JP2507246B2 - Method for reactivating carbonic acid ester synthesis catalyst - Google Patents

Method for reactivating carbonic acid ester synthesis catalyst

Info

Publication number
JP2507246B2
JP2507246B2 JP3230840A JP23084091A JP2507246B2 JP 2507246 B2 JP2507246 B2 JP 2507246B2 JP 3230840 A JP3230840 A JP 3230840A JP 23084091 A JP23084091 A JP 23084091A JP 2507246 B2 JP2507246 B2 JP 2507246B2
Authority
JP
Japan
Prior art keywords
catalyst
carbonic acid
acid ester
copper
hydrogen halide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3230840A
Other languages
Japanese (ja)
Other versions
JPH0549947A (en
Inventor
正夫 外崎
憲二 森
美紀 戸嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP3230840A priority Critical patent/JP2507246B2/en
Publication of JPH0549947A publication Critical patent/JPH0549947A/en
Application granted granted Critical
Publication of JP2507246B2 publication Critical patent/JP2507246B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】炭酸エステルは、ガソリンの増量
剤、オクタン価向上剤、有機溶剤として、またイソシア
ネート類、ポリカーボネート類ならびに種々の農薬、医
薬中間体の製造におけるホスゲンに代る反応剤として重
要な化合物である。本発明は、アルコールを一酸化炭素
及び酸素と反応させることによる炭酸エステルの合成に
用いて活性が低下したトリフェニルホスフィン及びハロ
ゲン化銅を担体に担持してなる触媒を再活性化する方法
に関するものである。
[Industrial application] Carbonic acid esters are important as gasoline extenders, octane number improvers, organic solvents, and as a substitute for phosgene in the production of isocyanates, polycarbonates and various agricultural chemicals and pharmaceutical intermediates. It is a compound. The present invention relates to a method for reactivating a catalyst having triphenylphosphine and copper halide having reduced activity, which are used for the synthesis of a carbonic acid ester by reacting an alcohol with carbon monoxide and oxygen, on a carrier. Is.

【0002】[0002]

【従来の技術】国際特許出願公開WO87/07601号公報には
ハロゲン化銅を担体(活性炭、アルミナ、チタニア、シ
リカ等)に担持した触媒の存在下でアルコール、一酸化
炭素及び酸素を気相で反応させる炭酸ジエステルの製造
法が提案され、塩化第二銅/活性炭触媒の再活性化法と
して、水分を除去するために不活性ガス雰囲気下で触媒
を乾燥し、次いで乾燥後の触媒を不活性ガスまたは空気
で希釈したハロゲン化水素ガスで処理する方法が述べら
れている。
2. Description of the Related Art International Patent Application Publication No. WO87 / 07601 discloses that alcohol, carbon monoxide and oxygen are vapor-phased in the presence of a catalyst in which a copper halide is supported on a carrier (activated carbon, alumina, titania, silica, etc.). A method for producing a carbonic acid diester to be reacted has been proposed. As a method for reactivating a cupric chloride / activated carbon catalyst, the catalyst is dried under an inert gas atmosphere to remove water, and then the catalyst after drying is inactivated. A method of treatment with hydrogen halide gas diluted with gas or air is described.

【0003】先に本発明者らは、トリフェニルホスフィ
ン及びハロゲン化水素を担持してなる触媒、例えば一般
式Cu(PPh3)nX [PPh3=P(C6H5)3;x =ハロゲン;n =1,
2又は3]で示されるトリフェニルホスフィン・銅錯体を
活性炭に担持してなる炭酸エステル製造用触媒を提案し
た(国際特許出願公開WO90/15791)が、使用
して活性が低下したこの触媒に前記の再活性化法、即ち
不活性ガス雰囲気下で触媒を乾燥し、次いで乾燥後の触
媒を不活性ガスまたは空気で希釈したハロゲン化水素ガ
スで処理する方法を適用しても効果が認められなかっ
た。
Previously, the inventors of the present invention have found that a catalyst having triphenylphosphine and hydrogen halide supported thereon, for example, a general formula Cu (PPh 3 ) n X [PPh 3 = P (C 6 H 5 ) 3 ; x = Halogen; n = 1,
2 or 3] has proposed a catalyst for producing a carbonic acid ester in which activated carbon is loaded with a triphenylphosphine / copper complex (International Patent Application Publication WO 90/15791). No effect was observed even if the reactivation method of 1), that is, the method of drying the catalyst in an inert gas atmosphere and then treating the dried catalyst with an inert gas or a hydrogen halide gas diluted with air was applied. It was

【0004】[0004]

【発明が解決しようとする課題】本発明は、アルコール
を一酸化炭素及び酸素と反応させることによる炭酸エス
テルの合成に用いて活性が低下したトリフェニルホスフ
ィン及びハロゲン化銅を担体に担持してなる触媒を再活
性化する方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION According to the present invention, a carrier is loaded with triphenylphosphine and copper halide, which have been used in the synthesis of carbonic acid ester by reacting an alcohol with carbon monoxide and oxygen and whose activity has been reduced. It is an object to provide a method for reactivating a catalyst.

【0005】[0005]

【課題を解決するための手段】本発明にかかわる炭酸エ
ステル合成触媒の再活性化方法は、アルコールを一酸化
炭素及び酸素と反応させることによる炭酸エステルの合
成に用いて活性が低下したトリフェニルホスフィン及び
ハロゲン化銅を担体に担持してなる触媒を、還元性ガス
雰囲気下でハロゲン化水素含有ガスと接触させるか、又
は予め還元性ガスで処理した後ハロゲン化水素含有ガス
と接触させることを特徴とする。
The method for reactivating a carbonic acid ester synthesis catalyst according to the present invention is a triphenylphosphine having a reduced activity used in the synthesis of a carbonic acid ester by reacting an alcohol with carbon monoxide and oxygen. And a catalyst in which copper halide is supported on a carrier is brought into contact with a hydrogen halide-containing gas in a reducing gas atmosphere, or is treated with a reducing gas in advance and then brought into contact with the hydrogen halide-containing gas. And

【0006】活性が低下した触媒を還元性ガス雰囲気下
でハロゲン化水素含有ガスと接触させる処理温度は20
0〜300℃、好ましくは200〜270℃とする。還
元性ガスとしてはH2 、COなどが挙げられる。処理時
間は0.5時間以上、通常は0.5〜3時間程度で充分
である。
The treatment temperature for contacting the catalyst with reduced activity with the hydrogen halide-containing gas under a reducing gas atmosphere is 20.
The temperature is set to 0 to 300 ° C, preferably 200 to 270 ° C. Examples of the reducing gas include H 2 and CO. A treatment time of 0.5 hours or more, usually about 0.5 to 3 hours is sufficient.

【0007】ハロゲン化水素としては弗化水素、塩化水
素、臭化水素、沃化水素あるいはそれらの水溶液等が挙
げられるが、処理条件でハロゲン化水素を生成するもの
ならば、ハロゲンや有機ハロゲン化合物を導入してもよ
い。ガス中のハロゲン化水素の量としては0.1〜5モ
ル%程度が好ましい。還元性ガスの量は1〜80モル
%、特に10〜70モル%が望ましい。GHSVは50
〜1000h-1、好ましくは50〜500h-1とするの
が良い。還元性ガス雰囲気下でハロゲン化水素含有ガス
で処理する際、水蒸気を存在させることが好ましい。ガ
ス中の水蒸気の量としては30〜90%が好ましい。ハ
ロゲン化水素源としてハロゲン化水素水溶液を使用すれ
ば、ハロゲン化水素と水蒸気を同時に供給することがで
きる。またN2 、He、Ar等の不活性ガスが存在して
いてもかまわない。
Examples of the hydrogen halide include hydrogen fluoride, hydrogen chloride, hydrogen bromide, hydrogen iodide, and aqueous solutions thereof. If hydrogen halide is produced under the processing conditions, halogen or an organic halogen compound is used. May be introduced. The amount of hydrogen halide in the gas is preferably about 0.1-5 mol%. The amount of reducing gas is preferably 1 to 80 mol%, particularly preferably 10 to 70 mol%. GHSV is 50
˜1000 h −1 , preferably 50 to 500 h −1 . It is preferable that water vapor be present during the treatment with the hydrogen halide-containing gas under a reducing gas atmosphere. The amount of water vapor in the gas is preferably 30 to 90%. If an aqueous solution of hydrogen halide is used as the hydrogen halide source, hydrogen halide and steam can be supplied at the same time. Further, an inert gas such as N 2 , He or Ar may be present.

【0008】また、活性が低下した触媒を予め還元性ガ
スで処理した後ハロゲン化水素含有ガスと接触させる場
合には、還元性ガスでの処理温度としては150〜25
0℃が好ましく、処理時間は0.5〜2時間、還元性ガ
スの流量は0.1〜5Nl/hr(GHSV:14〜7
14hr-1)とするのが良い。還元性ガスによる処理
は、N2 、He、Ar等の不活性ガスの存在下、あるい
は不存在下のいずれで行っても良い。このように還元性
ガスで処理した後の触媒は、次いでハロゲン化水素含有
ガスと接触させる。ハロゲン化水素含有ガスによる処理
温度としては200〜300℃、好ましくは200〜2
70℃であり、処理時間は0.5〜3時間程度で良い。
ハロゲン化水素含有ガスとしては、ガス中のハロゲン化
水素含有量が0.1〜5モル%程度のものが好ましく、
それ以外の成分としてN2 、He、Ar等の不活性ガス
を含有するものである。さらに水蒸気を含有するもので
も良く、ガス中の水蒸気含有量としては30〜90モル
%が好ましい。GHSVは50〜1000hr-1、好ま
しくは50〜500hr-1とするのが良い。
When the catalyst with reduced activity is treated with a reducing gas in advance and then brought into contact with a hydrogen halide-containing gas, the treating temperature with the reducing gas is 150 to 25.
0 ° C. is preferable, the treatment time is 0.5 to 2 hours, and the flow rate of the reducing gas is 0.1 to 5 Nl / hr (GHSV: 14 to 7).
14 hr -1 ) is good. The treatment with a reducing gas may be performed in the presence or absence of an inert gas such as N 2 , He, Ar or the like. The catalyst thus treated with a reducing gas is then contacted with a hydrogen halide-containing gas. The treatment temperature with the hydrogen halide-containing gas is 200 to 300 ° C., preferably 200 to 2
The temperature is 70 ° C., and the treatment time may be about 0.5 to 3 hours.
The hydrogen halide-containing gas preferably has a hydrogen halide content of about 0.1 to 5 mol%,
As other components, it contains an inert gas such as N 2 , He and Ar. Further, it may contain water vapor, and the content of water vapor in the gas is preferably 30 to 90 mol%. The GHSV is 50 to 1000 hr -1 , preferably 50 to 500 hr -1 .

【0009】本発明が適用される炭酸エステル製造用触
媒は、トリフェニルホスフィン及びハロゲン化銅を担体
に担持してなるものである。担体としては表面積30m
2 /g以上の多孔質の担体が好ましく、活性炭、酸化チ
タン、酸化ジルコニウム、酸化ニオブ、シリカ、アルミ
ナ等が挙げられる。ハロゲン化銅としては塩化銅、臭化
銅、沃化銅等である。触媒中のハロゲン化銅の含有量
は、担体に対してハロゲン化銅中の銅として2〜10w
t%程度が好ましい。触媒は、トリフェニルホスフィン
及びハロゲン化銅をそれぞれ順次担体に担持することに
より調製されたものであっても良いし、或は予めトリフ
ェニルホスフィンとハロゲン化銅から合成した錯体、す
なわち一般式Cu(PPh3)nX [PPh3=P (C6H5)3 ; x=ハロ
ゲン;n =1,2 又は3]で示されるトリフェニルホスフィ
ン・銅錯体を担体に担持することにより調製したもの
(国際特許出願公開WO90/15791)であっても
良い。さらに、トリフェニルホスフィン・銅錯体を担体
に担持したものであって、しかもハロゲン又はハロゲン
化水素で処理されたもの(特願平3−35057号)で
あっても良い。トリフェニルホスフィン・銅錯体は、塩
化第一銅、塩化第二銅、その他のハロゲン化銅とトリフ
ェニルホスフィン或はそのナトリウム塩とから合成する
ことができる。具体的手段としては、エタノールや塩化
メチレンなどの溶媒にハロゲン化銅を溶解し、不活性ガ
ス雰囲気下でエタノールや塩化メチレンなどの溶媒に溶
解したトリフェニルホスフィンを添加して反応させ、次
いで溶媒を除去して銅錯体を得る。銅錯体の担体への担
持・固定化は、銅錯体をクロロホルムなどの溶媒に溶か
して、その溶液を担体に担持するか、又は低級アルコー
ル等の溶媒で濡らして、或は溶媒の非存在下で担体と物
理的に混合して担体に固定化し、次いで不活性ガス雰囲
気下で処理して安定化することにより行われる。
The catalyst for carbonic acid ester production to which the present invention is applied comprises triphenylphosphine and copper halide supported on a carrier. 30m surface area as carrier
A porous carrier of 2 / g or more is preferable, and examples thereof include activated carbon, titanium oxide, zirconium oxide, niobium oxide, silica, alumina and the like. Examples of the copper halide are copper chloride, copper bromide, copper iodide and the like. The content of copper halide in the catalyst is 2 to 10 w as copper in the copper halide with respect to the carrier.
About t% is preferable. The catalyst may be one prepared by sequentially loading triphenylphosphine and copper halide on a carrier, or a complex synthesized in advance from triphenylphosphine and copper halide, that is, the general formula Cu ( PPh 3 ) n X [PPh 3 = P (C 6 H 5 ) 3 ; x = halogen; n = 1,2 or 3] prepared by supporting a triphenylphosphine / copper complex represented by International patent application publication WO 90/15791). Further, it may be one in which a triphenylphosphine / copper complex is supported on a carrier and which is treated with halogen or hydrogen halide (Japanese Patent Application No. 3-35057). The triphenylphosphine / copper complex can be synthesized from cuprous chloride, cupric chloride and other copper halides and triphenylphosphine or its sodium salt. As a specific means, copper halide is dissolved in a solvent such as ethanol or methylene chloride, triphenylphosphine dissolved in a solvent such as ethanol or methylene chloride is added and reacted in an inert gas atmosphere, and then the solvent is added. Removal gives a copper complex. Supporting and immobilization of a copper complex on a carrier is carried out by dissolving the copper complex in a solvent such as chloroform and supporting the solution on the carrier, or by wetting with a solvent such as a lower alcohol, or in the absence of a solvent. It is carried out by physically mixing with the carrier to immobilize it on the carrier, and then treating and stabilizing it under an inert gas atmosphere.

【0010】本発明においては、トリフェニルホスフィ
ン及びハロゲン化銅を担体に担持してなる触媒を用いて
アルコールを一酸化炭素及び酸素と反応させることによ
り炭酸エステルを合成し、使用により活性の低下した触
媒を良好に再活性化させることができる。触媒の再活性
化は、固定床式合成反応の場合は反応工程と再生工程を
切り替えることにより、また移動床や流動床方式による
合成反応では、反応、再生のそれぞれの工程域を設けて
行うこともできる。
In the present invention, a carbonic acid ester is synthesized by reacting an alcohol with carbon monoxide and oxygen using a catalyst having triphenylphosphine and copper halide supported on a carrier, and its activity is lowered by its use. The catalyst can be well reactivated. Reactivation of the catalyst may be carried out by switching the reaction step and the regeneration step in the case of a fixed bed type synthesis reaction, or by providing the reaction and regeneration step regions in the case of a moving bed or fluidized bed type synthesis reaction. it can.

【0011】反応原料であるアルコールとしては、炭素
数1〜4の脂肪族アルコール、脂環族アルコールや芳香
族アルコールが好ましい。特にメタノール、エタノール
等の1価アルコールが好ましい。炭酸エステルを製造す
る際の反応条件としては反応温度が70〜200℃、反
応圧力が常圧〜15Kg/cm2Gとするのが適当であ
る。メタノールやエタノール等のアルコールに対する一
酸化炭素及び酸素の比率(モル比)は、それぞれ1.2
〜2及び0.55〜0.01(CO/O2 比:1/1〜
100/1)とするのが良い。
As the alcohol as a reaction raw material, an aliphatic alcohol having 1 to 4 carbon atoms, an alicyclic alcohol or an aromatic alcohol is preferable. Monohydric alcohols such as methanol and ethanol are particularly preferable. As the reaction conditions for producing the carbonic acid ester, it is suitable that the reaction temperature is 70 to 200 ° C. and the reaction pressure is atmospheric pressure to 15 Kg / cm 2 G. The ratio (molar ratio) of carbon monoxide and oxygen to alcohols such as methanol and ethanol is 1.2 each.
2 and 0.55 to 0.01 (CO / O 2 ratio: 1/1 to
100/1) is good.

【0012】以下実施例により本発明を具体的に説明す
るが、本発明は下記の実施例に限定されるものではな
い。
The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.

【0013】[0013]

【触媒調製例1】塩化銅(II)6.7g、トリフェニ
ルホスフィン19.7gをそれぞれエタノール100m
lに溶解し、窒素雰囲気下で混合して70℃付近で約1
時間反応させた。反応生成物を濾過分別し、温エタノー
ルで洗浄後乾燥し、トリフェニルホスフィン・塩化銅
(I)錯体16.3gを得た。その錯体2.6gを活性
炭15gに少量のエタノール中で混合して固定化し、次
いで窒素雰囲気下250℃で熱処理して新たな触媒(C
u3wt%含有)を調製した。
[Catalyst Preparation Example 1] 6.7 g of copper (II) chloride and 19.7 g of triphenylphosphine were each added to 100 m of ethanol.
It is dissolved in 1 l, mixed under a nitrogen atmosphere and mixed at about 70 ° C for about 1
Allowed to react for hours. The reaction product was separated by filtration, washed with warm ethanol and dried to obtain 16.3 g of a triphenylphosphine / copper (I) chloride complex. 2.6 g of the complex was mixed with 15 g of activated carbon in a small amount of ethanol to be immobilized, and then heat-treated at 250 ° C. under a nitrogen atmosphere to obtain a new catalyst (C
u3 wt% content) was prepared.

【0014】[0014]

【比較例1】触媒調製例1で得られたトリフェニルホス
フィン・塩化銅(I)錯体を活性炭に担持した触媒(C
u3wt%含有)をメタノール、O2 及びCOを反応さ
せる炭酸ジメチル合成(触媒使用量3.5g,反応圧力
6Kg/cm2 G,反応温度140〜150℃,GHS
V:メタノール500hr-1,合計1100hr-1)に
使用して、触媒活性が新しい触媒の約80%まで減少し
た触媒(以下劣化触媒aと称す)について再生試験を行
った。この劣化触媒a3.5gを0.3Nl/hrのN
2 流通下、温度250℃、大気圧下で3%HCl/N2
混合ガス0.2Nl/hrで2時間再生処理した。この
再生触媒を用いて前記反応条件と同じ条件で炭酸ジメチ
ル合成を行った時の触媒活性(メタノール転化率)の再
生率と再生条件を表1に示す。
[Comparative Example 1] A catalyst prepared by loading the triphenylphosphine / copper (I) chloride complex obtained in Catalyst Preparation Example 1 on activated carbon (C
Dimethyl carbonate synthesis by reacting u3 wt% with methanol, O 2 and CO (catalyst usage 3.5 g, reaction pressure 6 Kg / cm 2 G, reaction temperature 140 to 150 ° C., GHS
V: methanol 500 hr -1, using a total of 1100hr -1), the catalyst activity is referred to as reduced catalyst (hereinafter deteriorated catalyst a to about 80% of fresh catalyst) was subjected to regeneration tested. 3.5 g of this deteriorated catalyst a was added to N of 0.3 Nl / hr.
2 flow, temperature 250 ° C, atmospheric pressure 3% HCl / N 2
Regeneration treatment was performed with a mixed gas of 0.2 Nl / hr for 2 hours. Table 1 shows the regeneration rate and the regeneration conditions of the catalytic activity (methanol conversion rate) when dimethyl carbonate was synthesized using this regenerated catalyst under the same reaction conditions as described above.

【0015】[0015]

【比較例2】ハロゲン化水素として、3%HCl/N2
混合ガス0.2Nl/hrの代りに3.6%塩酸水1.
2ml/hrを用いた以外は比較例1と同様な条件で劣
化触媒aを再生処理した。この再生触媒を用いて比較例
1と同じ反応条件で炭酸ジメチル合成を行った時の触媒
活性の再生率と再生条件を表1に示す。
[Comparative Example 2] As hydrogen halide, 3% HCl / N 2
Instead of the mixed gas 0.2 Nl / hr, 3.6% hydrochloric acid water 1.
The deteriorated catalyst a was regenerated under the same conditions as in Comparative Example 1 except that 2 ml / hr was used. Table 1 shows the regeneration rate of catalyst activity and regeneration conditions when dimethyl carbonate synthesis was carried out under the same reaction conditions as in Comparative Example 1 using this regenerated catalyst.

【0016】[0016]

【実施例1】劣化触媒a3.5gを0.3Nl/hrの
2 流通下、温度250℃、大気圧下で3%HCl/N
2 混合ガス0.2Nl/hrで2時間再生処理した。こ
の再生触媒を用いて比較例1と同じ反応条件(触媒使用
量3.5g,反応圧力6Kg/cm2 G,反応温度14
0〜150℃,GHSV:メタノール500hr-1,合
計1100hr-1)で炭酸ジメチル合成を行った時の触
媒活性の再生率と再生条件を表1に示す。
Example 1 3.5 g of the deteriorated catalyst a was passed under a flow of 0.3 Nl / hr of H 2 at a temperature of 250 ° C. and at an atmospheric pressure of 3% HCl / N.
2 Regeneration treatment was carried out with a mixed gas of 0.2 Nl / hr for 2 hours. Using this regenerated catalyst, the same reaction conditions as in Comparative Example 1 (catalyst usage 3.5 g, reaction pressure 6 Kg / cm 2 G, reaction temperature 14
0 to 150 ° C., GHSV: shows methanol 500 hr -1, the reproduction rate and the reproduction conditions of catalytic activity when the dimethyl carbonate synthesis was carried out a total of 1100hr -1) in Table 1.

【0017】[0017]

【実施例2】ハロゲン化水素として、3%HCl/N2
混合ガス0.2Nl/hrの代りに3.6%塩酸水1.
2ml/hrを用いた以外は実施例1と同様な条件で劣
化触媒aを再生処理した。この再生触媒を用いて実施例
1と同じ反応条件で炭酸ジメチル合成を行った時の触媒
活性の再生率と再生条件を表1に示す。
Example 2 As hydrogen halide, 3% HCl / N 2
Instead of the mixed gas 0.2 Nl / hr, 3.6% hydrochloric acid water 1.
The deteriorated catalyst a was regenerated under the same conditions as in Example 1 except that 2 ml / hr was used. Table 1 shows the regeneration rate of catalyst activity and the regeneration conditions when dimethyl carbonate synthesis was carried out under the same reaction conditions as in Example 1 using this regenerated catalyst.

【0018】[0018]

【実施例3】劣化触媒a3.5gを0.3Nl/hrの
CO流通下、温度250℃、大気圧下で3.6%塩酸水
1.2ml/hrで2時間再生処理した。この再生触媒
を用いて実施例1と同じ反応条件で炭酸ジメチル合成を
行った時の触媒活性(メタノール転化率)の再生率と再
生条件を表1に示す。
Example 3 3.5 g of deteriorated catalyst a was regenerated for 2 hours with 1.2 ml / hr of 3.6% hydrochloric acid water at a temperature of 250 ° C. and atmospheric pressure under the flow of CO of 0.3 Nl / hr. Table 1 shows the regeneration rate and the regeneration condition of the catalytic activity (methanol conversion rate) when dimethyl carbonate was synthesized using this regenerated catalyst under the same reaction conditions as in Example 1.

【0019】[0019]

【実施例4】劣化触媒a3.5gを2.4Nl/hrの
2 流通下、温度250℃、大気圧下で1.8%塩酸水
1.2ml/hrで1時間再生処理した。この再生触媒
を用いて実施例1と同じ反応条件で炭酸ジメチル合成を
行った時の触媒活性の再生率と再生条件を表1に示す。
Example 4 3.5 g of the deteriorated catalyst a was regenerated for 1 hour with 1.2 ml / hr of 1.8% hydrochloric acid water at a temperature of 250 ° C. and atmospheric pressure under a flow of 2.4 Nl / hr of H 2 . Table 1 shows the regeneration rate of catalyst activity and the regeneration conditions when dimethyl carbonate synthesis was carried out under the same reaction conditions as in Example 1 using this regenerated catalyst.

【0020】[0020]

【実施例5】劣化触媒a3.5gを0.9Nl/hrの
2 流通下、温度250℃、大気圧下で0.5%塩酸水
1.2ml/hrで2時間再生処理した。この再生触媒
を用いて実施例1と同じ反応条件で炭酸ジメチル合成を
行った時の触媒活性の再生率と再生条件を表1に示す。
Example 5 3.5 g of the deteriorated catalyst a was regenerated for 2 hours with 1.2 ml / hr of 0.5% hydrochloric acid water at a temperature of 250 ° C. and atmospheric pressure under a flow of 0.9 Nl / hr of H 2 . Table 1 shows the regeneration rate of catalyst activity and the regeneration conditions when dimethyl carbonate synthesis was carried out under the same reaction conditions as in Example 1 using this regenerated catalyst.

【0021】[0021]

【実施例6】再生温度を200℃とした以外は実施例4
と同様にして劣化触媒a3.5gを処理した。この処理
触媒を用いて実施例1と同じ反応条件で炭酸ジメチル合
成を行った時の触媒活性の再生率と再生条件を表1に示
す。
Example 6 Example 4 except that the regeneration temperature was 200 ° C.
In the same manner as above, 3.5 g of deteriorated catalyst a was treated. Table 1 shows the regeneration rate of catalyst activity and regeneration conditions when dimethyl carbonate synthesis was carried out under the same reaction conditions as in Example 1 using this treated catalyst.

【0022】[0022]

【触媒調製例2】臭化銅(II)11.2g、トリフェ
ニルホスフィン19.7gをそれぞれエタノール100
mlに溶解し、窒素雰囲気下で混合して70℃付近で約
1時間反応させた。反応生成物を濾過分別し、温エタノ
ールで洗浄後乾燥し、トリフェニルホスフィン・臭化銅
(I)錯体18.6gを得た。その錯体2.9gを活性
炭15gに少量のエタノール中で混合して固定化し、次
いで窒素雰囲気下250℃で熱処理して新たな触媒(C
u3wt%含有)を調製した。
[Catalyst preparation example 2] 11.2 g of copper (II) bromide and 19.7 g of triphenylphosphine were each added to 100 parts of ethanol.
It was dissolved in ml, mixed under a nitrogen atmosphere, and reacted at about 70 ° C. for about 1 hour. The reaction product was separated by filtration, washed with warm ethanol and dried to obtain 18.6 g of triphenylphosphine / copper (I) bromide complex. 2.9 g of the complex was mixed with 15 g of activated carbon in a small amount of ethanol to be immobilized, and then heat-treated at 250 ° C. in a nitrogen atmosphere to obtain a new catalyst (C
u3 wt% content) was prepared.

【0023】[0023]

【実施例7】触媒調製例2で得られたトリフェニルホス
フィン・臭化銅(I)錯体を活性炭に担持した触媒(C
u3wt%含有)をメタノール、O2 及びCOを反応さ
せる炭酸ジメチル合成(触媒使用量3.5g,反応圧力
6Kg/cm2 G,反応温度140〜150℃,GHS
V:メタノール500hr-1,合計1100hr-1)に
使用して触媒活性が新しい触媒の約80%まで減少した
触媒(劣化触媒b)の再生試験を行った。この劣化触媒
b3.5gを0.3Nl/hrのH2 流通下、温度25
0℃、大気圧下で3.6%臭化水素酸水1.2ml/h
rで1時間再生処理した。この再生触媒を用いて前記反
応条件と同じ条件で炭酸ジメチル合成を行った時の触媒
活性の再生率と再生条件を表1に示す。
[Example 7] A catalyst in which the triphenylphosphine / copper (I) bromide complex obtained in Catalyst Preparation Example 2 was supported on activated carbon (C
Dimethyl carbonate synthesis by reacting u3 wt% with methanol, O 2 and CO (catalyst usage 3.5 g, reaction pressure 6 Kg / cm 2 G, reaction temperature 140 to 150 ° C., GHS
V: methanol 500 hr -1, a total 1100hr -1) catalytic activity using the makes a regeneration test about reduced catalyst to 80% (deteriorated catalyst b) of fresh catalyst. 3.5 g of this deteriorated catalyst b was passed under H 2 flow of 0.3 Nl / hr at a temperature of 25
At 0 ° C. and atmospheric pressure, 3.6% hydrobromic acid water 1.2 ml / h
It was regenerated at r for 1 hour. Table 1 shows the regeneration rate of catalyst activity and the regeneration conditions when dimethyl carbonate synthesis was carried out under the same reaction conditions as above using this regenerated catalyst.

【0024】[0024]

【触媒調製例3】トリフェニルホスフィン17.7g−
クロロホルム50ml溶液及び塩化銅(II)6.0g
−エタノール50ml溶液を調製した。活性炭15gに
上記トリフェニルホスフィン−クロロホルム溶液8ml
を含浸し、窒素雰囲気下100℃で乾燥した。次いで上
記塩化銅(II)−エタノール溶液8mlを含浸し、窒
素雰囲気下100℃で乾燥して新たな触媒(Cu3wt
%含有)を調製した。
[Catalyst Preparation Example 3] Triphenylphosphine 17.7 g-
Chloroform 50 ml solution and copper (II) chloride 6.0 g
-A 50 ml solution of ethanol was prepared. 8 g of the above triphenylphosphine-chloroform solution on 15 g of activated carbon
Was impregnated and dried at 100 ° C. under a nitrogen atmosphere. Next, 8 ml of the above copper (II) chloride-ethanol solution was impregnated and dried at 100 ° C. under a nitrogen atmosphere to obtain a new catalyst (Cu3 wt).
% Content) was prepared.

【0025】[0025]

【実施例8】触媒調製例3で得られたトリフェニルホス
フィン及び塩化銅(II)を活性炭に担持した触媒(C
u3wt%含有)を、メタノール、O2 及びCOを反応
させる炭酸ジメチル合成(触媒使用量3.5g,反応圧
力6Kg/cm2 G,反応温度140〜150℃,GH
SV:メタノール500hr-1,合計1100hr-1
に使用して触媒活性が新しい触媒の約40%まで減少し
た触媒(劣化触媒c)について再生試験を行った。この
劣化触媒c3.5gを0.3Nl/hrのH2流通下、
温度250℃、大気圧下で3.6%塩酸水1.8ml/
hrで2時間再生処理した。この再生触媒を用いて前記
反応条件と同じ条件で炭酸ジメチル合成を行った時の触
媒活性(メタノール転化率)の再生率と再生条件を表1
に示す。
[Example 8] A catalyst (C in which triphenylphosphine and copper (II) chloride obtained in Catalyst Preparation Example 3 were supported on activated carbon
u3 wt% contained), dimethyl carbonate synthesis in which methanol, O 2 and CO are reacted (catalyst usage 3.5 g, reaction pressure 6 Kg / cm 2 G, reaction temperature 140 to 150 ° C., GH
SV: Methanol 500 hr -1 , total 1100 hr -1 )
The regeneration test was conducted on the catalyst (degraded catalyst c) used in the above-mentioned catalyst whose catalyst activity was reduced to about 40% of the fresh catalyst. With 3.5 g of this deteriorated catalyst c under H 2 flow of 0.3 Nl / hr,
1.8 ml / 3.6% hydrochloric acid water at a temperature of 250 ° C. and atmospheric pressure
It was regenerated for 2 hours by hr. Table 1 shows the regeneration rate and regeneration conditions of the catalytic activity (methanol conversion rate) when dimethyl carbonate synthesis was carried out under the same reaction conditions as above using this regenerated catalyst.
Shown in

【0026】[0026]

【実施例9】触媒調製例1によって調製した触媒3.5
gを3.5wt%塩酸水1.0ml/hrで窒素雰囲気
下250℃で3時間処理した。その触媒をメタノール、
2及びCOを反応させる炭酸ジメチル合成(触媒使用
量3.5g,反応圧力6.5Kg/cm2 G,反応温度
140〜145℃,GHSV:メタノール500h
-1,合計1100hr-1)に使用して触媒活性が新し
い触媒の約30%まで減少した触媒(劣化触媒d)につ
いて再生試験を行った。この劣化触媒d3.5gを0.
9Nl/hrのH2 流通下、温度250℃、大気圧下で
0.5%塩酸水1.2ml/hrで2時間再生処理し
た。この再生触媒を用いて前記反応条件と同じ反応条件
で炭酸ジメチル合成を行った時の触媒活性(メタノール
転化率)の再生率と再生条件を表1に示す。
Example 9 Catalyst 3.5 prepared according to Catalyst Preparation Example 1
g was treated with 1.0 wt / hr of 3.5 wt% hydrochloric acid in a nitrogen atmosphere at 250 ° C. for 3 hours. The catalyst is methanol,
Dimethyl carbonate synthesis in which O 2 and CO are reacted (catalyst usage 3.5 g, reaction pressure 6.5 Kg / cm 2 G, reaction temperature 140 to 145 ° C., GHSV: methanol 500 h
The regeneration test was carried out on a catalyst (degraded catalyst d) whose catalytic activity was reduced to about 30% of the fresh catalyst by using r −1 , total of 1100 hr −1 ). This deteriorated catalyst d3.5 g
Regeneration treatment was carried out for 2 hours with 1.2 ml / hr of 0.5% hydrochloric acid water at a temperature of 250 ° C. and atmospheric pressure under a flow of 9 Nl / hr of H 2 . Table 1 shows the regeneration rate of catalyst activity (methanol conversion rate) and regeneration conditions when dimethyl carbonate synthesis was carried out under the same reaction conditions as the above-mentioned reaction conditions using this regenerated catalyst.

【表1】 [Table 1]

【0027】比較例1及び2から明らかなように、不活
性ガス(N2 )雰囲気下で劣化触媒をハロゲン化水素含
有ガスと接触させても触媒活性は全く再生しない。これ
に対して還元性ガス(H2 、CO)雰囲気下で劣化触媒
をハロゲン化水素含有ガスと接触させた場合は、良好に
再生される。
As is clear from Comparative Examples 1 and 2, even if the deteriorated catalyst is brought into contact with the hydrogen halide-containing gas in an inert gas (N 2 ) atmosphere, the catalytic activity is not regenerated at all. On the other hand, when the deteriorated catalyst is brought into contact with the hydrogen halide-containing gas under a reducing gas (H 2 , CO) atmosphere, it is regenerated well.

【0028】[0028]

【実施例10】実施例1で使用した劣化触媒a3.5g
を0.3Nl/hrのCO(GHSV=86h-1)流通
下、250℃で1時間処理して予め還元してから、再生
温度250℃、大気圧下で3%HCl/N2 混合ガス
0.5Nl/hr(GHSV=71h-1:HCl=1.
2%,N2 =98.8%)で3時間再生処理した。この
処理触媒を用いて前記反応条件と同じ条件で炭酸ジメチ
ル合成を行った時の触媒活性の再生率は55%であっ
た。予め還元性ガスで処理した後ハロゲン化水素含有ガ
スと接触させても、再活性化することが認められた。
[Example 10] 3.5 g of the deteriorated catalyst a used in Example 1
Was treated with CO (GHSV = 86h −1 ) at 0.3 Nl / hr for 1 hour at 250 ° C. to reduce it in advance, and then at a regeneration temperature of 250 ° C. under atmospheric pressure, 3% HCl / N 2 mixed gas 0 .5 Nl / hr (GHSV = 71 h −1 : HCl = 1.
2%, N 2 = 98.8%) for 3 hours. When this treated catalyst was used to synthesize dimethyl carbonate under the same reaction conditions as above, the regeneration rate of the catalytic activity was 55%. It was also found that re-activation was achieved even if the catalyst was previously treated with a reducing gas and then contacted with a hydrogen halide-containing gas.

【0029】[0029]

【発明の効果】炭酸エステル合成に使用して活性が低下
したトリフェニルホスフィン及びハロゲン化銅からなる
触媒の再活性化が図れ、反応工程と再生工程との組合せ
により炭酸エステル合成を効果的に行うことができる。
EFFECTS OF THE INVENTION The catalyst composed of triphenylphosphine and copper halide whose activity has been lowered in the synthesis of carbonic acid ester can be reactivated, and carbonic acid ester synthesis can be effectively carried out by the combination of the reaction step and the regeneration step. be able to.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルコールを一酸化炭素及び酸素と反応
させることによる炭酸エステルの合成に用いて活性が低
下したトリフェニルホスフィン及びハロゲン化銅を担体
に担持してなる触媒を、還元性ガス雰囲気下でハロゲン
化水素含有ガスと接触させるか、又は予め還元性ガスで
処理した後ハロゲン化水素含有ガスと接触させることを
特徴とする炭酸エステル合成触媒の再活性化方法。
1. A catalyst comprising triphenylphosphine and copper halide, the activity of which has been reduced in the synthesis of a carbonic acid ester by reacting an alcohol with carbon monoxide and oxygen, on a carrier under a reducing gas atmosphere. A method for reactivating a carbonic acid ester synthesis catalyst, which comprises contacting with a hydrogen halide-containing gas at 1, or after being previously treated with a reducing gas and then contacting with a hydrogen halide-containing gas.
【請求項2】 ハロゲン化水素含有ガスとの接触温度が
200〜300℃である請求項1記載の炭酸エステル合
成触媒の再活性化方法。
2. The method for reactivating a carbonic acid ester synthesis catalyst according to claim 1, wherein the contact temperature with the hydrogen halide-containing gas is 200 to 300 ° C.
【請求項3】 ハロゲン化水素含有ガスとの接触を水蒸
気の存在下で行う請求項1記載の炭酸エステル合成触媒
の再活性化方法。
3. The method for reactivating a carbonic acid ester synthesis catalyst according to claim 1, wherein the contact with the hydrogen halide-containing gas is carried out in the presence of steam.
JP3230840A 1991-08-19 1991-08-19 Method for reactivating carbonic acid ester synthesis catalyst Expired - Lifetime JP2507246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3230840A JP2507246B2 (en) 1991-08-19 1991-08-19 Method for reactivating carbonic acid ester synthesis catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3230840A JP2507246B2 (en) 1991-08-19 1991-08-19 Method for reactivating carbonic acid ester synthesis catalyst

Publications (2)

Publication Number Publication Date
JPH0549947A JPH0549947A (en) 1993-03-02
JP2507246B2 true JP2507246B2 (en) 1996-06-12

Family

ID=16914111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3230840A Expired - Lifetime JP2507246B2 (en) 1991-08-19 1991-08-19 Method for reactivating carbonic acid ester synthesis catalyst

Country Status (1)

Country Link
JP (1) JP2507246B2 (en)

Also Published As

Publication number Publication date
JPH0549947A (en) 1993-03-02

Similar Documents

Publication Publication Date Title
JP4472109B2 (en) Carboxylic acid hydrogenation catalyst
RU2202411C2 (en) Vinyl acetate-synthesis catalyst containing palladium, gold, copper, and a certain fourth metal
EP0361484A2 (en) Process for preparation of allyl acetate
JP2507246B2 (en) Method for reactivating carbonic acid ester synthesis catalyst
JP3989590B2 (en) Method for reactivating platinum group metal-containing catalyst system
JP4472108B2 (en) Carboxylic acid hydrogenation catalyst
JP4282832B2 (en) Process for producing diols
JP4282831B2 (en) Production method of diols
JP4282830B2 (en) Method for producing diols
JPS6039653B2 (en) Method for producing oxygen-containing hydrocarbon compound
JP4282153B2 (en) Method for producing diol mixture
JPH0829256B2 (en) Carbonate production catalyst
JPH0710352B2 (en) Catalyst for production of carbonic acid ester, regeneration method thereof and production method of carbonic acid ester
JPH06145113A (en) Production of carbonate diester
JP3229657B2 (en) Method for preparing solid catalyst and method for producing carbonate ester using the same
JP3538675B2 (en) Catalyst for producing carbonate, method for regenerating the same, and method for producing carbonate
JP4282154B2 (en) Method for producing diol mixture
JP3830203B2 (en) Method for regenerating platinum-tin catalyst
JPS6147819B2 (en)
JPH0910591A (en) Catalyst for producing carbonic diester and preparation of carbonic diester using the same
JP2549799B2 (en) Catalyst for producing carbonic acid diester and method for producing carbonic acid diester using the same
JPS5849536B2 (en) Method for producing alkenyl ester of polycarboxylic acid
JP2868968B2 (en) Method for producing chloroform
JPS6039654B2 (en) Method for producing oxygen-containing hydrocarbon compound
JPH03141243A (en) Production of carbonic acid diester

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960116