JP2614283B2 - Combiner using heat pipe - Google Patents

Combiner using heat pipe

Info

Publication number
JP2614283B2
JP2614283B2 JP63228171A JP22817188A JP2614283B2 JP 2614283 B2 JP2614283 B2 JP 2614283B2 JP 63228171 A JP63228171 A JP 63228171A JP 22817188 A JP22817188 A JP 22817188A JP 2614283 B2 JP2614283 B2 JP 2614283B2
Authority
JP
Japan
Prior art keywords
antenna
heat
heat pipe
pipe
coaxial tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63228171A
Other languages
Japanese (ja)
Other versions
JPH02186599A (en
Inventor
祐一 両角
信男 鈴木
恭介 永田
有孝 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP63228171A priority Critical patent/JP2614283B2/en
Publication of JPH02186599A publication Critical patent/JPH02186599A/en
Application granted granted Critical
Publication of JP2614283B2 publication Critical patent/JP2614283B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Non-Reversible Transmitting Devices (AREA)
  • Particle Accelerators (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高周波の発生源となるクライトロンや、そ
の負荷側となる粒子加速器の加速管等の共振空洞内など
に高周波電力を入出力する際に有用なアンテナおよび結
合器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to the input and output of high-frequency power to and from a klytron serving as a high-frequency generation source and a resonant cavity such as an acceleration tube of a particle accelerator serving as a load side thereof. The present invention relates to an antenna and a coupler that are useful in such a case.

[従来の技術] 高周波加速方式の粒子加速器は、真空の共振空洞(加
速空洞)内に高周波電力を導入し、空洞内に高周波電場
を発生させて荷電粒子を加速させるものである。
[Related Art] A high-frequency acceleration type particle accelerator introduces high-frequency power into a vacuum resonant cavity (acceleration cavity) and generates a high-frequency electric field in the cavity to accelerate charged particles.

上記共振空洞には高周波電力を入力したり、粒子ビー
ムに誘起される有害な電磁波を捕捉し外部に取出してこ
れを熱として消費させたりするためのアンテナが各種設
置されている。このようなアンテナは、誘導による発熱
を生ずるから、これを冷却してやる必要がある。しか
し、当該アンテナは真空内に設置されており、アンテナ
自身の熱伝導による以外熱の移動はほとんど起らず、こ
れの冷却のためには、従来はアンテナ内部に水路を形成
する方法がもっぱらとられてきた。
Various antennas for inputting high-frequency power and capturing harmful electromagnetic waves induced by a particle beam, extracting the harmful electromagnetic waves to the outside, and consuming the same as heat are installed in the resonance cavity. Since such an antenna generates heat due to induction, it is necessary to cool the antenna. However, since the antenna is installed in a vacuum, heat transfer hardly occurs except for the heat conduction of the antenna itself, and in order to cool the antenna, conventionally, a method of forming a water channel inside the antenna is exclusively used. I have been.

[発明が解決しようとする課題] 上記のように細いアンテナ内部に水路を形成すること
は非常に面倒であり、相当の加工工数と技術を要する
上、溶接やロウ接部などからの水漏れの心配もあり、信
頼性において必ずしも十分なものとはいえなかった。
[Problems to be Solved by the Invention] Forming a water channel inside a thin antenna as described above is very troublesome, requires considerable processing man-hours and techniques, and causes water leakage from welding and brazing parts. There were concerns, and the reliability was not always sufficient.

本発明の目的は、上述したような従来技術の問題点を
解消し、高周波アンテナに生じた発熱を簡単な構成をも
って迅速確実に放散し得ると共に、信頼性の向上と保守
の容易性を併せ確立することのできるヒートパイプを用
いて結合器を提供しようとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described problems of the prior art, to dissipate heat generated in a high-frequency antenna quickly and reliably with a simple configuration, and to improve reliability and maintainability. It is intended to provide a coupler using a heat pipe that can be used.

[課題を解決するための手段] 本発明は、アンテナを中空パイプで構成し、該パイプ
内に作動液を封入してヒートパイプとすると共に、該ヒ
ートパイプの中途に負荷抵抗器に接続された同軸管の内
導体を接続したものである。
[Means for Solving the Problems] In the present invention, an antenna is formed by a hollow pipe, a working fluid is sealed in the pipe to form a heat pipe, and the heat pipe is connected to a load resistor in the middle of the heat pipe. The inner conductor of the coaxial tube is connected.

[作用] アンテナ自身がヒートパイプに構成されていれば、ア
ンテナに生じた熱を迅速に該部に移動させ放熱すること
ができる上、作動液をパイプ内に単に密封するだけでよ
いから従来の水冷方式に比べ、構造を格段に簡略化で
き、水漏れといった問題もないから信頼性を大巾に向上
させることができる。
[Operation] If the antenna itself is configured as a heat pipe, the heat generated in the antenna can be quickly moved to the portion to dissipate the heat, and the working fluid can be simply sealed in the pipe. Compared with the water cooling system, the structure can be significantly simplified and there is no problem such as water leakage, so that the reliability can be greatly improved.

また、前記ヒートパイプの中途に負荷抵抗器に接続さ
れた同軸管の内導体が接続されていれば、高周波空洞内
の不要な電磁波はアンテナに補足されて負荷抵抗器に導
かれ、そこで熱に変換されて消費放散させることができ
る。
Also, if the inner conductor of the coaxial tube connected to the load resistor is connected in the middle of the heat pipe, unnecessary electromagnetic waves in the high-frequency cavity are captured by the antenna and guided to the load resistor, where it is converted into heat. It can be converted and dissipated.

[実施例] 以下に、本発明について実施例図面を参照し説明す
る。
[Examples] Hereinafter, the present invention will be described with reference to examples drawings.

第1図は、本発明に係る実施例を示す説明図であり、
1は高周波加速空洞10内に設けられた高周波アンテナで
ある。
FIG. 1 is an explanatory diagram showing an embodiment according to the present invention,
1 is a high-frequency antenna provided in the high-frequency acceleration cavity 10.

アンテナ1は、銅のような高い導電率と良好な熱伝達
性を有する材料よりなる中空パイプからなり、内部に作
動液が密封されてヒートパイプに構成される。
The antenna 1 is formed of a hollow pipe made of a material having high electrical conductivity and good heat conductivity, such as copper, and is formed into a heat pipe in which a working fluid is sealed inside.

第2図は、ヒートパイプ20の動作原理を示す説明図で
ある。図に示すような密封パイプ内に水あるいはフロン
のような作動液21が封入されていて、発熱部Aにおいて
作動液21は蒸気21aとなって蒸気移動し、放熱部Bにお
いて凝縮液化して液体21bとなり重力により発熱部Aに
環流する。発熱部Aに戻った作動液は再び蒸発し、以下
作動液21は蒸発、蒸気移動、凝縮、液環流を繰り返しつ
つ発熱部Aより放熱部Bへと迅速に熱を伝えて放散冷却
させるものである。
FIG. 2 is an explanatory diagram showing the operation principle of the heat pipe 20. A working fluid 21 such as water or chlorofluorocarbon is sealed in a sealed pipe as shown in the figure, and the working fluid 21 becomes steam 21a in the heat generating part A and moves to a vapor. It becomes 21b and recirculates to the heating part A by gravity. The working fluid returned to the heat-generating portion A evaporates again, and thereafter the working fluid 21 is a device for rapidly transmitting heat from the heat-generating portion A to the heat radiating portion B while repeating evaporation, vapor transfer, condensation, and liquid reflux, thereby dissipating and cooling. is there.

本発明に係るアンテナ1は、上記のようなヒートパイ
プに構成されているから、高周波空洞10内のアンテナ1
の発熱部A内の作動液(図示されていない)は、アンテ
ナ1の発熱によって蒸発し、多数の放熱フィン2,2を有
する放熱部Bに移動して凝縮液化し、重力により再び発
熱部Aへと環流する。この動作によりアンテナ1は前記
水冷機構等を必要とせずに速やかに冷却される。従っ
て、本発明においてはアンテナ1内に作動液を封入する
という極めて容易な構成をとるのみでよく、従来例にお
けるような水路の加工、配管の取付けあるいは多量の冷
却水の循環や過のための機械の運転などの必要もない
から加工工数や設備費を格段に低減できるばかりでな
く、気密性が確実で溶接やロウ接など前述した問題点と
なる個所も存在しないから信頼性を大巾に向上させるこ
とができる上、作動液はパイプ内に安定した状態で封入
されているから特別の保守も必要とはしない。
Since the antenna 1 according to the present invention is constituted by the heat pipe as described above, the antenna 1 in the high-frequency cavity 10
The working fluid (not shown) in the heat generating portion A evaporates due to the heat generated by the antenna 1 and moves to the heat radiating portion B having a large number of heat radiating fins 2, 2 to be condensed and liquefied. Recirculates to By this operation, the antenna 1 is quickly cooled without the need for the water cooling mechanism or the like. Therefore, in the present invention, it is only necessary to take a very easy configuration of enclosing the working fluid in the antenna 1, and it is necessary to process a water channel, install pipes, or circulate or supply a large amount of cooling water as in the conventional example. Since there is no need for machine operation, not only can the processing man-hours and equipment costs be reduced significantly, but also the airtightness is reliable, and there are no locations where the above-mentioned problems such as welding and brazing exist, so reliability is greatly increased. In addition, the hydraulic fluid is stably sealed in the pipe, so that no special maintenance is required.

第1図に示すアンテナ1については、具体的には銅、
特に無酸素銅製パイプを用いるのが熱と後述する電気と
を共に伝達する上で適当であり、作動液としては熱輸送
量を大きくとれ、耐放射線性が良好な水を用いるのが適
当である。
The antenna 1 shown in FIG.
In particular, it is appropriate to use an oxygen-free copper pipe in order to transfer both heat and electricity described below, and it is appropriate to use water having a large heat transport amount and good radiation resistance as a working fluid. .

具体的外径8.66mmのヒートパイプ型アンテナは、これ
と同軸管を構成する外径20mm、内径19.94mmの外導体
3′内に収納され、真空フランジ5により高周波空洞10
と一体に組合せ固定される。パイプ状アンテナ1は、凝
縮した作動液の重力による環流を容易にするために、水
平に対し約45゜(45゜に限定される訳ではない)傾斜し
て設置される。
Specifically, a heat pipe type antenna having an outer diameter of 8.66 mm is housed in an outer conductor 3 ′ having an outer diameter of 20 mm and an inner diameter of 19.94 mm which forms a coaxial tube therewith.
It is combined and fixed together. The pipe-shaped antenna 1 is installed at an angle of about 45 ° (not limited to 45 °) with respect to the horizontal in order to facilitate the circulation of the condensed working fluid by gravity.

パイプ状アンテナ1の外部への取出し部分の中間に
は、これとほぼ直角方向(直下に限定される訳ではな
い)に同軸管7が取付けられ、同軸管7の内導体4とパ
イプ状アンテナ1が図のように連結され、それぞれの外
導体3および3′が一体に連通されて結合器に構成さ
れ、中途が例えばセラミックスよりなる真空シール6に
より真空空洞側と遮断される。
A coaxial tube 7 is attached to the middle of the portion of the pipe-shaped antenna 1 to be extracted to the outside in a direction substantially perpendicular to (not limited to immediately below) the inner conductor 4 of the coaxial tube 7 and the pipe-shaped antenna 1. Are connected as shown in the figure, and the respective outer conductors 3 and 3 'are integrally connected to each other to constitute a coupler, and the middle is cut off from the vacuum cavity side by a vacuum seal 6 made of, for example, ceramics.

本発明に係る結合器は、上記のように構成されている
から、高周波空洞10内の不要電磁波がアンテナ1により
捕捉され、一方、誘導によりアンテナ1に生じた熱は、
前記ヒートパイプの作動により放熱部Bに輸送されて放
熱される一方、捕捉された電磁波は同軸管7を介して負
荷抵抗器8に導かれ、該負荷抵抗器8で熱に変換されて
消費放散される。
Since the coupler according to the present invention is configured as described above, unnecessary electromagnetic waves in the high-frequency cavity 10 are captured by the antenna 1, while heat generated in the antenna 1 by induction is:
By the operation of the heat pipe, the heat is transported to the heat radiating section B and radiated, while the captured electromagnetic wave is guided to the load resistor 8 via the coaxial tube 7 and converted into heat by the load resistor 8 to be consumed and dissipated. Is done.

尚、副次的効果として無酸素銅を使用することにより
真空巾での良好な表面特性からガス放出が極く僅かであ
る点があげられる。
It should be noted that, as a secondary effect, the use of oxygen-free copper results in very little outgassing due to good surface properties in a vacuum width.

[発明の効果] 以上の通り、本発明によれば、アンテナに生じた発熱
をなんら外部よりの動作付加を行なうことなく放熱する
ことができ、加工費や設備費を大巾に低減できるばかり
でなく、従来行なっていたポンプ等による冷却水の循環
が必要なくなることで、水漏れなどを心配する必要がな
く、信頼性を格段に向上させ保守の大巾な省力化を達成
することができる。
[Effects of the Invention] As described above, according to the present invention, heat generated in the antenna can be dissipated without any additional operation from the outside, and processing costs and equipment costs can be greatly reduced. In addition, since there is no need to circulate the cooling water by a pump or the like, which is conventionally performed, there is no need to worry about water leakage and the like, so that the reliability can be greatly improved and a large labor saving of maintenance can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る結合器の構成を示す説明図、第2
図はヒートパイプの動作を示す説明図である。 1:アンテナ、 2:放熱フィン、 3,3′:外導体、 4:内導体、 7:同軸管、 8:負荷抵抗器、 10:高周波空洞、 A:発熱部、 B:放熱部。
FIG. 1 is an explanatory view showing the configuration of a coupler according to the present invention, and FIG.
The figure is an explanatory diagram showing the operation of the heat pipe. 1: Antenna, 2: Heat radiation fin, 3,3 ': Outer conductor, 4: Inner conductor, 7: Coaxial tube, 8: Load resistor, 10: High frequency cavity, A: Heating part, B: Heat dissipating part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辰巳 有孝 茨城県土浦市木田余町3550番地 日立電 線株式会社土浦工場内 (56)参考文献 特開 昭61−285828(JP,A) 特開 昭63−141300(JP,A) 特開 昭63−76213(JP,A) 実開 昭63−123099(JP,U) 実開 昭59−192300(JP,U) ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Aritaka Tatsumi 3550 Kida Yomachi, Tsuchiura City, Ibaraki Prefecture Within the Tsuchiura Plant of Hitachi Cable, Ltd. (56) References JP-A-61-285828 (JP, A) JP-A-63-141300 (JP, A) JP-A-63-76213 (JP, A) JP-A-63-123099 (JP, U) JP-A-59-192300 (JP, U)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高周波空洞内に連通する同軸管を設置し、
該同軸管の内導体を構成し先端側が外部に露出している
アンテナ内に作動液を封入してヒートパイプを構成する
一方、前記同軸管の途中に負荷抵抗器に接続された同軸
管を接続してその内導体を前記アンテナの途中に接続し
てなることを特徴とするヒートパイプを用いた結合器。
1. A coaxial tube communicating with a high-frequency cavity is provided,
A heat pipe is formed by enclosing a working fluid in an antenna that constitutes an inner conductor of the coaxial tube and has a distal end exposed to the outside, and a coaxial tube connected to a load resistor is connected in the middle of the coaxial tube. A coupler using a heat pipe, wherein the inner conductor is connected to the middle of the antenna.
JP63228171A 1988-09-12 1988-09-12 Combiner using heat pipe Expired - Lifetime JP2614283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63228171A JP2614283B2 (en) 1988-09-12 1988-09-12 Combiner using heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63228171A JP2614283B2 (en) 1988-09-12 1988-09-12 Combiner using heat pipe

Publications (2)

Publication Number Publication Date
JPH02186599A JPH02186599A (en) 1990-07-20
JP2614283B2 true JP2614283B2 (en) 1997-05-28

Family

ID=16872337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63228171A Expired - Lifetime JP2614283B2 (en) 1988-09-12 1988-09-12 Combiner using heat pipe

Country Status (1)

Country Link
JP (1) JP2614283B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013072397A1 (en) * 2011-11-17 2013-05-23 Ion Beam Applications Rf system for synchrocyclotron
US11644222B2 (en) * 2020-07-25 2023-05-09 Choon Sae Lee Electromagnetic cooling and heating

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192300U (en) * 1983-06-08 1984-12-20 株式会社日立製作所 Irradiation target device
JPS61285828A (en) * 1985-06-12 1986-12-16 Mitsubishi Electric Corp Portable radio equipment
JPS6376213A (en) * 1986-09-17 1988-04-06 石川島播磨重工業株式会社 High voltage terminal
JPS63141300A (en) * 1986-12-02 1988-06-13 株式会社東芝 Synchrotron accelerator
JPH0532960Y2 (en) * 1987-02-05 1993-08-23

Also Published As

Publication number Publication date
JPH02186599A (en) 1990-07-20

Similar Documents

Publication Publication Date Title
KR102055079B1 (en) Input Coupler and Accelerator for Acceleration Cavities
JP2010539669A (en) Microwave plasma generator and plasma torch
SE417780B (en) DIELECTRIC HEATING DEVICE
JP2016139810A (en) Device and method for taking thermal interface
JP2614283B2 (en) Combiner using heat pipe
CN101999042B (en) Device for dissipating lost heat, and ion accelerator arrangement comprising such a device
US6502529B2 (en) Chamber having improved gas energizer and method
US3749962A (en) Traveling wave tube with heat pipe cooling
US6252937B1 (en) High thermal performance cathode via heat pipes
US7471052B2 (en) Cryogenic vacuumm RF feedthrough device
US2961561A (en) Internal magnetic deflection system for electron beam generator
TWI727229B (en) Heat sink apparatus for microwave magnetron
EP1451845B1 (en) Electron collector
CN103430274B (en) Electron tube
WO2020054726A1 (en) Electromagnetic wave heating device and electromagnetic wave heating system
KR100749066B1 (en) Radiating structure of travelling-wave tube for travelling-wave amplifier
JP2000200699A (en) Charged particle accelerating cavity power coupler
JPS6236904A (en) Antenna for portable radio equipment
JPH06268285A (en) Gas laser tube device
US3781588A (en) Backward wave prevention for a twt helix
KR20070093502A (en) An antenna cooling device for inductively coupled plasma generator
RF Group Non-inductive current drive and RF heating in SST-1 tokamak
JP3516413B2 (en) High frequency heating equipment
JPH0514014A (en) High frequency power coupler
CN116759279A (en) Liquid cooling radiating folding waveguide slow wave structure and traveling wave tube