JP2551879B2 - 高放射性廃棄物の減容ガラス固化処理方法 - Google Patents

高放射性廃棄物の減容ガラス固化処理方法

Info

Publication number
JP2551879B2
JP2551879B2 JP3168710A JP16871091A JP2551879B2 JP 2551879 B2 JP2551879 B2 JP 2551879B2 JP 3168710 A JP3168710 A JP 3168710A JP 16871091 A JP16871091 A JP 16871091A JP 2551879 B2 JP2551879 B2 JP 2551879B2
Authority
JP
Japan
Prior art keywords
boron
radioactive waste
platinum group
highly radioactive
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3168710A
Other languages
English (en)
Other versions
JPH04366800A (ja
Inventor
水明 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP3168710A priority Critical patent/JP2551879B2/ja
Priority to GB9212578A priority patent/GB2257293B/en
Priority to FR9207079A priority patent/FR2677798B1/fr
Publication of JPH04366800A publication Critical patent/JPH04366800A/ja
Application granted granted Critical
Publication of JP2551879B2 publication Critical patent/JP2551879B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/007Recovery of isotopes from radioactive waste, e.g. fission products
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/302Processing by fixation in stable solid media in an inorganic matrix
    • G21F9/305Glass or glass like matrix

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は使用済燃料の再処理工程
等で発生する高レベル放射性廃棄物の減容ガラス固化処
理方法に関する。更に詳しく述べると、高放射性廃棄物
の仮焼体を、ホウ素又はホウ素化合物からなる還元剤及
びホウ素酸化物からなるガラス形成剤の存在下で高温で
処理することにより、モリブデン及び白金族元素を金属
状にして分離回収し、残渣酸化物を減容度の高い廃棄物
ガラス固化体にする処理方法に関するものである。
【0002】
【従来の技術】使用済燃料の再処理において、核分裂生
成物は高放射性廃棄物として硝酸溶液の形で貯蔵されて
いる。この高放射性廃棄物は、将来、ガラス化等により
固化体にされる。固化の媒体としてはガラスの他に合成
岩石(シンロック)など多種類の材料が研究されている
が、いずれも多量の固化媒体中に核分裂生成物を混入す
る方法が採られている。固化媒体中の核分裂生成物の濃
度は、核分裂生成物の媒体への溶解度、化学的耐久性
(水に対する浸出率)、崩壊熱の除去の問題から、約1
0%程度に制限されている。
【0003】核分裂生成物のガラス中への溶解度で問題
となる元素はMo(モリブデン)である。これはMoO
3 として約3%程度しか溶解せず、不溶解のMoは所謂
イエローフェーズと呼ばれる物質を形成し、均一なガラ
ス固化体の製造を阻害する。このため安全率の確保の観
点からMo量はガラス固化体中にMoO3 として約2%
以下となるよう設定する必要がある。Moは核分裂生成
物中の主要元素の一つであり約10%を占めている。そ
のためMo量の制限により全核分裂生成物のガラス固化
体中の含有率は15%に制限される。また核分裂生成物
の崩壊熱については、貯蔵中のガラス固化体の変質を防
止するため、ガラス固化体の転移点である550℃程度
以下に保たねばならない。ガラス固化体一体当たりの発
熱量の許容値は約2.5kWであり、そのため従来のガ
ラス固化体製造においては、全核分裂生成物の含有量は
約10%程度に制限される。なかでもCs(セシウム)
は崩壊熱に関する主要元素であり、その発熱量は全核分
裂生成物の約40%を占めている。
【0004】一方、高放射性廃棄物中には有用で且つ天
然資源の少ない白金族元素(Ru,Pd,Rh)が含ま
れている。これら白金族元素を回収する試みは長年続け
られてきており、代表的な例として高放射性廃棄物の硝
酸溶液から燐酸エステルを用いて分離する溶媒抽出法が
知られている。
【0005】
【発明が解決しようとする課題】固化体の体積は、その
貯蔵・処分の費用を低減させるため可能な限り小さくす
べきである。そのためには固化体中の核分裂生成物の含
有率を上げる必要があるが、上記のようなMo量による
制限並びに崩壊熱による制限のため、現状では困難であ
る。
【0006】また従来の溶媒抽出法による白金族元素の
回収方法は次のような欠点がある。白金族元素回収用の
溶媒抽出法では燐酸エステルが二次廃棄物となるが、こ
れは再処理で使用する抽出用溶媒TBP(トリブチルフ
ォスフェイト)とは種類が異なるため、TBPの廃棄物
処理に採用されている廃溶媒処理方法とは別個の処理方
法が必要となる。この処理方法の新たな研究開発、処理
プラントの建設運転の費用は多大であり、回収する白金
族元素のコストは市販価格以上に引き上げられる。その
ため、この方法による白金族元素の回収は経済的に引き
合わない。また多量に発生する二次廃棄物のため、高放
射性廃棄物の高減容処理を行うことができない。
【0007】これらの問題を生じさせることなく白金族
元素を分離回収し残余の核分裂生成物の減容固化する方
法として超高温処理法が開発された。この方法は、高放
射性廃棄物を仮焼し、その仮焼体を超高温で加熱するこ
とによりCs等の揮発性元素を除去し、白金族元素等は
還元して金属状にして下層に沈降させ酸化物のままであ
る他の核分裂生成物元素と分離し、核分裂生成物の酸化
物は高減容の結晶質セラミックス固化体とする技術(特
願平1−19224号)である。得られる結晶質セラミ
ックスは結晶構造であるため、その性質は溶融体の冷却
過程により結晶粒構造が決まる。従って一定品質の固化
体を製造するためには、厳密な冷却過程の制御が必要と
なり、作業が煩瑣となるし、固化体の品質検査など余分
の工程が必要となる。
【0008】本発明の目的は、上記のような従来技術の
欠点を解消し、新しい二次廃棄物を多量に発生させるこ
となく、白金族元素を容易に回収でき、高放射性廃棄物
の高減容固化を実現でき、しかも製造条件の精密な制御
も必要とせず品質の安定化したガラス固化体を製造でき
る高放射性廃棄物の減容ガラス固化処理方法を提供する
ことにある。
【0009】
【課題を解決するための手段】本発明は上記の超高温処
理法を更に改良・発展させたものである。上記の目的を
達成するため本発明では、高放射性廃棄物を仮焼・気化
処理した仮焼体を、ホウ素又はホウ素化合物からなる還
元剤及びホウ素酸化物からなるガラス形成剤の存在下
で、還元雰囲気中において1000℃以上で加熱溶融処
理し、仮焼体中のMoを含む白金族元素をメタル化して
沈降分離回収し、同時に残りの酸化物を高減容のガラス
固化体にする高放射性廃棄物の処理方法である。
【0010】本発明者は、高放射性廃棄物の仮焼体の加
熱溶融処理に際し、ホウ素又はホウ素化合物からなる還
元剤とホウ素酸化物からなるガラス形成剤を適量存在さ
せると、Mo及び白金族元素の分離並びに高減容のガラ
ス固化体の製造が同時に可能となることを知得し、それ
に基づき本発明を完成するに至ったものである。
【0011】高放射性廃棄物は通常、使用済燃料の再処
理工程における抽出残渣として得られる硝酸溶液であ
り、使用済燃料中の殆ど全ての核分裂生成物を含有して
いる。本発明では第1図に示すように、この高放射性廃
棄物を加熱し水分及び硝酸を蒸発させ更に高温で加熱し
て仮焼体を得る。その際、高発熱元素であるCsは気化
する。その仮焼体に還元剤とガラス形成剤を加え、還元
雰囲気において1000℃以上で加熱溶融処理する。こ
れによってMo及び白金族元素が還元されて金属状にな
り沈降し、酸化物層から分離できる。酸化物層を固化す
ると高減容のガラス固化体が得られる。ホウ素又はホウ
素化合物からなる還元剤及びホウ素酸化物からなるガラ
ス形成剤は、上記溶融工程での添加の他、予め高放射性
廃棄物に加えておいてもよいし、仮焼/気化工程で添加
してもよい。
【0012】還元剤であるホウ素化合物としては窒化ホ
ウ素、炭化ホウ素などを用いる。特に窒化ホウ素は取り
扱いが容易であり低価格であること、反応の結果生じる
生成物がホウ酸であることのため、最も適当である。添
加するホウ素又はホウ素化合物の量は、ホウ素単体に換
算した重量%で10%以下で十分である。多量の添加は
廃棄物量を増加させるため好ましくない。より好ましく
は5%以下とする。本発明では白金族合金の融点を低下
させるためには共晶を形成させることが最良であるが、
0.5%の添加でも効果がある。従ってホウ素添加量は
0.5%以上であればよく、より好ましくは1%以上と
する。
【0013】高放射性廃棄物の加熱処理時での還元状態
の制御は、温度、雰囲気、還元剤の添加により行う。加
熱温度は1000℃以上とする。1000℃未満ではP
d,Rhは金属に還元され得るがRu,Moは還元され
ない。好ましくは1500℃以上とする。Ru、Pd、
Rh、Mo、B系の合金は2000℃以下で溶融するの
で、それ以上の高温は必要ない。雰囲気の制御は還元反
応を促進するためである。本発明では酸素含有量を低減
した空気、窒素もしくはアルゴン等の雰囲気下で行うの
が望ましい。水素や一酸化炭素等の気体還元剤、炭素等
の酸化還元反応において気体化する還元剤などを併用し
てもよい。またアルミニウムやケイ素の金属、炭化物、
窒化物など、酸化物として残存しても廃棄物となる酸化
物相に悪影響を与えない物質の使用も可能である。これ
ら温度、雰囲気、還元剤は反応条件により適宜組み合わ
せる。
【0014】ガラス形成剤であるホウ素酸化物として
は、酸化ホウ素、ホウケイ酸ガラス、ホウ酸ソーダなど
がある。特に酸化ホウ素やホウケイ酸ガラスは取り扱い
が容易で低価格であることから最も適当である。これら
の添加量は、生成するガラス固化体の15〜85%とす
る。それよりも多くすることは高減容固化体の取得の目
的から見て不必要である。しかし85%でも核分裂生成
物中のMo及び白金族元素等が除去されているため、従
来のガラス固化体に比し大幅に減容されている。ガラス
形成剤添加の際に、通常のガラス工業において使用され
ているケイ素化合物やアルミニウム化合物を同時に添加
することも可能である。これらの化合物の添加はガラス
固化体の性質を改善する。
【0015】
【作用】使用済燃料中の核分裂生成物は、アルカリ金
属元素、アルカリ土類金属元素、希土類元素、遷
移金属元素(白金族元素を含む)に大別できる。高放射
性廃棄物を加熱することにより、のアルカリ金属元素
である高発熱元素属Csは除去される。その結果、仮焼
体の主成分は、燃焼度45000MWD/MTU、冷却期間5年の使
用済燃料の場合、含有量が100g/MTU以下の元素を除くと
次のようになる。 ・アルカリ土類金属(Sr,Ba)… 3.3kg/MTU 8.7% ・遷移金属(Zr,Mo,Tc) …10.5kg/MTU 27.9% ・白金族元素(Ru,Rh,Pd)… 5.4kg/MTU 14.3% ・希土類元素(Y,La,Ce等)…18.5kg/MTU 49.1% 合計 …37.7kg/MTU
【0016】この仮焼体を、ホウ素又はホウ素化合物か
らなる還元剤の存在下で更に加熱し溶融することによ
り、白金族元素が分離回収される。白金族元素は、その
酸化物生成の自由エネルギーが小さく、加熱により金属
状態にまで還元されることが知られている。白金族元素
の融点は、Pdが1554℃、Rhは1963℃、Ru
は2254℃である。RuはRhとその結晶型を異にし
ているため全率に固溶せず、またPdはRh,Ruと共
晶点をもつ合金を生成しない。従って白金族元素及びそ
の合金系では、融点が2000℃以上になることがあ
り、仮焼体の溶融により白金族元素を単独または合金と
して酸化物である残渣と分離させることは困難である。
つまり相としては分離しても、溶融体として二層に互い
に分離させるには溶融温度は極めて高くなる。仮焼体中
のMoは酸化物生成自由エネルギーが比較的小さく、白
金族元素と融点の低い合金を形成する。しかし核分裂生
成物中のMoと白金族元素の含有量は使用済燃料の燃焼
度等によって決まっていることから、最も融点の低い組
成を4成分系のそれぞれの合金系において実現すること
は困難である。
【0017】本発明ではホウ素又はホウ素化合物からな
る還元剤を添加している。このためMoや白金族元素と
ホウ素との合金が形成され、低い温度で溶融する。一般
的に多くの元素(M)はホウ素(B)と、M/B型又は
2M/B型の化合物を作り、この化合物は元素(M)と
共晶を形成する。その融点はもとの元素に比べて非常に
低い。更にホウ素は原子量が小さく約11であり、この
ため他の元素との共晶点におけるホウ素の重量含有率は
せいぜい5%にとどまる。従って白金族元素やMoの溶
融温度を下げるために添加すべきホウ素の量は極く少量
でよい。これによって白金族元素やMoは2000℃以
下の温度で容易に溶融する形態に還元される。この溶融
合金は比重が残りの酸化物の比重よりも大きいため、均
一には分散せず、溶融炉の底部に沈降し分離するため、
白金族元素を回収できる。
【0018】更に本発明ではホウ素酸化物からなるガラ
ス形成剤を添加している。そのため残りの酸化物はガラ
ス状の溶融体であり、それを固化するとガラス固化体が
得られる。このガラス固化体では、CsとMoが分離除
去されているため、ガラス中への残りの核分裂生成物の
含有率は、通常の高放射性廃棄物の固化体の場合の約1
0%にとどまらず80%程度まで可能であり、減容度が
非常に高いガラス固化体が得られる。因に従来のガラス
固化体では核分裂生成物に対し10倍の重量となり使用
済燃料1トン当たり数百リットルの固化体となるが、本
発明方法では容積数十リットルの固化体になる。これは
ピューレックス法再処理に対して、固体廃棄物以外の二
次廃棄物を発生させることなく可能である。
【0019】
【実施例】第2図は本発明方法を実施するための処理装
置の一例を示す概念図である。これはボトムフロー型の
装置例である。高放射性廃棄物の仮焼体は溶融容器10
に投入される。仮焼体は加熱還元処理され、比重の大き
な白金族元素の層12と比重の小さな酸化物層14に分
離する。白金族元素の層12と酸化物の層14は順次底
部の流下ノズル16から流下し、別の容器18内に注入
し固化する。酸化物の層14を固化することでガラス固
化体が得られる。
【0020】第3図は本発明方法で用いる処理装置の他
の例を示す概念図である。これはオーバーフローとボト
ムフローを組み合わせた中間型の装置例である。高放射
性廃棄物の仮焼体は溶融容器20の上方から投入され、
加熱溶融処理される。それにより下方に位置する白金族
元素の層12及び上方に位置する酸化物の層14に分離
する。白金族元素の層12は直下の流下ノズル22から
流下し、メタル用受容器24で受け固化させる。酸化物
の層14は矢印で示す流路26を経るようにオーバーフ
ローして、流下ノズル28から流下し、ガラス用の受容
器30内に注入することでガラス固化体となる。
【0021】なお高放射性廃棄物の仮焼には、ガラス固
化などで研究されているロータリーキルン方式やマイク
ロ波加熱方式などを使用でき、仮焼体の加熱処理には、
ヒーター方式や直接通電方式、高周波加熱方式等を適用
できる。
【0022】次に具体的な実験例について述べる。 [実験例1]燃焼度45000 MWD/MTU 、冷却期間5年の使
用済燃料中の核分裂生成物の組成をORIGENコードによっ
て計算し、相当する高放射性廃液の模擬廃液を合成し
た。この模擬廃液を600℃に加熱し仮焼体とした。仮
焼体45gをルツボに入れ、窒化ホウ素5gと酸化ホウ
素10gを加え、アルゴン雰囲気下で1800℃−1時
間の加熱処理を行った。冷却後観察したところ内容物の
上部表面は滑らかでありガラス状であった。ルツボを破
壊し内容物を取り出した。内容物は2種類に分かれ底部
には金属の塊があり他のガラス状部分から容易に分離で
きた。金属部分をX線マイクロアナライザー(EPM
A)で分析したところ、Ru、Rh、Pd、Moが検出
された。ガラス状部分について、その浸出率をJIS−
R3502に準じた方式で測定した。浸出率は7×10
-5g/cm2 ・dで従来のガラス固化体とほぼ同程度であ
り、高放射性固化体として十分な化学的耐久性を有して
いることが確認された。
【0023】[実験例2]仮焼体45gをルツボに入
れ、窒化ホウ素5gとホウケイ酸ガラス50gを加え
て、実験例1と同様の方法により模擬高放射性廃棄物を
処理した。但し加熱温度は1500℃とした。処理後の
観察結果は、実験例1と同様であった。
【0024】
【発明の効果】本発明は上記のように高放射性廃棄物の
仮焼体を、ホウ素又はホウ素化合物からなる還元剤とホ
ウ素酸化物からなるガラス形成剤の存在下で、還元雰囲
気中において1000℃以上で加熱溶融処理する方法で
あるから、有用な白金族元素及びMoを分離回収でき、
処理プロセスの単純化並びに処理装置の小型化を図るこ
とができる。仮焼により高発熱元素のCsを除去できる
ためガラス固化体中の核分裂生成物含有量に関する制限
が解消され、またMoを還元分離しているため、ガラス
固化体中の核分裂生成物含有量に関する核分裂生成物溶
解度に係わる制限が解消される。そして残渣酸化物をそ
のままガラス固化体にするため従来のガラス固化処理に
比べて数十分の一もの大幅な減容固化を実現でき、高放
射性廃棄物の貯蔵・処分における大幅な費用削減が可能
となる。
【0025】本発明ではホウ素酸化物を添加して残りの
廃棄物をガラス固化体にしているので、結晶質セラミッ
クス化する場合のような製造条件の精密制御が不要とな
り、均質な且つ品質の安定したガラス固化体を効率よく
且つ容易に製造できる。
【0026】本発明ではホウ素又はホウ素化合物を添加
しているため上記の処理を2000℃以下で行うことが
できる。従って特殊な加熱方式(例えば電子ビーム加熱
やプラズマ加熱等)ではなくヒーター加熱等での処理が
可能となり、また溶融炉に用いる材料も特殊な高融点材
料(例えばトリウム酸化物等)ではなくジルコニア等で
よく、処理設備を容易に且つ安価に構成できる。
【図面の簡単な説明】
【図1】本発明方法を用いた処理プロセスの説明図。
【図2】本発明方法で用いる処理装置の一例を示す概念
図。
【図3】本発明方法で用いる処理装置の他の例を示す概
念図。
【符号の説明】
10 溶融容器 12 白金族元素の層 14 酸化物の層 16 流下ノズル 18 受容器 20 溶融容器 22 流下ノズル 24 メタル用受容器 28 流下ノズル 30 ガラス用受容器

Claims (5)

    (57)【特許請求の範囲】
  1. 【請求項1】 高放射性廃棄物を仮焼及び気化処理した
    仮焼体を、ホウ素又はホウ素化合物からなる還元剤とホ
    ウ素酸化物からなるガラス形成剤の存在下で、還元雰囲
    気中において1000℃以上で加熱溶融処理し、仮焼体
    中に存在するモリブデンを含む白金族元素を金属状にし
    て分離回収し、同時に残りの酸化物をガラス固化するこ
    とを特徴とする高放射性廃棄物の減容ガラス固化処理方
    法。
  2. 【請求項2】 還元剤が窒化ホウ素である請求項1記載
    の処理方法。
  3. 【請求項3】 ガラス形成剤が酸化ホウ素又はホウケイ
    酸ガラスである請求項1又は2記載の処理方法。
  4. 【請求項4】 還元剤及びガラス形成剤に加え、ケイ素
    化合物又はアルミニウム化合物を添加する請求項1記載
    の処理方法。
  5. 【請求項5】 ガラス形成剤の量が、ガラス固化体の1
    5〜85重量%である請求項1記載の処理方法。
JP3168710A 1991-06-13 1991-06-13 高放射性廃棄物の減容ガラス固化処理方法 Expired - Fee Related JP2551879B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3168710A JP2551879B2 (ja) 1991-06-13 1991-06-13 高放射性廃棄物の減容ガラス固化処理方法
GB9212578A GB2257293B (en) 1991-06-13 1992-06-12 Method of volume-reducing vitrification of high-level radioactive waste
FR9207079A FR2677798B1 (fr) 1991-06-13 1992-06-12 Procede de vitrification reductrice de volume de dechets hautement radioactifs.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3168710A JP2551879B2 (ja) 1991-06-13 1991-06-13 高放射性廃棄物の減容ガラス固化処理方法

Publications (2)

Publication Number Publication Date
JPH04366800A JPH04366800A (ja) 1992-12-18
JP2551879B2 true JP2551879B2 (ja) 1996-11-06

Family

ID=15873018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3168710A Expired - Fee Related JP2551879B2 (ja) 1991-06-13 1991-06-13 高放射性廃棄物の減容ガラス固化処理方法

Country Status (3)

Country Link
JP (1) JP2551879B2 (ja)
FR (1) FR2677798B1 (ja)
GB (1) GB2257293B (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461185A (en) * 1994-04-19 1995-10-24 Forsberg; Charles W. Radioactive waste material disposal
KR0158083B1 (ko) * 1995-06-07 1998-12-15 신재인 플라이 애쉬를 사용한 고준위방사성폐기물의 유리고화체 제조방법
DE19737891C2 (de) * 1997-08-29 2002-08-01 Forschungszentrum Juelich Gmbh Verfahren zur Entsorgung eines mit Radiotoxika kontaminierten Gegenstandes aus Reaktorgraphit oder Kohlestein
FR2943835B1 (fr) * 2009-03-31 2011-04-29 Onectra Procede de conditionnement de dechets radioactifs sous forme de roche synthetique
JP5853857B2 (ja) * 2012-01-13 2016-02-09 新日鐵住金株式会社 汚染土壌の浄化方法
JP5162721B1 (ja) * 2012-08-30 2013-03-13 株式会社神鋼環境ソリューション 放射性セシウム含有土壌の処理方法
JP2015190892A (ja) * 2014-03-28 2015-11-02 株式会社Ihi 高レベル放射性廃液ガラス固化設備のルテニウム処理方法及び装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2657265C2 (de) * 1976-12-17 1984-09-20 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Verfahren zur Verfestigung von aus der Wiederaufarbeitung von Kernbrenn- und/oder Brutstoffen stammenden radioaktiven Abfallflüssigkeiten in einer Matrix aus Borsilikatglas
US4395367A (en) * 1981-11-17 1983-07-26 Rohrmann Charles A Process for treating fission waste
PH22647A (en) * 1984-01-16 1988-10-28 Westinghouse Electric Corp Immobilization of sodium sulfate radwaste
FR2596910A1 (fr) * 1986-04-08 1987-10-09 Tech Nles Ste Gle Procede pour la preparation d'un verre borosilicate contenant des dechets nucleaires
FR2596909B1 (fr) * 1986-04-08 1993-05-07 Tech Nles Ste Gle Procede d'immobilisation de dechets nucleaires dans un verre borosilicate
JPH0695155B2 (ja) * 1990-03-15 1994-11-24 動力炉・核燃料開発事業団 高放射性廃棄物の処理方法

Also Published As

Publication number Publication date
FR2677798B1 (fr) 1994-11-18
JPH04366800A (ja) 1992-12-18
GB2257293A (en) 1993-01-06
GB2257293B (en) 1994-09-28
GB9212578D0 (en) 1992-07-29
FR2677798A1 (fr) 1992-12-18

Similar Documents

Publication Publication Date Title
US5082603A (en) Method of treatment of high-level radioactive waste
JP2551879B2 (ja) 高放射性廃棄物の減容ガラス固化処理方法
US5185104A (en) Method of treatment of high-level radioactive waste
US2950962A (en) Reduction of fluoride to metal
US6409791B1 (en) Metallothermal process and continuous drawing, in cold induction furnaces, of metals or alloys
JPH0854493A (ja) 使用済み燃料の再処理方法
Brunsvold et al. Design and development of a cathode processor for electrometallurgical treatment of spent nuclear fuel
Westphal et al. Recent developments at the cathode processor for spent fuel treatment.
US5961679A (en) Recovery of fissile materials from nuclear wastes
Lawroski et al. Processing of reactor fuel materials by pyrometallurgical methods
JPH0740077B2 (ja) 高放射性廃棄物の処理方法
Hampson et al. Melt refining of EBR-II fuel
JP3018684B2 (ja) 放射性廃棄物の処理方法
Wade et al. PRODUCTION OF PLUTONIUM METAL BY DIRECT REDUCTION OF THE OXIDE.
Chellew et al. The Melt Refining of Irradiated Uranium: Application to EBR-II Fast Reactor Fuel. XI. Behavior of Iodine in Melt Refining
Murbach et al. Pyroprocessing thorium fuels
JPH11248880A (ja) 使用済燃料の処理方法
Forsberg et al. Direct conversion of halogen-containing wastes to borosilicate glass
Steunenberg PYROMETALLURGICAL PROCESSING OF FAST BREEDER FUEL.
Chellew et al. Laboratory Studies of Iodine Behavior in the EBR-II Melt Refining Process
Potter Solid and Liquid Drossing of Thorium Containing Tracer Level Fission Products
Morrison et al. The HERMEX process for metal decontamination by mercury processing
Buyers et al. PYROMETALLURGICAL PROCESSES FOR THORIUM-URANIUM FUEL. Semiannual Progress Report for January-June 1956
Lee et al. Impact of Zr metal and coking reactions on the fission product aerosol release during MCCI (Molten Core Concrete Interactions)
RU2383070C1 (ru) Способ металлургической переработки отработавшего (облученного) твердого ядерного топлива

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees