JP2510588B2 - Gas turbine exhaust damper operating method - Google Patents

Gas turbine exhaust damper operating method

Info

Publication number
JP2510588B2
JP2510588B2 JP62139794A JP13979487A JP2510588B2 JP 2510588 B2 JP2510588 B2 JP 2510588B2 JP 62139794 A JP62139794 A JP 62139794A JP 13979487 A JP13979487 A JP 13979487A JP 2510588 B2 JP2510588 B2 JP 2510588B2
Authority
JP
Japan
Prior art keywords
exhaust
gas turbine
damper
gas
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62139794A
Other languages
Japanese (ja)
Other versions
JPS63306240A (en
Inventor
庸正 西嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62139794A priority Critical patent/JP2510588B2/en
Publication of JPS63306240A publication Critical patent/JPS63306240A/en
Application granted granted Critical
Publication of JP2510588B2 publication Critical patent/JP2510588B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガスタービンの排気部に設置されるダンパ
の運転法に関する。
Description: TECHNICAL FIELD The present invention relates to a method of operating a damper installed in an exhaust portion of a gas turbine.

〔従来の技術〕[Conventional technology]

ガスタービンの排熱を回収し、蒸気タービンを駆動す
る、いわゆる、コンバインドプラントは、熱効率43〜45
%の高効率を達成し、将来、高効率化が期待出来るた
め、発電設備の主要な一分野を占めつつある。ガスター
ビンは、単機容量が現状、100MW級であり、大型発電所
を構成するには、複数台のガスタービン、及び、蒸気タ
ービンを並べた配置とせざるを得ない。そのため、ガス
タービン排気は、複数のダクトが並走し、煙突より大気
に放出される形式となるが、プラントをコンパクト化
し、かつ、設備費を低減するため、複数のダクトを結合
し、一本の大型煙突で、大気に放出する方式が多く採用
されている。第3図,第4図に、その一例を示す。1は
ガスタービン、2は排熱回収ボイラ、脱硝装置等の設
備、3は排気ダンパ、4は煙突、5はガスタービン排気
ダクト、6は集合ダクトを示す。ダンパ3以降の排気系
は配置の関係上、特に、長大なものとなるため、出来る
限り小型化する事が、配置のコンパクト化,設備費の低
減の点から望ましいが、次の様な問題が、小型化を阻害
している。
The so-called combined plant, which recovers the exhaust heat of the gas turbine and drives the steam turbine, has a thermal efficiency of 43 to 45.
%, It can be expected to achieve high efficiency in the future, so it is occupying one of the major fields of power generation equipment. The gas turbine currently has a single-unit capacity of 100 MW class, and in order to configure a large power plant, it is unavoidable to arrange a plurality of gas turbines and a steam turbine side by side. Therefore, the gas turbine exhaust has a form in which multiple ducts run side by side and is discharged into the atmosphere from the chimney, but in order to make the plant compact and reduce the equipment cost, multiple ducts are combined and In the large chimney, the method of releasing into the atmosphere is often adopted. An example thereof is shown in FIGS. 3 and 4. Reference numeral 1 is a gas turbine, 2 is equipment such as an exhaust heat recovery boiler, a denitration device, 3 is an exhaust damper, 4 is a chimney, 5 is a gas turbine exhaust duct, and 6 is a collecting duct. Since the exhaust system after the damper 3 is particularly long due to the layout, it is desirable to make the size as small as possible from the viewpoints of compact layout and reduction of equipment cost, but the following problems occur. , Hinders miniaturization.

すなわち、小型化すると、排気圧損が上昇するが、そ
の結果として、集合ダクト6での排気圧力が上昇し、例
えば、一台を停止した状態(ダンパ3は閉)から起動し
ようとすると、ダンパ3を開くと同時に、排気側から高
温の排気ガスが、逆流する事になる。高温排ガスの逆流
は、次の点により、ガスタービンに、大きなダメージを
与える危険性がある。
That is, when the size is reduced, the exhaust pressure loss increases, but as a result, the exhaust pressure in the collecting duct 6 increases, and, for example, if one unit is stopped (the damper 3 is closed), the damper 3 is started. At the same time as opening, the hot exhaust gas will flow back from the exhaust side. The backflow of high-temperature exhaust gas has a risk of seriously damaging the gas turbine due to the following points.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

(1)高温の排ガスの逆流入により、圧縮機,吸気系部
品等、高温ガスの流れを予定していない部品が、熱伸び
による摺動、高温による破損等のトラブルを生じる。
(1) Due to the reverse inflow of high-temperature exhaust gas, compressors, intake system parts, and other parts that do not plan to flow high-temperature gas may experience troubles such as sliding due to thermal expansion and damage due to high temperatures.

(2)圧縮機は起動時、低回転域において、サージ域が
非常に低い値となるため、高い逆圧(背圧)が発生して
いる状態で駆動すると、サージ運転となる危険性があ
る。
(2) Since the compressor has a very low surge value in the low rotation speed range at startup, there is a risk of surge operation if it is driven with a high back pressure (back pressure). .

このため、排ガスダクト6部以降は、出来るだけ、正
の背圧を発生させないよう、低圧損の大型ダクトとし、
かつ、燃突も、大型,長大なものとし、ドラフト力をき
かせて、可能な限り、ダクト部で発生する圧損を相殺す
るような設計としている。
For this reason, the exhaust gas duct 6 and subsequent parts should be large ducts with low pressure loss to prevent generation of positive back pressure as much as possible.
Moreover, the fuel stack is also large and long, and is designed to maximize the draft force and to offset the pressure loss generated in the duct section as much as possible.

〔課題を解決するための手段〕[Means for solving the problem]

本発明のガスタービン排気ダンパ運転法は、複数のガ
スタービンからの排ガスが複数の排熱回収ボイラを介し
て流れ、これらの流れが集まる集合ダクトを介して排ガ
スが排出されると共に、その排ガスの流れを、排熱回収
ボイラの下流側のダクトに設置された第1の排ガスダン
パ及び排熱回収ボイラの上流側から分岐したダクトに設
置された第2の排ガスダンパで制御するものである。
In the gas turbine exhaust damper operating method of the present invention, exhaust gas from a plurality of gas turbines flows through a plurality of exhaust heat recovery boilers, and the exhaust gas is discharged through a collecting duct where these flows are collected, and the exhaust gas The flow is controlled by the first exhaust gas damper installed in the duct on the downstream side of the exhaust heat recovery boiler and the second exhaust gas damper installed in the duct branched from the upstream side of the exhaust heat recovery boiler.

そして、前記複数のガスタービンの内、一つのガスタ
ービンが停止し、他のガスタービンが駆動し、前記停止
しているガスタービンを起動する場合、前記ガスタービ
ンから吐出される空気の圧力が、前記集合ダクト内の圧
力より大きくなった時に、前記停止しているガスタービ
ンの第1の排ガスダンパを閉状態から開状態とし、前記
停止しているガスタービンの第2の排ガスダンパを開状
態から閉状態とすることを特徴とする。
Then, among the plurality of gas turbines, one gas turbine is stopped, another gas turbine is driven, and when the stopped gas turbine is started, the pressure of air discharged from the gas turbine is The first exhaust gas damper of the stopped gas turbine is changed from the closed state to the open state and the second exhaust gas damper of the stopped gas turbine is changed from the open state when the pressure becomes higher than the pressure in the collecting duct. It is characterized by being in a closed state.

〔作用〕[Action]

本発明では、排気ダンパ3の上流側に、放風ダクトを
設置し、放風ダクト内に設けた、ダンパと排気ダンパ3
とを切換え、起動時は、排気ダンパ3閉、放風ダンパ開
の状態で起動し、圧縮機吐出圧力が背圧に打ち勝つ条件
になつた時点以降で、排気ダンパ3を開き、放風ダンパ
を閉じる事により、サージ域に入る事なく、ガスタービ
ンを起動させ、集合ダクト6に接続させる事ができる。
停止時も燃料遮断後、放風ダンパを開き、排気ダンパ3
を閉じる事により、安全に集合ダクト6より切離し、ガ
スタービンを停止させることが出来る。
According to the present invention, a ventilation duct is installed on the upstream side of the exhaust damper 3, and the damper and the exhaust damper 3 are provided inside the ventilation duct.
, And when starting, with the exhaust damper 3 closed and the blow-off damper open, and after the compressor discharge pressure exceeds the back pressure, open the exhaust damper 3 and open the blow-off damper. By closing, the gas turbine can be started and connected to the collecting duct 6 without entering the surge area.
After shutting off the fuel even when stopped, open the blow-off damper and set the exhaust damper 3
Can be safely disconnected from the collecting duct 6 and the gas turbine can be stopped.

又、本発明では、放風ダクトより大気に放出される気
体は、圧縮機吐出の空気のみであり、燃焼生成物が直
接、大気に放出される事が無いため、環境対策上の問題
が無い。
Further, in the present invention, the gas released from the blow duct to the atmosphere is only the air discharged from the compressor, and the combustion products are not directly released to the atmosphere, so there is no problem in terms of environmental measures. .

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 Hereinafter, an embodiment of the present invention will be described with reference to FIG.

第1図において、7は、排気ダンパ3の上流側ダクト
より分岐された、大気への放風ダクト、8は、放風ダク
ト7内に設置された放風ダンパである。
In FIG. 1, reference numeral 7 denotes an air blowing duct branched from the upstream duct of the exhaust damper 3 to the atmosphere, and 8 denotes an air blowing damper installed in the air blowing duct 7.

本発明になる排気系の運転方法を第2図により説明す
る。
The method of operating the exhaust system according to the present invention will be described with reference to FIG.

ガスタービン起動時は、ダンパ3を閉じ、ダンパ8を
開く状態であり、基本的には、背圧0の状態であるの
で、ガスタービンは、全くサージの心配なく起動装置か
らの動力により、起動を開始する。起動昇速に伴い圧縮
機吐出圧力は次第に上昇し、ダンパ3の下流側圧力に打
ち勝つて、排気(空気)を、集合ダクト6に放出するこ
とが可能な状態となる。この状態で確立した後、昇速し
ながら、又は、ある速度状態を保持しながら、ダンパ3
を開き、次に、ダンパ8を閉じる事により、排気(空
気)は、集合ダクト6へ流入する様に切替えられる。切
替え完了後、ガスタービンを着火条件に移行させ、着
火,昇速と、通常の起動過程を実行させる。
When the gas turbine is started, the damper 3 is closed and the damper 8 is opened. Basically, the back pressure is 0. Therefore, the gas turbine is started by the power from the starter without any fear of surge. To start. The compressor discharge pressure gradually increases as the engine speed increases, and the exhaust pressure (air) can be discharged to the collecting duct 6 by overcoming the downstream pressure of the damper 3. After being established in this state, the damper 3 is moved while increasing speed or maintaining a certain speed state.
The exhaust (air) is switched so as to flow into the collecting duct 6 by opening and then closing the damper 8. After the switching is completed, the gas turbine is shifted to the ignition condition, and the ignition, the acceleration and the normal starting process are executed.

停止時は、燃料遮断後、降速過程の途中で、ダンパ8
を開き、次いで、ダンパ3を閉じる事により、ガスター
ビン排気(空気)を、大気放風させながら、事実上、背
圧0で、ガスタービンを停止させる。
At the time of stopping, after shutting off the fuel, the damper 8
And then the damper 3 is closed to blow the gas turbine exhaust (air) to the atmosphere, and the gas turbine is stopped with a back pressure of virtually zero.

本発明により、ガスタービンの高背圧発生時の起動,
停止が可能となり、排気系に正の排気圧力が掛かる事を
許容出来る事になるので、排気系を小型化する事が可能
となり、設備費低減に大いに寄与する。
According to the present invention, starting of a gas turbine when a high back pressure occurs,
Since it is possible to stop and allow positive exhaust pressure to be applied to the exhaust system, it is possible to downsize the exhaust system and greatly contribute to equipment cost reduction.

又、本発明による放風ダクトは、通常、低速域にのみ
使用されるものであり、放風流量は、定格運転状態の5
%以下であるため、主排気ダクト化に比べて、非常に小
型のもので済み、設備費の増加額は、排気ダクト小型化
による低減額に比べて、著しく小さい。
Further, the air discharge duct according to the present invention is normally used only in the low speed range, and the air flow rate is 5 when the rated operation state is 5
%, It is much smaller than the main exhaust duct, and the increase in equipment cost is significantly smaller than the reduction due to the miniaturization of the exhaust duct.

〔発明の効果〕〔The invention's effect〕

本発明によれば、小型の放風ダクト系を適切に設置す
ることによつて、排気ダクト及び下流側設備を、小型化
する事ができ、プラントのスペースの低減、及び、設備
費の低減に大きく寄与する。
According to the present invention, by appropriately installing a small blower duct system, the exhaust duct and the downstream equipment can be downsized, and the plant space can be reduced and the equipment cost can be reduced. Make a big contribution.

【図面の簡単な説明】 第1図は、本発明の一実施例のガスタービン排気系統
図、第2図は、本発明になる排気系を有するガスタービ
ンの起動,停止シーケンス図、第3図は、複数のガスタ
ービン設備の集合排ガスダクト系統図、第4図は低回転
域では圧縮機特性図である。 1……ガスタービン、2……排熱回収ボイラ,脱硝装置
等、3……排ガスダンパ。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a gas turbine exhaust system diagram of an embodiment of the present invention, FIG. 2 is a start / stop sequence diagram of a gas turbine having an exhaust system according to the present invention, and FIG. FIG. 4 is a system diagram of a collective exhaust gas duct of a plurality of gas turbine facilities, and FIG. 4 is a compressor characteristic diagram in a low rotation range. 1 ... Gas turbine, 2 ... Exhaust heat recovery boiler, denitration device, etc. 3 ... Exhaust gas damper.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数のガスタービンからの排ガスが複数の
排熱回収ボイラを介して流れ、これらの流れが集まる集
合ダクトを介して排ガスが排出されると共に、その排ガ
スの流れを、排熱回収ボイラの下流側のダクトに設置さ
れた第1の排ガスダンパ及び排熱回収ボイラの上流側か
ら分岐したダクトに設置された第2の排ガスダンパで制
御するガスタービン排気ダンパ運転法において、 前記複数のガスタービンの内、一つのガスタービンが停
止し、他のガスタービンが駆動し、前記停止しているガ
スタービンを起動する場合、前記ガスタービンから吐出
される空気の圧力が、前記集合ダクト内の圧力より大き
くなった時に、 前記停止しているガスタービンの第1の排ガスダンパを
閉状態から開状態とし、前記停止しているガスタービン
の第2の排ガスダンパを開状態から閉状態とすることを
特徴とするガスタービン排気ダンパ運転法。
1. Exhaust gas from a plurality of gas turbines flows through a plurality of exhaust heat recovery boilers, and the exhaust gas is discharged through a collecting duct where these flows are collected. In the gas turbine exhaust damper operating method controlled by the first exhaust gas damper installed in the duct on the downstream side of the boiler and the second exhaust gas damper installed in the duct branched from the upstream side of the exhaust heat recovery boiler, When one of the gas turbines is stopped and the other gas turbine is driven to start the stopped gas turbine, the pressure of the air discharged from the gas turbine is When the pressure becomes larger than the pressure, the first exhaust gas damper of the stopped gas turbine is changed from the closed state to the open state, and the first exhaust gas damper of the stopped gas turbine is changed to the second state. Gas turbine exhaust damper operation method which is characterized in that the closed state of the exhaust gas damper from the open state.
JP62139794A 1987-06-05 1987-06-05 Gas turbine exhaust damper operating method Expired - Lifetime JP2510588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62139794A JP2510588B2 (en) 1987-06-05 1987-06-05 Gas turbine exhaust damper operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62139794A JP2510588B2 (en) 1987-06-05 1987-06-05 Gas turbine exhaust damper operating method

Publications (2)

Publication Number Publication Date
JPS63306240A JPS63306240A (en) 1988-12-14
JP2510588B2 true JP2510588B2 (en) 1996-06-26

Family

ID=15253580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62139794A Expired - Lifetime JP2510588B2 (en) 1987-06-05 1987-06-05 Gas turbine exhaust damper operating method

Country Status (1)

Country Link
JP (1) JP2510588B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4820669B2 (en) * 2006-03-16 2011-11-24 株式会社荏原製作所 Exhaust device and exhaust device operation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660809A (en) * 1979-10-19 1981-05-26 Hitachi Ltd Purging method of combined plant

Also Published As

Publication number Publication date
JPS63306240A (en) 1988-12-14

Similar Documents

Publication Publication Date Title
KR101577611B1 (en) Flushing the exhaust gas recirculation lines of a gas turbine
JP2009052548A (en) System and method for extending gas turbine emission compliance
US8172521B2 (en) Compressor clearance control system using turbine exhaust
JPS61237802A (en) Warming-up method for steam turbine
JPH11257023A (en) Operation method for gas turbine group
CN113710885A (en) Pressurized air supply system, fuel cell system provided with same, and method for starting pressurized air supply system
EP3354877B1 (en) Steam turbine preheating system
JP2510588B2 (en) Gas turbine exhaust damper operating method
JPH08200015A (en) Method for operating combined plant
JP3919966B2 (en) Operation method of combined cycle power plant
JP4202583B2 (en) Denitration control method and apparatus for combined cycle power plant
US10100661B2 (en) Method for operating a gas turbine arrangement
US6412269B1 (en) Method for operating an engine system including a gas turbine engine, an inverted Brayton cycle apparatus having blow-in doors and blow-out doors for engine protection
JPH09256814A (en) Diesel engine plant
JP3641030B2 (en) Safety valve operation test method for combined cycle power plant
JPH03908A (en) Starting method for combined cycle plant
JP3769827B2 (en) Intercooler switching control device for humid air gas turbine equipment
JPS62294724A (en) Turbine casing cooler for turbocharger
JP3446185B2 (en) Operating method of steam-cooled gas turbine
JPH10306920A (en) Waste gas duct device and waste heat recovering boiler equipped with the same
JP2011007101A (en) Regenerative cycle gas turbine system
JP6783043B2 (en) Thermal energy saving method for combined cycle power plant
JPH0341644B2 (en)
JP2886211B2 (en) Combined cycle power plant
JPH0711975A (en) Gas turbine device