JP2645716B2 - Optical fiber drawing apparatus and drawing method - Google Patents

Optical fiber drawing apparatus and drawing method

Info

Publication number
JP2645716B2
JP2645716B2 JP63006963A JP696388A JP2645716B2 JP 2645716 B2 JP2645716 B2 JP 2645716B2 JP 63006963 A JP63006963 A JP 63006963A JP 696388 A JP696388 A JP 696388A JP 2645716 B2 JP2645716 B2 JP 2645716B2
Authority
JP
Japan
Prior art keywords
optical fiber
drawing furnace
helium gas
cooling cylinder
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63006963A
Other languages
Japanese (ja)
Other versions
JPH01183434A (en
Inventor
弘明 滝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63006963A priority Critical patent/JP2645716B2/en
Publication of JPH01183434A publication Critical patent/JPH01183434A/en
Application granted granted Critical
Publication of JP2645716B2 publication Critical patent/JP2645716B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/50Cooling the drawn fibre using liquid coolant prior to coating, e.g. indirect cooling via cooling jacket
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/90Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、線引き直後の高温状態にある光ファイバを
効率良く冷却して樹脂の被覆装置へ送り出すようにした
光ファイバ線引き装置及び線引き方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber drawing apparatus and a drawing method in which an optical fiber in a high temperature state immediately after drawing is efficiently cooled and sent to a resin coating apparatus. .

<従来の技術> 透明ガラス化した棒状をなす光ファイバ母材を所定の
径に加熱線引きする場合、一般には樹脂の一次被覆や二
次被覆の作業もこれと同時に連続して行われる。
<Prior Art> When an optical fiber preform in the form of a transparent vitrified rod is heated and drawn to a predetermined diameter, generally, the primary coating and the secondary coating of the resin are simultaneously and continuously performed.

このような従来の線引き装置の主要部の概念を表す第
4図に示すように、光ファイバ母材101が送り込まれる
炉心管102は、これを囲むカーボンヒータ103と共に炉体
104に保持されている。この炉体104の上端部には、炉心
管102やカーボンヒータ103等の酸化消耗を防止するた
め、窒素等の不活性ガスを線引炉105内に供給するため
のパージガス導入管106が接続し、これに伴って炉体104
の上端には光ファイバ母材101の外周面に摺接するシー
ルリング107が取付けられると共に炉体104の下端部には
シャッタ108が設けられ、線引炉105内を不活性ガスの雰
囲気に保持している。この線引炉105内で線引きされた
光ファイバ109は、冷却筒110内を通ってコーティングダ
イス111に達し、例えば紫外線硬化樹脂の一次被覆が施
される。前記冷却筒110の下端部には、冷却用ガスをこ
の冷却筒110内へ導く冷却用ガス導入管112が接続してお
り、これによって線引き直後の高温状態にある光ファイ
バ109が冷却されるようになっている。光ファイバ109と
共にコーティングダイス111を通過した紫外線硬化樹脂
は、紫外線硬化装置113内で紫外線を照射されて硬化
し、光ファイバ109と一体化する。
As shown in FIG. 4, which shows the concept of the main part of such a conventional drawing apparatus, a core tube 102 into which an optical fiber preform 101 is fed has a furnace body 103 together with a carbon heater 103 surrounding it.
It is held at 104. A purge gas introduction pipe 106 for supplying an inert gas such as nitrogen into the drawing furnace 105 is connected to an upper end portion of the furnace body 104 in order to prevent oxidative consumption of the furnace tube 102 and the carbon heater 103. And the furnace body 104
A seal ring 107 is attached to the upper end of the optical fiber preform 101 for sliding contact with the outer peripheral surface of the optical fiber preform 101, and a shutter 108 is provided at the lower end of the furnace body 104 to keep the inside of the drawing furnace 105 in an inert gas atmosphere. ing. The optical fiber 109 drawn in the drawing furnace 105 reaches the coating die 111 through the inside of the cooling tube 110, and is subjected to, for example, a primary coating of an ultraviolet curable resin. At the lower end of the cooling cylinder 110, a cooling gas introduction pipe 112 for guiding a cooling gas into the cooling cylinder 110 is connected, so that the optical fiber 109 in a high temperature state immediately after drawing is cooled. It has become. The ultraviolet curable resin that has passed through the coating die 111 together with the optical fiber 109 is cured by being irradiated with ultraviolet light in the ultraviolet curing device 113 and integrated with the optical fiber 109.

この紫外線硬化装置113の下端には、紫外線硬化樹脂
の硬化の妨げとなる酸素の存在を除去するため、窒素ガ
ス等のパージガスの導入管114が接続しており、これに
伴って紫外線硬化装置113の上端にはパージガスの流出
を少なくするシャッタ115が設けられている。更に、こ
の紫外線硬化装置113の下流には二次被覆用のコーティ
ングダイス116とこれによる樹脂の硬化装置117とが順に
配設され、二次被覆を施された光ファイバ素線118は光
ファイバ心線119となって方向変換ローラ120を介し図示
しない巻取装置に巻き取られて行くようになっている。
At the lower end of the ultraviolet curing device 113, a purge gas introduction pipe 114 such as nitrogen gas is connected to remove the presence of oxygen that hinders the curing of the ultraviolet curing resin. A shutter 115 for reducing the outflow of the purge gas is provided at the upper end of the shutter. Further, downstream of the ultraviolet curing device 113, a coating die 116 for secondary coating and a resin curing device 117 using the coating die 116 are sequentially disposed, and the optical fiber strand 118 with the secondary coating is an optical fiber core. The wire 119 is wound by a winding device (not shown) via a direction changing roller 120 as a line 119.

<発明が解決しようとする課題> 通常、光ファイバの線引き速度は被覆樹脂の硬化速度
に左右される。つまり、現在の技術では被覆樹脂の硬化
速度よりも光ファイバの線引き速度の方をより早くする
ことが可能なため、光ファイバの高速線引きによる製造
コストの低減等を企図した場合、被覆樹脂の硬化速度を
高めることが最も重要となる。ところで、紫外線硬化樹
脂は従来の熱可塑性樹脂等の被覆材料に対し、硬化速度
や取り扱い性の面で格段に優れていることから、極めて
優秀な被覆材料として期待されている。この紫外線硬化
樹脂の採用による線引き速度の上昇に伴い、第4図に示
すように線引き直後の高温状態にある光ファイバ109を
急速に冷却してコーティングダイス111に送り込む必要
がある。
<Problems to be Solved by the Invention> Usually, the drawing speed of an optical fiber depends on the curing speed of a coating resin. In other words, with the current technology, it is possible to make the drawing speed of the optical fiber faster than the curing speed of the coating resin. Speed is of paramount importance. By the way, ultraviolet curable resins are much better than conventional coating materials such as thermoplastic resins in terms of curing speed and handleability, and are therefore expected to be extremely excellent coating materials. With the increase in drawing speed due to the use of the ultraviolet curable resin, it is necessary to rapidly cool the high-temperature optical fiber 109 immediately after drawing and send it to the coating die 111 as shown in FIG.

そこで、従来では熱伝導率の良いヘリウムガスを冷却
用ガス導入管112から冷却筒110内に連続的に供給するよ
うにしているが、高価なヘリウムガスを大量に消費する
結果、光ファイバの製造コストが高くなってしまう欠点
があった。冷却筒110の上端開口部を絞ることでヘリウ
ムガスの消費を抑えるようにしたものも知られている
が、程度の差こそあれヘリウムガスを消費してしまうこ
とに変わりはなく、何らかの改善が望まれていた。
Therefore, conventionally, helium gas having good thermal conductivity is continuously supplied from the cooling gas introduction pipe 112 into the cooling cylinder 110, but as a result of consuming a large amount of expensive helium gas, optical fiber production There was a disadvantage that the cost was increased. Although it is known that the consumption of helium gas is suppressed by narrowing the opening at the upper end of the cooling cylinder 110, helium gas is consumed to a greater or lesser extent, and some improvement is expected. Was rare.

<課題を解決するための手段> 本発明の光ファイバ線引き装置の構成は、光ファイバ
母材を加熱する線引き炉と、この線引き炉の下方に設け
られて当該線引き炉から引き出される光ファイバの外周
面に樹脂を被覆する被覆装置とを有する光ファイバ線引
き装置において、前記線引き炉の上端開口部に設けられ
て前記光ファイバ母材が摺接するシールリングと、前記
線引き炉と前記被覆装置との間に設けられて上端が前記
線引き炉の下端開口部に気密に接続する冷却筒と、この
冷却筒及び前記線引き炉のうち少なくとも一つに連通し
てこれらの内部にヘリウムガスを充満させるヘリウムガ
ス供給手段と、前記冷却筒の周囲に配設されてこの冷却
筒及び前記ヘリウムガスを介し前記光ファイバを冷却す
る冷却手段とを具え、かつ前記線引き炉には、上記冷却
筒に向う以外にヘリウムガスの排出口を実質的に有して
おらず、前記冷却筒の下方には大気中に開放されている
ファイバの引き出し口を有しておい、該ファイバの引き
出し口には空気の該引き出し口からの混入を検知する手
段を有しており、前記ヘリウムガス供給手段にはヘリウ
ムの流量を制限する制御手段を有していることを特徴と
する。
<Means for Solving the Problems> The configuration of the optical fiber drawing apparatus of the present invention includes a drawing furnace for heating an optical fiber preform, and an outer periphery of an optical fiber provided below the drawing furnace and drawn from the drawing furnace. An optical fiber drawing device having a coating device for coating a surface with a resin, wherein a seal ring provided at an upper end opening of the drawing furnace and in which the optical fiber preform slides and contacts, between the drawing furnace and the coating device. A cooling cylinder having an upper end hermetically connected to a lower end opening of the drawing furnace, and a helium gas supply communicating with at least one of the cooling cylinder and the drawing furnace to fill the inside with helium gas. Means, and cooling means disposed around the cooling cylinder to cool the optical fiber via the cooling cylinder and the helium gas. Having substantially no helium gas outlet other than toward the cooling cylinder, and having a fiber outlet port open to the atmosphere below the cooling cylinder, The outlet is provided with means for detecting mixing of air from the outlet, and the helium gas supply means is provided with control means for limiting the flow rate of helium.

一方、本発明の光ファイバ線引き方法は、光ファイバ
母材を線引き炉で加熱線引きし該線引き炉の下方に引き
出し被覆装置を用いて該線引きされた光ファイバの外周
面に樹脂を被覆し巻き取り装置で巻き取る光ファイバの
線引き方法において、上記線引き炉と該線引き炉の下端
開口部に気密に接続する冷却筒とを用い不活性雰囲気下
で該線引き炉の上端開口部を開放し、光ファイバ母材を
線引き炉にセットし、該上端開口部で光ファイバ母材を
シールリングに摺接させて上端開口部を封止し、該線引
き炉と冷却筒の少なくとも一箇所よりヘリウムガスを供
給してこの全体をヘリウムガスで充満させ、冷却筒の下
方で空気の混入を検知し、この情報をもとに供給するヘ
リウムの流量を最小限に制限しながら光ファイバ母材を
該線引き炉部分で内部に充満するヘリウムガスとともに
加熱し線引きし、該冷却筒部分では線引きされた光ファ
イバおよび内部に充満するヘリウムガスを冷却筒を介し
その周囲に配設された冷却手段によって冷却した後、下
方に引き出し被覆装置を用いて該線引きされた光ファイ
バの外周面に樹脂を被覆し巻き取り装置で巻き取ること
を特徴とする。
On the other hand, in the optical fiber drawing method of the present invention, the optical fiber preform is heated and drawn in a drawing furnace, and a resin is coated on the outer peripheral surface of the drawn optical fiber by using a drawing coating device below the drawing furnace and wound. In the method of drawing an optical fiber wound by an apparatus, the upper end opening of the drawing furnace is opened under an inert atmosphere using the drawing furnace and a cooling cylinder airtightly connected to the lower end opening of the drawing furnace, and the optical fiber The preform is set in a drawing furnace, the upper end opening is sealed by sliding the optical fiber preform against a seal ring at the upper end opening, and helium gas is supplied from at least one place of the drawing furnace and the cooling cylinder. The entire lever is filled with helium gas, air entrapment is detected below the cooling cylinder, and based on this information, the optical fiber preform is reduced in the drawing furnace while the flow rate of helium supplied is minimized. Inside In the cooling cylinder portion, the drawn optical fiber and the helium gas filling the inside are cooled by the cooling means arranged around the cooling cylinder, and then drawn downward. The outer peripheral surface of the drawn optical fiber is coated with a resin using a coating device, and is wound by a winding device.

<作用> 線引き炉内に供給される光ファイバ母材は、加熱線引
きされて被覆装置側へ送り出される。一方、ヘリウムガ
ス供給手段により線引き炉内及びこれと一体の冷却筒内
はヘリウムガスが充満しており、光ファイバ母材に摺接
するシールリングによって、線引き炉上端の開口部から
ヘリウムガスが漏出するのを防止し、ヘリウムガスの補
給を特に行わなくても線引き炉内及び冷却筒内ではヘリ
ウムガスの雰囲気が確保される。冷却筒内を通過する光
ファイバは、冷却手段により冷却筒及び熱伝導率の良好
なヘリウムガスを介して効率良く冷却され、被覆装置に
よって樹脂の被覆が施される。
<Operation> The optical fiber preform supplied into the drawing furnace is drawn by heating and sent to the coating apparatus side. On the other hand, the inside of the drawing furnace and the inside of the cooling cylinder integrated therewith are filled with helium gas by the helium gas supply means, and the helium gas leaks from the opening at the upper end of the drawing furnace by the seal ring that slides on the optical fiber preform. And the atmosphere of the helium gas is ensured in the drawing furnace and the cooling cylinder without replenishing the helium gas. The optical fiber passing through the inside of the cooling cylinder is efficiently cooled by the cooling means through the cooling cylinder and the helium gas having good thermal conductivity, and is coated with the resin by the coating device.

一方の本発明による光ファイバ線引き方法は、光ファ
イバ母材を線引炉で加熱線引し該線引炉の下方に引き出
し被覆装置を用いて該線引された光ファイバの外周面に
樹脂を被覆し巻き取り装置で巻き取る光ファイバの線引
方法において、上記線引炉と該線引炉の下端開口部に気
密に接続する冷却塔とを用い不活性雰囲気下で該線引炉
の上端開口部を開放し、光ファイバ母材を線引炉にセッ
トし、該上端開口部で光ファイバ母材をシールリングに
摺接させて上端開口部を封止し該線引炉と冷却塔の少な
くとも一箇所よりヘリウムガスを供給してこの全体をヘ
リウムで充満させ、光ファイバ母材を該線引炉部分で内
部に充満するヘリウムガスとともに加熱し線引し、該冷
却塔部分では線引された光ファイバおよび内部に充満す
るヘリウムを冷却塔を介しその周囲に配設された冷却手
段によって冷却した後、下方に引き出し被覆装置を用い
て該線引された光ファイバの外周面に樹脂を被覆し巻き
取り装置で巻き取ることを特徴とする。
On the other hand, in the optical fiber drawing method according to the present invention, the optical fiber preform is heated and drawn in a drawing furnace, and a resin is applied to the outer peripheral surface of the drawn optical fiber by using a draw coating device below the drawing furnace. A method for drawing an optical fiber which is coated and wound by a winding device, wherein the drawing furnace and a cooling tower which is connected to the lower end opening of the drawing furnace in an airtight manner are used. The opening is opened, the optical fiber preform is set in a drawing furnace, the optical fiber preform is slid into contact with a seal ring at the upper end opening, the upper end opening is sealed, and the drawing furnace and the cooling tower are cooled. Helium gas is supplied from at least one place and the whole is filled with helium, and the optical fiber preform is heated and drawn with the helium gas filled inside in the drawing furnace part, and drawn in the cooling tower part. Cooled optical fiber and helium filled inside the cooling tower After cooling by disposed cooling means around through, characterized in that the wound coated with retractor resin on the outer circumferential surface of 該線 pull optical fiber using a drawer coating device downward.

<実 施 例> 本発明による光ファイバ線引き装置の一実施例の概略
構造を表す第1図に示すように、光ファイバ母材11が送
り込まれる炉心管12は、これを囲むカーボンヒータ13と
共に炉体14に保持されている。この炉体14の上端には、
光ファイバ母材11の外周面に摺接して線引き炉15内をシ
ールするシールリング16が取付けられており、下端がコ
ーティングダイス17を有する被覆装置18に気密に接続す
る冷却筒19の上端は、前記炉体14の下端に気密に接続し
ている。この冷却筒19の外周面には、図示しない冷却液
供給装置に接続する冷却液通液管20が螺旋状に巻回さ
れ、線引き炉15にて加熱線引きされた高温の光ファイバ
21が冷却筒19内を通過する間に、被覆装置18による樹脂
の被覆が可能な温度にまでこの光ファイバ21を冷却する
ようになっている。このため、炉体14の下端部には線引
き炉15内の輻射熱による影響が冷却筒19側に及ばないよ
うにするシャッタ22を設けている。本実施例では冷却液
通液管20を冷却筒19の外周面に螺旋状に巻回している
が、冷却筒19の壁内部を中空に形成し、ここに冷却液を
通すようにしても良く、要するにヘリウムガスを介して
光ファイバ21を効率良く冷却できるような構造であれば
良い。
<Embodiment> As shown in Fig. 1 showing a schematic structure of an embodiment of an optical fiber drawing apparatus according to the present invention, a core tube 12 into which an optical fiber preform 11 is fed is provided together with a carbon heater 13 surrounding the furnace. It is held by the body 14. At the upper end of the furnace body 14,
A seal ring 16 that is in sliding contact with the outer peripheral surface of the optical fiber preform 11 and seals the inside of the drawing furnace 15 is attached, and an upper end of a cooling cylinder 19 whose lower end is air-tightly connected to a coating device 18 having a coating die 17 is The lower end of the furnace body 14 is airtightly connected. A cooling liquid passage pipe 20 connected to a cooling liquid supply device (not shown) is spirally wound around the outer peripheral surface of the cooling cylinder 19, and a high-temperature optical fiber drawn by heating in a drawing furnace 15.
While passing through the cooling tube 19, the optical fiber 21 is cooled down to a temperature at which the resin can be coated by the coating device 18. For this reason, a shutter 22 is provided at the lower end of the furnace body 14 to prevent the influence of the radiant heat in the drawing furnace 15 from affecting the cooling cylinder 19 side. In the present embodiment, the cooling liquid passage pipe 20 is spirally wound around the outer peripheral surface of the cooling cylinder 19, but the inside of the wall of the cooling cylinder 19 may be formed to be hollow, and the cooling liquid may pass therethrough. In short, any structure may be used as long as the optical fiber 21 can be efficiently cooled via the helium gas.

前記一次被覆用の被覆装置18には、その硬化装置23が
接続筒24を介して気密に連結されており、本実施例では
更に二次被覆用の被覆装置25とその硬化装置26とが直列
に接続している。そして、一次被覆用の硬化装置23と二
次被覆用の被覆装置25とは、前述した冷却液通液管20と
同一構成の冷却液通液管27を螺旋状に巻回した冷却筒28
を介して気密に連結され、同様にこの二次被覆用の被覆
装置25と硬化装置26とは接続筒30を介して気密に連結さ
れている。なお、硬化装置26には下端にシャッタ29を有
する延長筒31の上端が気密に連結されており、本実施例
では被覆樹脂として紫外線硬化樹脂を用いているため、
冷却筒28の下端に二次被覆用のコーティングダイス32に
一次被覆用の硬化装置23からの紫外光が入射するのを防
止する必要上、迷光防止用の遮光環33を取付けている。
A curing device 23 is hermetically connected to the coating device 18 for the primary coating via a connection tube 24.In this embodiment, a coating device 25 for the secondary coating and a curing device 26 are further connected in series. Connected to The curing device 23 for the primary coating and the coating device 25 for the secondary coating are provided with a cooling cylinder 28 in which a cooling liquid flow pipe 27 having the same configuration as the above-described cooling liquid flow pipe 20 is spirally wound.
Similarly, the coating device 25 for secondary coating and the curing device 26 are airtightly connected via a connection tube 30. The upper end of an extension cylinder 31 having a shutter 29 at the lower end is hermetically connected to the curing device 26, and in the present embodiment, an ultraviolet curing resin is used as the coating resin.
At the lower end of the cooling cylinder 28, a light-shielding ring 33 for preventing stray light is attached because it is necessary to prevent ultraviolet light from the curing device 23 for primary coating from entering the coating die 32 for secondary coating.

前記冷却筒19の下端部には、図示しないヘリウムガス
供給源に接続するヘリウムガス供給管34が連通し、線引
き炉15から延長筒31に至る光ファイバ母材11,光ファイ
バ21,光ファイバ素線35,光ファイバ心線36の搬送経路を
ヘリウムガスで充満させるようにしている。このため、
本実施例では延長筒31内に吸引管37を介して連通する酸
素検出装置38を設け、この酸素検出装置38からの検出信
号に基づいてヘリウムガス供給管34に介装された開閉弁
39の開閉動作を制御装置40によって調整するようにして
いる。
A helium gas supply pipe 34 connected to a helium gas supply source (not shown) communicates with a lower end of the cooling cylinder 19, and the optical fiber preform 11, the optical fiber 21, and the optical fiber element from the drawing furnace 15 to the extension cylinder 31. The transport path of the wire 35 and the optical fiber core 36 is filled with helium gas. For this reason,
In this embodiment, an oxygen detector 38 is provided in the extension cylinder 31 and communicates via a suction pipe 37, and an opening / closing valve provided in the helium gas supply pipe 34 based on a detection signal from the oxygen detector 38.
The opening and closing operation of 39 is adjusted by the control device 40.

従って、延長筒31内でのヘリウムガスの充満状態を表
す第2図及び第3図に示すように、吸引管37の位置より
もヘリウムガス41が多めに延長筒31内に存在する場合
(第2図参照)には、酸素検出装置38を介して制御装置
40は酸素が延長筒31内に無いと判断し、開閉弁39を閉じ
てヘリウムガス41の供給を停止する。一方、吸引管37の
位置よりもヘリウムガス41が少なめに延長筒31内に存在
する場合(第3図参照)には、酸素検出器38を介して制
御装置40は酸素が延長筒31内に存在すると判断し、開閉
弁39を用いてヘリウムガス41を冷却筒19内に供給する。
Therefore, as shown in FIGS. 2 and 3 showing the state of the helium gas being filled in the extension tube 31, a case where the helium gas 41 is present in the extension tube 31 more than the position of the suction pipe 37 (see FIG. 2), a control device is provided via an oxygen detector 38.
40 judges that oxygen is not present in the extension cylinder 31, closes the on-off valve 39, and stops the supply of the helium gas 41. On the other hand, when the helium gas 41 is present in the extension tube 31 slightly less than the position of the suction pipe 37 (see FIG. 3), the control device 40 sends oxygen to the extension tube 31 via the oxygen detector 38. When it is determined that the helium gas exists, the helium gas 41 is supplied into the cooling cylinder 19 using the on-off valve 39.

これにより、ヘリウムガス41の消費を最小限に抑えて
少なくとも線引き炉15から硬化装置26に至る経路を常に
ヘリウムガス雰囲気に保持できる。このため、本実施例
では硬化装置23,26による樹脂の硬化作業雰囲気に酸素
が存在せず、紫外線樹脂の硬化速度が遅くなるような不
都合は発生しない。又、光ファイバ21が空気と接触する
前に樹脂の被覆がなされるため、光ファイバ21の伝送損
失を大きく左右する水分による影響を少なくすることが
可能である。又、周知のようにヘリウムガス41は熱伝導
率が他の気体と比較して著しく高いため、冷却筒19を通
過する間に光ファイバ21は効率良く冷却される。
Thereby, the consumption of the helium gas 41 can be minimized, and at least the path from the drawing furnace 15 to the curing device 26 can be always maintained in the helium gas atmosphere. For this reason, in the present embodiment, no oxygen is present in the atmosphere in which the resin is cured by the curing devices 23 and 26, and the disadvantage that the curing speed of the ultraviolet resin is reduced does not occur. In addition, since the resin is coated before the optical fiber 21 comes into contact with air, it is possible to reduce the influence of moisture which largely affects the transmission loss of the optical fiber 21. Also, as is well known, the helium gas 41 has a significantly higher thermal conductivity than other gases, so that the optical fiber 21 is efficiently cooled while passing through the cooling cylinder 19.

なお、光ファイバ母材11の交換中はシールリング16に
よる線引き炉15内の気密保持が不可能となるため、炉体
14の上端部に図示しない窒素等の不活性ガス供給源に接
続する不活性ガス導入通路42を接続し、光ファイバ母材
11の交換中にはこの不活性導入通路42から線引き炉15内
に外気との比重の差がほとんどない窒素等の不活性ガス
を供給し、ヘリウムガス供給管34からのヘリウムガス41
の供給を一時停止して高価なヘリウムガス41の無駄な消
費を防いでいる。
During the replacement of the optical fiber preform 11, it is impossible to maintain the hermeticity of the drawing furnace 15 by the seal ring 16;
An inert gas introduction passage 42 connected to an inert gas supply source such as nitrogen (not shown) is connected to an upper end of the optical fiber preform 14.
During the replacement of 11, an inert gas such as nitrogen having almost no difference in specific gravity from outside air is supplied from the inert introduction passage 42 into the drawing furnace 15, and the helium gas 41 from the helium gas supply pipe 34 is supplied.
Is stopped to prevent wasteful consumption of expensive helium gas 41.

被覆装置25及びその硬化装置26によって二次被覆が施
された光ファイバ心線36は、方向変換ローラ43を介し図
示しない巻取装置に巻き取られて行くようになってい
る。本実施例では延長筒31内でのヘリウムガス41の充填
量に応じて開閉弁39を開閉制御するようにしたが、予め
ヘリウムガス41の単位時間当りの漏洩量を調べておき、
これに応じて開閉弁39の開度を一定に保持しておくよう
にしても良い。
The optical fiber core 36 to which the secondary coating has been applied by the coating device 25 and its curing device 26 is wound up by a winding device (not shown) via a direction changing roller 43. In the present embodiment, the on-off valve 39 is controlled to open and close according to the filling amount of the helium gas 41 in the extension cylinder 31, but the amount of leakage of the helium gas 41 per unit time is checked in advance,
In response to this, the opening of the on-off valve 39 may be kept constant.

<発明の効果> 本発明の光ファイバ線引き装置によると、線引き炉の
下端に冷却手段を有する冷却筒を気密に接合すると共に
線引き炉上端と光ファイバ母材との隙間をシールリング
にてシールし、この線引き炉及び冷却筒内をヘリウムガ
ス供給手段により熱伝導率の高いヘリウムガス雰囲気に
保持するようにしたので、冷却筒内での冷却媒体となる
ヘリウムガスの消費がほとんどなく、このヘリウムガス
を介して冷却手段により光ファイバを効率良く冷却する
ことができると共に、光ファイバ母材に対する加熱の効
率が上昇するため、ヒータの熱源を小型化することが可
能である。又、線引き炉内でのガスの流れがほとんどな
くなるため、光ファイバの線径変動を少なくすることが
できる。
<Effect of the Invention> According to the optical fiber drawing apparatus of the present invention, a cooling cylinder having a cooling means at the lower end of the drawing furnace is air-tightly joined and a gap between the upper end of the drawing furnace and the optical fiber preform is sealed with a seal ring. Since the inside of the drawing furnace and the cooling cylinder is maintained in a helium gas atmosphere having a high thermal conductivity by the helium gas supply means, there is almost no consumption of helium gas serving as a cooling medium in the cooling cylinder. Thus, the optical fiber can be efficiently cooled by the cooling means, and the efficiency of heating the optical fiber preform increases, so that the heat source of the heater can be reduced in size. Further, since the flow of gas in the drawing furnace is almost eliminated, the fluctuation in the diameter of the optical fiber can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による光ファイバ線引き装置の一実施例
の概略構造を表す概念図、第2図及び第3図はそれぞれ
その延長筒の下端部におけるヘリウムガスの状態を表す
拡大図、第4図は従来の光ファイバ線引き装置の一例を
表す概念図である。 又、図中の符号で11は光ファイバ母材、12は炉心管、13
はカーボンヒータ、14は炉体、15は線引き炉、16はシー
ルリング、19は冷却筒、20は冷却液通液管、21は光ファ
イバ、22,29はシャッタ、34はヘリウムガス供給管、37
は吸引管、38は酸素検出器、39は開閉弁、40は制御装
置、41はヘリウムガスである。
FIG. 1 is a conceptual diagram showing a schematic structure of an embodiment of an optical fiber drawing apparatus according to the present invention, FIGS. 2 and 3 are enlarged views showing a state of helium gas at a lower end portion of the extension tube, respectively. FIG. 1 is a conceptual diagram illustrating an example of a conventional optical fiber drawing apparatus. Also, in the reference numerals in the figure, 11 is an optical fiber preform, 12 is a furnace tube, 13
Is a carbon heater, 14 is a furnace body, 15 is a drawing furnace, 16 is a seal ring, 19 is a cooling cylinder, 20 is a coolant flow pipe, 21 is an optical fiber, 22, 29 are shutters, 34 is a helium gas supply pipe, 37
Is a suction pipe, 38 is an oxygen detector, 39 is an on-off valve, 40 is a control device, and 41 is helium gas.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光ファイバ母材を加熱する線引き炉と、こ
の線引き炉の下方に設けられて当該線引き炉から引き出
される光ファイバの外周面に樹脂を被覆する被覆装置と
を有する光ファイバ線引き装置において、 前記線引き炉の上端開口部に設けられて前記光ファイバ
母材が摺接するシールリングと、 前記線引き炉と前記被覆装置との間に設けられて上端が
前記線引き炉の下端開口部に気密に接続する冷却筒と、 この冷却筒及び前記線引き炉のうち少なくとも一つに連
通してこれらの内部にヘリウムガスを充満させるヘリウ
ムガス供給手段と、 前記冷却筒の周囲に配設されてこの冷却筒及び前記ヘリ
ウムガスを介し前記光ファイバを冷却する冷却手段とを
具え、 かつ前記線引き炉には、上記冷却筒に向う以外にヘリウ
ムガスの排出口を実質的に有しておらず、前記冷却筒の
下方には大気中に開放されているファイバの引き出し口
を有しており、該ファイバの引き出し口には空気の該引
き出し口からの混入を検知する手段を有しており、前記
ヘリウムガス供給手段にはヘリウムの流量を制限する制
御手段を有していることを特徴とする線条体の光ファイ
バ線引き装置。
1. An optical fiber drawing apparatus comprising: a drawing furnace for heating an optical fiber preform; and a coating device provided below the drawing furnace and coating a resin on an outer peripheral surface of an optical fiber drawn from the drawing furnace. In the above, a seal ring provided at an upper end opening of the drawing furnace and in which the optical fiber preform slides, and an upper end provided between the drawing furnace and the coating device and hermetically sealed to a lower end opening of the drawing furnace. A helium gas supply means for communicating with at least one of the cooling cylinder and the drawing furnace to fill the interior with helium gas; and a cooling cylinder disposed around the cooling cylinder and connected to the cooling cylinder. A cooling means for cooling the optical fiber via the cylinder and the helium gas, and the drawing furnace has a helium gas discharge port substantially in addition to the cooling cylinder. A fiber outlet that is open to the atmosphere below the cooling cylinder, and a means for detecting entry of air from the outlet into the fiber outlet. Wherein the helium gas supply means has a control means for limiting a flow rate of helium.
【請求項2】光ファイバ母材を線引き炉で加熱線引きし
該線引き炉の下方に引き出し被覆装置を用いて該線引き
された光ファイバの外周面に樹脂を被覆し巻き取り装置
で巻き取る光ファイバの線引き方法において、 上記線引き炉と該線引き炉の下端開口部に気密に接続す
る冷却筒とを用い不活性雰囲気下で該線引き炉の上端開
口部を開放し、光ファイバ母材を線引き炉にセットし、
該上端開口部で光ファイバ母材をシールリングに摺接さ
せて上端開口部を封止し、該線引き炉と冷却筒の少なく
とも一箇所よりヘリウムガスを供給してこの全体をヘリ
ウムガスで充満させ、冷却筒の下方で空気の混入を検知
し、この情報をもとに供給するヘリウムの流量を最小限
に制限しながら光ファイバ母材を該線引き炉部分で内部
に充満するヘリウムガスとともに加熱し線引きし、該冷
却筒部分では線引きされた光ファイバおよび内部に充満
するヘリウムガスを冷却筒を介しその周囲に配設された
冷却手段によって冷却した後、下方に引き出し被覆装置
を用いて該線引きされた光ファイバの外周面に樹脂を被
覆し巻き取り装置で巻き取ることを特徴とする光ファイ
バの線引き方法。
2. An optical fiber in which an optical fiber preform is heated and drawn in a drawing furnace, a resin is coated on an outer peripheral surface of the drawn optical fiber by using a drawing coating device below the drawing furnace, and the fiber is wound by a winding device. In the drawing method, the upper end opening of the drawing furnace is opened under an inert atmosphere using the drawing furnace and a cooling cylinder airtightly connected to the lower end opening of the drawing furnace, and the optical fiber preform is drawn into the drawing furnace. Set
At the upper end opening, the optical fiber preform is slid into contact with a seal ring to seal the upper end opening, and helium gas is supplied from at least one place of the drawing furnace and the cooling cylinder, and the whole is filled with helium gas. Detecting the entrainment of air below the cooling cylinder and heating the optical fiber preform together with the helium gas filling the interior in the drawing furnace part while minimizing the flow rate of helium supplied based on this information. After drawing, the drawn optical fiber and the helium gas filling the inside thereof are cooled by cooling means disposed around the drawn optical fiber through the cooling tube, and then drawn downward using a draw coating device. A method of drawing an optical fiber, comprising coating an outer peripheral surface of the optical fiber with a resin and winding the resin with a winding device.
JP63006963A 1988-01-18 1988-01-18 Optical fiber drawing apparatus and drawing method Expired - Lifetime JP2645716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63006963A JP2645716B2 (en) 1988-01-18 1988-01-18 Optical fiber drawing apparatus and drawing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63006963A JP2645716B2 (en) 1988-01-18 1988-01-18 Optical fiber drawing apparatus and drawing method

Publications (2)

Publication Number Publication Date
JPH01183434A JPH01183434A (en) 1989-07-21
JP2645716B2 true JP2645716B2 (en) 1997-08-25

Family

ID=11652865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63006963A Expired - Lifetime JP2645716B2 (en) 1988-01-18 1988-01-18 Optical fiber drawing apparatus and drawing method

Country Status (1)

Country Link
JP (1) JP2645716B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805118A (en) * 2009-02-17 2010-08-18 信越化学工业株式会社 Containment member
US20200369563A1 (en) * 2019-05-22 2020-11-26 Corning Incorporated Systems and methods for forming optical fiber coatings with reduced defects on moving optical fibers

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2614949B2 (en) * 1991-05-16 1997-05-28 株式会社フジクラ Optical fiber coating forming method and coating forming apparatus
CA2168830A1 (en) * 1995-03-23 1996-09-24 John Steele Abbott Iii Method and apparatus for coating fibers
US6630209B2 (en) 1998-09-30 2003-10-07 Minnesota Mining And Manufacturing Company Method of manufacturing temperature range adjusted coated optical fibers
WO2000018697A1 (en) * 1998-09-30 2000-04-06 Minnesota Mining And Manufacturing Company Method of manufacturing coated optical fibers
US6321014B1 (en) * 1999-11-01 2001-11-20 Alcatel Method for manufacturing optical fiber ribbon
CN102245522B (en) * 2008-12-19 2015-10-07 株式会社藤仓 The manufacture method of optical fiber cable
CN102272063B (en) 2009-04-16 2014-03-12 株式会社藤仓 Method for manufacturing optical fiber wire
JP5486389B2 (en) * 2010-04-26 2014-05-07 株式会社フジクラ Optical fiber manufacturing equipment
JP6904235B2 (en) * 2017-12-15 2021-07-14 住友電気工業株式会社 Cooling device used for optical fiber drawing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947630U (en) * 1982-09-20 1984-03-29 日本電信電話株式会社 Optical fiber drawing equipment
JPS6046954A (en) * 1983-08-26 1985-03-14 Nippon Telegr & Teleph Corp <Ntt> Device for drawing optical fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805118A (en) * 2009-02-17 2010-08-18 信越化学工业株式会社 Containment member
CN101805118B (en) * 2009-02-17 2014-07-16 信越化学工业株式会社 Seal member
US20200369563A1 (en) * 2019-05-22 2020-11-26 Corning Incorporated Systems and methods for forming optical fiber coatings with reduced defects on moving optical fibers

Also Published As

Publication number Publication date
JPH01183434A (en) 1989-07-21

Similar Documents

Publication Publication Date Title
JP2645716B2 (en) Optical fiber drawing apparatus and drawing method
US4913715A (en) Method of manufacturing an optical fiber having a protective coating
CA2084258C (en) Method and apparatus for drawing optical fibers
US4437870A (en) Optical waveguide fiber cooler
CA2370494C (en) Method and induction furnace for drawing large diameter preforms to optical fibres
US5160359A (en) Apparatus and method for drawing an optical fiber from a solid blank
JP2004161545A (en) Method and apparatus for drawing optical fiber
JPH01286941A (en) Resin-coating and curing apparatus for optical fiber
JP2006248842A (en) Furnace and method for drawing optical fiber
JPH10259036A (en) Cooler for optical fiber
JP4404203B2 (en) Optical fiber manufacturing method
JP2003095689A (en) Method for manufacturing optical fiber and device for manufacturing it
US20110177257A1 (en) Method of manufacturing optical fiber
JP5535129B2 (en) Optical fiber manufacturing method
JPH038738A (en) Furnace and method for drawing optical fiber
US11292740B2 (en) Optical fiber manufacturing method and optical fiber manufacturing apparatus
JP4228570B2 (en) Optical fiber drawing furnace
JP2004051480A (en) Cooling unit for high-speed drawing
JP2865126B2 (en) Optical fiber drawing equipment
JP2012082089A (en) Method for manufacturing optical fiber
JP2844741B2 (en) Optical fiber cooling device and cooling method
CN111333315A (en) Optical fiber manufacturing apparatus and manufacturing method
JP5205443B2 (en) Optical fiber manufacturing equipment
JP7266788B2 (en) Optical fiber manufacturing method and optical fiber cooling device
JPH01192741A (en) Furnace for drawing optical fiber