JP2530010B2 - How to repair a long housing - Google Patents

How to repair a long housing

Info

Publication number
JP2530010B2
JP2530010B2 JP63255430A JP25543088A JP2530010B2 JP 2530010 B2 JP2530010 B2 JP 2530010B2 JP 63255430 A JP63255430 A JP 63255430A JP 25543088 A JP25543088 A JP 25543088A JP 2530010 B2 JP2530010 B2 JP 2530010B2
Authority
JP
Japan
Prior art keywords
housing
neutron flux
long
reactor
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63255430A
Other languages
Japanese (ja)
Other versions
JPH02102492A (en
Inventor
年廣 安田
友信 桜永
吉継 児山
雅弘 小林
勝 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP63255430A priority Critical patent/JP2530010B2/en
Publication of JPH02102492A publication Critical patent/JPH02102492A/en
Application granted granted Critical
Publication of JP2530010B2 publication Critical patent/JP2530010B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は原子炉圧力容器に固定支持される中性子束モ
ニタハウジング等の長尺ハウジングの補修方法に関す
る。
The present invention relates to a method for repairing a long housing such as a neutron flux monitor housing fixedly supported by a reactor pressure vessel.

(従来の技術) 沸騰水型原子炉等の原子炉の出力は、中性子束に比例
するので、原子炉の出力表示や燃焼度評価のために、原
子炉の中性子束を中性子束検出器(中性子束モニタ)に
て計測し、監視している。
(Prior art) Since the output of a nuclear reactor such as a boiling water reactor is proportional to the neutron flux, the neutron flux of the reactor is measured by a neutron flux detector (neutron flux) for the purpose of displaying the output of the reactor and evaluating burnup. It is measured and monitored by a bundle monitor).

中性子束検出器1は沸騰水型原子炉へ第5図に概略的
に示すように設けられ、原子炉圧力容器2内に炉心3が
破線で示すように収容される。この炉心3に中性子束検
出器1を収容した中性子束モニタ本体4が据付けられ
る。図示例では簡略化のために1本の中性子束モニタ本
体4を据付けた例を示す。
The neutron flux detector 1 is installed in a boiling water reactor as schematically shown in FIG. 5, and a reactor core 3 is housed in a reactor pressure vessel 2 as shown by a broken line. A neutron flux monitor body 4 accommodating the neutron flux detector 1 is installed in this core 3. The illustrated example shows an example in which one neutron flux monitor main body 4 is installed for simplification.

中性子束モニタ本体4は細長い長尺状に形成され、そ
の上端は上部格子板5の下面支持孔5aに弾力的に支持さ
れ、その下部は中性子束モニタ案内管6および中性子束
モニタハウジング(インコアモニタハウジング)7を介
して下方に突出し、その下端は中性子束モニタ用フラン
ジ(インコアフランジ)8に当接支持され、据付用の締
付ナット9により固定される。
The neutron flux monitor main body 4 is formed in a long and slender shape, the upper end thereof is elastically supported by the lower surface support hole 5a of the upper lattice plate 5, and the lower part thereof is a neutron flux monitor guide tube 6 and a neutron flux monitor housing (in-core monitor). The housing 7) projects downward, the lower end of which is supported by abutting against a neutron flux monitor flange (in-core flange) 8 and fixed by a tightening nut 9 for installation.

中性子束モニタハウジング7は上部が原子炉圧力容器
2の下鏡に溶接にて固定され、垂下状態に設けられる。
中性子束モニタハウジング7はSUS304等のオーステナイ
ト系ステンレス鋼管を使用しているので、応力、腐食環
境、材料(クロム欠乏層の生成)の3つの条件が成立す
ると、原子炉圧力容器2との溶接部付近で応力腐食割れ
(以下、SCCという。)が発生するおそれがある。SCCは
3条件のうち1つでも欠落すれば発生しないので、この
応力腐食割れ防止のために、種々の対策が講じられてい
る。
An upper portion of the neutron flux monitor housing 7 is fixed to the lower mirror of the reactor pressure vessel 2 by welding and is provided in a suspended state.
Since the neutron flux monitor housing 7 uses an austenitic stainless steel tube such as SUS304, if the three conditions of stress, corrosion environment, and material (generation of chromium deficient layer) are satisfied, the welded part with the reactor pressure vessel 2 Stress corrosion cracking (hereinafter referred to as SCC) may occur in the vicinity. Since SCC will not occur if any one of the three conditions is missing, various measures have been taken to prevent this stress corrosion cracking.

(発明が解決しようとする課題) 中性子束モニタハウジング7を固定支持する原子炉圧
力容器2の溶接部付近に粒界応力腐食割れ(IGSCC)や
溶接時の融合不良に伴う溶接欠陥が生じたり、または中
性子束モニタハウジング自身の欠陥により、溶接部付近
や中性子束モニタハウジングにクラックが生じ、このク
ラックが次第成長してリークパスが形成されると炉水リ
ークに発展するおそれがある。
(Problems to be Solved by the Invention) Intergranular stress corrosion cracking (IGSCC) or welding defects due to fusion failure during welding may occur in the vicinity of the welded portion of the reactor pressure vessel 2 that fixedly supports the neutron flux monitor housing 7, Or, if the neutron flux monitor housing itself has a defect, a crack is generated in the vicinity of the welded portion or in the neutron flux monitor housing, and if the crack gradually grows and a leak path is formed, a reactor water leak may develop.

一方、炉心部の中性子束を計測し、監視する中性子束
検出器は、原子炉の出力制御や炉運転停止を行なう制御
棒駆動機構と異なり、原子炉の安全系に属さないため、
中性子束モニタハウジングのシール支持構造は原子炉安
全系を前提としたものではなく、また、中性子束モニタ
ハウジング自身の欠陥や原子炉圧力容器との溶接部付近
に欠陥が万一生じた場合、この欠陥部を取り除く恒久的
な修理工法は充分には確立されていない。
On the other hand, the neutron flux detector that measures and monitors the neutron flux in the core is different from the control rod drive mechanism that controls the reactor power output or shuts down the reactor, because it does not belong to the safety system of the reactor.
The seal support structure of the neutron flux monitor housing is not premised on the reactor safety system, and if a defect occurs in the neutron flux monitor housing itself or in the vicinity of the weld with the reactor pressure vessel, this A permanent repair method for removing defective parts is not well established.

本発明は上述した事情を考慮してなされたもので、中
性子束モニタハウジング等の長尺ハウジングや溶接部付
近の欠陥部を特定してこの欠陥部や潜在的な欠陥発生可
能部位を完全に除去し、該当部分を初期支持構造と同等
の強度を有する構造に復旧させて炉水リークを確実に防
止できる長尺ハウジングの補修方法を提供することを目
的とする。
The present invention has been made in consideration of the above-described circumstances, and identifies a defective portion near a long housing such as a neutron flux monitor housing or a welded portion and completely removes this defective portion or a potential defect occurrence site. However, it is an object of the present invention to provide a method for repairing a long housing that can reliably prevent a reactor water leak by restoring the relevant portion to a structure having the same strength as the initial support structure.

〔発明の構成〕[Structure of Invention]

(課題を解決するための手段) 本発明に係る長尺ハウジングの補修方法は、原子炉容
器の下鏡溶接部に固定支持された中性子束モニタハウジ
ング等の長尺ハウジングを、溶接部の上下方でそれぞれ
切断して長尺アッパハウジングおよび長尺アンダハウジ
ングを取り除いた後、原子炉容器の母材部を含む欠陥部
位あるいは潜在的な欠陥発生可能部位を除去し、続いて
強度部材となる母材除去部を肉盛溶接して元に復旧さ
せ、その後、原子炉容器の下鏡貫通孔部下側に管台を溶
接により形成するとともに上記下鏡貫通孔内に防錆対策
を施し、次に長尺アンダハウジングを下鏡貫通孔内に下
方から挿入して前記管台に溶接にて固定するとともに上
記長尺アンダハウジングの挿入先端を長尺アッパハウジ
ングに溶接にて固定する方法である。
(Means for Solving the Problems) A method of repairing a long housing according to the present invention is a method of fixing a long housing such as a neutron flux monitor housing fixedly supported on a lower mirror welded portion of a reactor vessel to the upper and lower sides of the welded portion. After removing each of the long upper housing and the long under housing by cutting with, the defective parts including the base material part of the reactor vessel or potential defect occurrence parts are removed, and then the base material to be the strength member. The removed part is overlay welded and restored to its original state, and then a nozzle is formed by welding on the lower side of the lower mirror through hole of the reactor vessel, and rust prevention measures are taken inside the lower mirror through hole. In this method, the long under housing is inserted into the through hole of the lower mirror from below and fixed to the nozzle by welding, and the insertion tip of the long under housing is fixed to the long upper housing by welding.

(作用) この長尺ハウジングの補修方法は、原子炉の運転中に
中性子束モニタハウジング等の長尺ハウジング自身や原
子炉容器との溶接部分に欠陥が生じたり、潜在的に欠陥
発生可能性が大きな場合に、該当部分を原子炉容器の母
材部とともに除去し、続いて強度部材となる母材除去部
を肉盛溶接して元に復旧させる一方、原子炉容器の下鏡
貫通孔部下側に管台を溶接にて形成するとともに上記貫
通孔内に防錆対策を施し、次に長尺アンダハウジングを
上記貫通孔に挿入して管台に溶接により固定させ、長尺
アンダハウジングの挿入先端を長尺アッパハウジングに
固定させることにより、長尺ハウジングの初期の固定支
持構造と同等の強度を有する支持構造として、炉水リー
クの発生を有効的かつ確実に防止したものである。
(Operation) This repair method for a long housing may cause a defect in the long housing itself such as a neutron flux monitor housing or a welded portion with the reactor vessel during the operation of the reactor, and may possibly cause a defect. In the case of a large size, the relevant part is removed together with the base metal part of the reactor vessel, and then the base material removal part that becomes the strength member is overlay welded and restored to the original, while the lower side of the lower mirror through-hole part of the reactor vessel The stub is formed by welding and rust prevention measures are taken in the through hole, then the long under housing is inserted into the through hole and fixed to the stub by welding, and the insertion end of the long under housing is inserted. Is fixed to the long upper housing to effectively and surely prevent the occurrence of reactor water leaks as a support structure having the same strength as the initial fixed support structure of the long housing.

(実施例) 以下、本発明の一実施例について添付図面を参照して
説明する。
Embodiment An embodiment of the present invention will be described below with reference to the accompanying drawings.

沸騰水型原子炉は、第2図に示すように原子炉容器と
しての原子炉圧力容器10を備え、この原子炉圧力容器10
はその支持ペデスタル11上に支持スカート12を介して支
持される。原子炉圧力容器10の下部(下鏡)には原子炉
の炉心に制御棒(図示せず)の出し入れを行なう制御棒
駆動機構(CRD)13が多数本林立状態で垂設される。制
御棒駆動機構13のCRDハウジング14は原子炉圧力容器10
の下鏡に溶接にて固定される。このCRDハウジング(長
尺ハウジング)14にはSUS304、SUS304L等のステンレス
鋼が用いられる。
The boiling water reactor is equipped with a reactor pressure vessel 10 as a reactor vessel as shown in FIG.
Is supported on its support pedestal 11 via a support skirt 12. A number of control rod drive mechanisms (CRD) 13 for vertically moving control rods (not shown) in and out of the reactor core are vertically installed under the reactor pressure vessel 10 (lower mirror). The CRD housing 14 of the control rod drive mechanism 13 is the reactor pressure vessel 10
It is fixed to the lower mirror by welding. The CRD housing (long housing) 14 is made of stainless steel such as SUS304 and SUS304L.

また、原子炉の出力表示や燃焼度の評価のために、原
子炉炉心部で発生する中性子束は中性子束検出器15にて
測定され、監視される。中性子束検出器15は各CRD13間
の適宜空間に配置され、細長い長尺状の中性子束モニタ
本体16を第3図に示すように有する。
Further, the neutron flux generated in the core of the reactor is measured and monitored by the neutron flux detector 15 in order to display the output of the reactor and evaluate the burnup. The neutron flux detector 15 is disposed in an appropriate space between the CRDs 13 and has an elongated neutron flux monitor main body 16 as shown in FIG.

中性子束モニタ本体16は細長い管状をなし、その下部
側は長尺ハウジングである中性子束モニタ案内管17や中
性子束モニタハウジング(インコアモニタハウジング)
18を通って下方に延びており、その下端部は中性子束モ
ニタフランジ19の内周肩部に当接支持される。この中性
子束モニタフランジ19は中性子束モニタハウジング18の
下端外周フランジ18aに締付ボルト20により固定され
る。中性子束モニタフランジ19により支持された中性子
束モニタ本体16はインコアナット(据付用締付ナットで
もよい。)21により固定される。
The neutron flux monitor main body 16 has an elongated tubular shape, and the lower side of the neutron flux monitor guide tube 17 is a long housing and the neutron flux monitor housing (in-core monitor housing).
It extends downward through 18 and its lower end is abutted against and supported by the inner peripheral shoulder of the neutron flux monitor flange 19. The neutron flux monitor flange 19 is fixed to the lower end outer peripheral flange 18a of the neutron flux monitor housing 18 with a tightening bolt 20. The neutron flux monitor body 16 supported by the neutron flux monitor flange 19 is fixed by an in-core nut (which may be an installation tightening nut) 21.

一方、中性子束モニタ本体16を挿通させた中性子束モ
ニタハウジング18はSUS304、SUS304L、SUS316L等のステ
ンレス鋼が用いられ、この中性子束モニタハウジング18
の上部は第4図に示すように、炭素鋼を母材とする原子
炉圧力容器10の挿通孔23内を通されて原子炉圧力容器10
の内側から溶接により固定される。
On the other hand, the neutron flux monitor housing 18 in which the neutron flux monitor main body 16 is inserted is made of stainless steel such as SUS304, SUS304L, SUS316L.
As shown in FIG. 4, the upper portion of the reactor is passed through the through hole 23 of the reactor pressure vessel 10 using carbon steel as a base material to
It is fixed by welding from the inside.

具体的には、原子炉圧力容器10の内側にはステンレス
肉盛部24が溶接にて形成され、鏡面仕上げされる。貫通
孔部23の傾斜側には開先を取ってインコネル182等で溶
接し、管台25を形成する。この管台25の頂部に開先部を
形成し、この開先部をインコネル82やNb(ニオブ)入り
のインコネル182等で溶接し、この溶接部26を介して中
性子束モニタハウジング(長尺ハウジング)18を管台25
に固定させ、シールしている。管台25の溶接部26により
原子炉圧力容器10内を下方のプレッシャバウンダリ27か
ら区画している。
Specifically, a stainless steel build-up portion 24 is formed by welding on the inside of the reactor pressure vessel 10 and is mirror-finished. A groove is formed on the inclined side of the through hole 23 and welded with Inconel 182 or the like to form a nozzle 25. A groove is formed on the top of this nozzle 25, and this groove is welded with Inconel 82 or Inconel 182 containing Nb (niobium), and the neutron flux monitor housing (long housing ) 18 to 25
It is fixed to and sealed. The inside of the reactor pressure vessel 10 is partitioned from the pressure boundary 27 below by the welded portion 26 of the nozzle 25.

一方、長尺ハウジングである中性子束モニタハウジン
グ18やCRDハウジング14はステンレス鋼(SUS鋼)で形成
されているため、応力腐食割れ(SCC)の3条件が成立
すると、原子炉圧力容器10との溶接部分で応力腐食割れ
が発生するおそれがある。この応力腐食割れが生じた
り、ハウジング自身の欠陥や溶接時の融合不良に伴う溶
接欠陥などによりクラックが生じ、このクラックが成長
して大きくなると原子炉圧力容器10内の炉水が圧力容器
外リークするおそれがある。
On the other hand, since the neutron flux monitor housing 18 and the CRD housing 14 which are long housings are made of stainless steel (SUS steel), when the three conditions of stress corrosion cracking (SCC) are satisfied, Stress corrosion cracking may occur at the welded part. This stress corrosion cracking occurs, or a crack occurs due to a defect in the housing itself or a welding defect associated with poor fusion during welding, and when this crack grows and becomes large, the reactor water in the reactor pressure vessel 10 leaks outside the pressure vessel. May occur.

この炉水リークは種々の検出器で常時監視され、検出
されたり、定期検査時に検出される。炉水リークが検出
されたり、炉水リークの発生が生じる可能性が予知され
ると、次の修理工法により中性子束モニタハウジングの
欠陥部や潜在的な欠陥発生可能箇所が完全に除去され、
炉水リーク防止対策が施される。
This reactor water leak is constantly monitored and detected by various detectors, and is detected during periodic inspections. When a reactor water leak is detected or it is predicted that a reactor water leak will occur, the following repair method will completely remove the defective part of the neutron flux monitor housing and the potential defective place,
Measures to prevent reactor water leaks are taken.

第1図(A)ないし(F)は中性子束モニタハウジン
グの補修方法の一例を示すものである。
1 (A) to 1 (F) show an example of a method of repairing the neutron flux monitor housing.

この補修方法は原子炉圧力容器10の母材部近傍や溶接
部分で欠陥が認められた場合に有効的な手段であり、上
記補修方法を実施する場合には、中性子束モニタハウジ
ング18や中性子束モニタ案内管17から中性子束モニタ本
体16を引き抜いて取り除く一方、中性子束モニタハウジ
ング18を固定支持する溶接部26に対応した位置にボアプ
ラグ等の水栓28を挿入し、この水栓28で炉水の流出を防
止する。
This repair method is an effective means when a defect is found in the vicinity of the base metal part or the welded part of the reactor pressure vessel 10, and when carrying out the above repair method, the neutron flux monitor housing 18 or the neutron flux While removing the neutron flux monitor main body 16 from the monitor guide tube 17 by removing it, insert a faucet 28 such as a bore plug at a position corresponding to the welded portion 26 that fixedly supports the neutron flux monitor housing 18, and use this faucet 28 to remove the reactor water. Prevent the outflow of.

続いて第1図(A)に示すように、中性子束モニタハ
ウジング18を溶接部26の上方で外側切断放電加工機等に
より切断し、中性子束モニタハウジング18のアッパ部分
(以下、長尺アッパハウジングという。)18aを取り除
くとともに、溶接部26より下方で内側切断放電加工機等
により中性子束モニタハウジング18を同様に切断し、切
断された中性子束モニタハウジング18のアンダ部分(以
下、長尺アンダハウジングという。)18bを原子炉圧力
容器10の下鏡貫通孔23から下方に引き抜く。
Subsequently, as shown in FIG. 1 (A), the neutron flux monitor housing 18 is cut above the welded portion 26 by an outside cutting electric discharge machine or the like, and the upper portion of the neutron flux monitor housing 18 (hereinafter, long upper housing 18a is removed, and the neutron flux monitor housing 18 is similarly cut below the welded portion 26 by an internal cutting electric discharge machine or the like, and an under portion of the neutron flux monitor housing 18 (hereinafter referred to as a long under housing) is cut. 18b is pulled downward from the lower mirror through hole 23 of the reactor pressure vessel 10.

その後、超音波内面探傷試験機(UT装置)や、浸透探
傷試験機(PT装置)、ヴィジュアル試験機(VT装置)等
を遠隔操作して欠陥部Aを特定する。この欠陥部Aを特
定するとともに、貫通孔23の下部をボアプラグ等の水栓
29で密封する。
Then, the ultrasonic internal flaw detector (UT device), the penetration flaw detector (PT device), the visual detector (VT device), etc. are remotely operated to specify the defect portion A. In addition to identifying this defective portion A, the lower part of the through hole 23 is provided with a faucet such as a bore plug.
Seal with 29.

その後、必要に応じて欠陥部Aのボートサンプ30a,30
bを採取するため、第1図(B)に示すように、溶接部
除去用(総型電極)放電加工機等により溶接部26を残り
の中性子束モニタハウジング18cとともに除去する。こ
の除去後に、円筒型のボートサンプル用放電加工機等に
より所要部分のボートサンプル30a,30bを試験片として
採取する。ボートサンプル30a,30bの採取は必要的なも
のではない。
Then, if necessary, the boat sump 30a, 30
In order to collect b, as shown in FIG. 1 (B), the welded portion 26 is removed together with the remaining neutron flux monitor housing 18c by a welded portion removing (general-purpose electrode) electric discharge machine or the like. After this removal, the boat samples 30a and 30b of the required portions are collected as test pieces by a cylindrical boat sample electric discharge machine or the like. It is not necessary to collect the boat samples 30a and 30b.

ボートサンプル30a,30bの採取後あるいはボートサン
プルが不要な場合には、長尺アッパおよびアンダハウジ
ング18a,18bの切断除去後、総型電極の欠陥除去用放電
加工機等により、原子炉圧力容器10の母材部を含めた欠
陥部Aを完全に取り除く。欠陥部Aを取り除いた後、取
り除かれた母材部表面を開先状態になめらかに形成し、
この開先面Bを浸透探傷試験機(PT装置)やヴィジュア
ル試験機(VT装置)で検査する。
After collecting the boat samples 30a, 30b or when the boat samples are not needed, after removing the long upper and the under housings 18a, 18b by cutting, the reactor pressure vessel 10 by the electric discharge machine for defect removal of the full-scale electrode, etc. The defect portion A including the base material portion is completely removed. After removing the defective portion A, the removed base material surface is smoothly formed into a groove state,
This groove surface B is inspected with a penetrant inspection tester (PT device) or a visual tester (VT device).

原子炉圧力容器10の母材部開先面Bを検査した後、原
子炉圧力容器10内の炉水を除去する。この炉水除去後
に、原子炉圧力容器10の貫通孔23内にガイドパイプ32を
挿入させ、このガイドパイプ挿入状態で母材部開先面B
にSCC対策を施した健全な材料である低合金鋼の3次元
肉盛り溶接を、3次元肉盛溶接機によりTemper Bead法
にて行ない、肉盛溶接部33を形成する。このときには、
ヒータ34に通電して局所加熱し、母材部内に残留する水
素を開先面Bから放出させる。
After inspecting the base material groove surface B of the reactor pressure vessel 10, the reactor water in the reactor pressure vessel 10 is removed. After removing the reactor water, the guide pipe 32 is inserted into the through hole 23 of the reactor pressure vessel 10, and the base material groove surface B is inserted in the guide pipe inserted state.
3D build-up welding of low alloy steel, which is a sound material with SCC countermeasures, is performed by the Temper Bead method using a 3D build-up welding machine to form the build-up welded portion 33. At this time,
The heater 34 is energized for local heating, and hydrogen remaining in the base material portion is released from the groove surface B.

3次元肉盛溶接機により母材部開先面Bに肉盛溶接を
した後、ガイドパイプ32を除去し、上記肉盛溶接部33の
表面を総型電極の放電加工機等により表面加工し、低合
金鋼の肉盛溶接部33の表面仕上げを第1図(C)に示す
ように行なう。この肉盛溶接部33は原子炉圧力容器10の
母材部の機械的強度を元の状態に復旧させ、維持してい
る。その際、肉盛溶接部33の表面はUT装置やPT装置によ
り原子炉圧力容器10内で遠隔操作により検査される。
After the overlay welding on the groove surface B of the base metal portion by the three-dimensional overlay welding machine, the guide pipe 32 is removed, and the surface of the overlay welding portion 33 is surface-processed by the electric discharge machine of the full-scale electrode or the like. Surface finishing of the overlay welding portion 33 of the low alloy steel is performed as shown in FIG. 1 (C). The build-up welded portion 33 restores and maintains the mechanical strength of the base metal portion of the reactor pressure vessel 10 to the original state. At that time, the surface of the weld overlay 33 is remotely inspected in the reactor pressure vessel 10 by the UT device or the PT device.

続いて、第1図(D)に示すように、原子炉圧力容器
10の外面研削機により、貫通孔部下側の原子炉圧力容器
外表面を研削し、研削した外表面にインコネル82やイン
コネル182等を2次元外面肉盛溶接機を用いて肉盛溶接
し、インコネルの肉盛溶接部35を形成する。この肉盛溶
接後にガイドパイプ32を取り除くようにしてもよい。
Then, as shown in FIG. 1 (D), the reactor pressure vessel
The outer surface of the reactor pressure vessel on the lower side of the through hole was ground with 10 outer surface grinding machines, and Inconel 82, Inconel 182, etc. were overlay welded to the ground outer surface using a two-dimensional external surface overlay welding machine. To form a weld overlay 35. The guide pipe 32 may be removed after this overlay welding.

また、第1図(E)に示すように、原子炉圧力容器10
の貫通孔23内を孔加工用放電加工機等を用いて孔加工し
て貫通孔内面を仕上げた後、貫通孔肉盛溶接機等を用い
てTemper Bead法によりインコネル82やNb入りのインコ
ネル182等で溶接し、肉盛溶接部36を形成する。上記肉
盛溶接後に成形加工用放電加工機等を用いて貫通孔23の
肉盛表面を成形加工し、貫通孔内表面に防錆加工を施
す。
Further, as shown in FIG. 1 (E), the reactor pressure vessel 10
After finishing the inner surface of the through-hole by using the electric discharge machine for hole-machining in the through-hole 23, the Inconel 82 and Nb-containing Inconel 182 by the Temper Bead method using the through-hole overlay welding machine etc. And the like to form the weld overlay 36. After the above overlay welding, the overlay surface of the through hole 23 is formed by using an electric discharge machine for forming, etc., and rustproofing is applied to the inner surface of the through hole.

一方、肉盛座外形成形加工用放電加工機等を用いて原
子炉圧力容器10の下側外表面に肉盛溶接をした肉盛溶接
部35の表面を成形加工して管台37を形成する。この管台
37は先端中央部が総型放電加工機等によりJ開先加工さ
れる。各加工面はUT装置やPT装置により検査される。
On the other hand, a nozzle 37 is formed by forming the surface of the overlay welding portion 35 obtained by overlay welding on the lower outer surface of the reactor pressure vessel 10 by using an electric discharge machine for overlay forming of the overlay seat. . This stub
The center of the tip of 37 is J-groove machined by a standard electric discharge machine. Each machined surface is inspected by UT equipment and PT equipment.

次に、新しい長尺アンダハウジング38が原子炉圧力容
器10の貫通孔23を介して下方から挿入されるとともに、
長尺アッパハウジング39(この長尺アッパハウジング39
は第1図(A)で切断除去した長尺アッパハウジング18
aであっても、あるいは中性子束モニタ案内管17であっ
てもよい。)に開先加工用放電加工機等を用いて開先加
工をしておく。この長尺アッパハウジング39に長尺アン
ダハウジング38の挿入先端が当接し、嵌合するまで挿入
する。
Next, a new elongated under housing 38 is inserted from below through the through hole 23 of the reactor pressure vessel 10, and
Long upper housing 39 (This long upper housing 39
Is the long upper housing 18 cut and removed in FIG. 1 (A).
It may be a or a neutron flux monitor guide tube 17. ), The groove is machined by using a groove electric discharge machine or the like. The long upper housing 39 is inserted until the insertion tip of the long under housing 38 comes into contact with and fits.

この挿入後、長尺アンダハウジング38を管台37に溶接
部40を介して溶着し、固定させる。この溶接部40を介し
て長尺アンダハウジング38を固定させることにより、原
子炉圧力容器10内は下方のプレッシャバウンダリから区
画される。その後、長尺アンダハウジング38を長尺アッ
パハウジング39に突き合せて溶接する。各溶接部はUT装
置やPT装置で検査されて中性子束モニタハウジング18の
補修作業が終了する。
After this insertion, the long under housing 38 is welded and fixed to the nozzle 37 via the weld 40. By fixing the long under housing 38 via the welded portion 40, the interior of the reactor pressure vessel 10 is partitioned from the lower pressure boundary. After that, the long under housing 38 is butted against the long upper housing 39 and welded. Each weld is inspected by the UT device or the PT device, and the repair work of the neutron flux monitor housing 18 is completed.

この補修作業終了後に、中性子束モニタハウジング18
内に中性子束モニタ本体16が挿入され、固定支持され
る。
After this repair work, the neutron flux monitor housing 18
The neutron flux monitor main body 16 is inserted therein and is fixedly supported.

なお、本発明の一実施例では、中性子束モニタハウジ
ングの補修方法について説明したが、CRDハウジングの
場合も同様にして適用することができる。
In the embodiment of the present invention, the method of repairing the neutron flux monitor housing has been described, but the same can be applied to the case of the CRD housing.

〔発明の効果〕〔The invention's effect〕

以上に述べたように本発明に係る中性子束モニタハウ
ジング等の長尺ハウジングの補修方法においては、長尺
ハウジング自身や原子炉容器の溶接部分に欠陥が生じた
り、潜在的に欠陥発生可能性が大きな場合に、該当部分
を母材部とともに除去し、強度部材となる母材除去部を
肉盛溶接して強度を維持させる一方、原子炉容器の下鏡
下側に管台を溶接にて固定し、この管台の溶接部を介し
て長尺ハウジングを固定させたから、欠陥部や潜在的な
欠陥発生可能部位を完全に除去し、長尺ハウジングの初
期支持構造と同等の機械的強度を有する支持構造に復旧
させることができ、炉水リークを有効的かつ確実に防止
でき、恒久的なリーク防止対策を施すことができる。
As described above, in the method for repairing a long housing such as the neutron flux monitor housing according to the present invention, a defect may occur in the welding portion of the long housing itself or the reactor vessel, and there is a possibility that a defect may occur. In the case of a large size, the relevant part is removed together with the base material, and the base material removal part that is the strength member is overlay welded to maintain the strength, while the nozzle stub is fixed by welding to the lower mirror side of the reactor vessel. Since the long housing was fixed via the welded part of this nozzle, defects and potential defect-causing parts were completely removed, and it had the same mechanical strength as the initial support structure of the long housing. The support structure can be restored, reactor water leaks can be effectively and reliably prevented, and permanent leak prevention measures can be taken.

【図面の簡単な説明】[Brief description of drawings]

第1図(A)ないし(F)は本発明に係る長尺ハウジン
グの補修方法の一実施例を示す作業ステップ図、第2図
は沸騰水型原子炉の下部構造を示す図、第3図は第2図
の原子炉圧力容器に固定支持される中性子束検出器を示
す図、第4図は上記中性子束検出器の中性子束モニタハ
ウジングを原子炉圧力容器に固定支持させる取付構造を
示す図、第5図は従来の沸騰水型原子炉に取付けられる
中性子束検出器の設置例を概略的に示す図である。 3……炉心、5……上部格子板、10……原子炉圧力容
器、13……制御棒駆動機構、14……CRDハウジング、15
……中性子束検出器、16……中性子束モニタ本体、17…
…中性子束モニタ案内管、18……中性子束モニタハウジ
ング、18a……長尺アンダハウジング、18b……長尺アッ
パハウジング、23……貫通孔、25……管台(溶接部)、
26……溶接部、28,29……水栓、A,A1……欠陥部、30…
…取付座、32……ガイドパイプ、33,35,36……肉盛溶接
部、34……ヒータ、37……管台、38……長尺アンダハウ
ジング、39……長尺アパハウジング、40……溶接部。
1 (A) to 1 (F) are operation step diagrams showing an embodiment of a method for repairing a long housing according to the present invention, FIG. 2 is a diagram showing a lower structure of a boiling water reactor, and FIG. Is a diagram showing a neutron flux detector fixedly supported by the reactor pressure vessel of FIG. 2, and FIG. 4 is a diagram showing a mounting structure for fixing and supporting a neutron flux monitor housing of the neutron flux detector to the reactor pressure vessel. FIG. 5 is a diagram schematically showing an installation example of a neutron flux detector attached to a conventional boiling water reactor. 3 ... Reactor core, 5 ... Upper lattice plate, 10 ... Reactor pressure vessel, 13 ... Control rod drive mechanism, 14 ... CRD housing, 15
…… Neutron flux detector, 16 …… Neutron flux monitor main body, 17…
… Neutron flux monitor guide tube, 18 …… Neutron flux monitor housing, 18a …… Long under housing, 18b …… Long upper housing, 23 …… Through hole, 25 …… Stubstock (welded part),
26 …… Welded area, 28,29 …… Water faucet, A, A 1 … Defective area, 30…
… Mounting seat, 32 …… Guide pipe, 33,35,36 …… Overlay weld, 34 …… Heater, 37 …… Stubstock, 38 …… Long under housing, 39 …… Long aper housing, 40 ……welded part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 雅弘 東京都港区芝浦1丁目1番1号 株式会 社東芝本社事務所内 (72)発明者 高橋 勝 東京都港区芝浦1丁目1番1号 株式会 社東芝本社事務所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Masahiro Kobayashi 1-1-1, Shibaura, Minato-ku, Tokyo Inside Toshiba Headquarters office (72) Inventor Masaru Takahashi 1-1-1, Shibaura, Minato-ku, Tokyo Stock company Toshiba Head Office

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原子炉容器の下鏡溶接部に固定支持された
中性子束モニタハウジング等の長尺ハウジングを、溶接
部の上下方でそれぞれ切断して長尺アッパハウジングお
よび長尺アンダハウジングを取り除いた後、原子炉容器
の母材部を含む欠陥部位あるいは潜在的な欠陥発生可能
部位を除去し、続いて強度部材となる母材除去部を肉成
溶接して元に復旧させ、その後、原子炉容器の下鏡貫通
孔部下側に管台を溶接により形成するとともに上記下鏡
貫通孔内に防錆対策を施し、次に長尺アンダハウジング
を下鏡貫通孔内に下方から挿入して前記管台に溶接にて
固定するとともに上記長尺アンダハウジングの挿入先端
を長尺アッパハウジングに溶接にて固定することを特徴
とする長尺ハウジングの補修方法。
1. A long housing, such as a neutron flux monitor housing, which is fixedly supported on a lower mirror welded portion of a reactor vessel, is cut above and below the welded portion to remove the long upper housing and the long under housing. After that, the defective part including the base metal part of the reactor vessel or the part where potential defects could occur is removed, and then the base material removal part that is the strength member is welded to the original to restore it. A nozzle is formed by welding on the lower side of the lower mirror through hole of the furnace vessel and rust prevention measures are taken in the lower mirror through hole, and then a long under housing is inserted from below into the lower mirror through hole. A method for repairing a long housing, characterized in that the long under housing is fixed to the nozzle by welding and the insertion tip of the long under housing is fixed to the long upper housing by welding.
JP63255430A 1988-10-11 1988-10-11 How to repair a long housing Expired - Lifetime JP2530010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63255430A JP2530010B2 (en) 1988-10-11 1988-10-11 How to repair a long housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63255430A JP2530010B2 (en) 1988-10-11 1988-10-11 How to repair a long housing

Publications (2)

Publication Number Publication Date
JPH02102492A JPH02102492A (en) 1990-04-16
JP2530010B2 true JP2530010B2 (en) 1996-09-04

Family

ID=17278660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63255430A Expired - Lifetime JP2530010B2 (en) 1988-10-11 1988-10-11 How to repair a long housing

Country Status (1)

Country Link
JP (1) JP2530010B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8867688B2 (en) 2010-01-18 2014-10-21 Mitsubishi Heavy Industries, Ltd. Nozzle mounting structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075453A (en) 2009-09-30 2011-04-14 Mitsubishi Heavy Ind Ltd Nozzle welding method, nozzle part repair method, and nozzle welded structure
JP5851694B2 (en) * 2011-01-07 2016-02-03 三菱重工業株式会社 Cylindrical weld forming method and welding apparatus
JP5800561B2 (en) * 2011-04-28 2015-10-28 三菱重工業株式会社 Temper Bead Welding Repair Method
JP5970404B2 (en) * 2013-03-28 2016-08-17 日立Geニュークリア・エナジー株式会社 Investigation equipment inside the reactor pressure vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8867688B2 (en) 2010-01-18 2014-10-21 Mitsubishi Heavy Industries, Ltd. Nozzle mounting structure

Also Published As

Publication number Publication date
JPH02102492A (en) 1990-04-16

Similar Documents

Publication Publication Date Title
US5145637A (en) Incore housing examination system
Baikie et al. Ultrasonic inspection of austenitic welds
JP2530010B2 (en) How to repair a long housing
JP2530011B2 (en) How to repair a long housing
EP0461763B1 (en) Non-destructive examination system
Baque Review of in-service inspection and repair technique developments for French liquid metal fast reactors
Sollier Nuclear steam generator inspection and testing
JP2519316B2 (en) Repair method for long housing and repair structure
JPH06103355B2 (en) Method of repairing neutron flux monitor housing
Farley An overview of non destructive inspection services in nuclear power plants
JP3456783B2 (en) How to replace core shroud
US9281085B2 (en) Method of providing and evaluating a mid-wall repair
JPH02102491A (en) Method for repairing long-sized housing and structure for supporting this housing
JP3425217B2 (en) Sealing device for repairing pressure vessel penetration housing
Glass et al. Inspection and repair techniques and strategies for alloy 600 PWSCC in reactor vessel head CRD nozzles and welds
Ranganath et al. Proactive approaches to assure the structural integrity of boiling water reactor components
Hess et al. Visualization of the resistance spot welding process in the production line
Glass et al. Inspection and repair technology for BMI penetrations
JPH09159789A (en) Brushing device for pressure vessel penetration housing
Cattant Nickel Base Alloys
Fujimaki et al. Reliability tests for reactor internals replacement technology
FUJIMAKI et al. RELIABILITY TESTS FOR REACTOR INTERNALS XA0055988 REPLACEMENT TECHNOLOGY
Farley et al. Visual inspection of reactor vessel head penetration nozzles
JPH03135794A (en) Processing method for long-sized housing
LMFBRS Intemotionol Atomic Energy Agency