続される上下一対の梁連結主
筋9と、これら梁連結主筋9の一端側に設けられ梁連結
主筋9どうしを上下の梁主筋6の間隔とほぼ等しい間隔
を確保して一体に接続する複数本(図示例では3本)の
接続筋10とからなっている。 前記梁連結主筋9は、その挿入端9aが柱主筋4と剪断
補強筋5との網目に差し込まれたとき、両端が柱用構造
部材1の両側方に突出するように自身の長さが設定され
ている。さらに、上下の梁連結主筋9どうしの間隔は、
上下に離間する梁主筋6の間隔とほぼ等しく設定されて
いる。また、前記接続筋10のうちの中央に位置する接続
筋10は、その下端10aが梁連結主筋9の下面よりも突出
して梁型枠のセット時にこの梁型枠と梁連結主筋9との
間に所定のコンクリート被覆厚を保持するようになって
いる。 ここで、柱用構造部材1、梁用構造部材2およびジョ
イント部材3を構成する各主筋2,6,9並びに剪断補強筋
5,8および接続筋10等は、それぞれ第4図および第5図
に示す如く、樹脂材料20にて結束された複数本の連続繊
維21よりなる繊維束Tを素材として、これを固めて形成
された構成となっている。 さらに、柱用構造部材1を例にとってくわしく説明す
れば、第4図に示すように、引き揃えられた複数本の連
続繊維21よりなるよりなる繊維束Tが立体的に配置され
て柱主筋4を構成し、かつ、剪断補強筋の部分で第5図
に示すように交差部を形成して、それら繊維束Tの各繊
維21が樹脂材料20により結束構成されている。 なお、前記繊維束Tどうしの交差部(柱主筋4と剪断
補強軸5との交差部)は、一方向に延在する繊維群とこ
れに直交する方向に延在する繊維群とが、第5図に示す
ように、交互に三層以上に積層された断面形状とされて
いる。 なお、これらの基本構成は、梁用構造部材2およびジ
ョイント部材3についても同様であるので、これらにつ
いての説明は省略する。 柱用構造部材1、梁用構造部材2、ジョイント部材3
の主体をなす連続繊維21としては、軽量でしかも高い強
度を備えるガラス繊維やカーボン繊維などが好適である
が、必要ならばその他の繊維、例えば合成樹脂繊維、セ
ラミック繊維、金属繊維などを用いてもよい。またこれ
らの繊維を適当に組み合わせて用いてもよい。 また、前記繊維束Tの各連続繊維21を結束する樹脂材
料20としては、連続繊維21に対する接着性が良くかつそ
れ自体も充分な強度を持つ例えばビニルエステル樹脂な
どが好適であるが、使用する連続繊維21の種類に対応さ
せて他の樹脂材料を用いても良い。他の樹脂材料につい
ては、不飽和ポリエステル樹脂、エポキシ樹脂、フェノ
ール樹脂などを挙げることができる。 前記樹脂材料20と連続繊維21の割合については、連続
繊維21の種類や強度、さらにはこの構造部材1,2等の使
用形態などを考慮して適宜に決定されるが、例えば連続
繊維21がガラス繊維、樹脂材料20がビニルエステル樹脂
の場合、連続繊維21が体積化で30〜70%程度となるよう
に、また、繊維21が例えばカーボン繊維の場合、20〜60
%程度となるように考慮するのが望ましい。連続繊維21
の割合が前記以下であると、この構造部材1の強度が著
しく低下し、一方、連続繊維21の割合を高くすれば、そ
れだけ高強度の補強部材が得られるが、あまりに高い割
合にすると、カーボン繊維のように比較的高価なもので
は経済性の面から好ましくない。 前記のような柱用構造部材1、梁用構造部材2、ジョ
イント部材3を形成するには、例えば、柱用構造部材1
の場合であると、樹脂(例えば常温硬化型の流動性樹
脂)を含浸した連続繊維21を、柱主筋の上下端に対応す
る位置にそれぞれ設けられたピン等にいわゆる一筆書き
の要領で引っ掛けてゆき、剪断補強筋に対応する位置に
樹脂を含浸した連続繊維21を巻いて行く。 そして、これらの交差部では必ず繊維群が交互に少な
くとも三層以上重なるようにする。この際、連続繊維21
には直線性を保つのに十分な張力を与えておく必要があ
る。 ここで、連続繊維の供給は、もちろん手作業によって
も可能であるが、通過順序を予め設定したプログラムに
基づいて作動する機械的手段により自動的に実行させる
方法が採られる。 また、柱用構造部材1を構成する柱主筋4どうしの距
離、あるいは剪断補強筋5どうしの距離は、構築する柱
の大きさ、必要な強度等によって定まり、また、連続繊
維21は、ここでは撚紐や組紐なども含まれる。 なお、梁用構造部材2およびジョイント部材3等の製
法についても前記柱用構造部材1と同様に行なわれる。 (ii)柱用構造部材の設置固定 第1図に示すように、柱主筋4と剪断補強筋5とによ
って組み立てられた柱用構造部材1を、所定の施工位置
に立設した状態で建てる。この際、この柱用構造部材1
は、連続繊維21を樹脂材料20によって固めたものである
から、極めて軽量であり、運搬時の取り扱いが容易であ
るため、クレーン等を使用することなく手作業で施工す
ることができる。 (iii)ジョイント部材のセット 次いで、第1図に示すように、ジョイント部材3を上
下の梁主筋6の相互間隔と同等の間隔をおいて柱用構造
部材1の幅方向に並べ、構築すべき梁の位置に合わせ
て、その梁連結主筋9の先端(挿入端)9aを柱主筋4と
剪断補強筋5との網目に差し込んでその両端を柱用構造
部材1の両側方に突出させ、これを柱用構造部材1に固
定する。 これにより、柱用構造部材1に、柱用構造部材1の長
さ方向に直角な2軸方向に梁用構造部材2を接合する仕
口構成体Aがセットされることになる(第2図参照)。 この際(ジョイント部材3を差し込む際)、その梁連
結主筋9は、樹脂材料にて結束された複数本の連続繊維
より精度良く工場製作で形成されているので、製作誤差
のために部材位置が干渉して互いに邪魔になることがな
く、その挿入操作を簡単に実施でき、また、ジョイント
部材3自身も連続繊維21を樹脂材料20にて結束してなる
軽量化構造となっているので、現場での施工を良好にす
ることができる等の利点がある。また、ジョイント部材
3をなす上下の梁連結主筋9は接続筋10により一体化さ
れ、これら梁連結主筋9が上下に離間した梁主筋6の間
隔に合わせてそれぞれ平行に離間した状態で固定されて
いるので、梁連結主筋9の設置およびその位置決めを容
易に行うことができる。 (iv)梁用構造部材の施工 そして、隣接して建てられた柱用構造部材1の間に、
梁用構造部材2を架け渡し、ジョイント部材3に梁用構
造部材2の梁主筋6を接合する。この接合は以下の手順
によって実施する。 すなわち、第3図などに示すように、上下の梁ユニッ
ト2aの外周にリング状の剪断補強筋8を固定した梁用構
造部材2の梁主筋6を、ジョイント部材3の梁連結主筋
9に添わせ、これらを一体に結束する。また、ジョイン
ト部材3の梁連結主筋9と、梁用構造部材2の梁主筋6
との連結形態は、第2図などに示すように、連結主筋9
の外側に梁主筋6が位置するように左右対称に配置して
おく。なお、この連結形態は図示例に限定されることは
ない。 また、梁用構造部材2をジョイント部材3に接合する
前に、柱用構造部材1にセットしたジョイント部材3の
外周に、第3図に示すように剪断補強筋8を所定のピッ
チで挿入して一体に取り付けておき、ジョイント部材3
の両端にそれぞれ、重ね継手部に取り付けられる剪断補
強筋8を仮りづけしておく。この仮づけされた剪断補強
筋8は、ジョイント部材3に重ね継手部とは別に仮置き
用のスペースを確保しておき、このスペースに剪断補強
筋8を仮止めしておくものである。 そして、梁用構造部材2とジョイント部材3との接合
後、これらの重ね継手部に仮づけしておいた剪断補強筋
8を所定間隔をおいて移動させ、これらを重ね継手部の
外周に一体に固定する。 なお、梁ユニット2aとジョイント部材3あるいは剪断
補強筋8との結合方法としては、例えば従来の配筋工事
が用いている結束用鉄線等を用いて結束すれば良い。 このように、柱用構造部材1に梁用構造部材3を接合
した後、これらの外側に型枠を組み立て、次いでこれら
型枠内にコンクリートを打設することにより、柱と梁を
一体的に打設成形することができる。なお、前記におい
て、柱主筋と剪断補強筋5との間の網目の大きさを小さ
くすることによって、柱用構造部材1を型枠を省略して
柱のコンクリートを打設することも可能である。 また、梁用構造部材2の現場での組立作業は柱と梁底
の型枠が架設された後に施工しても良いし、型枠工事と
平行してまたは先行して施工しても良い。 以上のようにして柱と梁の接合部が構築されるが、こ
の施工方法にあっては、その接合を極めて容易に行うこ
とができる。すなわち、各部材は、連続繊維21を樹脂材
料20にて結束成形してなる軽量化構造となっているの
で、クレーン等を使用することなく、梁用構造部材1等
のセット作業を、人手によって簡単に実施することがで
きるからである。しかも、これらの接合は、柱用構造部
材1にジョイント部材3を挿入し、このジョイント部材
3を介して梁用構造部材2を固定する単純作業であり、
また柱主筋4、梁主筋6等は全て予めユニット化されて
いるため、現場での施工性や運搬性が良く、接合作業を
容易に実施することができる。 特に、ジョイント部材3は上下の梁連結主筋9を接続
筋10により連結した平面的な形状のものとされているの
で、それを柱用構造部材1に対してセットする際の作業
性にきわめて優れるものである。つまり、梁連結主筋9
を接続筋10により連結することなくそれらを個々に(1
本ずつ)柱用構造部材1に差込むようにした場合にはそ
の手間が多大であるのみならず各々の梁連結主筋9をそ
のつど位置決めしなければならないのに対し、本実施例
のように梁連結主筋9を接続筋10により予め一体化して
おくことによりその差込みを一括して行うことができ、
しかも、上下の梁連結主筋9の間隔が上下の梁主筋6の
間隔に等しく設定されているので、いずれかの一方の梁
主筋6を一方の梁連結主筋9に添わせるのみで他方の梁
主筋6も自ずと位置決めされて他方の梁連結主筋9に添
うことになるから、ジョイント部材3と梁用構造部材2
の位置決め作業をきわめて容易に行うことができる。な
お、複数のジョイント部材3を予め横方向に並列させた
状態で予め一体化しておいて梁用構造部材2の断面形状
に対応する立体的な形態のジョイント部材とすることも
考えられるが、そのようにした場合には重量が増大して
しまうとともに嵩ばるものとなるから運搬や施工の際の
取り扱いが格段に不便となり、好ましくない。 また、前記各部材(柱用構造部材1、梁用構造部材
2、ジョイント部材3)は、連続繊維21が樹脂材料20に
て被覆された構造となっているので、主たる強度部材で
ある繊維は耐腐食性に富み、構造材料としても極めて有
利なものとなる。さらに、このように表面は樹脂で形成
されているので、コンクリートとの付着性向上を図るた
めの粗面加工も容易に実施できる等の利点もある。 なお、前記実施例では、柱用構造部材1を、構築物の
一階層分の高さに相当する大きさのものについて説明し
たが、柱用構造部材1を二階層分あるいは三階層分の大
きさに組み立てても良く、またこの柱用構造部材1にジ
ョイント部材3をあらかじめ取り付けておいてから立設
することも容易にでき、このような構成とすれば、さら
に工期の短縮を図ることができる。 第6図および第7図は、本発明の接合部施工方法の他
の実施例を示すもので、この実施例にあっては、ジョイ
ント部材3の挿入操作の手順を変更したものである。す
なわち、接続筋10によって上下の梁連結主筋9が一体に
連結されたジョイント部材3を、柱用構造部材1の対向
方向からそれぞれ矢印ハに示すように挿入し、梁連結主
筋9の挿入端9aを一方の面に偏らせないようにして、挿
入端9aのばらけを防止するようにしたものである。 この場合の挿入手順としては、例えば、第7図に示す
ように、柱用構造部材1の左側(第7図左側)から矢印
ニに示すように中央に位置する2本のジョイント部材3
を挿入し、右側から矢印ホに示すように両端側に位置す
るジョイント部材3を挿入してこれらを柱用構造部材1
にセットする。 このような施工方法によれば、柱用構造部材1にセッ
トしたジョイント部材3の挿入端がばらけが少ないの
で、梁用構造部材2のジョイント部材3への取り付けを
さらに容易にし、その作業性を向上させることができ
る。 次ぎに、第8図(イ)ないし(ト)を参照して本発明
に適用される剪断補強筋8の例について説明する。な
お、これらは、柱用構造部材1、梁用構造部材2および
ジョイント部材3の外周に配設される剪断補強筋として
適用することができるものである。 まず、第8図(イ)では、剪断補強筋8の中央に、上
下方向に延びる縦筋8bに平行に2本の補助筋8cを配設し
たものである。このような構成とすれば、補助筋8cによ
り剪断補強筋8の強度が向上するとともに、補強筋8cに
沿って梁主筋6等を組み付けることが可能になるため、
梁主筋6等の配筋位置の設定が簡単になり、組立精度を
さらに向上することができる。 また、第8図(ロ)では、第8図(イ)で示した補助
筋8cの位置に内方に突出する突出部8dを設け、梁主筋6
等の組付位置設定用部材として作用させたものである。
このような構成とすれば、配筋位置の設定が容易とな
り、組立精度を向上することができる。 次ぎに、第8図(ハ)では、第8図(イ)で示した剪
断補強筋8の下端に、縦筋8bおよび補助筋8cよりも下方
へ延出する形態の突出部8aを設けるとともに、縦筋8bの
側部に横方向へ延長する突出部8eを設け、これら突出部
8a,8eを梁下面のスペーサとして作用させて、コンクリ
ート被覆厚を保持し得る構成としたものである。 また、第8図(ニ)は、第8図(ハ)で示した剪断補
強筋8の補助筋8cの代わりに、補助筋8cの位置に配筋位
置設定用の突出部8dを設けたものである。このような構
成としても、前記と同様の作用効果を奏することができ
る。 一方、第8図(ホ)では、第8図(ハ)で示した剪断
補助筋8の下端中央に位置する突出部8aを省略したもの
で、このような構成としても第10図(ハ)で示した剪断
補強筋8と同様の作用効果を奏することができる。 また、第8図(ヘ)では、第8図(ニ)で示した剪断
補強筋8の下端中央に位置する突出部8aを省略したもの
で、このような構成としても同様の作用効果を奏するこ
とができる。 なお、第8図(ト)では、補助筋8cを持った剪断補強
筋8の四隅に、コンクリート被覆厚設定用の突出部8a,8
eをそれぞれ設けたもので、このような構成としたもの
では、柱用構造部材1の剪断補強筋としての適用性を向
上することができる。 なお、前記各実施例では、柱用構造部材1、梁用構造
部材2およびジョイント部材3等を繊維を樹脂材料によ
り固めたもので形成したが、本発明では、これらの素材
は実施例のものに限定されるものではなく、例えば、各
構成要素(柱主筋4、剪断補強筋5等)を鉄筋等により
構成しても良い。また同様に、梁用構造部材、ジョイン
ト部材においても鉄筋を用いて構成しても良い。 「発明の効果」 以上説明したように、第1発明による柱と梁の接合部
構造では、複数の柱主筋および複数の剪断補強筋によっ
て組み立てられた柱用構造部材と、複数の梁主筋および
複数の剪断補強筋によって組み立てられた梁用構造部材
と、前記柱用構造部材の所定位置にセットされ柱用構造
部材の長さ方向に直角な軸方向に梁用構造部材を凍結す
る仕口構成体とを具備し、前記仕口構成体は、前記梁用
構造部材の上下の梁主筋にそれぞれ対応する複数のジョ
イント部材を前記柱用構造部材の幅方向に前記梁主筋の
相互間隔と同等の間隔をおいて並列させた状態で該柱用
構造部材を貫通せしめた構成とされ、前記ジョイント部
材は、柱主筋と剪断補強筋との網目に差し込まれてその
両端に梁用構造部材の上下の梁主筋が接続される上下一
対の梁連結主筋と、これら上下一対の梁連結主筋の一端
側にのみ設けられ上下の梁連結主筋を一体化する接続筋
とから構成されており、さらに前記梁連結主筋の長さ寸
法は、柱主筋と剪断補強筋との網目に差し込まれたとき
にその両端が柱用構造部材の両側方に突出するように設
定され、上下の梁連結主筋どうしの間隔は、上下に離間
する梁主筋の間隔とほぼ等しく設定されているから、柱
用構造部材に梁用構造部材を容易にかつ強固に施工精度
良く接合することができるとともに、現場での施工作業
を簡単に実施することができる効果がある。しかも柱の
仕口部内の剪断補強筋の配筋が可能にとなり、設計上で
も一層好ましい構造となる。 また、第2発明である施工方法では、柱主筋と剪断補
強筋とからなる柱用構造部材を予め先組みしてその施工
位置に立設する工程と、梁の長さ方向に延在する上下一
対の梁連結主筋とこれら上下一対の梁連結主筋の一端側
にのみ設けられたこれら梁連結主筋を上下の梁主筋の間
隔にほぼ等しく離間させて一体化する接続筋とからなる
ジョイント部材を複数形成する工程と、これらジョイン
ト部材を柱用構造部材の幅方向に並べ、梁連結主筋を柱
主筋と剪断補強筋との網目に差し込んでその両端を柱用
構造部材の両側方に突出させることにより、前記ジョイ
ント部材を柱用構造部材の幅方向に複数セットする工程
と、これらジョイント部材の両端に梁主筋と剪断補強筋
とからなる梁用構造部材を連結する工程とを具備したも
のであるから、単純な施工作業で梁用構造部材のセット
位置の位置決めができ、該ジョイント部材を介して梁用
構造物を接合することができ、現場での施工性および安
全性等を向上させることができ、工期の短縮を図ること
ができる。 特に、第1発明および第2発明のいずれにおいても、
ジョイント部材を、上下の梁連結主筋を接続筋により連
結した形態の平面状のものとし、しかも、梁連結主筋の
間隔を上下の梁主筋の間隔にほぼ等しく設定しているこ
とから、園「ジョイント部材を柱用構造部材に対してセ
ットする際にその取り扱いや位置決めをきわめて容易に
行うことができることはもとより、梁連結主筋を接続筋
により連結することなくそれらを個々に差込むようにし
たりあるいは複数のジョイント部材を横方向に並べた状
態で予め連結して立体的な形態のジョイント部材とする
場合に比較して、運搬や施工性の点で格段に有利であ
る。 なお、各構成要素(柱主筋、梁主筋、剪断補強筋、梁
連結主筋および接続筋など)を、連続繊維を樹脂で被覆
した構造とすれば、柱用構造部材、梁用構造部材の軽量
化が図れて現場での作業性をさらに向上することができ
るので、好ましい。
Description: FIELD OF THE INVENTION The present invention relates to a joint structure between a column and a beam in a concrete structure and a construction method thereof. "Conventional technology and its problems" For example, when building a reinforced concrete structure,
Conventionally, the reinforcing bars at the joints of columns and beams are generally assembled on site. However, the work of arranging the joints of the column and the beam in such a site is extremely troublesome because the arrangement of the reinforcing bars is complicatedly intersecting from up and down, right and left, and front and back, and furthermore, it is necessary to ensure accuracy (for example, shear reinforcement). The arrangement of the main bars, beam bars, and column bars is difficult, and its improvement has been awaited. By the way, as a rebar arrangement alternative to on-site assembly,
A plurality of column main bars or beam main bars are bound by shear reinforcing bars (such as stirrups or stirrups) and assembled into a unit (column structural member, beam structural member) having a predetermined size. There is a construction method for constructing a column and a beam of a building while reassembling units of a column and a beam. To explain an example of the operation procedure of such a construction method, first, a structural member for a column not having a shear reinforcement at the upper end for one layer is installed at a construction position, and then two beams are provided at the upper end. Are preassembled so as to be orthogonal to each other on the same plane, and the connection unit of the beam main reinforcement is suspended upward by a crane or the like. Then, the position of the connection unit of the beam main reinforcement suspended by a crane or the like is set so that the column main reinforcement and the beam main reinforcement intersect each other, and the column main reinforcement penetrates a gap formed by the beam main reinforcement. After the adjustment, the connection unit of the beam main reinforcement is gradually lowered to a predetermined position, and then the position is fixed by each main reinforcement and the auxiliary reinforcement. In this way, the column main reinforcement is arranged between the plurality of beam main reinforcements. Thereafter, the structural member for the beam is connected to the connection unit of the beam main reinforcement, and the main reinforcement is connected by a joint. By repeating this, columns and beams of the reinforced concrete structure are constructed. However, even with such a construction method, problems remain, for example, in the following points. When arranging a column main bar between a plurality of beam main bars, the column main bar and the beam main bar are assembled so that the column main bar penetrates the gap formed by the beam main bar. If there is, it is difficult to adjust the displacement, and it is difficult for the connection unit of the main beam to drop down to the predetermined position. Since the upper end of the column main bar (portion used as the connection) penetrates the gap formed by the beam main bar, it takes a long time to adjust the position of the connection unit of the beam main bar, and there is a danger to workers who perform horizontal position adjustment. The nature also increases. It is a structural weak point because it is not possible to arrange the shear reinforcement in the connection part of the column. The present invention has been made in view of the above circumstances, and provides a joint structure between a column and a beam in a concrete structure capable of performing a reinforcing work of a joint between a column and a beam in a short time and with high accuracy, and a method of constructing the joint structure. The purpose is to provide. [Means for Solving the Problems] Accordingly, in the joint structure of the first invention, a column structural member assembled by a plurality of column main bars and a plurality of shear reinforcing bars, a plurality of beam main bars and a plurality of shear reinforcing bars. A structural member for a beam assembled by the above, and a connection member which is set at a predetermined position of the structural member for a column and connects the structural member for a beam in an axial direction perpendicular to a longitudinal direction of the structural member for a column. The joint structure includes a plurality of joint members corresponding to upper and lower beam main reinforcements of the beam structural member, respectively, arranged in parallel in the width direction of the column structural member at an interval equal to the mutual interval of the beam main reinforcements. In this state, the column structural member is penetrated, and the joint member is inserted into a mesh between the column main reinforcing bar and the shear reinforcing bar, and upper and lower beam main reinforcing bars of the beam structural member are connected to both ends thereof. Upper and lower pair of beam connecting main bars And a connecting bar that is provided only at one end of the pair of upper and lower beam connecting main bars and that integrates the upper and lower beam connecting main bars. When inserted in the mesh with the reinforcing bar, both ends are set to protrude on both sides of the column structural member, and the interval between the upper and lower beam connecting main bars is almost equal to the interval between the beam main bars separated vertically. It is characterized by being set. It is preferable that the column main bar, the beam main bar, the shear reinforcing bar, the beam connecting main bar, and the connecting bar are each formed by solidifying a continuous fiber with a resin material. Further, the construction method of the second invention comprises a step of pre-assembling a column structural member composed of a column main reinforcing bar and a shear reinforcing bar and erecting the column structural member at the construction position, and a pair of upper and lower beams connected to upper and lower beam main reinforcing bars, respectively. A plurality of joint members comprising a beam connecting main bar and connecting bars which are provided only at one end side of the pair of upper and lower beam connecting bars and which are separated from the upper and lower beam connecting bars by a distance substantially equal to the distance between the upper and lower beam main bars. Process, by inserting these joint members in a vertical position and inserting each beam connecting main bar into the mesh of the column main bar and the shear reinforcing bar, each end of the joint member is protruded to both sides of the column structural member. A step of setting a plurality of pillar structural members in the width direction at intervals equivalent to the intervals of the beam main reinforcement, and a step of connecting a beam structural member comprising a beam main reinforcement and a shear reinforcement to both ends of these joint members; Characterized by comprising. According to the present invention, the setting position of the beam structural member can be determined by the simple operation of erecting the structural member for the column, inserting the joint member into the mesh between the main bar of the column and the shear reinforcing bar, and Since the beam structural members can be joined via the members, workability and safety at the site can be improved, and the construction period can be shortened. In addition, if each component (column main bar, beam main bar, shear reinforcing bar, beam connecting main bar, connecting bar, etc.) has a structure in which continuous fiber is covered with resin, the structural members for columns and beams can be reduced in weight. This is preferable because workability at the site can be further improved. "Example" Hereinafter, a joint structure between a column and a beam in a concrete structure according to the present invention and a construction method thereof will be described with reference to Figs. 1 to 5 in accordance with a construction order. Note that, in one embodiment, an example in which the present invention is applied to the case where a joint located between a pillar located in the center of the inside of a structure and a beam connected to the pillar is constructed. (I) Formation of pillar and beam structural members and joint members In the drawings, reference numeral 1 denotes a pillar structural member, 2 denotes a beam structural member, and 3 denotes a joint member. The plurality of pillar structural members 1 extend in the up-down direction and are arranged side by side so as to be located on the sides of a square (16 in this embodiment).
The main column 4 of the book) and a plurality of shear reinforcing bars 5 connecting the column main bars 4 are assembled to a length corresponding to, for example, the height of one layer of the building. A connecting fastener (for example, a sleeve joint) is attached to the upper and lower ends of the column structural member 1, and the column structural member 1 having the same configuration is connected above and below the connecting fastener. ing. The beam structural member 2 includes a beam unit 2a in which a plurality of beam main reinforcements 6 extending in the length direction of the beam and arranged in parallel at intervals in the width direction are held at fixed intervals by a plurality of connection reinforcements 7a.
The beam unit 2a includes a ring-shaped shear reinforcing bar 8 wound around the outer periphery of the beam unit 2a. A lap joint length L is formed at both ends of the beam structural member 2 as shown in FIGS. 2 and 3 and the like, and is connected to the joint member 3 as a lap joint. I have. In the case of the embodiment shown in the drawings, the shear reinforcement 8 leaves a lap portion (lap joint portion) with the joint member 3 and leaves the beam unit 2a at predetermined intervals in the length direction of the beam unit 2a in advance. In addition, a shear reinforcing bar 8 is arranged on the wrap portion after joining with the joint member 3. In addition, as shown in FIG.
If the connecting bars 7a for connecting the upper and lower beam main bars 6 are provided between the upper and lower beam units 2a, the strength of the beam structural member 2 can be improved, and the insertion end 9a of the joint member 3 can be improved. This is preferable because the positioning of the beam structural member 2 with respect to can be easily performed. On the other hand, a plurality of the shear reinforcements 8 provided at every other one of the shear reinforcements 8 are provided with projections 8a projecting from the lower surface thereof. The concrete coating thickness is maintained between the main reinforcement 6 and the main reinforcement 6. In the embodiment shown in the drawings, the shear reinforcing bars 8 are integrated with the beam unit 2a in advance. However, the shear reinforcing bars 8 are not fixed to the beam unit 2a in advance, and the outer periphery of the beam unit 2a is set. After joining with the joint member 3, the shear reinforcing bars 8 may be arranged at regular intervals and integrated with the outer periphery of the beam unit 2a. Next, a joint member 3 for joining the beam structural member 2 to the column structural member 1 will be described. The joint member 3 is provided at predetermined intervals in the width direction of the column structural member 1 and penetrates at right angles to the axial direction thereof. The beam structural members 2 are connected to the beam structural members 2 located on both sides of the beam structural member 1. In one embodiment, the beam structural members 2 are provided with the same number (12) as the main beam 6 of the beam. Are connected in a biaxial direction perpendicular to the length direction of the structural member 1 for a pillar. A specific configuration of the joint member 3 is a pair of upper and lower beam connecting main bars 9 arranged along the upper and lower beam main bars 6 of the beam structural member 2 and connected to the beam main bars 6, respectively. A plurality of (three in the illustrated example) connecting bars 10 provided on one end side of the beam connecting main bar 9 and integrally connecting the beam connecting main bars 9 with an interval substantially equal to the interval between the upper and lower beam main bars 6. Has become. The length of the beam connecting main bar 9 is set such that when the insertion end 9a is inserted into the mesh between the column main bar 4 and the shear reinforcing bar 5, both ends protrude to both sides of the column structural member 1. Have been. Furthermore, the interval between the upper and lower beam connecting main bars 9 is
It is set substantially equal to the interval between the beam main reinforcements 6 that are vertically separated. The connecting bar 10 located at the center of the connecting bars 10 has a lower end 10 a protruding from the lower surface of the beam connecting main bar 9, and is located between the beam forming frame and the beam connecting main bar 9 at the time of setting the beam form. To maintain a predetermined concrete coating thickness. Here, the main reinforcements 2, 6, 9 constituting the column structural member 1, the beam structural member 2, and the joint member 3 and the shear reinforcing bars
As shown in FIGS. 4 and 5, the connecting strips 5 and 8 are formed by solidifying a fiber bundle T composed of a plurality of continuous fibers 21 bound by a resin material 20 as shown in FIGS. It is the configuration that was done. More specifically, taking the column structural member 1 as an example, as shown in FIG. 4, a fiber bundle T composed of a plurality of continuous fibers 21 aligned in a three-dimensional manner is arranged in a three- In addition, as shown in FIG. 5, a crossing portion is formed at the portion of the shear reinforcement, and the respective fibers 21 of the fiber bundle T are bound by the resin material 20. In addition, the intersection of the fiber bundles T (the intersection of the pillar main reinforcement 4 and the shear reinforcing shaft 5) has a fiber group extending in one direction and a fiber group extending in a direction orthogonal thereto. As shown in FIG. 5, the sectional shape is alternately stacked in three or more layers. In addition, since these basic structures are the same also about the structural member 2 for beams and the joint member 3, description about these is abbreviate | omitted. Column structural member 1, beam structural member 2, joint member 3
As the continuous fiber 21 that forms the main component, glass fiber or carbon fiber having light weight and high strength is suitable, but if necessary, other fibers such as synthetic resin fiber, ceramic fiber, and metal fiber are used. Is also good. These fibers may be used in an appropriate combination. As the resin material 20 for binding the continuous fibers 21 of the fiber bundle T, for example, a vinyl ester resin having good adhesiveness to the continuous fibers 21 and itself having sufficient strength is preferably used. Another resin material may be used in accordance with the type of the continuous fiber 21. As other resin materials, unsaturated polyester resin, epoxy resin, phenol resin and the like can be mentioned. The ratio between the resin material 20 and the continuous fibers 21 is appropriately determined in consideration of the type and strength of the continuous fibers 21 and the usage of the structural members 1 and 2 and the like. When the glass fiber or the resin material 20 is a vinyl ester resin, the continuous fiber 21 is about 30 to 70% by volume, and when the fiber 21 is a carbon fiber, for example, 20 to 60%.
%. Continuous fiber 21
Is less than the above, the strength of the structural member 1 is remarkably reduced. On the other hand, if the ratio of the continuous fibers 21 is increased, a reinforcing member having a higher strength is obtained. Relatively expensive materials such as fibers are not preferred in terms of economy. In order to form the column structural member 1, the beam structural member 2, and the joint member 3 as described above, for example, the column structural member 1
In the case of the above, the continuous fibers 21 impregnated with a resin (for example, a cold-setting fluid resin) are hooked on pins or the like provided at positions corresponding to the upper and lower ends of the pillar main bars in a so-called one-stroke manner. Then, continuous fibers 21 impregnated with resin are wound at positions corresponding to the shear reinforcing bars. Then, at these intersections, the fiber groups are always alternately overlapped by at least three or more layers. At this time, the continuous fibers 21
Needs to be tensioned enough to maintain linearity. Here, the supply of the continuous fibers can of course be performed manually, but a method is adopted in which the passage order is automatically executed by mechanical means that operates based on a preset program. Further, the distance between the column main reinforcements 4 or the distance between the shear reinforcing bars 5 constituting the column structural member 1 is determined by the size of the column to be constructed, the required strength, and the like. Twisted cords and braids are also included. The manufacturing method of the beam structural member 2 and the joint member 3 and the like is performed in the same manner as the column structural member 1. (Ii) Installation and Fixing of Column Structural Member As shown in FIG. 1, the column structural member 1 assembled by the column main reinforcement 4 and the shear reinforcement 5 is erected at a predetermined construction position. At this time, the pillar structural member 1
Since the continuous fiber 21 is made by solidifying the continuous fiber 21 with the resin material 20, it is extremely lightweight and easy to handle during transportation, so that it can be constructed manually without using a crane or the like. (Iii) Set of joint members Next, as shown in FIG. 1, the joint members 3 are to be arranged in the width direction of the column structural member 1 at intervals equivalent to the mutual interval between the upper and lower beam main reinforcements 6 and to be constructed. In accordance with the position of the beam, the tip (insertion end) 9a of the beam connecting main bar 9 is inserted into the mesh between the column main bar 4 and the shear reinforcing bar 5 and both ends are projected to both sides of the column structural member 1. Is fixed to the column structural member 1. As a result, the connection structure A that joins the beam structural member 2 in two axial directions perpendicular to the length direction of the column structural member 1 is set on the column structural member 1 (FIG. 2). reference). At this time (when the joint member 3 is inserted), the beam connecting main reinforcement 9 is formed at a factory with higher precision than a plurality of continuous fibers bound by a resin material. Since the insertion operation can be easily performed without interfering with each other due to interference, and since the joint member 3 itself has a lightweight structure in which the continuous fiber 21 is bound by the resin material 20, There are advantages such as that the construction at the site can be improved. The upper and lower beam connecting main bars 9 forming the joint member 3 are integrated by a connecting bar 10, and these beam connecting main bars 9 are fixed in a state of being separated in parallel in accordance with the interval of the vertically extending beam main bars 6, respectively. Therefore, the beam connecting main reinforcement 9 can be easily installed and positioned. (Iv) Construction of structural members for beams And between the structural members for columns 1 built adjacently,
The beam structural member 2 is bridged, and the main beam 6 of the beam structural member 2 is joined to the joint member 3. This joining is performed according to the following procedure. That is, as shown in FIG. 3 and the like, the beam main reinforcement 6 of the beam structural member 2 in which the ring-shaped shear reinforcement 8 is fixed to the outer periphery of the upper and lower beam units 2 a is attached to the beam connection main reinforcement 9 of the joint member 3. And bind them together. Further, the beam connecting main bar 9 of the joint member 3 and the beam main bar 6 of the beam structural member 2 are provided.
As shown in FIG. 2 and the like,
Are arranged symmetrically so that the beam main reinforcing bar 6 is located outside of the beam. Note that this connection form is not limited to the illustrated example. Before joining the beam structural member 2 to the joint member 3, the shear reinforcing bars 8 are inserted at a predetermined pitch around the joint member 3 set on the column structural member 1 as shown in FIG. And attached together, joint member 3
The shear reinforcement bars 8 attached to the lap joints are temporarily attached to both ends of the joint. The temporarily reinforced shear reinforcement 8 secures a space for temporary placement in the joint member 3 separately from the lap joint portion, and temporarily fixes the shear reinforcement 8 in this space. After joining the beam structural member 2 and the joint member 3, the shear reinforcing bars 8 temporarily attached to these lap joints are moved at predetermined intervals, and these are integrated with the outer periphery of the lap joint. Fixed to. As a method of connecting the beam unit 2a to the joint member 3 or the shear reinforcing bar 8, for example, the beam unit 2a may be bound using a binding iron wire or the like used in the conventional reinforcing work. After joining the beam structural member 3 to the column structural member 1 in this manner, the formwork is assembled on the outside thereof, and then concrete is poured into the formwork to integrally form the column and the beam. Can be cast. In the above, by reducing the size of the mesh between the column main reinforcement and the shear reinforcement 5, it is also possible to omit the formwork of the column structural member 1 and to cast concrete of the column. . The on-site assembling work of the beam structural member 2 may be performed after the column and the beam bottom formwork are erected, or may be performed in parallel with or prior to the formwork work. The joint between the column and the beam is constructed as described above. In this construction method, the joint can be extremely easily performed. That is, since each member has a lightweight structure formed by binding and forming the continuous fiber 21 with the resin material 20, the setting work of the beam structural member 1 and the like can be performed manually without using a crane or the like. This is because it can be easily implemented. Moreover, these joining operations are simple operations of inserting the joint member 3 into the column structural member 1 and fixing the beam structural member 2 via the joint member 3.
Further, since the column main reinforcement 4, the beam main reinforcement 6, and the like are all unitized in advance, the workability and transportability at the site are good, and the joining operation can be easily performed. In particular, since the joint member 3 has a planar shape in which the upper and lower beam connecting main bars 9 are connected by the connecting bars 10, the workability when setting it on the column structural member 1 is extremely excellent. Things. That is, beam connection main reinforcement 9
Are connected individually (1
In the case where each of the main structural members 9 is inserted into the column structural member 1, the time and effort required for the structural member 1 are large and each beam connecting main reinforcing bar 9 must be positioned. By previously integrating the beam connecting main reinforcement 9 with the connecting reinforcement 10, the insertion can be performed collectively,
In addition, since the interval between the upper and lower beam connecting main bars 9 is set to be equal to the interval between the upper and lower beam connecting main bars 6, only one of the beam connecting main bars 6 is attached to one of the beam connecting main bars 9 and the other beam main bar is used. 6 is naturally positioned along the other beam connection main reinforcement 9, so that the joint member 3 and the beam structural member 2
Can be performed extremely easily. It should be noted that a plurality of joint members 3 may be integrated in advance in a state where they are arranged in parallel in the lateral direction in advance, and a joint member having a three-dimensional shape corresponding to the cross-sectional shape of the beam structural member 2 may be considered. In such a case, the weight increases and the bulk increases, so that handling during transportation and construction becomes extremely inconvenient, which is not preferable. Further, since each of the members (the column structural member 1, the beam structural member 2, and the joint member 3) has a structure in which the continuous fibers 21 are covered with the resin material 20, the fibers which are the main strength members are It has high corrosion resistance and is extremely advantageous as a structural material. Further, since the surface is formed of a resin as described above, there is an advantage that rough surface processing for improving adhesion to concrete can be easily performed. In the above-described embodiment, the column structural member 1 is described as having a size corresponding to the height of one level of the building. However, the column structural member 1 has a size corresponding to two levels or three levels. The joint member 3 can be easily attached to the pillar structural member 1 in advance, and then can be easily erected. With such a configuration, the construction period can be further reduced. . 6 and 7 show another embodiment of the method for constructing a joint according to the present invention. In this embodiment, the procedure for inserting the joint member 3 is changed. That is, the joint members 3 in which the upper and lower beam connecting main bars 9 are integrally connected by the connecting bars 10 are inserted from the facing direction of the column structural member 1 as shown by arrows C, respectively, and the insertion ends 9a of the beam connecting main bars 9 are inserted. Of the insertion end 9a is prevented from being biased to one surface. In this case, as an insertion procedure, for example, as shown in FIG. 7, two joint members 3 located at the center from the left side (left side in FIG. 7) of the column structural member 1 as shown by an arrow d.
And joint members 3 located at both ends as shown by arrow E from the right side, and these are inserted into the column structural member 1.
Set to. According to such a construction method, since the insertion end of the joint member 3 set in the column structural member 1 has little variation, the mounting of the beam structural member 2 to the joint member 3 is further facilitated, and the workability is improved. Can be improved. Next, an example of the shear reinforcing bar 8 applied to the present invention will be described with reference to FIGS. In addition, these can be applied as a shear reinforcement provided on the outer periphery of the column structural member 1, the beam structural member 2, and the joint member 3. First, in FIG. 8 (a), two auxiliary muscles 8c are arranged at the center of the shear reinforcement 8 in parallel with the vertical muscle 8b extending in the vertical direction. With such a configuration, the strength of the shear reinforcing bars 8 is improved by the auxiliary bars 8c, and the beam main bars 6 and the like can be assembled along the reinforcing bars 8c.
Setting of the arrangement position of the beam main reinforcement 6 or the like is simplified, and the assembling accuracy can be further improved. In FIG. 8 (b), a projecting portion 8d projecting inward is provided at the position of the auxiliary muscle 8c shown in FIG.
And the like function as an assembly position setting member.
With such a configuration, the arrangement of the reinforcing bars can be easily set, and the assembling accuracy can be improved. Next, in FIG. 8 (c), at the lower end of the shear reinforcing bar 8 shown in FIG. 8 (a), there is provided a projection 8a which extends below the longitudinal bar 8b and the auxiliary bar 8c. A laterally extending projection 8e is provided on the side of the vertical stripe 8b, and these projections are provided.
8a and 8e are used as spacers on the lower surface of the beam to maintain the concrete coating thickness. FIG. 8 (d) shows a configuration in which a projection 8d for setting the arrangement of reinforcing bars is provided at the position of the auxiliary muscle 8c instead of the auxiliary muscle 8c of the shear reinforcement 8 shown in FIG. 8 (c). It is. With such a configuration, the same operation and effect as described above can be obtained. On the other hand, in FIG. 8 (e), the projection 8a located at the center of the lower end of the auxiliary shearing muscle 8 shown in FIG. 8 (c) is omitted. The same operation and effect as those of the shear reinforcement 8 can be achieved. Also, in FIG. 8 (f), the projection 8a located at the center of the lower end of the shear reinforcing bar 8 shown in FIG. 8 (d) is omitted, and the same operation and effect can be obtained with such a configuration. be able to. In FIG. 8 (g), the projections 8a, 8 for setting the concrete coating thickness are provided at the four corners of the shear reinforcement 8 having the auxiliary reinforcement 8c.
In each of the configurations provided with e, such a configuration can improve the applicability of the column structural member 1 as a shear reinforcing bar. In each of the above embodiments, the column structural member 1, the beam structural member 2, the joint member 3 and the like are formed by hardening fibers with a resin material, but in the present invention, these materials are those of the embodiment. However, the present invention is not limited to this. For example, each component (the column main reinforcement 4, the shear reinforcement 5, etc.) may be configured by a reinforcing bar or the like. Similarly, a structural member for a beam and a joint member may be configured using a reinforcing bar. [Effects of the Invention] As described above, in the joint structure of a column and a beam according to the first invention, a column structural member assembled by a plurality of column main bars and a plurality of shear reinforcing bars, a plurality of beam main bars and a plurality of beam main bars. A beam structural member assembled by the shear reinforcing bars of the above, and a joint structure which is set at a predetermined position of the column structural member and freezes the beam structural member in an axial direction perpendicular to the longitudinal direction of the column structural member. The joint structure comprises a plurality of joint members respectively corresponding to the upper and lower beam main reinforcements of the beam structural member, and a width equivalent to the mutual interval of the beam main reinforcements in the width direction of the column structural member. The joint member is inserted into a mesh between the column main reinforcing bar and the shear reinforcing bar, and the upper and lower beams of the beam structural member are inserted at both ends thereof. A pair of upper and lower to which the main muscle is connected A beam connecting main bar, and a connecting bar provided only at one end of the pair of upper and lower beam connecting main bars to integrate the upper and lower beam connecting main bars. When inserted into the mesh with the shear reinforcing bars, both ends are set to protrude on both sides of the column structural member, and the interval between the upper and lower beam connecting main bars is equal to the interval between the beam main bars separated vertically. Since they are set to be substantially equal, the beam structural member can be easily and firmly joined to the pillar structural member with high construction accuracy, and the construction work on site can be easily performed. In addition, the reinforcement of the shear reinforcement in the connection portion of the column can be arranged, and the structure becomes more preferable in design. In the construction method according to the second invention, a column structural member including a column main reinforcement and a shear reinforcement is pre-assembled and erected at the construction position. A plurality of joint members each comprising a pair of beam connecting main bars and connecting bars provided only at one end side of the upper and lower pair of beam connecting main bars so as to be separated from the upper and lower beam main bars by a distance substantially equal to the distance between the upper and lower beam main bars. Forming and arranging these joint members in the width direction of the column structural member, inserting the beam connecting main bar into the mesh of the column main bar and the shear reinforcing bar, and projecting both ends to both sides of the column structural member. A step of setting a plurality of the joint members in the width direction of the column structural member, and a step of connecting a beam structural member including a beam main reinforcing bar and a shear reinforcing bar to both ends of the joint member. , Simple In the construction work, the setting position of the beam structural member can be positioned, the beam structure can be joined via the joint member, the workability and safety at the site can be improved, and the Shortening can be achieved. In particular, in both the first invention and the second invention,
Since the joint member has a flat shape in which the upper and lower beam connecting main bars are connected by connecting bars, and the interval between the beam connecting main bars is set to be substantially equal to the interval between the upper and lower beam main bars, the garden “joint” In addition to being able to handle and position the members very easily when setting the members to the column structural member, the beam connecting main bars can be inserted individually without connecting them with connecting bars, or Are significantly more advantageous in terms of transportation and workability as compared to a case where the joint members are arranged in the horizontal direction and connected in advance to form a three-dimensional joint member. The main bar, beam main bar, shear reinforcing bar, beam connecting main bar, connecting bar, etc.) have a structure in which continuous fibers are coated with resin, so that the structural members for columns and beams can be reduced in weight and This is preferable because the workability of the above can be further improved.

【図面の簡単な説明】 図面は本発明の実施例を示し、第1図は柱用構造部材と
ジョイント部材の分解斜視図、第2図は柱用構造部材に
ジョイント部材をセットした状態を示す平面図、第3図
はジョイント部材に梁用構造部材を取り付ける状態を示
す側面図、第4図は繊維束の断面図、第5図は繊維束の
交差部における断面図、第6図および第7図は本発明の
施工方法の他の実施例を説明するために示したもので、
第6図は側面図、第7図は平面図、第8図(イ),
(ロ),(ハ),(ニ),(ホ),(ヘ)および(ト)
はそれぞれ本発明に用いられる剪断補強筋の例を示す正
面図である。 1……柱用構造部材、2……梁用構造部材、 3……ジョイント部材、4……柱主筋、 5,8……剪断補強筋、6……梁主筋、 7a……接続筋、2a……梁ユニット、 8a,8d,8e……突出部、8c……補助筋、 9……梁連結主筋、10……接続筋、 20……樹脂材料、21……連続繊維、 T……繊維束、A……仕口構成体。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an embodiment of the present invention, FIG. 1 is an exploded perspective view of a pillar structural member and a joint member, and FIG. 2 shows a state where a joint member is set on the pillar structural member. FIG. 3 is a plan view, FIG. 3 is a side view showing a state where the beam structural member is attached to the joint member, FIG. 4 is a cross-sectional view of the fiber bundle, FIG. 5 is a cross-sectional view at the intersection of the fiber bundle, FIG. FIG. 7 is for explaining another embodiment of the construction method of the present invention.
FIG. 6 is a side view, FIG. 7 is a plan view, FIG.
(B), (c), (d), (e), (f), and (g)
1 is a front view showing an example of a shear reinforcement used in the present invention. DESCRIPTION OF SYMBOLS 1 ... Structural member for columns, 2 ... Structural member for beams, 3 ... Joint member, 4 ... Column main reinforcement, 5, 8 ... Shear reinforcement, 6 ... Beam main reinforcement, 7a ... Connection line, 2a ... Beam unit, 8a, 8d, 8e ... Projection, 8c ... Auxiliary bar, 9 ... Main beam connecting bar, 10 ... Connecting bar, 20 ... Resin material, 21 ... Continuous fiber, T ... Fiber Bundle, A: Connection structure.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤崎 忠志 東京都中央区京橋2丁目16番1号 清水 建設株式会社内 (72)発明者 北川 精保 東京都中央区京橋2丁目16番1号 清水 建設株式会社内 (56)参考文献 特公 昭62−1061(JP,B2)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Tadashi Fujisaki               Shimizu, 2-6-1 Kyobashi, Chuo-ku, Tokyo               Construction Co., Ltd. (72) Inventor Seiho Kitagawa               Shimizu, 2-6-1 Kyobashi, Chuo-ku, Tokyo               Construction Co., Ltd.                (56) References JP-B-62-1061 (JP, B2)

Claims (1)

(57)【特許請求の範囲】 1.複数の柱主筋(4)および複数の剪断補強筋(5)
によって組み立てられた柱用構造部材(1)と、複数の
梁主筋(6)および複数の剪断補強筋(8)によって組
み立てられた梁用構造部材(2)と、前記柱用構造部材
(1)の所定位置にセットされ柱用構造部材(1)の長
さ方向に直角な軸方向に梁用構造部材(2)を連結する
仕口構成体(A)とを具備し、 前記仕口構成体(A)は、前記梁用構造部材(2)の上
下の梁主筋(6)にそれぞれ対応する複数のジョイント
部材(3)を前記柱用構造部材(1)の幅方向に前記梁
主筋(6)の相互間隔と同等の間隔をおいて並列させた
状態で該柱用構造部材(3)を貫通せしめた構成とさ
れ、 前記ジョイント部材(3)は、柱主筋(4)と剪断補強
筋(5)との網目に差し込まれてその両端に梁用構造部
材(2)の上下の梁主筋(6)が接続される上下一対の
梁連結主筋(9)と、これら上下一対の梁連結主筋
(9)の一端側にのみ設けられ上下の梁連結主筋(9)
を一体化する接続筋(10)とから構成されており、 さらに、前記梁連結主筋(9)の長さ寸法は、柱主筋
(4)と剪断補強筋(5)との網目に差し込まれたとき
にその両端が柱用構造部材(1)の両側方に突出するよ
うに設定され、上下の梁連結主筋(9)どうしの間隔
は、上下に離間する梁主筋(6)の間隔とほぼ等しく設
定されていることを特徴とするコンクリート構造物にお
ける柱と梁の接合部構造。 2.前記柱主筋(4)、梁主筋(6)、剪断補強筋(5,
8)、梁連結主筋(9)および接続筋(10)はそれぞれ
連続繊維が樹脂材料により固められて形成されたもので
あることを特徴とする特許請求の範囲第1項に記載のコ
ンクリート構造物における柱と梁の接合部構造。 3.柱主筋(4)と剪断補強筋(5)とからなる柱用構
造部材(1)を予め先組みしてその施工位置に立設する
工程と、 上下の梁主筋(6)にそれぞれ接続される上下一対の梁
連結主筋(9)とこれら上下一対の梁連結主筋(9)の
一端側にのみ設けられこれら梁連結主筋(9)を上下の
梁主筋(6)の間隔にほぼ等しく離間させて一体化する
接続筋(10)とからなるジョイント部材(3)を複数形
成する工程と、 これらジョイント部材(3)を縦置き姿勢として各梁連
結主筋(9)を柱主筋(4)と剪断補強筋(5)との網
目に差し込むことにより、その両端を柱用構造部材
(1)の両側方に突出させた状態で各ジョイント部材
(3)を前記梁主筋(6)の間隔と同等の間隔をおいて
柱用構造部材(1)の幅方向に複数セットする工程と、 これらジョイント部材(3)の両端に梁主筋(6)と剪
断補強筋(8)とからなる梁用構造部材(2)を連結す
る工程とを具備したことを特徴とするコンクリート構造
物における柱と梁の接合部施工方法。
(57) [Claims] Multiple column reinforcements (4) and multiple shear reinforcements (5)
The column structural member (1) assembled by the above, the beam structural member (2) assembled by the plurality of beam main reinforcing bars (6) and the plurality of shear reinforcing bars (8), and the column structural member (1) A connection structure (A) that is set at a predetermined position and connects the beam structural member (2) in an axial direction perpendicular to the length direction of the column structural member (1); (A), a plurality of joint members (3) respectively corresponding to the upper and lower beam main reinforcing bars (6) of the beam structural member (2) are arranged in the width direction of the column structural member (1). ), The column structural member (3) is made to penetrate in a state of being juxtaposed at intervals equal to the mutual interval of 5) and the main beam bars (6) above and below the beam structural member (2) are connected to both ends of the mesh. Upper and lower pair of beams connecting the main reinforcement to (9) and upper and lower beam connection main reinforcement only provided on one end side of the pair of upper and lower beam connection main reinforcement (9) (9)
And a connecting bar (10) for integrating the beam connecting main bars (9), and a length dimension of the beam connecting main bars (9) is inserted into a mesh between the column main bars (4) and the shear reinforcing bars (5). Sometimes, both ends are set to protrude to both sides of the column structural member (1), and the interval between the upper and lower beam connecting main bars (9) is substantially equal to the interval between the vertically extending beam main bars (6). A joint structure between a column and a beam in a concrete structure, which is set. 2. The column main reinforcement (4), the beam main reinforcement (6), the shear reinforcement (5,
8. The concrete structure according to claim 1, wherein each of the beam connecting main reinforcing bars (9) and the connecting reinforcing bars (10) is formed by solidifying continuous fibers with a resin material. Column and beam joint structure. 3. A step of previously assembling a column structural member (1) comprising a column main reinforcement (4) and a shear reinforcement (5) and erecting the column at its construction position; and connecting to the upper and lower beam main reinforcements (6), respectively. A pair of upper and lower beam connecting main bars (9) are provided only at one end of the upper and lower pair of beam connecting main bars (9), and these beam connecting main bars (9) are spaced apart substantially equally to the interval between the upper and lower beam main bars (6). A step of forming a plurality of joint members (3) comprising connecting bars (10) to be integrated; and shearing reinforcement of each beam connecting main bar (9) with the column main bar (4) by setting the joint members (3) in a vertical position. Each joint member (3) is inserted into a mesh with the bar (5) so that both ends thereof are projected to both sides of the column structural member (1), and the distance between the joint members (3) is equal to the distance between the beam main bars (6). Setting a plurality of columns in the width direction of the column structural member (1). Connecting a beam structural member (2) consisting of a beam main reinforcing bar (6) and a shear reinforcing bar (8) to both ends of the joint member (3). Beam joint construction method.
JP62107691A 1987-04-30 1987-04-30 Column and beam joint structure of concrete structure and its construction method Expired - Lifetime JP2662570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62107691A JP2662570B2 (en) 1987-04-30 1987-04-30 Column and beam joint structure of concrete structure and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62107691A JP2662570B2 (en) 1987-04-30 1987-04-30 Column and beam joint structure of concrete structure and its construction method

Publications (2)

Publication Number Publication Date
JPS63272825A JPS63272825A (en) 1988-11-10
JP2662570B2 true JP2662570B2 (en) 1997-10-15

Family

ID=14465517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62107691A Expired - Lifetime JP2662570B2 (en) 1987-04-30 1987-04-30 Column and beam joint structure of concrete structure and its construction method

Country Status (1)

Country Link
JP (1) JP2662570B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621061A (en) * 1985-06-26 1987-01-07 Hitachi Ltd Diagnosis and back-up device for fault of device

Also Published As

Publication number Publication date
JPS63272825A (en) 1988-11-10

Similar Documents

Publication Publication Date Title
JP3457294B2 (en) Reinforced concrete joint structure
JP2662570B2 (en) Column and beam joint structure of concrete structure and its construction method
JP2648798B2 (en) Column and beam joint structure of concrete structure and its construction method
JP2645352B2 (en) Joint structure of column and beam in concrete structure and its assembling method
JPH0949331A (en) Construction method of concrete building and construction member
JP2759009B2 (en) Precast concrete wall column joining method
JP2519925B2 (en) Joint structure of reticulated reinforcing member and its construction method
JPH01178649A (en) Concrete reinforcing member
JP2759010B2 (en) Precast concrete wall column joining method
JPH0893083A (en) Precast seismic wall and its joining method
JPH07217069A (en) Construction method of reinforced concrete pole and constituting precast concrete member thereof
JPH03290543A (en) Frame body of structure consisting of precast steel pipe column and precast steel beam or prestressed steel beam, joint structure with pc steel pipe column and pc steel beam or ps steel beam, and pc steel pipe column and ps steel beam
JPH0439954Y2 (en)
JPH0745783B2 (en) Construction method of precast column beam and precast earthquake resistant wall.
JP2791824B2 (en) Construction method of reinforced concrete structure using partial pre-brake and partial pre-brake
JPH044033Y2 (en)
JP2907038B2 (en) Joint structure and joining method between precast beam and column
JPS6334932B2 (en)
JPH11131692A (en) Unit joint bar
JPH0540165Y2 (en)
JPH0967899A (en) Reinforcement cage and assembling method therefor
JPH06306948A (en) Connecting structure of building frame
JPH06108533A (en) Work method for connecting pc beam to column
JPH081083B2 (en) Reinforced concrete beams
JPH06996B2 (en) Reinforcing bar concrete structure and its construction method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370