JP2565570B2 - Ground fault current suppression method and device in three-phase water resistor - Google Patents

Ground fault current suppression method and device in three-phase water resistor

Info

Publication number
JP2565570B2
JP2565570B2 JP1207827A JP20782789A JP2565570B2 JP 2565570 B2 JP2565570 B2 JP 2565570B2 JP 1207827 A JP1207827 A JP 1207827A JP 20782789 A JP20782789 A JP 20782789A JP 2565570 B2 JP2565570 B2 JP 2565570B2
Authority
JP
Japan
Prior art keywords
water
electrode
resistor
phase
water resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1207827A
Other languages
Japanese (ja)
Other versions
JPH0374137A (en
Inventor
袈裟文 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koken Co Ltd
Original Assignee
Koken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koken Co Ltd filed Critical Koken Co Ltd
Priority to JP1207827A priority Critical patent/JP2565570B2/en
Publication of JPH0374137A publication Critical patent/JPH0374137A/en
Application granted granted Critical
Publication of JP2565570B2 publication Critical patent/JP2565570B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Adjustable Resistors (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、発電機やインバーター等を含む各種電源装
置の出力特性の測定試験や検査に供される三相水抵抗器
における地絡電流抑制装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to suppression of ground fault current in a three-phase water resistor used for measurement test and inspection of output characteristics of various power supply devices including generators and inverters. Regarding the device.

[従来の技術] 本出願人に係る特許第1462423号の負荷装置システム
は作業者の安全を確保するため三相電力の中性点を直接
接地することにより異常電圧の昇圧を最小限にとどめ、
保護装置の動作を確実にする構造である。
[Prior Art] The load device system of Japanese Patent No. 1462423 of the present applicant minimizes abnormal voltage boosting by directly grounding the neutral point of three-phase power in order to ensure the safety of the operator.
It is a structure that ensures the operation of the protective device.

このため、三相電圧の不平衡および三相水抵抗器の各
相の電流が不平衡の場合は、この電流は地絡電流として
流れた。
Therefore, when the three-phase voltage is unbalanced and the current of each phase of the three-phase water resistor is unbalanced, this current flows as a ground fault current.

即ち三相水抵抗器Aは、第7図に示すよう、循環供給
された所定量の電極水Wを内部に貯蔵する有底円筒形の
ベース電極1a,1b,1cと、当該ベース電極1a,1b,1cの底部
2a,2b,2c適宜箇所に排水孔3a,3b,3cを開口するとともに
その中央に貫着した絶縁支体4a,4b,4cを縦貫して立設
し、その外出下端に電源装置PSの電力ケーブルLa,Lb,Lc
を接続する円筒形の主電極5a,5b,5cと、当該主電極5a,5
b,5cを覆いかつ上部に冷却された前記循環供給水Wの放
出口6a,6b,6cを開設する絶縁鞘筒7a,7b,7cとからなり、
ベース電極1a,1b,1c間をケーブルL1,L2,L3で相互に集中
結線した中性点0接地ケーブルL0を介して大地Gに接続
する。従ってY接続の抵抗器となる。
That is, as shown in FIG. 7, the three-phase water resistor A includes a bottomed cylindrical base electrode 1a, 1b, 1c for storing a predetermined amount of electrode water W circulated and supplied therein, and the base electrode 1a, 1b, 1c bottom
2a, 2b, 2c The drainage holes 3a, 3b, 3c are opened at appropriate places, and the insulating supports 4a, 4b, 4c vertically attached to the center of the drainage holes 3a, 3b, 3c are erected vertically. Cable La, Lb, Lc
And a cylindrical main electrode 5a, 5b, 5c for connecting the main electrode 5a, 5c
b, 5c, and insulating sheath cylinders 7a, 7b, 7c that open the discharge ports 6a, 6b, 6c of the circulating supply water W that are cooled at the top,
The base electrodes 1a, 1b, 1c are connected to the ground G via a neutral point 0 grounding cable L0 which is concentratedly connected to each other by cables L1, L2, L3. Therefore, it becomes a Y-connected resistor.

この中性点接地方式における地絡電流の発生原理は、
非対称Y形負荷として検証することが出来、これに非対
称Y形起電力を加えた場合、第8図において、電源装置
PSの起電力Ea,Eb,Ecおよび負荷インピーダンスZa,Zb,Zc
はいずれも非対称とする。中性線L0のインピーダンスを
Znとし、各相の導線La,Lb,Lc並びに電源装置PSコイルの
インピーダンスはZa,Zb,Zcの中に含まれているとする。
回路全体が非対称であるため、負荷の中性点0は電源装
置PSの中性点0′に対しある電位を持つようになる。こ
れをVnとする。然るときは前記インピーダンスを皆アド
ミッタンスの形に表したとき、キルヒホッフ法則により
次の関係が成立する。
The principle of generation of ground fault current in this neutral point grounding method is
It can be verified as an asymmetrical Y-shaped load, and when an asymmetrical Y-shaped electromotive force is added to this, the power supply unit shown in FIG.
PS electromotive force Ea, Eb, Ec and load impedance Za, Zb, Zc
Are all asymmetric. The impedance of the neutral line L0
It is assumed that Zn is the impedance of the lead wires La, Lb, Lc of each phase and the PS coil of the power supply device are included in Za, Zb, Zc.
Since the entire circuit is asymmetric, the neutral point 0 of the load has a certain potential with respect to the neutral point 0'of the power supply PS. Let this be Vn. In that case, when all the impedances are expressed in the form of admittance, the following relationship is established according to Kirchhoff's law.

Ia=Ya(Ea−Vn) Ib=Yb(Eb−Vn) …(1) Ic=Yc(Ec−Vn) In=−YnVn 但しYa=1/Za,Yb=1/Zb Yc=1/Zc,Yn=1/Zn 然るにIa+Ib+Ic+In=0であるから Vn(Ya+Yb+Yc+Yn)=YaEa+YbEb+YcEc これらが三相水抵抗器Aの不平衡電流の中性線L0への
地絡電流Inを算出する一般式である。
Ia = Ya (Ea-Vn) Ib = Yb (Eb-Vn) (1) Ic = Yc (Ec-Vn) In = -YnVn where Ya = 1 / Za, Yb = 1 / Zb Yc = 1 / Zc, Yn = 1 / Zn However, because Ia + Ib + Ic + In = 0, Vn (Ya + Yb + Yc + Yn) = YaEa + YbEb + YcEc These are general formulas for calculating the ground fault current In to the neutral line L0 of the unbalanced current of the three-phase water resistor A.

一方この種従来の三相水抵抗器は、その接地方式や大
地との絶縁方法も不明確なものであり、異常電位がどの
部分に発生し、地絡電流がどこから流れるかもつかめな
い危険なものであった。
On the other hand, in this type of conventional three-phase water resistor, its grounding method and insulation method from the ground are unclear, and it is dangerous to know where abnormal potential occurs and where ground fault current flows. Met.

[発明が解決しようとする課題] 前記本出願人の負荷装置システムにしろ、前記従来一
般の三相水抵抗器にしろ、電力会社の送電線に負荷抵抗
として接続すると、各相の不平衡電流が大地との非絶縁
部分を通じて大地に流れる。
[Problems to be Solved by the Invention] Whether the load device system of the present applicant or the conventional general three-phase water resistor is connected as a load resistance to a transmission line of an electric power company, an unbalanced current of each phase is generated. Flows to the ground through the part that is not insulated from the ground.

この不平衡電流は電力会社の送電系統で地絡電流とし
て検出され、故障と判断されてこの系統は切離され、地
域停電の原因となる。
This unbalanced current is detected as a ground fault current in the power transmission system of the electric power company, is determined to be a failure, and this system is disconnected, causing a regional power outage.

またその為に保護継電器を挿入して地絡電流を阻止し
ようとすると異常電流が流れる度に保護継電器が頻繁に
断切する結果、その都度一定連続時間を要する試験測定
をやり直さなければならないので効率的測定を行なうた
めには挿入出来なかった。
For that reason, if a protective relay is inserted to prevent a ground fault current, the protective relay is frequently disconnected each time an abnormal current flows.As a result, the test measurement that requires a constant continuous time must be redone each time, which is efficient. It could not be inserted to make the measurement.

ここにおいて本発明は、三相水抵抗器の従来のY接続
による中性点接地方式の欠点に鑑み、三相不平衡電流を
大地に流さない非接地方式として有効適切な三相水抵抗
器における地絡電流抑制装置を提供せんとするものであ
る。
In view of the disadvantage of the neutral point grounding method by the conventional Y connection of the three-phase water resistor, the present invention provides a three-phase water resistor that is effective as a non-grounding method that does not allow a three-phase unbalanced current to flow to the ground. It is intended to provide a ground fault current suppressing device.

[課題を解決するための手段] 前記課題の解決は、本発明が、受台上に搭載した集水
器の天板に等間隔に底部を貫着して連立した3つの有底
円筒形ベース電極の各底端中央と前記集水器天板と受台
とに亙りそれぞれ絶縁支体を貫着し、当該各絶縁支体を
縦貫する電極連棒の突出上端に当該絶縁支体上に各載立
する主電極の底端を連結固定するとともに外出下端に電
源装置の電力ケーブルを接続する一方、当該各主電極の
露出長を調節すべく覆うそれぞれの絶縁鞘筒を前記ベー
ス電極に下部を内挿して一体昇降動自在に吊設し、他方
分水器の底板に等間隔に前記各主電極に対応して垂下し
た3つの分岐管を前記各絶縁鞘筒をそれぞれ内通して各
下端放出口を前記主電極上端直上にそれぞれ臨ませてな
る三相水抵抗器において、前記受台と前記分水器を絶縁
碍子を介してそれぞれ地面と絶縁支持架設するととも
に、前記各ベース電極内の電極水温と水量を一定に保持
すべく所定量を給排する電極水冷却循環管路の排出側端
と前記集水器の排出口とをかつ給水側端と前記分水器の
給水口とをそれぞれ絶縁ホースで絶縁介結し、さらに前
記三相水抵抗器の側周を透過視認自在に透明な絶縁板に
て囲繞隔離して、前記三相水抵抗器の上下両端と側周を
それぞれ絶縁支持と絶縁隔離するとともに、前記電極水
冷却循環路と前記三相水抵抗器とを絶縁接続してなる、
異常の構成手段を採用することにより達成される。
[Means for Solving the Problems] In order to solve the above problems, according to the present invention, three bottomed cylindrical bases in which bottoms are penetrated at equal intervals and are connected to a top plate of a water collector mounted on a receiving stand are formed. An insulating support is pierced through the center of each bottom end of the electrode, the water collector top plate, and the pedestal, and the protruding upper end of the electrode connecting rod that vertically penetrates the insulating support is provided on the insulating support. While connecting and fixing the bottom end of the main electrode to be erected and connecting the power cable of the power supply device to the lower end of the outside, cover each insulating sheath cylinder to adjust the exposed length of each main electrode, and attach the lower part to the base electrode. On the other hand, three branch pipes that are hung from the bottom plate of the water diverter at equal intervals corresponding to the respective main electrodes are inserted through the insulating sheath cylinders and the respective lower ends are released. In a three-phase water resistor having outlets directly above the main electrode, the pedestal and the A water vessel is installed and insulated from the ground through an insulator, and a discharge side end of an electrode water cooling circulation conduit for supplying and discharging a predetermined amount to keep the electrode water temperature and water amount in each of the base electrodes constant. The outlet of the water collector and the end of the water supply side and the water supply port of the water divider are insulated and connected by insulating hoses, and the side circumference of the three-phase water resistor is transparently transparently visible. The three-phase water resistor is surrounded by a plate to insulate and isolate the upper and lower ends and the side circumference of the three-phase water resistor from the insulating support, and the electrode water cooling circuit and the three-phase water resistor are insulated and connected. ,
This is achieved by adopting an abnormal component.

[作 用] 本発明は前記の手段を講じ、三相水抵抗器の上下前後
左右の四方を絶縁して発生した異常電流が地絡電流とし
て大地に流れないように三相水抵抗器内に封じ込め側周
を透過視認自在に透明な絶縁板で囲繞隔離して人や動物
が不用意に触れられないように安全性を確保する。
[Operation] The present invention takes the above-mentioned means and installs the three-phase water resistor in the three-phase water resistor so that the abnormal current generated by insulating the upper, lower, front, rear, left and right sides from the ground current does not flow to the ground. The surrounding side of the containment is transparent and visible, and is surrounded by a transparent insulating plate to ensure safety so that people and animals cannot be inadvertently touched.

[実施例] 本発明装置の実施例を第1図乃至第4図について説明
する。
[Embodiment] An embodiment of the device of the present invention will be described with reference to FIGS.

本発明に適用する三相水抵抗器Bは、受台8上に搭載
した集水器9の天板10の長手横方向等間隔に底部を貫着
して連立した有底ベース電極11a,11b,11cの排水孔12a,1
2b,12cを貫設する各底端13a,13b,13cの中央と集水器9
底板14と受台8上板15とに亙りそれぞれ絶縁支体16a,16
b,16cを貫着し、絶縁支体16a,16b,16cを縦貫する電極連
棒17a,17b,17cの突出上端に絶縁支体16a,16b,16c上端の
円形凹座部18a,18b,18c内に各載立する主電極19a,19b,1
9cの底端20a,20b,20cを連結固定するとともに、外出下
端に電源装置PSの電力ケーブルLa,Lb,Lcを接続する一
方、各主電極19a,19b,19cの露出長を調整すべく覆うそ
れぞれの絶縁鞘筒21a,21b,21cを各ベース電極19a,19b,1
9cに下部を内挿して連体杆22にて一体昇降動自在に吊架
し、他方分水器23の底板24の長手横方向等間隔に各主電
極19a,19b,19cに対応して分岐口25a,25b,25cに垂下した
分岐管26a,26b,26cを各絶縁鞘筒21a,21b,21cを内通して
各下端放出口27a,27b,27cを主電極19a,19b,19c上端直上
にそれぞれ臨ませてなる。
The three-phase water resistor B applied to the present invention is a bottomed base electrode 11a, 11b in which bottoms of the top plate 10 of the water collector 9 mounted on the pedestal 8 are connected at equal intervals in the longitudinal and lateral directions. , 11c drain holes 12a, 1
Water collector 9 and the center of each bottom end 13a, 13b, 13c penetrating 2b, 12c
Over the bottom plate 14 and the pedestal 8 upper plate 15, insulating supports 16a, 16 are provided.
b, 16c is penetrated, and the insulating support members 16a, 16b, 16c are protruded upper ends of the electrode connecting rods 17a, 17b, 17c, and the insulating support members 16a, 16b, 16c are circular recessed seat portions 18a, 18b, 18c at the upper end. Main electrodes 19a, 19b, 1 installed inside
While connecting and fixing the bottom ends 20a, 20b, 20c of 9c, while connecting the power cables La, Lb, Lc of the power supply device PS to the outside lower end, cover to adjust the exposed length of each main electrode 19a, 19b, 19c Each insulating sheath cylinder 21a, 21b, 21c is connected to each base electrode 19a, 19b, 1
The lower part is inserted into 9c and suspended vertically by a connecting rod 22 so that it can be lifted and lowered integrally.On the other hand, branch ports corresponding to the main electrodes 19a, 19b, 19c are provided at equal intervals in the longitudinal and lateral directions of the bottom plate 24 of the water diverter 23. Branch pipes 26a, 26b, 26c hanging down to 25a, 25b, 25c are passed through the respective insulating sheath cylinders 21a, 21b, 21c and the respective lower end discharge ports 27a, 27b, 27c are directly above the upper ends of the main electrodes 19a, 19b, 19c. I will face you.

本発明の地絡電流抑制装置は、受台8下端の両側を絶
縁碍子28a,28bを介して床面又は荷台G1上に支持架設す
る一方、分水器23上端の両側を絶縁碍子29a,29bを介し
て天井面G2に支持架設し、他方各ベース電極11a,11b,11
c内の電極水W温と量を一定に保持すべく所定量を給排
する電極水冷却循環管路30の排水側端31aと集水器9の
排出口32とを絶縁ホース33でまた給水側端31bと分水器2
3の給水口34とを絶縁ホース35でそれぞれ介結し、さら
に三挿水抵抗器Aの側周全体を透明プラスチック製絶縁
板36にて囲繞隔離する。
In the ground fault current suppressor of the present invention, both ends of the lower end of the pedestal 8 are supported and erected on the floor surface or the cargo bed G1 via the insulators 28a, 28b, while the upper ends of the water divider 23 are insulated by the insulators 29a, 29b. Is erected and supported on the ceiling surface G2 via the base electrode 11a, 11b, 11
Insulation hose 33 is used to connect the drainage side end 31a of the electrode water cooling circulation line 30 for supplying and discharging a predetermined amount of the electrode water W in c to a constant amount and the discharge port 32 of the water collector 9 with an insulating hose 33. Side edge 31b and water divider 2
The three water supply ports 34 are connected to each other by insulating hoses 35, and the entire side circumference of the three insertion resistors A is surrounded and isolated by a transparent plastic insulating plate 36.

図中37,38,39,40は締輪である。 In the figure, 37, 38, 39 and 40 are fastening rings.

三相水抵抗器Bと接続する水抵抗器電極水循環処理シ
ステム装置Cは、電極水ポンプ41の排出口42近傍の電極
水冷却循環管路30排出側途中に、例えば常用1kg/cm2
フロースイッチ型流量計43を挿入するとともに三相電力
ケーブルLa,Lb,Lc中に安全遮断器44を挿入して流量計43
が電極水循環ポンプ41の排出口42からの排水量が予め設
定してある値より低下したことを検知すると電流遮断指
令信号sを発し安全遮断器44を断切して電源装置PSから
の電流が三相水抵抗器Bに送られないように瞬断する一
方、電極水冷却循環管路30の途中に、スプレー45a,45b,
45cおよびファン46a,46b,46cを備えら空水冷フード付ラ
ジエター47a,47b,47cを複数多段(本実施例の場合3
段)直列介入し電極水Wの冷却能力を高めている。
The water resistor electrode water circulation processing system device C connected to the three-phase water resistor B has a flow of, for example, a regular 1 kg / cm 2 in the middle of the discharge side of the electrode water cooling circulation line 30 near the discharge port 42 of the electrode water pump 41. Insert the switch type flow meter 43 and the safety circuit breaker 44 in the three-phase power cables La, Lb, Lc
Detects that the amount of drainage from the outlet 42 of the electrode water circulation pump 41 has fallen below a preset value, it issues a current interruption command signal s to disconnect the safety circuit breaker 44 and the current from the power supply device PS is three-phase. While there is a momentary disconnection so that it will not be sent to the water resistor B, sprays 45a, 45b,
A plurality of radiators 47a, 47b, 47c with an air-water cooling hood, which are provided with 45c and fans 46a, 46b, 46c, are provided in a plurality of stages (3 in the case of the present embodiment).
(Step) The cooling capacity of the electrode water W is enhanced by interposing in series.

図中48は安全遮断器、49はフラッシング戻管路50と純
水充填管路51で電極水冷却循環管路30にバイパス接続さ
れた各種管路や純粋器やフイルター等の機器を含む各処
理系である。
In the figure, 48 is a safety circuit breaker, 49 is a flushing return line 50 and pure water filling line 51, and various processes bypass-connected to the electrode water cooling circulation line 30 and various processes including devices such as a purifier and a filter. It is a system.

なお安全遮断器44を安全遮断器48と兼用しても良い。 The safety circuit breaker 44 may also be used as the safety circuit breaker 48.

本実施例の仕様は、このような具体的実施態様を呈す
るが、これに至る考え方の発想としては、第8図におい
て不平衡電流は送電側の線間電圧Ea,Eb,Ecの不平衡、各
組への他の負荷の接続状況等および三相水抵抗器Bの各
相の不平衡により防ぐことは出来ないため、前記(1)
式からIn=−YnVn=0とするような工夫をすることにあ
る。
The specification of the present embodiment presents such a concrete embodiment, and the idea of the idea leading to this is as follows. In FIG. 8, the unbalanced current is the unbalanced of the line voltages Ea, Eb, Ec on the transmission side, Since it cannot be prevented due to the connection status of other loads to each group and the imbalance of each phase of the three-phase water resistor B, the above (1)
It is to devise so that In = −YnVn = 0 from the formula.

中性線L0の電圧Vnは不平衡により発生するので防げな
いが中性線L0のアドミッタンスYnを0に近ずける。即
ち、中性線L0のインピーダンスZnを大きくとれば良い。
方法はベース電極11a,11b,11cの中性点0を大地Gと絶
縁すれば中性線L0に流れる電流In=0に近ずけることが
出来る。
Since the voltage Vn of the neutral line L0 is generated due to the imbalance, it cannot be prevented, but the admittance Yn of the neutral line L0 approaches 0. That is, the impedance Zn of the neutral line L0 may be increased.
In the method, if the neutral point 0 of the base electrodes 11a, 11b, 11c is insulated from the ground G, the current In = 0 flowing in the neutral line L0 can be approached.

しかし三相水抵抗器Bは導電性の水Wを用いるため電
極水冷却循環管路30に導電性金属パイプを用いると、こ
れを通して電流が流れる。これを防ぐため電極水冷却循
環管路30の三相水抵抗器Bとの接続端に絶縁パイプ33,3
5を用いると、両者の中にある電極水Wに流れる分だけ
の電流に抑制することが出来る。従って絶縁パイプ33,3
5は不平衡地絡電流も含め三相水抵抗器Bからの漏れ電
流による悪影響をも阻止する。
However, since the three-phase water resistor B uses the conductive water W, if a conductive metal pipe is used for the electrode water cooling circulation line 30, a current flows through this. In order to prevent this, the insulation pipes 33, 3 are provided at the connection end of the electrode water cooling circulation line 30 with the three-phase water resistor B.
By using 5, it is possible to suppress the current to the amount that flows in the electrode water W in both. Therefore insulating pipes 33,3
5 also prevents the adverse effects of the leakage current from the three-phase water resistor B including the unbalanced ground fault current.

一方中性線L0のインピーダンスZn(1/Yn)を大きくす
れば三相水抵抗器Bの中性点0電位は不平衡電圧のすべ
てが発生することになり、危険なものとなるためベース
電極11a,11b,11cに人や動物が触れないように絶縁板36
で側周を囲繞隔離する。
On the other hand, if the impedance Zn (1 / Yn) of the neutral wire L0 is increased, the unbalanced voltage will be generated at the neutral point 0 potential of the three-phase water resistor B, and it becomes dangerous. Insulation plate 36 to prevent people and animals from touching 11a, 11b, 11c
The side circumference is isolated by.

そこで中性点0に流れる不平衡電流の算出を試みる
と、 基準値として、電圧6,600V、3相1,000KW 不平衡率
5%とすれば、 平衡しているときは、線間電圧6,600V、相電圧 平衡時の相電流87.58A 平衡時の相抵抗Za=43.56Ω…主抵抗 水の導電率δ=100μs/cmである。
Therefore, when trying to calculate the unbalanced current that flows at the neutral point 0, if the voltage is 6,600V and the three-phase 1,000KW unbalanced rate is 5% as the reference value, the line voltage is 6,600V when balanced. Phase voltage Phase current at equilibrium 87.58A Phase resistance at equilibrium Za = 43.56Ω… Main resistance Conductivity of water δ = 100μs / cm.

また不平衡を想定すると、Za=−5%、即ちYa=+5
%となる。
Assuming imbalance, Za = -5%, that is, Ya = + 5.
%.

次に第5図に示すよう電極水冷却循環管路30の給水側
管路内の電極水抵抗値R1は、管路内径が6cm、長さlが1
mのものを使用した場合、 但しS1は管路内断面積、δは水の導電率を示す。排水
側管路内の電極水抵抗値R2は、管路内径が8cm、長さl
が1mのものを使用した場合、 給水側と排水側の管路内電極水並列抵抗値R0は、 当該抵抗値の解析を明確にするため第5図中X−Y点
を接続すると、合成値はR0となり前記(1)式を用いて
中性線L0のインピーダンスZn=12.7×103Ωとなる。
Next, as shown in FIG. 5, the electrode water resistance value R1 in the water supply side conduit of the electrode water cooling circulation conduit 30 is 6 cm for the conduit inner diameter and 1 for the length l.
If you use m one, However, S1 is the cross-sectional area in the conduit, and δ is the conductivity of water. The electrode water resistance value R2 in the drain side pipeline is 8 cm for the pipeline inner diameter and l
If you use a 1m The parallel resistance value R0 of the electrode water in the pipeline on the water supply side and the drainage side is If points X and Y in Fig. 5 are connected to clarify the analysis of the resistance value, the combined value becomes R0 and the impedance of the neutral line L0 becomes Zn = 12.7 × 10 3 Ω using the equation (1). .

そこで前記(1)式に各電圧Ea,Eb,Ecと主抵抗値(不
平衡率5%)およびZn1=0(直接接地)、Zn2=12.7×
103Ωを代入して比較を試みる。
Therefore, each voltage Ea, Eb, Ec and the main resistance value (unbalance ratio 5%) and Zn1 = 0 (direct ground), Zn2 = 12.7 ×
Substitute 10 3 Ω and try to compare.

最終的には Zn1=0のとき(中性点接地方式) Vn1=0、In1=85.7×0.05 =4.285A Zn2=12.7×103Ωのとき(本発明非接地方式) 両者を比較した場合、電極水冷却循環管路30内の電極
水Wを通して大地Gに流れる地絡電流は、 In2/In1=4.92×10-3/4.258 =1.148×10-3 となり実に1/1000に抑制出来る。
Finally, when Zn1 = 0 (neutral point grounding method) Vn1 = 0, In1 = 85.7 × 0.05 = 4.285A Zn2 = 12.7 × 10 3 Ω (inventive non-grounding method) When comparing the two, the ground fault current flowing to the ground G through the electrode water W in the electrode water cooling circulation line 30 is In2 / In1 = 4.92 × 10 -3 /4.258 = 1.148 × 10 -3 , which is 1/1000. Can be suppressed to

他方中性点0電位は、5%の不平衡で62.5Vである
が、第6図に示すように、三相導線La,Lb,Lcと中性点0
で短絡(アークα発生…フラッシュオーバー(OV))に
おいて中性点0の異常電圧による感電事故防止のために
ベース電極11a,11b,11cおよび主電極19a,19b,19cを備え
る三相水抵抗器Bは床面又は荷台G1および天井G2に絶縁
碍子28a,28b,29a,29bにより絶縁支持し、側周を絶縁板3
6で囲って人や動物の触れぬ絶縁構造とする。
On the other hand, the neutral point 0 potential is 62.5 V at 5% unbalance, but as shown in FIG. 6, the three-phase conductors La, Lb, Lc and the neutral point 0 are
Three-phase water resistor with base electrodes 11a, 11b, 11c and main electrodes 19a, 19b, 19c to prevent electric shock due to abnormal voltage at neutral point 0 during short circuit (arc α generation ... flashover (OV)) B is insulated and supported by the insulators 28a, 28b, 29a, 29b on the floor surface or the loading platform G1 and the ceiling G2, and the side circumference is insulated by an insulating plate 3
Surround it with 6 and make it an insulating structure that is not touched by humans or animals.

要するに本発明装置は三相水抵抗器Bの上下両端と側
周をそれぞれ絶縁支持と絶縁隔離するとともに、各ベー
ス電極11a,11b,11c内の電極水W温と量を一定に保持す
べく所定量を給排する電極水冷却循環管路30と三相水抵
抗器Bとを絶縁接続してなるものである。
In short, the device of the present invention isolates and insulates the upper and lower ends and the side circumference of the three-phase water resistor B from each other, and keeps the electrode water W temperature and amount in each base electrode 11a, 11b, 11c constant. An electrode water cooling circulation line 30 for supplying and discharging a fixed amount and a three-phase water resistor B are connected in an insulated manner.

[発明の効果] かくして、本発明は三相水抵抗器自体から発生する異
常電流を電極水冷却循環管路中の電極水を通して以外は
完全に不平衡電流を三相水抵抗器内に絶縁封じ込めたの
で大地へ流れる地絡電流により従来発生した電力会社に
よる人為的地域停電の原因を解消し、地域住民に迷惑を
掛けないとともに稼動時、人や動物が三相水抵抗器に触
れて感電事故を起さないよう側周を絶縁板で囲って外界
と隔離遮断せしめ、充分に安全性を確保し得る等優れた
効果を奏する。
[Effects of the Invention] Thus, the present invention completely confines the unbalanced current in the three-phase water resistor by insulating the abnormal current generated from the three-phase water resistor itself except through the electrode water in the electrode water cooling circulation line. Therefore, the cause of the artificial power outage caused by the electric power company, which was previously caused by the ground fault current flowing to the earth, is eliminated, and it does not bother local residents and the electric shock accident when people and animals touch the three-phase water resistor during operation. The side circumference is surrounded by an insulating plate so as to prevent the occurrence of noise and isolated from the outside world.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明装置を施した三相水抵抗器の一部破断し
た概略正面図、第2図は分水器と分岐管を取り去った同
上平面図、第3図は分水器の平面図、第4図は本発明装
置を施した三相水抵抗器と水抵抗器電極水循環処理シス
テム装置との接続系統図、第5図は三相水抵抗器の電極
主抵抗と電極水冷却循環管路内電極水抵抗の結線図、第
6図は本発明装置を施した三相水抵抗器の三相導線の中
性点における短絡アーク発生説明図、第7図乃至第8図
は三相水抵抗器における従来の中性点接地方式の説明図
およびその原理説明図である。 A,B……三相水抵抗器、C……水抵抗器電極水循環処理
システム装置 La,Lb,Lc……電力ケーブル又は導線 L1,L2,L3……ケーブル又は導線 1a,1b,1c,11a,11b,11c……ベース電極 L0……接地ケーブル又は中性線 3a,3b,3c,12a,12b,12c……排水孔 4a,4b,4c,16a,16b,16c……絶縁支体 5a,5b,5c,19a,19b,19c……主電極 6a,6b,6c,27a,27b,27c……放出口 7a,7b,7c,21a,21b,21c……絶縁鞘筒 0,0′……中性点、G……大地 G1……床面又は荷台、G2……天井 PS……電源装置、8……受台 9……集水器、10……天板 13a,13b,13c,20a,20b,20c……底端 14,24……底板 17a,17b,17c……電極連棒 22……連体杆、23……分水器 26a,26b,26c……分岐管 28a,28b,29a,29b……絶縁碍子 30……電極水冷却循環管路 31a……排水側端、32……排水口 33,35……絶縁ホース、34……給水口 36……絶縁板
FIG. 1 is a schematic front view of a partially broken three-phase water resistor provided with the device of the present invention, FIG. 2 is a plan view of the same as above with the water divider and the branch pipe removed, and FIG. 3 is a plane of the water divider. Fig. 4 is a connection system diagram of a three-phase water resistor and a water resistor electrode water circulation treatment system device to which the device of the present invention is applied, and Fig. 5 is an electrode main resistance and electrode water cooling circulation of the three-phase water resistor. Connection diagram of electrode water resistance in pipeline, FIG. 6 is an explanatory diagram of short-circuit arc generation at a neutral point of a three-phase conductor of a three-phase water resistor provided with the device of the present invention, and FIGS. 7 to 8 are three-phase. It is explanatory drawing of the conventional neutral point grounding system in a water resistor, and its principle explanatory drawing. A, B …… Three-phase water resistor, C …… Water resistor Electrode water circulation processing system device La, Lb, Lc …… Power cable or conductor L1, L2, L3 …… Cable or conductor 1a, 1b, 1c, 11a , 11b, 11c ...... Base electrode L0 ...... Ground cable or neutral wire 3a, 3b, 3c, 12a, 12b, 12c ...... Drainage hole 4a, 4b, 4c, 16a, 16b, 16c ...... Insulation support 5a, 5b, 5c, 19a, 19b, 19c …… Main electrode 6a, 6b, 6c, 27a, 27b, 27c …… Emission port 7a, 7b, 7c, 21a, 21b, 21c …… Insulation sheath 0,0 ′ …… Neutral point, G ... earth G1 ... floor or cargo bed, G2 ... ceiling PS ... power supply, 8 ... cradle 9 ... water collector, 10 ... top plate 13a, 13b, 13c, 20a , 20b, 20c ...... Bottom end 14, 24 ...... Bottom plate 17a, 17b, 17c ...... Electrode connecting rod 22 ...... Connection rod, 23 ...... Water divider 26a, 26b, 26c …… Branch pipe 28a, 28b, 29a , 29b …… Insulator 30 …… Electrode water cooling circulation line 31a …… Drain side end, 32 …… Drain port 33,35 …… Insulation hose, 34 …… Water inlet 36 …… Insulation plate

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】受台上に搭載した集水器の天板に等間隔に
底部を貫着して連立した3つの有底円筒形ベース電極の
各底端中央と前記集水器天板と受台とに亙りそれぞれ絶
縁支体を貫着し、当該各絶縁支体を縦貫する電極連棒の
突出上端に当該絶縁支体上に各載立する主電極の底端を
連結固定するとともに外出下端に電源装置の電力ケーブ
ルを接続する一方、当該各主電極の露出長を調節すべく
覆うそれぞれの絶縁鞘筒を前記各ベース電極に下部を内
挿して一体昇降動自在に吊設し、他方分水器の底板に等
間隔に前記各主電極に対応して垂下した3つの分岐管を
それぞれ前記各絶縁鞘筒を内通して各下端放出口を前記
主電極上端直上にそれぞれ臨ませて各種電源装置の出力
特性の測定試験や検査を行う三相水抵抗器において、前
記受台と前記分水器を絶縁碍子を介してそれぞれ地面と
天井に対し絶縁支持架設するとともに、前記各ベース電
極内の電極水温と水量を一定に保持すべく所定量を給排
する水抵抗器電極水循環処理システム装置の管路の排水
側端と前記集水器の排出口とをかつ給水側端と前記分水
器の給水口とをそれぞれ絶縁ホースで介結して前記水抵
抗器と前記水抵抗器電極水循環処理システム装置とを絶
縁し、さらに前記三相水抵抗器の前後左右四方側周を透
過視認自在に透明な絶縁板にて囲繞絶縁隔離してなる三
相水抵抗器における地絡電流抑制装置
1. The center of each bottom end of three bottomed cylindrical base electrodes which are connected to the top plate of a water collector mounted on a pedestal at equal intervals, and the bottom plate of the water collector. The insulation supports are pierced through the pedestal, and the bottom ends of the main electrodes that are placed on the insulation supports are connected and fixed to the protruding upper ends of the electrode connecting rods that vertically penetrate the insulation supports. While connecting the power cable of the power supply device to the lower end, each insulating sheath that covers to adjust the exposed length of each main electrode is hung so that it can be integrally moved up and down by inserting the lower part into each base electrode. Three branch pipes hanging down on the bottom plate of the water distributor at equal intervals corresponding to the respective main electrodes are respectively passed through the insulating sheath cylinders, and the respective lower end discharge ports are made to face directly above the upper end of the main electrode. In the three-phase water resistor that performs the measurement test and inspection of the output characteristics of the power supply device, And a pipe of a water resistor electrode water circulation treatment system device for insulatingly supporting and erecting the ground and the ceiling via insulators, respectively, and supplying and discharging a predetermined amount to keep the electrode water temperature and water amount in each of the base electrodes constant. The water resistor and the water resistor electrode water circulation treatment system are formed by connecting the drain side end of the channel and the outlet of the water collector and the water supply side end and the water inlet of the water divider with insulating hoses, respectively. A ground fault current suppressing device in a three-phase water resistor, which is insulated from the device, and further is surrounded by a transparent insulating plate so that the front, rear, left and right four sides of the three-phase water resistor are transparently visible.
JP1207827A 1989-08-14 1989-08-14 Ground fault current suppression method and device in three-phase water resistor Expired - Lifetime JP2565570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1207827A JP2565570B2 (en) 1989-08-14 1989-08-14 Ground fault current suppression method and device in three-phase water resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1207827A JP2565570B2 (en) 1989-08-14 1989-08-14 Ground fault current suppression method and device in three-phase water resistor

Publications (2)

Publication Number Publication Date
JPH0374137A JPH0374137A (en) 1991-03-28
JP2565570B2 true JP2565570B2 (en) 1996-12-18

Family

ID=16546173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1207827A Expired - Lifetime JP2565570B2 (en) 1989-08-14 1989-08-14 Ground fault current suppression method and device in three-phase water resistor

Country Status (1)

Country Link
JP (1) JP2565570B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754766B2 (en) * 1992-10-06 1995-06-07 株式会社興研 High pressure water resistance device
TWI511809B (en) 2011-02-25 2015-12-11 China Steel Corp Method and apparatus for deruring hot - rolled high - pressure fluid
CN110160258A (en) * 2019-05-28 2019-08-23 广东万博电气有限公司 A kind of hose type anti-electricity wall and its hot water facility

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929643B2 (en) * 1975-09-13 1984-07-21 ダイドウセイコウ カブシキガイシヤ Continuous atmosphere heat treatment furnace
JPS5928294U (en) * 1982-08-13 1984-02-22 株式会社東芝 liquid resistor

Also Published As

Publication number Publication date
JPH0374137A (en) 1991-03-28

Similar Documents

Publication Publication Date Title
KR101441366B1 (en) Device for limiting interphase current and leakage current of flooded electric facilities
BR112021013851A2 (en) CHARGING STATION AND ARRANGEMENT OF ELECTRICAL COMPONENTS TO CONTROL THE TRANSFER OF ELECTRICITY FROM AN ELECTRICAL GRID TO AN ELECTRIC VEHICLE
KR101103553B1 (en) Uninterruptible power bypassing mehtod for power line using insulation guider for spacing
KR100918515B1 (en) Method for measuring earth resistance of a single ground in active state
KR102270589B1 (en) Terminal device and electric suppling system for preventing electric shock from flooding
US5515230A (en) Poly-phase coaxial power line efficiency enhancements
CN108963875A (en) The method of on-load migration 10KV overhead transmission line
JP2565570B2 (en) Ground fault current suppression method and device in three-phase water resistor
CN101268586B (en) Grounding electrode
CN113949062A (en) Method for solving problem of sudden circulation change of multi-loop high-voltage single-core power cable sheath
RU2631859C1 (en) EARTHING DEVICE FOR ISOLATED AERIAL POWER LINES WITH VOLTAGE OF UP TO 3 kV
CN204212513U (en) The support of outdoor power distribution unit
RU2636657C1 (en) GROUNDING DEVICE FOR OVERHEAD ELECTRIC LINES WITH ISOLATED WIRES UP TO 1 kV
SE510192C2 (en) Procedure and switching arrangements to reduce problems with three-tier currents that may occur in alternator and motor operation of AC machines connected to three-phase distribution or transmission networks
Campoccia et al. A method to evaluate voltages to earth during an earth fault in an HV network in a system of interconnected earth electrodes of MV/LV substations
AU2015249876B2 (en) Temporary transfer bus
KR101530971B1 (en) Device for limiting DC short current and leakage current of flooded electric facilities
JP4425171B2 (en) Grounding suspension lines for optical communication cables
JP3367912B2 (en) Overhead power transmission line and method of construction of the tower
US6108180A (en) Multi-grounded neutral electrical isolation between utility secondary low-voltage power service and high-voltage transmission structures
KR102671149B1 (en) Device for limiting interphase current and leakage current of flooded electric facilities
Kaufmann Important functions performed by an effective equipment grounding system
KR200314282Y1 (en) A Cable Connect Box For Electric Cabl
RU96447U1 (en) WIRING BOX FOR ELECTRICAL CABLES
CN206807020U (en) Array three-phase load is unbalance adjustment control device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term