JP2615424B2 - Falling thin film catalytic reaction method and apparatus - Google Patents

Falling thin film catalytic reaction method and apparatus

Info

Publication number
JP2615424B2
JP2615424B2 JP6112351A JP11235194A JP2615424B2 JP 2615424 B2 JP2615424 B2 JP 2615424B2 JP 6112351 A JP6112351 A JP 6112351A JP 11235194 A JP11235194 A JP 11235194A JP 2615424 B2 JP2615424 B2 JP 2615424B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
product
thin film
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6112351A
Other languages
Japanese (ja)
Other versions
JPH07313865A (en
Inventor
卓也 土井
忠良 田中
工 高島
孝博 藤井
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP6112351A priority Critical patent/JP2615424B2/en
Publication of JPH07313865A publication Critical patent/JPH07313865A/en
Application granted granted Critical
Publication of JP2615424B2 publication Critical patent/JP2615424B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/247Suited for forming thin films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J16/00Chemical processes in general for reacting liquids with non- particulate solids, e.g. sheet material; Apparatus specially adapted therefor
    • B01J16/005Chemical processes in general for reacting liquids with non- particulate solids, e.g. sheet material; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/187Details relating to the spatial orientation of the reactor inclined at an angle to the horizontal or to the vertical plane

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、触媒と熱を利用して液
相の反応物から、有用な生成物を得る反応方法および反
応装置に関し、特に、吸熱・発熱反応を利用した熱の昇
温技術の吸熱過程における反応方法および反応装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reaction method and a reaction apparatus for obtaining a useful product from a reaction product in a liquid phase using a catalyst and heat, and more particularly, to a method for increasing heat using an endothermic / exothermic reaction. The present invention relates to a reaction method and a reaction apparatus in an endothermic process of a temperature technique.

【0002】[0002]

【従来の技術】従来、触媒を用いた液相反応物の分解反
応を行う場合の代表例は図4のようになる。図4におい
て、1は反応槽、2は蒸留塔、3は冷却器、Qは加熱用
の供給熱、Sは前記反応槽1内の溶液、WPは触媒粒
子、Vは前記反応槽1から蒸留塔2へ入る蒸気、Lは前
記蒸留塔2から反応槽1へ戻る反応液、Dは外部へ取り
出される液または蒸気、Fは外部より注入される液また
は蒸気である。
2. Description of the Related Art FIG. 4 shows a typical example in the case of performing a decomposition reaction of a liquid phase reactant using a catalyst. In FIG. 4, 1 is a reaction tank, 2 is a distillation tower, 3 is a cooler, Q is supply heat for heating, S is a solution in the reaction tank 1, WP is catalyst particles, and V is a distillation from the reaction tank 1. The vapor entering the column 2, L is a reaction liquid returning from the distillation column 2 to the reaction tank 1, D is a liquid or vapor taken out, and F is a liquid or vapor injected from the outside.

【0003】触媒粒子WPは反応槽1内の液相に懸濁し
た状態で使用される。反応槽1内では触媒粒子WPと供
給熱Qの作用により、液相反応物から凝縮性ガスまたは
不凝縮性ガスの生成物が得られる。
[0003] The catalyst particles WP are used in a state of being suspended in a liquid phase in a reaction tank 1. In the reaction tank 1, a product of a condensable gas or a non-condensable gas is obtained from the liquid phase reactant by the action of the catalyst particles WP and the supply heat Q.

【0004】一般に、液相反応の場合、反応物が全て反
応して生成物になることは少なく、生成物が蓄積し、化
学平衡に達した時点で反応は進まなくなるが、生成物を
連続的に取り除くことで反応を持続することができる。
生成物を連続的に取り除く手段として、反応物と生成物
の沸点差を利用して分離ができる蒸留塔が用いられてい
る。触媒を液相に懸濁させるこのような方法は、粉末状
の触媒を用いて、触媒と反応物の接触面積を大きくでき
るなどの利点がある。
In general, in the case of a liquid phase reaction, all of the reactants rarely react to form a product. When the product accumulates and the chemical equilibrium is reached, the reaction does not proceed. The reaction can be sustained by removing it.
As a means for continuously removing the product, a distillation column capable of separating using a boiling point difference between a reactant and a product is used. Such a method of suspending a catalyst in a liquid phase has an advantage that a contact area between a catalyst and a reactant can be increased by using a powdery catalyst.

【0005】[0005]

【発明が解決しようとする課題】触媒反応を効率よく行
うためには、触媒表面から生成物が速やかに離脱し、触
媒の周囲で生成物の濃度が小さいことが化学平衡論的に
必要である。しかしながら、上記従来法では、触媒粒子
WPを反応槽1内に懸濁させる方法を採るために、反応
溶液中の触媒表面で生成した生成物は、気相界面まで溶
液S中を上昇していかなければならない。従って、溶液
S内で相対的に上方にある触媒粒子WPは、相対的に下
方にある触媒粒子WPで生成した生成物が上昇してくる
ために、その周囲での生成物の濃度が高くなり、触媒本
来の反応速度を達成できない。更に、溶液S中の生成物
を速やかに気相へ追い出すためには、多量の熱を加えて
やる必要がある。そのため、供給熱Qが反応に有効に利
用されないという重大な課題があった。
In order to carry out the catalytic reaction efficiently, it is necessary from a chemical equilibrium point that the product is quickly released from the catalyst surface and the concentration of the product is low around the catalyst. . However, in the above-mentioned conventional method, in order to adopt a method of suspending the catalyst particles WP in the reaction tank 1, the product generated on the surface of the catalyst in the reaction solution rises in the solution S to the gas phase interface. There must be. Therefore, in the catalyst particles WP relatively higher in the solution S, since the products generated by the catalyst particles WP relatively lower in the solution S rise, the concentration of the products around the catalyst particles WP increases. However, the original reaction rate of the catalyst cannot be achieved. Further, in order to promptly drive out the product in the solution S into the gas phase, it is necessary to add a large amount of heat. Therefore, there was a serious problem that the supplied heat Q was not effectively used for the reaction.

【0006】本発明の目的は、反応により生成された物
質が速やかに離脱できるようにして、反応速度の向上を
はかった流下薄膜式触媒反応方法および装置を提供する
ことにある。
It is an object of the present invention to provide a falling thin film catalytic reaction method and apparatus capable of promptly releasing a substance produced by the reaction and improving the reaction rate.

【0007】[0007]

【課題を解決するための手段】本発明にかかる流下薄膜
式触媒反応方法は、液相の反応物を薄い膜状にして触媒
と接触させて熱反応させ、生成物を液相から離脱させる
ことによって生成物を得るようにしたものである。
SUMMARY OF THE INVENTION According to the present invention, there is provided a falling thin film catalytic reaction method comprising the steps of forming a reactant in a liquid phase into a thin film, bringing the reactant into contact with a catalyst, causing a thermal reaction, and releasing a product from the liquid phase. To obtain the product.

【0008】また、液相反応物を傾けられた触媒の面に
おける流路となすことによって薄膜状にしたものであ
る。
Further, the liquid phase reactant is formed into a thin film by forming a flow path in the inclined catalyst surface.

【0009】さらに、触媒を液相反応物の組成に対応さ
せて流路に沿って2種類以上配置したものである。
Further, two or more kinds of catalysts are arranged along the flow path in accordance with the composition of the liquid phase reactant.

【0010】また、触媒を単一触媒あるいは混合触媒に
したものである。
Further, the catalyst is a single catalyst or a mixed catalyst.

【0011】さらに、本発明にかかる流下薄膜式触媒反
応装置は、面状の触媒層と、この触媒層上に液相反応物
を薄い膜状にして触媒と接触させて熱反応させ、生成物
を液相から離脱させることによって生成物を得る液相反
応物供給手段とを備えたものである。
Further, the falling thin film catalytic reactor according to the present invention comprises a planar catalyst layer, a liquid film reactant formed on the catalyst layer in a thin film and brought into contact with the catalyst to cause a thermal reaction, thereby producing a product. And a liquid-phase reactant supply means for obtaining a product by removing the compound from the liquid phase.

【0012】[0012]

【作用】本発明にかかる流下薄膜式触媒反応方法は、液
相の反応物を薄い膜状にして触媒と接触させる反応方法
を採ることで、触媒表面上で生成された物質は、反応液
の薄い膜中を短時間で通過することが可能となり、触媒
表面およびその周囲から生成物は速やかに離脱し、生成
物の反応液中における残留時間が短く、反応速度の向上
と効率的な熱利用を図ることができる。
The falling thin film catalytic reaction method according to the present invention employs a reaction method in which a reactant in a liquid phase is formed into a thin film and brought into contact with a catalyst, so that a substance produced on the surface of the catalyst can react with the reaction solution. It is possible to pass through a thin membrane in a short time, the product is quickly released from the catalyst surface and its surroundings, the residence time of the product in the reaction solution is short, the reaction speed is improved, and heat is efficiently used Can be achieved.

【0013】また、触媒の面を傾けてその上を液相反応
物を流下させるので、簡単に反応物を薄い膜状にするこ
とができる。
Further, since the surface of the catalyst is tilted and the liquid phase reactant flows down over the catalyst, the reactant can be easily formed into a thin film.

【0014】また、上記反応方法において、一般的に、
触媒の上で薄い膜状になって流れている液相反応物の組
成がその流路に沿って変化するため、液相反応物の組成
に対して、最適な反応を行い得る混合触媒あるいは単一
触媒を少なくとも2種類以上、流路に沿って配置するこ
とで、より一層の反応速度の向上と効率的な熱利用を可
能とする。
In the above reaction method, generally,
Since the composition of the liquid phase reactant flowing in a thin film on the catalyst changes along the flow path, a mixed catalyst or a single catalyst capable of performing an optimal reaction with respect to the composition of the liquid phase reactant is obtained. By arranging at least two types of one catalyst along the flow path, it is possible to further improve the reaction rate and efficiently use heat.

【0015】さらに、本発明にかかる流下薄膜式触媒反
応装置は、液相の反応物を薄い膜状にして触媒と接触さ
せるので、触媒表面上で生成された物質は、反応液の薄
い膜中を短時間で通過し、生成物の反応液中における残
留時間が短くなる。
Further, the falling thin film catalytic reactor according to the present invention makes the reactant in the liquid phase into a thin film and comes into contact with the catalyst. In a short time, and the residence time of the product in the reaction solution is shortened.

【0016】[0016]

【実施例】図1は、本発明の流下薄膜式触媒反応装置の
一実施例を示す断面略図である。図において、10は反
応槽で、WLは触媒層であり、図示のように適宜な角度
で傾けられている。Vは蒸気、Lは流路に流れを形成し
ている薄膜状の反応液であり、反応に必要な供給熱Q
は、触媒層WLの下方より均等又は局部的に供給され
る。その他の構成は図4に示すものと同じである。
FIG. 1 is a schematic sectional view showing an embodiment of a falling thin film catalytic reactor according to the present invention. In the figure, reference numeral 10 denotes a reaction tank, and WL denotes a catalyst layer, which is inclined at an appropriate angle as shown. V is a vapor, L is a thin film-like reaction liquid forming a flow in the flow path, and supply heat Q required for the reaction is
Is supplied evenly or locally from below the catalyst layer WL. Other configurations are the same as those shown in FIG.

【0017】次に、動作について説明する。反応液Lと
触媒層WLの界面で生じた生成物は、反応液Lが非常に
薄いため、速やかに液膜中を通過し気相へ矢印vで示す
ように離脱する。従って、生成物が液相に残留する時間
を短くすることがで、触媒表面上あるいは触媒の周囲で
生成物の濃度を小さく保つことができるため、反応速度
の向上と効率的な熱利用を図ることができる。
Next, the operation will be described. The product generated at the interface between the reaction liquid L and the catalyst layer WL quickly passes through the liquid film and separates into the gas phase as shown by the arrow v, since the reaction liquid L is extremely thin. Therefore, by shortening the time during which the product remains in the liquid phase, the concentration of the product can be kept low on the surface of the catalyst or around the catalyst, thereby improving the reaction rate and efficiently using heat. be able to.

【0018】触媒層WLは、反応液Lとの接触面積を大
きくするため、多孔性のものが好ましい。また、反応に
必要な熱を効率よく利用するために、材質は伝熱性の良
いものが好ましい。
The catalyst layer WL is preferably porous in order to increase the contact area with the reaction liquid L. Further, in order to efficiently use the heat required for the reaction, the material is preferably a material having good heat conductivity.

【0019】図2は、反応系として、反応物が2−プロ
パノール、生成物がアセトンと水素の場合において、供
給熱Qに対する反応に利用される熱の割合(熱利用率
α)を、図4に示される従来の方式の場合と、図4の反
応槽1を図1の反応槽10に置き換えた本発明の場合
を、反応液Lのアセトン濃度(X)に対してプロットし
たものである。Iの曲線が従来のもの、IIの曲線が本発
明によるものである。なお、この場合には、供給熱Qは
反応物に対し均等に加えた。
FIG. 2 shows the ratio of heat (heat utilization rate α) to the supply heat Q when the reactant is 2-propanol and the products are acetone and hydrogen as the reaction system. Are plotted against the acetone concentration (X) of the reaction liquid L in the case of the conventional method shown in FIG. 1 and in the case of the present invention in which the reaction tank 1 in FIG. 4 is replaced with the reaction tank 10 in FIG. The curve I is the conventional one, and the curve II is the one according to the present invention. In this case, the supplied heat Q was uniformly applied to the reactants.

【0020】反応液L中のアセトン濃度が0.25のと
きは、どちらも熱利用率αは0.5となるが、これ以下
の濃度では、本発明による方法の方が大きな熱利用率が
得られ、有効であることが分かる。
When the acetone concentration in the reaction solution L is 0.25, the heat utilization coefficient α is 0.5 in both cases, but at a concentration lower than this, the method of the present invention has a larger heat utilization coefficient. Obtained and proved to be effective.

【0021】図1に示した反応装置の構成は、反応液L
の組成がほぼ一定の場合に適した場合であるが、薄い膜
状となって流れている反応液Lの組成はその流路に沿っ
て変化する場合もある。例えば、図4における蒸留塔2
の機能を反応槽10に持たせた場合であり、この場合、
図3のような構成をとることができる。この図のW1〜
W4は、各位置における流路に沿って変化する反応液L
の組成に対し、最適な反応速度を与える触媒層である。
図には4種の触媒層の場合を示してあるが、これは、2
種以上であればよい。
The configuration of the reaction apparatus shown in FIG.
Is suitable when the composition of the reaction liquid L is almost constant, but the composition of the reaction liquid L flowing in a thin film shape may change along the flow path. For example, the distillation column 2 in FIG.
This is a case where the function of the reaction tank 10 is provided. In this case,
A configuration as shown in FIG. 3 can be employed. W1 of this figure
W4 is the reaction liquid L that changes along the flow path at each position.
Is a catalyst layer that gives an optimum reaction rate for the composition of
The figure shows the case of four types of catalyst layers.
Any number of species or more is acceptable.

【0022】反応系として、反応物が2−プロパノー
ル、生成物がアセトンと水素の場合を考えると、触媒層
W1の位置における反応液Lは凝縮器より戻ってくるア
セトン濃度の高い液となる。一方、反応液Lが流下して
いくうちに、蒸発しやすいアセトンは気相へ抜けていく
ために、触媒層W4の位置における反応液Lはアセトン
濃度の低い液となる。従って、触媒層W1はアセトン濃
度が高い所で大きな反応速度を持つ触媒を、触媒層W4
にはアセトン濃度が低いところで大きな反応速度を持つ
触媒を配置し、これらの中間域では、W1とW4の中間
的な触媒を配置する。このように、反応液Lの組成に対
し最も適する触媒を配置することで、従来の触媒を懸濁
させて反応を行う方式では不可能な蒸留機能を持った反
応槽の構成も可能となり、より有効な熱利用を図ること
ができる。
Assuming that the reactant is 2-propanol and the products are acetone and hydrogen, the reaction solution L at the position of the catalyst layer W1 is a solution having a high acetone concentration returned from the condenser. On the other hand, while the reaction liquid L flows down, the easily vaporized acetone escapes to the gas phase, so that the reaction liquid L at the position of the catalyst layer W4 has a low acetone concentration. Therefore, the catalyst layer W1 is a catalyst having a high reaction rate in a place where the acetone concentration is high, and the catalyst layer W4.
, A catalyst having a high reaction rate at a place where the acetone concentration is low is arranged, and an intermediate catalyst between W1 and W4 is arranged in an intermediate region between these. Thus, by arranging the catalyst most suitable for the composition of the reaction liquid L, it becomes possible to configure a reaction tank having a distillation function that cannot be performed by a conventional method of suspending the catalyst and performing the reaction. Effective heat utilization can be achieved.

【0023】なお、加熱用の供給熱Qとしては各触媒と
反応液の組成変化との関係において位置毎に最適な温度
条件を設定すれば、さらに有効な熱利用を図ることもで
きる。
It is to be noted that more effective heat utilization can be achieved by setting an optimum temperature condition for each position in relation to each catalyst and a change in the composition of the reaction solution as the supply heat Q for heating.

【0024】[0024]

【発明の効果】本発明にかかる流下薄膜式触媒反応方法
は、液相の反応物を薄い膜状にして触媒と接触させて熱
反応させ、生成物を液相から離脱させることによって生
成物を得るので、触媒表面上で生成された物質は反応液
の薄い膜中を短時間で通過するため、反応速度を向上で
き効率的な熱利用が図れる。
The falling thin film catalytic reaction method according to the present invention is characterized in that the reactant in the liquid phase is formed into a thin film and is brought into contact with the catalyst to cause a thermal reaction, thereby releasing the product from the liquid phase to thereby remove the product. As a result, the substance generated on the catalyst surface passes through the thin film of the reaction solution in a short time, so that the reaction speed can be improved and efficient use of heat can be achieved.

【0025】また、触媒面を傾けてその面上を液相反応
物の流路とするので、操作が容易である。
Further, since the catalyst surface is inclined and the surface of the catalyst surface is used as a flow path for the liquid phase reactant, the operation is easy.

【0026】さらに、触媒は流路に沿って2種類以上と
したので、液相反応物の組成に対して最適な反応をさせ
ることができる。
Further, since two or more kinds of catalysts are provided along the flow path, it is possible to cause an optimal reaction with respect to the composition of the liquid phase reactant.

【0027】また、混合触媒あるいは単一触媒を少なく
とも2種類以上流路に沿って配置するので、より最適な
反応をさせることができる。
Further, since at least two kinds of mixed catalysts or single catalysts are arranged along the flow path, a more optimal reaction can be performed.

【0028】さらに、本発明にかかる流下薄膜式触媒反
応装置は、面状の触媒層と、この触媒層上に液相反応物
を薄い膜状にして触媒と接触させて熱反応させ、生成物
を液相から離脱させることによって生成物を得る液相反
応物供給手段とを備えたので、触媒表面上で生成された
物質は反応液の薄い膜中を短時間で通過するので、反応
速度を向上でき、効率的な熱利用を図ることができる。
Further, the falling thin film catalytic reactor according to the present invention comprises a planar catalyst layer, a liquid film reactant formed on the catalyst layer in a thin film, and brought into contact with the catalyst to cause a thermal reaction to produce a product. And a liquid-phase reactant supply means for obtaining a product by separating from the liquid phase, so that the substance generated on the catalyst surface passes through a thin film of the reaction solution in a short time, so that the reaction speed is reduced. It is possible to improve heat efficiency.

【0029】かように、従来の触媒を反応槽内に懸濁さ
せる方法では、供給された熱が反応に有効に利用されて
いなかったが、本発明によれば、反応速度の向上と効率
的な熱利用が可能となる。また、蒸留機能を持つ反応槽
の構成も可能となる利点を有する。
As described above, in the conventional method of suspending the catalyst in the reaction tank, the supplied heat is not effectively used for the reaction. However, according to the present invention, the reaction speed is improved and the efficiency is improved. Heat utilization becomes possible. In addition, there is an advantage that a reaction tank having a distillation function can be configured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の流下薄膜式触媒反応装置の一実施例の
構成を示す図である。
FIG. 1 is a diagram showing a configuration of an embodiment of a falling thin film catalytic reactor according to the present invention.

【図2】従来方式と本発明による方式の熱利用率の比較
図を示す図である。
FIG. 2 is a diagram showing a comparison diagram of heat utilization rates between a conventional system and a system according to the present invention.

【図3】本発明を応用した実施例を示す図である。FIG. 3 is a diagram showing an embodiment to which the present invention is applied.

【図4】従来方式の触媒懸濁方式の反応槽と蒸留装置の
構成を示す図である。
FIG. 4 is a diagram showing a configuration of a conventional catalyst suspension type reaction tank and a distillation apparatus.

【符号の説明】[Explanation of symbols]

WL 触媒層 L 反応液 V 蒸気 Q 供給熱 10 反応槽 WL Catalyst layer L Reaction liquid V Steam Q Supply heat 10 Reaction tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 孝博 茨城県つくば市梅園1丁目1番4 電子 技術総合研究所内 (56)参考文献 特開 平6−106045(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Takahiro Fujii 1-4-1 Umezono, Tsukuba, Ibaraki Pref.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 触媒と熱を利用して液相の反応物から、
凝縮性ガスの生成物または不凝縮性ガスの生成物あるい
はその両方を得る反応方法であって、液相の反応物を薄
い膜状にして触媒と接触させて熱反応させ、生成物を液
相から離脱させることによって生成物を得ることを特徴
とする流下薄膜式触媒反応方法。
1. A reaction product in a liquid phase utilizing a catalyst and heat,
A reaction method for obtaining a product of a condensable gas and / or a product of a non-condensable gas. A falling-film catalytic reaction method, wherein a product is obtained by removing the product from the catalyst.
【請求項2】 液相反応物を傾けられた触媒の面におけ
る流路となすことによって薄膜状にしたことを特徴とす
る請求項1記載の流下薄膜式触媒反応方法。
2. The falling thin film catalytic reaction method according to claim 1, wherein the liquid phase reactant is formed into a thin film by forming a flow path on the inclined surface of the catalyst.
【請求項3】 触媒を液相反応物の組成に対応させて流
路に沿って2種類以上配置したことを特徴とする請求項
2記載の流下薄膜式触媒反応方法。
3. The falling thin film catalytic reaction method according to claim 2, wherein two or more kinds of catalysts are arranged along the flow path in correspondence with the composition of the liquid phase reactant.
【請求項4】 触媒を単一触媒あるいは混合触媒にした
ことを特徴とする請求項1乃至請求項3のいずれかに記
載の流下薄膜式触媒反応方法。
4. The falling thin film catalytic reaction method according to claim 1, wherein the catalyst is a single catalyst or a mixed catalyst.
【請求項5】 触媒と熱を利用して液相の反応物から、
凝縮性ガスの生成物または不凝縮性ガスの生成物あるい
はその両方を得る反応装置であって、面状の触媒層と、
この触媒層上に液相反応物を薄い膜状にして触媒と接触
させて熱反応させ、生成物を液相から離脱させることに
よって生成物を得る液相反応物供給手段とを備えたこと
を特徴とする流下薄膜式触媒反応装置。
5. A reaction product in a liquid phase utilizing a catalyst and heat,
A reactor for obtaining a product of a condensable gas and / or a product of a non-condensable gas, comprising: a planar catalyst layer;
A liquid-phase reactant supply means for obtaining a product by bringing the liquid-phase reactant into a thin film on the catalyst layer, contacting the catalyst with the catalyst, causing a thermal reaction, and separating the product from the liquid phase. Characteristic falling-film catalytic reactor.
JP6112351A 1994-05-26 1994-05-26 Falling thin film catalytic reaction method and apparatus Expired - Lifetime JP2615424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6112351A JP2615424B2 (en) 1994-05-26 1994-05-26 Falling thin film catalytic reaction method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6112351A JP2615424B2 (en) 1994-05-26 1994-05-26 Falling thin film catalytic reaction method and apparatus

Publications (2)

Publication Number Publication Date
JPH07313865A JPH07313865A (en) 1995-12-05
JP2615424B2 true JP2615424B2 (en) 1997-05-28

Family

ID=14584525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6112351A Expired - Lifetime JP2615424B2 (en) 1994-05-26 1994-05-26 Falling thin film catalytic reaction method and apparatus

Country Status (1)

Country Link
JP (1) JP2615424B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6906164B2 (en) 2000-12-07 2005-06-14 Eastman Chemical Company Polyester process using a pipe reactor
US7649109B2 (en) 2006-12-07 2010-01-19 Eastman Chemical Company Polyester production system employing recirculation of hot alcohol to esterification zone
US7943094B2 (en) 2006-12-07 2011-05-17 Grupo Petrotemex, S.A. De C.V. Polyester production system employing horizontally elongated esterification vessel
US7892498B2 (en) 2007-03-08 2011-02-22 Eastman Chemical Company Polyester production system employing an unagitated esterification reactor
US7868129B2 (en) 2007-07-12 2011-01-11 Eastman Chemical Company Sloped tubular reactor with spaced sequential trays

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06106045A (en) * 1992-09-30 1994-04-19 Toray Ind Inc Method for oxidation-reduction reaction

Also Published As

Publication number Publication date
JPH07313865A (en) 1995-12-05

Similar Documents

Publication Publication Date Title
JP4119250B2 (en) Adsorption system alternative to water column in polyester process
US20020156328A1 (en) Zone reactor
US3663611A (en) Process for conducting exothermic chemical reaction in heterogeneous gas-liquid mixtures
IL180804A (en) Method of converting alkanes
US4567033A (en) Low-energy method for freeing chemically bound hydrogen
JP2615424B2 (en) Falling thin film catalytic reaction method and apparatus
JPS5949850A (en) Fluidized catalyst regenerating method and apparatus
US4767791A (en) Process for synthesizing methanol with an optimal temperature profile using a concentric pipe reactor
US2353600A (en) Process for controlling temperature in exothermic chemical reactions
ATE126188T1 (en) METHOD FOR PRODUCING AROMATIC HYDROCARBONS IN A VESSEL HEATED BY RADIANT HEATING AGENTS WITH VARIABLE THERMAL POWER.
US4391880A (en) Recovery of heat and vaporized material from a reaction effluent
Haas et al. Optimal temperature policy for reversible reactions with deactivation: Applied to enzyme reactors
Okamoto et al. Vapor-permeation-aided esterification of oleic acid
CN100430363C (en) Modified method for producing acetic acid through carbonylation, and equipment
JPH07112125A (en) Catalytic reaction method and device therefor
JPS59123526A (en) Performance of reaction byusing recirculation type magnetically stabilized bed in order to control reaction temperature distribution
US3080382A (en) Production of phthalic anhydride
JP2007204388A (en) Method of recovering reaction heat
JP2007290889A (en) Apparatus and method for producing hydrogen by thermochemical process
JP2003509480A (en) Method and apparatus for utilizing heat in producing 1,2-dichloroethane
US4476918A (en) Method and apparatus for a temperature-shifted chemical heat pipe
JPH09255618A (en) Optimization of moisture content in oxidation of para-xylene based on oxygen
JP3301311B2 (en) Method for continuously producing 2-hydroxycarboxylic acid oligomer
MXPA01006406A (en) Method for making a hydrazine by hydrolysing an azine.
US2399532A (en) Temperature control in regeneration of contact masses

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term