JP2024076356A - Cell reprogramming agent for producing stem cells and method for producing stem cells - Google Patents

Cell reprogramming agent for producing stem cells and method for producing stem cells Download PDF

Info

Publication number
JP2024076356A
JP2024076356A JP2023190173A JP2023190173A JP2024076356A JP 2024076356 A JP2024076356 A JP 2024076356A JP 2023190173 A JP2023190173 A JP 2023190173A JP 2023190173 A JP2023190173 A JP 2023190173A JP 2024076356 A JP2024076356 A JP 2024076356A
Authority
JP
Japan
Prior art keywords
cells
cell
culture
stem cells
reprogramming agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023190173A
Other languages
Japanese (ja)
Inventor
将 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2024076356A publication Critical patent/JP2024076356A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

【課題】幹細胞を作製するための細胞培養補助剤、及び幹細胞の製造方法を提供する。【解決手段】下記式(1)で表されるポリペプチドの水溶液からなる、細胞リプログラミング剤。(Pro-Hyp-Gly)n (1)(式中、Hypはヒドロキシプロリンを表し、nは100~1000の整数を表す)【選択図】なし[Problem] To provide a cell culture auxiliary for producing stem cells, and a method for producing stem cells. [Solution] A cell reprogramming agent comprising an aqueous solution of a polypeptide represented by the following formula (1): (Pro-Hyp-Gly)n (1) (wherein Hyp represents hydroxyproline, and n represents an integer between 100 and 1000) [Selected Figure] None

Description

本発明は、幹細胞を作製するための細胞リプログラミング剤、及び、細胞リプログラミング剤を用いて幹細胞を作製する方法に関する。 The present invention relates to a cell reprogramming agent for producing stem cells, and a method for producing stem cells using the cell reprogramming agent.

現在、体細胞から人工多能性幹細胞を作製する方法として、大別して2つの技術が用いられている。第一には、山中によって創出された人工多能性幹細胞iPS細胞に関するもので、線維芽細胞にウイルスベクターを用いてOCT4、SOX2、KLF4、c-MYCの転写因子タンパクを過剰発現させ、リプログラミングさせる方法である(非特許文献1)。第二には前川らが初めて報告した、化合物による体細胞のダイレクト・リプログラミング技術である(非特許文献2,3,4)。iPS細胞技術は、既に再生医療分野、疾患臓器モデルの創薬応用で実用化が進められているが、免疫拒絶又は遺伝子変異による腫瘍形成のリスク回避が大きな課題となっている。加えて、iPS細胞樹立から目的臓器細胞へのリプログラミングに要する時間とコスト軽減が、重要な医療課題となっている。一方、化合物ダイレクト・リプログラミング技術は遺伝子変異による腫瘍形成の心配が無く、患者自身の体細胞と化合物カクテルのみで臓器再生が達成できることから、個別化再生医療への応用に期待が寄せられている。しかしながら、現時点では本技術で作製できる臓器細胞種が神経細胞及び脂肪細胞に限定的であり、作製法開発が課題となっている。 Currently, there are two main techniques for producing induced pluripotent stem cells from somatic cells. The first is related to induced pluripotent stem cells (iPS cells) created by Yamanaka, which uses a viral vector to overexpress transcription factor proteins OCT4, SOX2, KLF4, and c-MYC in fibroblasts and reprogram them (Non-Patent Document 1). The second is a direct somatic cell reprogramming technique using chemical compounds, which was first reported by Maekawa et al. (Non-Patent Documents 2, 3, 4). iPS cell technology has already been put to practical use in the field of regenerative medicine and in the application of drug discovery in diseased organ models, but the risk of tumor formation due to immune rejection or genetic mutation is a major issue. In addition, reducing the time and cost required for reprogramming iPS cells from the establishment of iPS cells to target organ cells is an important medical issue. On the other hand, chemical direct reprogramming technology does not require the worry of tumor formation due to genetic mutation, and organ regeneration can be achieved using only the patient's own somatic cells and a cocktail of chemical compounds, so it is expected to be applied to personalized regenerative medicine. However, at present, the types of organ cells that can be produced using this technology are limited to nerve cells and fat cells, and developing production methods remains a challenge.

また、がんはがん幹細胞と呼ばれるごく少数の細胞を起源として形成され、増殖能、分化機能において不均一な細胞集団として腫瘍が形成されることが近年分かってきた(非特許文献5)。がん幹細胞は、健常な生体組織に存在する多能性幹細胞と同様に、自己複製能と多様な細胞を生み出す分化能を有する特徴を持つ。がん治療の際には、抗がん剤、放射線、がん免疫療法、外科手術によって多くのがん細胞を除去できるが、治療抵抗性の高い非常にわずかながん幹細胞が残ることによって再発、転移が起こると考えられている。そのため、がん幹細胞を標的とした新たな薬剤、治療法、診断技術の開発が重要課題となっている。 In addition, it has been discovered in recent years that cancers originate from a very small number of cells called cancer stem cells, and that tumors form as a heterogeneous cell population in terms of proliferation and differentiation functions (Non-Patent Document 5). Like pluripotent stem cells present in healthy biological tissues, cancer stem cells are characterized by their ability to self-replicate and to differentiate into a variety of cells. During cancer treatment, many cancer cells can be removed by anticancer drugs, radiation, cancer immunotherapy, and surgery, but it is believed that recurrence and metastasis occur when a very small number of cancer stem cells that are highly resistant to treatment remain. Therefore, the development of new drugs, treatments, and diagnostic techniques that target cancer stem cells has become an important issue.

がん幹細胞を標的とした新薬開発、新しい治療法及び診断法を開発するためには、モデルとなるがん幹細胞を大量かつ安定的に作製することが不可欠である。ハイスループットスクリーニング、薬理試験、安全性試験に応用するために、がん幹細胞の作製が不可欠なためである。しかしながら、がん患者検体から検出するごくわずかながん幹細胞を分離する方法に依存せざるを得ない点が技術上の大きな障壁となってきた。 In order to develop new drugs that target cancer stem cells, as well as new treatments and diagnostic methods, it is essential to produce a large number of model cancer stem cells stably. This is because the production of cancer stem cells is essential for applications in high-throughput screening, pharmacological testing, and safety testing. However, the necessity to rely on methods to isolate the very small numbers of cancer stem cells detected from cancer patient samples has been a major technical barrier.

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-676.Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-676. Maekawa M, Yamaguchi K, Nakamura T, Shibukawa R, Kodanaka I, Ichsaka T, et al. Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature 2011; 474:225-229Maekawa M, Yamaguchi K, Nakamura T, Shibukawa R, Kodanaka I, Ichsaka T, et al. Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature 2011; 474:225-229 Yang Z, Ting Z, Hongkui D, et al. A XEN-like state bridges somatic cells to Pluripotency during chemical reprogramming. Cell 2015; 163:1678-1691.Yang Z, Ting Z, Hongkui D, et al. A XEN-like state bridges somatic cells to pluripotency during chemical reprogramming. Cell 2015; 163:1678-1691. Takeda Y, Harada Y, Yoshikawa T, Dai P. Chemical compound-based direct reprogramming for future clinical application. Bioscience Reports 2018; 38: 1-19.Takeda Y, Harada Y, Yoshikawa T, Dai P. Chemical compound-based direct reprogramming for future clinical application. Bioscience Reports 2018; 38: 1-19. Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells, Nature 2001;414:105-11.Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells, Nature 2001;414:105-11.

人工多能性幹細胞iPS細胞は、ウイルスベクターを用いてSOX2, OCT4, KLF4, c-MYC等の転写因子遺伝子を線維芽細胞等の体細胞に強発現させるため、iPS細胞の染色体に外部遺伝子が組み込まれ腫瘍形成が起こるリスクがある。また、線維芽細胞を初期化して多量のiPS細胞を培養し、それを目的臓器細胞に分化誘導して移植に必要量を培養するためには6ヶ月から1年の時間と多大なコストが必要である。 Induced pluripotent stem cells (iPS cells) use viral vectors to strongly express transcription factor genes such as SOX2, OCT4, KLF4, and c-MYC in somatic cells such as fibroblasts, which carries the risk of foreign genes being incorporated into the chromosomes of iPS cells and causing tumor formation. In addition, it takes six months to a year to initialize fibroblasts to culture a large number of iPS cells, and then induces their differentiation into the cells of the desired organ and cultures the amount required for transplantation, which requires a lot of time and costs a lot of money.

また、化学合成物の複数カクテルを培養液に加えるダイレクト・リプログラミングは、60日程度の培養期間で体細胞から多能性幹細胞を直接作製できると言われている。加えて、小分子化合物を用いることから、外部遺伝子の染色体への組込リスクと腫瘍形成リスクが無い。さらには患者由来の自己線維芽細胞を用いることで免疫拒絶リスクを回避できるものとして、個別化再生医療への実用化に期待が寄せられている。しかしながら、本技術で作製できる臓器細胞種は未だ神経細胞又は脂肪細胞に限られており、医療、創薬領域で実用化には至っていない。 Direct reprogramming, in which a cocktail of chemical compounds is added to the culture medium, is said to be able to directly produce pluripotent stem cells from somatic cells in a culture period of around 60 days. In addition, because small molecule compounds are used, there is no risk of foreign genes being incorporated into chromosomes or of tumor formation. Furthermore, by using autologous fibroblasts derived from the patient, the risk of immune rejection can be avoided, and hopes are high that this technology can be put to practical use in personalized regenerative medicine. However, the organ cell types that can be produced using this technology are still limited to nerve cells or fat cells, and it has not yet been put to practical use in the fields of medicine or drug discovery.

一方、がん幹細胞の存在が放射線治療、化学療法剤治療の予後を悪化させる事が知られているが、その細胞の分離法は未だに確立しておらず、医学的な検討が出来ていない。がん患者検体からわずかな数の細胞を摘出し、免疫不全NODマウスにがん患者検体を一旦移植して作製した腫瘍塊(PDOX)からセルソーター法で分離する方法、又は、bFGF、EGF、PDGF等複数の遺伝子組換えタンパク因子又はホルモンを添加した培養法が試みられるものの、大量かつ安定的な方法は未だに確立されていない。医薬品候補物のハイスループットスクリーニング、薬効評価、安全性評価には、がん幹細胞の使用が不可欠である。 On the other hand, it is known that the presence of cancer stem cells worsens the prognosis of radiation therapy and chemotherapy treatment, but a method for isolating these cells has not yet been established, and they have not been medically examined. Methods have been attempted in which a small number of cells are extracted from a cancer patient specimen and then transplanted into an immunodeficient NOD mouse to create a tumor mass (PDOX), and then the cells are isolated using a cell sorter. Alternatively, culture methods have been attempted in which multiple recombinant protein factors or hormones, such as bFGF, EGF, and PDGF, are added, but a large-scale, stable method has not yet been established. The use of cancer stem cells is essential for high-throughput screening, efficacy evaluation, and safety evaluation of drug candidates.

本発明の課題は、体細胞等由来の幹細胞の新規作製法を提供することにある。 The objective of the present invention is to provide a novel method for producing stem cells derived from somatic cells, etc.

上記課題を解決すべく、発明者らは鋭意研究を重ねた。そして、I型コラーゲンを構成するアミノ酸配列であるPro-Hyp-Glyのみの繰り返し配列を持つ化学合成ポリペプチドを用いて細胞を培養した結果、スフェロイドを形成することが見出された。さらに、前記ポリペプチドを細胞リプログラミング剤としてとして使用することで、健常ヒト線維芽細胞又は乳腺上皮細胞等の体細胞を初期化(リプログラミング)して、分化能を有する多能性幹細胞を作製出来る事を見出した。また、一般的な培養がん細胞株(幹細胞マーカーを持たない細胞)からがん幹細胞を作製できることを見出した。 In order to solve the above problems, the inventors have conducted extensive research. They have found that when cells are cultured using a chemically synthesized polypeptide that has a repeat sequence of only Pro-Hyp-Gly, an amino acid sequence that constitutes type I collagen, spheroids are formed. They have also found that by using the polypeptide as a cell reprogramming agent, somatic cells such as healthy human fibroblasts or mammary epithelial cells can be initialized (reprogrammed) to produce pluripotent stem cells with differentiation capabilities. They have also found that cancer stem cells can be produced from general cultured cancer cell lines (cells that do not have stem cell markers).

本発明はこれらの知見に基づいて完成されたものであり、以下に示す広い態様の発明を含むものである。
[項1]
下記式(1)で表されるポリペプチドを含む、細胞リプログラミング剤。
(Pro-Hyp-Gly)n (1)
(式中、Hypはヒドロキシプロリンを表し、nは100~1000の整数を表す)
[項2]
幹細胞の製造に用いられる、項1に記載の細胞リプログラミング剤。
[項3]
前記幹細胞が、多能性細胞又はがん幹細胞である、項2に記載の細胞リプログラミング剤。
[項4]
スフェロイド形成に用いられる、項1に記載の細胞リプログラミング剤。
[項5]
下記式(1)で表されるポリペプチドを含む、スフェロイド形成剤。
(Pro-Hyp-Gly)n (1)
(式中、Hypはヒドロキシプロリンを表し、nは100~1000の整数を表す)
[項6]
項1~4のいずれか1項に記載の細胞リプログラミング剤又は項5に記載のスフェロイド形成剤で培養面が表面処理された、細胞培養基材。
[項7]
項1~4のいずれか1項に記載の細胞リプログラミング剤又は項5に記載のスフェロイド形成剤、及び培養細胞を含む、細胞培養系。
[項8]
項1~4のいずれか1項に記載の細胞リプログラミング剤又は項5に記載のスフェロイド形成剤を用いて細胞を培養する工程を含む、幹細胞の製造方法。
[項9]
前記幹細胞が、SOX2、OCT4、NANOGから選択される少なくとも1種の幹細胞未分化マーカー遺伝子を発現する、項8に記載の製造方法。
[項10]
前記幹細胞が、多能性幹細胞又はがん幹細胞である、項8又は9に記載の製造方法。
[項11]
項8~10のいずれか一項に記載の方法により得られる幹細胞を用いた、オルガノイド又は組織の製造方法。
The present invention has been completed based on these findings, and includes the following broad aspects.
[Item 1]
A cell reprogramming agent comprising a polypeptide represented by the following formula (1):
(Pro-Hyp-Gly)n (1)
(In the formula, Hyp represents hydroxyproline, and n represents an integer of 100 to 1000.)
[Item 2]
Item 2. The cell reprogramming agent according to Item 1, which is used in the production of stem cells.
[Item 3]
Item 3. The cell reprogramming agent according to Item 2, wherein the stem cell is a pluripotent cell or a cancer stem cell.
[Item 4]
Item 2. The cell reprogramming agent according to Item 1, which is used for forming a spheroid.
[Item 5]
A spheroid-forming agent comprising a polypeptide represented by the following formula (1):
(Pro-Hyp-Gly)n (1)
(In the formula, Hyp represents hydroxyproline, and n represents an integer of 100 to 1000.)
[Item 6]
Item 6. A cell culture substrate, the culture surface of which has been treated with the cell reprogramming agent according to any one of Items 1 to 4 or the spheroid forming agent according to Item 5.
[Item 7]
A cell culture system comprising the cell reprogramming agent according to any one of items 1 to 4 or the spheroid forming agent according to item 5, and cultured cells.
[Item 8]
A method for producing stem cells, comprising a step of culturing cells using the cell reprogramming agent according to any one of items 1 to 4 or the spheroid forming agent according to item 5.
[Item 9]
Item 9. The method according to Item 8, wherein the stem cells express at least one stem cell undifferentiation marker gene selected from SOX2, OCT4, and NANOG.
[Item 10]
Item 10. The method according to item 8 or 9, wherein the stem cells are pluripotent stem cells or cancer stem cells.
[Item 11]
A method for producing an organoid or tissue using stem cells obtained by the method according to any one of items 8 to 10.

本発明により、幹細胞を作製するための細胞リプログラミング剤を提供する。また、本発明の新規な細胞リプログラミング剤から、体細胞等由来幹細胞製造法が提供される。本発明の幹細胞作製法を用いることで、細胞リプログラミング剤のポリペプチドが培養細胞に必要な足場剤又は接着因子のような受容体/リガンド作用を発揮して、さらにはサイトカイン、ケモカイン、ホルモン等と同様のシグナル伝達因子として作用し、いわゆる幹細胞ニッチ因子としての作用が惹起され、簡便かつ効率的に幹細胞を作製することが可能となる。これにより、疾患を抱える患者個人から自己の幹細胞を簡便に作製することが可能になり、iPS細胞のような遺伝子変異による腫瘍形成リスクが無く、免疫拒絶を回避した個別化再生医療、細胞治療、移植治療が実現できる。 The present invention provides a cell reprogramming agent for producing stem cells. In addition, the novel cell reprogramming agent of the present invention provides a method for producing stem cells derived from somatic cells, etc. By using the stem cell production method of the present invention, the polypeptide of the cell reprogramming agent exerts a receptor/ligand action like a scaffolding agent or adhesion factor necessary for cultured cells, and further acts as a signal transduction factor similar to cytokines, chemokines, hormones, etc., and induces the action as a so-called stem cell niche factor, making it possible to produce stem cells simply and efficiently. This makes it possible to simply produce autologous stem cells from individual patients with diseases, and realizes personalized regenerative medicine, cell therapy, and transplantation therapy that does not involve the risk of tumor formation due to gene mutations like iPS cells and avoids immune rejection.

また、本発明の細胞リプログラミング剤を用いることで、がん幹細胞マーカー遺伝子と幹細胞未分化マーカー遺伝子を発現するがん幹細胞を製造することが可能になる。 In addition, by using the cell reprogramming agent of the present invention, it becomes possible to produce cancer stem cells that express cancer stem cell marker genes and stem cell undifferentiation marker genes.

細胞培養基材(半透膜、中空糸)に細胞リプログラミング剤を使用する際の一例。半透膜、中空糸/マイクロ流体デバイス。本発明の細胞リプログラミング剤を半透膜・中空糸の内側にコーティング、あるいは培地中に添加し、マイクロ流体デバイスとして使用。An example of using a cell reprogramming agent on a cell culture substrate (semipermeable membrane, hollow fiber). Semipermeable membrane, hollow fiber/microfluidic device. The cell reprogramming agent of the present invention is coated on the inside of a semipermeable membrane or hollow fiber, or added to the culture medium, and used as a microfluidic device. 細胞培養基材(カプセル)に細胞リプログラミング剤を使用する際の一例。リプログラミング剤自体で形成したカプセル又は生分解性基材によるカプセル。本発明の細胞リプログラミング剤をゲル状の固形基材として用い、その中に細胞を埋め込んでスフェロイドを形成させる。An example of using a cell reprogramming agent in a cell culture substrate (capsule). A capsule formed from the reprogramming agent itself or a capsule made from a biodegradable substrate. The cell reprogramming agent of the present invention is used as a gel-like solid substrate, and cells are embedded therein to form spheroids. 細胞培養基材(繊維状素材、半透膜、中空糸)に細胞リプログラミング剤を使用する際の一例。生分解性基材、半透膜、中空糸、繊維状素材の内腔に本発明の細胞リプログラミング剤をコーティング、あるいは培地中に添加し、スフェロイドを入れて培養する。An example of using a cell reprogramming agent on a cell culture substrate (fibrous material, semipermeable membrane, hollow fiber). The cell reprogramming agent of the present invention is coated on the inner cavity of a biodegradable substrate, semipermeable membrane, hollow fiber, or fibrous material, or added to the medium, and spheroids are placed and cultured. 細胞培養基材(マイクロキャリア/フィルム/繊維状素材をベースにした包埋キャリアー)に細胞リプログラミング剤を使用する際の一例。網目状、半透性、繊維状、フレキシブルなフィルムの内側に本発明の細胞リプログラミング剤をコーティングし、スフェロイドを巻き込む、挟み込む、包む等の状態で培養する。An example of using a cell reprogramming agent on a cell culture substrate (embedding carrier based on a microcarrier/film/fibrous material). The cell reprogramming agent of the present invention is coated on the inside of a mesh-like, semipermeable, fibrous, or flexible film, and spheroids are cultured in a state of being wrapped, sandwiched, or wrapped. 健常ヒト新生児線維芽細胞の2次元接着培養と3次元スフェロイド培養。(A:平面2次元培養(培養2日目)。細胞リプログラミング剤無しのPS製培養容器(平面底)では、線維芽細胞は底面に接着して増殖した。B:3次元培養(培養2日目)。細胞リプログラミング剤処理をしたPS製培養容器(平面底)で、培養開始2日目には線維芽細胞が凝集してスフェロイドを形成した。C:3次元培養(培養20日目)。細胞リプログラミング剤処理をしたPS製培養容器(平面底)で、球形のスフェロイドを形成する線維芽細。)細胞リプログラミング剤を塗布した培養容器(ポリスチレン;PS製/6穴プレート、平底)で健常ヒト新生児線維芽細胞を培養すると、経時的に細胞が自己組織化を起こして凝集し2日目以降20日目までスフェロイドを形成して生長した。2D adhesion culture and 3D spheroid culture of healthy human neonatal fibroblasts. (A: Planar 2D culture (culture day 2). In PS culture vessels (flat bottom) without a cell reprogramming agent, fibroblasts adhered to the bottom and proliferated. B: 3D culture (culture day 2). In PS culture vessels (flat bottom) treated with a cell reprogramming agent, fibroblasts aggregated to form spheroids on the second day of culture. C: 3D culture (culture day 20). In PS culture vessels (flat bottom) treated with a cell reprogramming agent, fibroblasts formed spherical spheroids.) When healthy human neonatal fibroblasts were cultured in a culture vessel (polystyrene; PS/6-well plate, flat bottom) coated with a cell reprogramming agent, the cells self-organized and aggregated over time, forming and growing spheroids from the second day until the 20th day. 健常ヒト新生児線維芽細胞3次元スフェロイドにおける幹細胞未分化マーカー遺伝子の発現。培養容器(PS製/6穴プレート、平底)に細胞リプログラミング剤を塗布し、健常ヒト新生児線維芽細胞を20日間培養してスフェロイドを形成させると、代表的な幹細胞未分化マーカー遺伝子3種(SOX2, OCT4, NANOG)のmRNA発現量が増加し、幹細胞誘導(reprogramming)の特徴を検出した。Expression of stem cell undifferentiation marker genes in healthy human neonatal fibroblast 3D spheroids. A cell reprogramming agent was applied to a culture vessel (PS/6-well plate, flat bottom) and healthy human neonatal fibroblasts were cultured for 20 days to form spheroids. The mRNA expression levels of three representative stem cell undifferentiation marker genes (SOX2, OCT4, NANOG) increased, and characteristics of stem cell induction (reprogramming) were detected. 96wellプレートによる健常ヒト新生児線維芽細胞3次元スフェロイド培養。(A:96well(丸底)培養(0日目)。PS製96well培養容器(丸底)に細胞リプログラミング剤処理をして、線維芽細胞40,000個を播種した。B:96well(丸底)培養(2日目)。播種した線維芽細胞が凝集し始めてスフェロイド形成を始めた。C:96well(丸底)培養(20日目)。6日目以降は1個のスフェロイドを形成し、培養開始20日目以降も良好な状態を維持した。)丸底の培養容器(PS製/96穴マイクロプレート)に細胞リプログラミング剤を塗布し、ヒト新生児線維芽細胞をスフェロイド培養すると、経時的に細胞が凝集し2日目以降20日目までスフェロイドを形成して生長した。3D spheroid culture of healthy human neonatal fibroblasts in a 96-well plate. (A: 96-well (round bottom) culture (day 0). A PS 96-well culture vessel (round bottom) was treated with a cell reprogramming agent and 40,000 fibroblasts were seeded. B: 96-well (round bottom) culture (day 2). The seeded fibroblasts began to aggregate and form spheroids. C: 96-well (round bottom) culture (day 20). A single spheroid was formed from day 6 onwards, and the cells maintained a good condition even after day 20 of culture.) A cell reprogramming agent was applied to a round-bottom culture vessel (PS/96-well microplate) and human neonatal fibroblasts were cultured as spheroids. The cells aggregated over time, forming spheroids that grew from day 2 to day 20. 健常ヒト新生児線維芽細胞3次元スフェロイドにおける幹細胞未分化マーカー遺伝子発現の経時変化。丸底培養容器(PS製/96穴マイクロプレート)に細胞リプログラミング剤を塗布し、健常ヒト新生児線維芽細胞をスフェロイド培養すると、幹細胞未分化マーカー遺伝子3種(SOX2, OCT4, NANOG)のmRNA発現量が経時的に増加し、培養開始20日目に最高値になった。体細胞の線維芽細胞に遺伝子導入(iPS細胞作製の山中法)することなく、幹細胞を誘導(reprogramming)出来る事を見出した。Time course of expression of stem cell undifferentiation marker genes in healthy human neonatal fibroblast 3D spheroids. When a cell reprogramming agent was applied to a round-bottom culture vessel (PS/96-well microplate) and healthy human neonatal fibroblast cells were cultured as spheroids, the mRNA expression levels of three stem cell undifferentiation marker genes (SOX2, OCT4, NANOG) increased over time, reaching a peak on the 20th day of culture. We found that it is possible to induce (reprogram) stem cells without introducing genes into somatic fibroblast cells (the Yamanaka method for producing iPS cells). 健常ヒト新生児線維芽細胞由来幹細胞の分化誘導:3胚葉分化関連遺伝子の発現。細胞リプログラミング剤を塗布した培養容器で健常ヒト新生児線維芽細胞をスフェロイド培養したところ、初期三胚葉への分化マーカー遺伝子mRNA(SOX17;内胚葉、HAND1;中胚葉、MAP2;外胚葉)の発現量が経時的に増大し、20日目に最高値になった。幹細胞が、各種臓器への分化初期段階の三胚葉に分化誘導(differentiation)できることを見出した。Induction of differentiation of healthy human neonatal fibroblast-derived stem cells: Expression of genes related to differentiation into three germ layers. When healthy human neonatal fibroblasts were cultured as spheroids in a culture vessel coated with a cell reprogramming agent, the expression levels of the mRNAs of differentiation marker genes into the early three germ layers (SOX17; endoderm, HAND1; mesoderm, MAP2; ectoderm) increased over time and reached a peak on the 20th day. We found that stem cells can be induced to differentiate into the three germ layers at the early stage of differentiation into various organs. 健常ヒト線維芽細胞スフェロイドにおける幹細胞未分化マーカー蛋白の発現。蛍光色素標識抗体を用いた免疫染色法で、幹細胞マーカー蛋白であるSOX2、OCT4、NANOGを検出でき、スフェロイド構成細胞に幹細胞が存在する事を示した。A:NL557標識抗SOX2抗体により、蛍光を検出。B:NL637標識抗OCT4抗体により、蛍光を検出。C:NL493標識抗NANOG抗体により、蛍光を検出。Expression of stem cell undifferentiation marker proteins in healthy human fibroblast spheroids. Immunostaining using fluorescent dye-labeled antibodies was able to detect stem cell marker proteins SOX2, OCT4, and NANOG, indicating the presence of stem cells in the spheroid-constituting cells. A: Fluorescence detected by NL557-labeled anti-SOX2 antibody. B: Fluorescence detected by NL637-labeled anti-OCT4 antibody. C: Fluorescence detected by NL493-labeled anti-NANOG antibody. スフェロイド内に存在するNANOG蛋白陽性の幹細胞。20日間培養したスフェロイドをアキュターゼ酵素試薬で分散し、蛍光色素標識抗NANOG抗体で免疫染色した。スフェロイド形成細胞の一部に、核内NANOG陽性の幹細胞が誘導されていることを見出した。A:スフェロイドから分散させた細胞の一部、明視野像。B:NANOG抗体陽性細胞(Aと同一細胞集団)、細胞核にNANOG蛋白陽性の幹細胞を検出した。C:DAPIによる核の染色(Aと同一細胞集団)、核内DNAをブルーに染色し、核の形を示す対照像。NANOG protein-positive stem cells present within spheroids. Spheroids cultured for 20 days were dispersed with Accutase enzyme reagent and immunostained with fluorescent dye-labeled anti-NANOG antibody. Stem cells with intranuclear NANOG-positive were found to be induced in some of the spheroid-forming cells. A: Bright field image of some of the cells dispersed from the spheroid. B: NANOG antibody-positive cells (same cell population as A), NANOG protein-positive stem cells were detected in the cell nuclei. C: Nuclear staining with DAPI (same cell population as A), comparison image showing intranuclear DNA stained blue to show the shape of the nuclei. 成人皮膚線維芽細胞の2次元培養と3次元スフェロイド培養。ヒト身体から低侵襲で検体採取し易い成人皮膚線維芽細胞を用いて、本発明の細胞リプログラミング剤によるスフェロイド培養が可能なことを示した。A:平面2次元培養、成人皮膚線維芽細胞はPS製培養容器の底面に接着して増殖した。B:3次元培養(培養20日目)、細胞リプログラミング剤処理した96well培養容器でスフェロイドを形成した成人皮膚線維芽細胞。2D and 3D spheroid culture of adult skin fibroblasts. Using adult skin fibroblasts, which are minimally invasive and easy to collect from the human body, we demonstrated that spheroid culture is possible using the cell reprogramming agent of the present invention. A: Planar 2D culture, adult skin fibroblasts adhered to the bottom of a PS culture vessel and proliferated. B: 3D culture (20th day of culture), adult skin fibroblasts formed spheroids in a 96-well culture vessel treated with a cell reprogramming agent. 成人皮膚線維芽細胞の3次元スフェロイド培養における未分化幹細胞マーカー遺伝子の発現解析。個別化再生治療の実施に不可欠な、最も低侵襲で検体採取し易い皮膚由来線維芽細胞を用いて、細胞リプログラミング剤スフェロイド培養法により幹細胞を誘導できることを示した。A:SOX2。B:OCT4。C:NANOG。Expression analysis of undifferentiated stem cell marker genes in 3D spheroid culture of adult skin fibroblasts. We demonstrated that stem cells can be induced by cell reprogramming agent spheroid culture method using skin-derived fibroblasts, which are the least invasive and easiest to collect samples, essential for implementing personalized regenerative therapy. A: SOX2. B: OCT4. C: NANOG. 成人皮膚線維芽細胞の3次元スフェロイド培養における3胚葉分化関連遺伝子の発現解析。個別化再生治療の実施に不可欠な、最も低侵襲で検体採取し易い皮膚由来線維芽細胞を用いて、細胞リプログラミング剤スフェロイド培養法により幹細胞を誘導できることを示した。A:SOX17。B:GATA6。C:HAND1。D:SOX1。Expression analysis of three germ layer differentiation-related genes in three-dimensional spheroid culture of adult skin fibroblasts. We demonstrated that stem cells can be induced by cell reprogramming agent spheroid culture method using skin-derived fibroblasts, which are the least invasive and easiest to collect samples, essential for implementing personalized regenerative therapy. A: SOX17. B: GATA6. C: HAND1. D: SOX1. 健常ヒト成人乳腺上皮細胞の2次元接着培養と3次元スフェロイド培養。(A:2次元培養(培養2日目)。細胞リプログラミング剤無しのPS製培養容器(平面底)では、乳腺上皮細胞は底面に接着して増殖した。B:3次元培養(培養2日目)。細胞リプログラミング剤処理をしたPS製培養容器(平面底)で、乳腺上皮細胞はスフェロイドを形成した。C:3次元培養(培養20日目)。細胞リプログラミング剤処理をした96well培養容器(丸底)で、培養20日目の乳腺上皮細胞スフェロイド。)細胞リプログラミング剤処理をしたPS製培養容器(平底又は丸底)で健常ヒト成人乳腺上皮細胞を培養すると、経時的に細胞が凝集し2日目以降20日目までスフェロイドを形成して生長した。成人由来細胞、新生児由来細胞を問わず、また上皮細胞、線維芽細胞等広い種類の細胞で実施可能であることを示した。2D adhesion culture and 3D spheroid culture of healthy human adult mammary epithelial cells. (A: 2D culture (culture day 2). In PS culture vessels (flat bottom) without cell reprogramming agents, mammary epithelial cells adhered to the bottom and proliferated. B: 3D culture (culture day 2). In PS culture vessels (flat bottom) treated with cell reprogramming agents, mammary epithelial cells formed spheroids. C: 3D culture (culture day 20). Mammary epithelial cell spheroids on culture day 20 in a 96-well culture vessel (round bottom) treated with a cell reprogramming agent.) When healthy human adult mammary epithelial cells were cultured in PS culture vessels (flat or round bottom) treated with a cell reprogramming agent, the cells aggregated over time and formed spheroids and grew from day 2 to day 20. This demonstrated that this method can be used with a wide variety of cells, including adult-derived and neonatal-derived cells, as well as epithelial cells and fibroblasts. 健常ヒト成人乳腺上皮細胞の3次元スフェロイド培養における幹細胞未分化マーカー遺伝子の検出。細胞リプログラミング剤を塗布した培養容器で健常ヒト成人乳腺上皮細胞を培養してスフェロイドを形成させると、代表的な幹細胞未分化マーカー3種(SOX2, OCT4, NANOG)のmRNA発現量が増加し、培養開始20日目に最高値になった。体細胞の上皮細胞に遺伝子導入することなく、幹細胞を誘導(direct-reprogramming)出来る事を見出した。Detection of stem cell undifferentiation marker genes in 3D spheroid culture of healthy adult human mammary epithelial cells. When healthy adult human mammary epithelial cells were cultured in a culture vessel coated with a cell reprogramming agent to form spheroids, the mRNA expression levels of three representative stem cell undifferentiation markers (SOX2, OCT4, NANOG) increased and reached a maximum value on the 20th day of culture. We found that it is possible to induce stem cells (direct-reprogramming) without introducing genes into somatic epithelial cells. 健常ヒト成人乳腺上皮細胞由来幹細胞の分化誘導:3胚葉関連遺伝子の発現。細胞リプログラミング剤を塗布した培養容器で健常ヒト成人乳腺上皮細胞を20日間培養してスフェロイドを形成させると、初期三胚葉マーカー遺伝子のうちSOX17;内胚葉、MAP2;外胚葉のmRNA発現量が20日目に最高値になった。一方、FOXA2(内胚葉)は減少し、GATA4(中胚葉)は検出できなかった。幹細胞が、各種臓器への分化初期段階の三胚葉に分化誘導(differentiation)できることを見出した。Induction of differentiation of stem cells derived from healthy adult human mammary epithelial cells: Expression of genes related to the three germ layers. When healthy adult human mammary epithelial cells were cultured for 20 days in a culture vessel coated with a cell reprogramming agent to form spheroids, the mRNA expression levels of SOX17 (endoderm) and MAP2 (ectoderm), among the early three germ layer marker genes, reached their highest levels on the 20th day. Meanwhile, FOXA2 (endoderm) decreased, and GATA4 (mesoderm) was undetectable. We found that stem cells can be induced to differentiate into the three germ layers at the early stage of differentiation into various organs. 細胞リプログラミング剤有無によるがん細胞の2次元接着増殖と3次元スフェロイド増殖。細胞リプログラミング剤を塗布した培養容器(ポリスチレン;PS製/6穴プレート、平底)で3種がん細胞(A549細胞;ヒト肺がん、ES2細胞;ヒト卵巣癌、143B;ヒト骨肉腫)を培養すると、経時的に細胞が凝集し15日目までスフェロイドを形成して増殖した。2D adhesion and 3D spheroid growth of cancer cells with and without cell reprogramming agents. When three types of cancer cells (A549 cells; human lung cancer, ES2 cells; human ovarian cancer, 143B; human osteosarcoma) were cultured in a culture vessel (polystyrene; PS/6-well plate, flat bottom) coated with a cell reprogramming agent, the cells aggregated over time and formed spheroids and grew by the 15th day. 細胞リプログラミング剤濃度とスフェロイドの関係を示す。The relationship between cell reprogramming agent concentration and spheroids is shown. 各種マイクロプレートでのスフェロイド形成の結果を示す。The results of spheroid formation in various microplates are shown. U字プレートで作製したスフェロイドのアポトーシス誘導の定量結果を示す。The quantitative results of apoptosis induction in spheroids prepared in U-shaped plates are shown. V字プレートで作製したスフェロイドのアポトーシス誘導の定量結果を示す。The quantitative results of apoptosis induction in spheroids prepared using V-shaped plates are shown. A549ヒト肺がん細胞のがん幹細胞マーカー遺伝子の発現量。A549ヒト肺がん細胞を細胞リプログラミング剤を塗布した培養容器でスフェロイド培養すると、3種がん幹細胞マーカー遺伝子mRNA(CD24、CD44、CD133)の発現量が経時的に増加し、培養開始15日目に最高値となった。肺がん幹細胞の特徴を有する細胞を作製できることを見出した。Expression levels of cancer stem cell marker genes in A549 human lung cancer cells. When A549 human lung cancer cells were cultured as spheroids in a culture vessel coated with a cell reprogramming agent, the expression levels of three cancer stem cell marker gene mRNAs (CD24, CD44, CD133) increased over time, reaching a peak on the 15th day of culture. We found that it was possible to create cells with the characteristics of lung cancer stem cells. ES2ヒト卵巣癌細胞のがん幹細胞マーカー遺伝子の発現量。ES2ヒト卵巣癌細胞を細胞リプログラミング剤を塗布した培養容器でスフェロイド培養すると、3種がん幹細胞マーカー遺伝子mRNA(CD24、CD44、CD133)の発現量が経時的に増加し、培養開始15日目に最高値となった。卵巣がん幹細胞の特徴を有する細胞を作製できることを見出した。Expression levels of cancer stem cell marker genes in ES2 human ovarian cancer cells. When ES2 human ovarian cancer cells were cultured as spheroids in a culture vessel coated with a cell reprogramming agent, the expression levels of three cancer stem cell marker gene mRNAs (CD24, CD44, CD133) increased over time, reaching a peak on the 15th day of culture. It was found that it was possible to create cells with the characteristics of ovarian cancer stem cells. 143Bヒト骨肉腫細胞のがん幹細胞マーカー遺伝子の発現量。143Bヒト骨肉腫細胞を細胞リプログラミング剤を塗布した培養容器でスフェロイド培養すると、3種がん幹細胞マーカー遺伝子mRNAのうち2種(CD44、CD133)の発現が経時的に増加し、培養開始15日目に最高値となった。CD24は優位に増加しなかった。骨肉腫幹細胞の特徴を有する細胞を作製できることを見出した。Expression levels of cancer stem cell marker genes in 143B human osteosarcoma cells. When 143B human osteosarcoma cells were cultured as spheroids in a culture vessel coated with a cell reprogramming agent, the expression of two of the three cancer stem cell marker gene mRNAs (CD44, CD133) increased over time, reaching a peak on the 15th day of culture. CD24 did not increase significantly. We found that it was possible to create cells with the characteristics of osteosarcoma stem cells. A549ヒト肺がん細胞の3次元スフェロイドにおける遺伝子の検出。A549ヒト肺がん細胞を細胞リプログラミング剤を塗布した培養容器でスフェロイド培養すると、代表的な幹細胞未分化マーカー遺伝子3種(SOX2, OCT4, NANOG)のmRNA発現量が経時的に増加し、培養開始15日目に最高値になった。Gene detection in 3D spheroids of A549 human lung cancer cells. When A549 human lung cancer cells were cultured as spheroids in a culture vessel coated with a cell reprogramming agent, the mRNA expression levels of three representative stem cell undifferentiation marker genes (SOX2, OCT4, NANOG) increased over time, reaching a peak on the 15th day of culture. ES2ヒト卵巣がん細胞の3次元スフェロイドにおける遺伝子の検出。ES2ヒト卵巣がん細胞を細胞リプログラミング剤を塗布した培養容器でスフェロイド培養すると、未分化幹細胞未分化マーカー遺伝子3種(SOX2, OCT4, NANOG)のmRNA発現量が経時的に増加し、培養開始15日目に最高値になった。Gene detection in 3D spheroids of ES2 human ovarian cancer cells. When ES2 human ovarian cancer cells were cultured as spheroids in a culture vessel coated with a cell reprogramming agent, the mRNA expression levels of three undifferentiated stem cell undifferentiation marker genes (SOX2, OCT4, NANOG) increased over time, reaching a peak on the 15th day of culture. 143Bヒト骨肉腫細胞の3次元スフェロイドにおける幹細胞未分化マーカー遺伝子の検出。143Bヒト骨肉腫細胞を細胞リプログラミング剤を塗布した培養容器でスフェロイド培養すると、幹細胞未分化マーカー遺伝子3種(SOX2, OCT4, NANOG)のmRNA発現量が、培養開始4日目から15日目まで増加した。Detection of stem cell undifferentiation marker genes in 3D spheroids of 143B human osteosarcoma cells. When 143B human osteosarcoma cells were cultured as spheroids in a culture vessel coated with a cell reprogramming agent, the mRNA expression levels of three stem cell undifferentiation marker genes (SOX2, OCT4, NANOG) increased from the 4th to 15th days of culture. 実施例13における、ポリペプチドの分画の電気泳動結果。Electrophoresis results of polypeptide fractions in Example 13. 実施例13における、限外ろ過分画ポリペプチドのスフェロイド形成活性。コーティングなし:ポリペプチドをプレートに塗布せずに細胞培養。サンプル(A):限外ろ過分画サンプル(A)をプレートに塗布して細胞培養。サンプル(B):限外ろ過分画サンプル(B)をプレートに塗布して細胞培養。サンプル(C):限外ろ過分画サンプル(C)をプレートに塗布して細胞培養。サンプル(E):限外ろ過分画サンプル(E)をプレートに塗布して細胞培養。サンプル(F):限外ろ過分画サンプル(F)をプレートに塗布して細胞培養。Spheroid formation activity of ultrafiltration fraction polypeptide in Example 13. No coating: Cell culture without applying polypeptide to plate. Sample (A): Cell culture with ultrafiltration fraction sample (A) applied to plate. Sample (B): Cell culture with ultrafiltration fraction sample (B) applied to plate. Sample (C): Cell culture with ultrafiltration fraction sample (C) applied to plate. Sample (E): Cell culture with ultrafiltration fraction sample (E) applied to plate. Sample (F): Cell culture with ultrafiltration fraction sample (F) applied to plate.

<細胞リプログラミング剤>
本発明の細胞リプログラミング剤は、下記式(1)で表されるポリペプチドを含む。
(Pro-Hyp-Gly)n (1)
(式中、Hypはヒドロキシプロリンを表し、nは100~1000の整数を表す)
nは100~1000の整数を表す。nの下限値は好ましくは150、より好ましくは200、さらに好ましくは250、特に好ましくは300、最も好ましくは350である。nの上限値は、好ましくは900、より好ましくは800、さらに好ましくは700、特に好ましくは600、最も好ましくは500である。nが50以下、特に20以下では、リプログラミングを実質的に誘導しない。
当該ポリペプチドは、複合体を形成して三重らせん構造をとることが知られている。なお、ポリペプチドが三重らせん構造を取っているか否かは、ポリペプチド溶液について円二色性スペクトルを測定することにより確認することができる。具体的には、波長220~230nmに正のコットン効果、および波長195~205nm に負のコットン効果を示す場合、そのポリペプチドは三重らせん構造をとっていると考えられる。
<Cell reprogramming agents>
The cell reprogramming agent of the present invention comprises a polypeptide represented by the following formula (1):
(Pro-Hyp-Gly) n (1)
(In the formula, Hyp represents hydroxyproline, and n represents an integer of 100 to 1000.)
n represents an integer of 100 to 1000. The lower limit of n is preferably 150, more preferably 200, even more preferably 250, particularly preferably 300, and most preferably 350. The upper limit of n is preferably 900, more preferably 800, even more preferably 700, particularly preferably 600, and most preferably 500. When n is 50 or less, particularly 20 or less, reprogramming is not substantially induced.
It is known that the polypeptide forms a complex and assumes a triple helical structure. Whether or not the polypeptide assumes a triple helical structure can be confirmed by measuring the circular dichroism spectrum of the polypeptide solution. Specifically, if the polypeptide exhibits a positive Cotton effect at wavelengths of 220-230 nm and a negative Cotton effect at wavelengths of 195-205 nm, it is considered that the polypeptide assumes a triple helical structure.

本発明の細胞リプログラミング剤は、細胞増殖、分化、リプログラミング(初期化)、アポトーシス制御に関わる幹細胞ニッチ因子として機能することができる。本発明の細胞リプログラミング剤によるニッチ因子活性は、生体内に限らずin vitro(試験管内)でも再現され、培養した体細胞に自己組織化によるスフェロイド形成を誘導し、複数種の細胞膜受容体に対するリガンドとして結合し、シグナル伝達と遺伝子発現を惹起することができる。なお、本明細書において、「幹細胞ニッチ因子」とは、組織幹細胞、ES細胞やiPS細胞の多能性維持、分化誘導等をもたらすタンパク質(例えば、FGF, EGF, Activin, BMP, Noggin, TGF-β, Wnt, R-Spondin等)とそれらの受容体との1対1の反応に関与する因子;コラーゲン、ラミニン等の細胞外基質に囲まれた微小環境とそれらを構成する因子等を意味する。 The cell reprogramming agent of the present invention can function as a stem cell niche factor involved in cell proliferation, differentiation, reprogramming (initialization), and apoptosis control. The niche factor activity of the cell reprogramming agent of the present invention can be reproduced not only in vivo but also in vitro (in a test tube), and can induce spheroid formation by self-organization in cultured somatic cells, bind as a ligand to multiple types of cell membrane receptors, and induce signal transduction and gene expression. In this specification, the term "stem cell niche factor" refers to a factor involved in a one-to-one reaction between proteins (e.g., FGF, EGF, Activin, BMP, Noggin, TGF-β, Wnt, R-Spondin, etc.) that maintain the pluripotency of tissue stem cells, ES cells, and iPS cells, induce differentiation, etc., and their receptors; a microenvironment surrounded by extracellular matrix such as collagen and laminin, and factors that constitute them, etc.

一実施形態において、本発明の細胞リプログラミング剤は、体細胞等から幹細胞を製造する際に用いることができる。本発明の細胞リプログラミング剤を細胞培養に用いることで、培養細胞(体細胞等)がスフェロイドを形成し、簡便且つ効率的に幹細胞を製造することができる。 In one embodiment, the cell reprogramming agent of the present invention can be used when producing stem cells from somatic cells, etc. By using the cell reprogramming agent of the present invention in cell culture, cultured cells (somatic cells, etc.) form spheroids, making it possible to simply and efficiently produce stem cells.

本明細書において、スフェロイド(細胞塊ともいう)とは、複数の細胞が立体的に集まり、互いに接着したものを包含する。 In this specification, the term "spheroid" (also called a cell mass) refers to a three-dimensional collection of multiple cells that are adhered to each other.

式(1)で表されるポリペプチドは、公知の製造方法により製造することができる。例えば、
(Pro-Hyp-Gly)
(mは例えば1~5、1~10、1~20程度の整数)
で表されるペプチドオリゴマーを縮合反応させることにより製造することができる。
The polypeptide represented by formula (1) can be produced by a known production method. For example,
(Pro-Hyp-Gly) m
(m is an integer of, for example, 1 to 5, 1 to 10, or 1 to 20)
The peptide oligomer represented by the following formula (1) can be produced by subjecting the peptide oligomer represented by the following formula (1) to a condensation reaction.

本発明の細胞リプログラミング剤は、好ましくは、前記式(1)で表されるポリペプチドの水溶液を含む。前記水溶液は、前記式(1)で表されるポリペプチドを0.001~0.5重量%(w/v)程度含むことが好ましく、0.01~0.25重量%(w/v)程度含むことがより好ましい。本発明の細胞リプログラミング剤は、前記式(1)で表されるポリペプチド以外の成分を実質的に含まない水溶液とすることができるが、これに限定されない。 The cell reprogramming agent of the present invention preferably contains an aqueous solution of the polypeptide represented by formula (1). The aqueous solution preferably contains about 0.001 to 0.5% by weight (w/v) of the polypeptide represented by formula (1), and more preferably contains about 0.01 to 0.25% by weight (w/v). The cell reprogramming agent of the present invention can be, but is not limited to, an aqueous solution that is substantially free of components other than the polypeptide represented by formula (1).

前記式(1)で表されるポリペプチドの水溶液として、「PURECOLLA」(JNC株式会社製)等の市販品を使用することができる。 As the aqueous solution of the polypeptide represented by formula (1), a commercially available product such as "PURECOLLA" (manufactured by JNC Corporation) can be used.

<表面処理剤、添加剤としての使用>
本発明の細胞リプログラミング剤は、1つの態様において、細胞培養基材の培養面を表面処理するために使用することができる。
<Use as a surface treatment agent or additive>
In one embodiment, the cell reprogramming agent of the present invention can be used for surface treatment of the culture surface of a cell culture substrate.

このような細胞培養基材としては特に限定されず、例えば、ディッシュ、シャーレ、マイクロウェルプレート(平底、U字底、V字底等)、チューブ、フィルム、繊維状素材、半透膜、中空膜、中空糸、カプセル、マイクロキャリア等が例示される。細胞培養基材は、例えばガラス、金属、ポリスチレン(PS)、ポリプロピレン(PP)、ポリカーボナイト(PC)、ポリエチレンテレフタレート(PET)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、シクロオレフィン(COP)、アクリル/メタクリル(PMMA)、親水性フッ化樹脂、ポリ乳酸(PLA)、ポリブチレンサクシネート(PBS)、ポリヒドロキシブチレート/ヒドロキシヘキサノエート(PHBH)等のプラスチック、セルロース膜、カーボンナノチューブーブ、セルロースナノファイバー等を材質とするものを使用することができる。 Such cell culture substrates are not particularly limited, and examples thereof include dishes, petri dishes, microwell plates (flat-bottomed, U-bottomed, V-bottomed, etc.), tubes, films, fibrous materials, semipermeable membranes, hollow membranes, hollow fibers, capsules, microcarriers, etc. Examples of cell culture substrates that can be used include glass, metals, plastics such as polystyrene (PS), polypropylene (PP), polycarbonite (PC), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), cycloolefin (COP), acrylic/methacrylic (PMMA), hydrophilic fluoride resins, polylactic acid (PLA), polybutylene succinate (PBS), polyhydroxybutyrate/hydroxyhexanoate (PHBH), cellulose membranes, carbon nanotubes, cellulose nanofibers, etc.

細胞培養基材に細胞リプログラミング剤を使用する際の例を図1~図4に示すが、これに限定されない。 Examples of the use of a cell reprogramming agent on a cell culture substrate are shown in Figures 1 to 4, but are not limited to these.

図1は、半透膜、中空糸への適用例を示す。図1のように、本発明の細胞リプログラミング剤を半透膜、中空糸の内側にコーティング、あるいは培地中に添加し、マイクロ流体デバイスとして使用することができる。このようなマイクロ流体デバイスは、(i)腎臓、肝臓等の臓器機能再現、(ii)腎臓、肝臓等の体外循環臓器(キャリー型)医療機器、(iii)モノクローナル抗体等の遺伝子組み換え体タンパクの生産、(iv)創薬モデル/薬理評価、毒性評価、等の分野への応用が期待できる。 Figure 1 shows an example of application to a semipermeable membrane and hollow fibers. As shown in Figure 1, the cell reprogramming agent of the present invention can be used as a microfluidic device by coating the inside of a semipermeable membrane or hollow fibers or adding it to the culture medium. Such a microfluidic device is expected to be applied in fields such as (i) reproduction of organ functions such as kidney and liver, (ii) extracorporeal circulation organ (carrier type) medical devices such as kidney and liver, (iii) production of genetically modified proteins such as monoclonal antibodies, and (iv) drug discovery model/pharmacological evaluation, toxicity evaluation, etc.

図2は、カプセルへの適用例を示す。図2のように、本発明の細胞リプログラミング剤をゲル状の固形基材として用い、その中に細胞を埋め込んでスフェロイドを形成させることができる。このようなカプセルは、(i)再生医療用の臓器:体内に幹細胞あるいは分化誘導したオルガノイドを移植するキャリアー、(ii)造血幹細胞の輸血、(iii)人工筋肉の製造、等の分野への応用が期待できる。 Figure 2 shows an example of application to capsules. As shown in Figure 2, the cell reprogramming agent of the present invention can be used as a gel-like solid substrate, into which cells can be embedded to form spheroids. Such capsules are expected to be applied in fields such as (i) organs for regenerative medicine: carriers for transplanting stem cells or differentiated organoids into the body, (ii) transfusion of hematopoietic stem cells, and (iii) manufacturing of artificial muscles.

図3は、繊維状素材、半透膜、中空糸への適用例を示す。図3のように、生分解性基材、半透膜、中空糸、繊維状素材の内腔に本発明の細胞リプログラミング剤をコーティング、あるいは培地中に添加し、スフェロイドを入れて培養することができる。このような繊維状素材、半透膜、中空糸は、(i)再生医療用の臓器:血管、神経、腸管、尿細管等細い臓器の移植再生、(ii)神経による電位、光、匂い成分、味の成分等センサー回路、等の分野への応用が期待できる。 Figure 3 shows examples of application to fibrous materials, semipermeable membranes, and hollow fibers. As shown in Figure 3, the cell reprogramming agent of the present invention can be coated on the inner cavity of a biodegradable substrate, semipermeable membrane, hollow fiber, or fibrous material, or added to the medium, and spheroids can be placed and cultured. Such fibrous materials, semipermeable membranes, and hollow fibers are expected to be applied in fields such as (i) organs for regenerative medicine: transplantation and regeneration of thin organs such as blood vessels, nerves, intestines, and renal tubules, and (ii) sensor circuits for nerve-related electrical potentials, light, odor components, taste components, etc.

図4は、マイクロキャリア等への適用例を示す。図4のように、網目状、半透性、繊維状、フレキシブルなフィルムの内側に本発明の細胞リプログラミング剤をコーティングし、スフェロイドを巻き込む、挟み込む、包む等の状態で培養することができる。このようなマクロキャリア等は、再生医療用の膵臓、腎臓、肝臓、骨髄、骨、軟骨、筋肉、皮膚、毛髪等の移植再生等の分野への応用が期待できる。 Figure 4 shows an example of application to microcarriers, etc. As shown in Figure 4, the cell reprogramming agent of the present invention can be coated on the inside of a mesh-like, semipermeable, fibrous, or flexible film, and spheroids can be cultured in a state in which they are wrapped, sandwiched, or wrapped. Such macrocarriers, etc. are expected to be applied in the field of transplantation and regeneration of pancreas, kidney, liver, bone marrow, bone, cartilage, muscle, skin, hair, etc. for regenerative medicine.

なお、本発明の細胞リプログラミング剤で細胞培養基材の培養面を表面処理する場合、細胞培養基材として、親水性処理加工の超低接着表面を有する培養容器(例えば、ディッシュ、フラスコ、マイクロ流体デバイス、セルスタック・チャンバー、バック等)を使用する必要はない。本発明の細胞リプログラミング剤を用いると、超低接着表面を有する培養容器を用いずとも、スフェロイドを容易に形成し、多能性幹細胞、がん幹細胞を製造することができる。 When the culture surface of a cell culture substrate is treated with the cell reprogramming agent of the present invention, it is not necessary to use a culture vessel (e.g., a dish, flask, microfluidic device, cell stack chamber, bag, etc.) with a hydrophilically treated ultra-low adhesion surface as the cell culture substrate. By using the cell reprogramming agent of the present invention, spheroids can be easily formed and pluripotent stem cells and cancer stem cells can be produced without using a culture vessel with an ultra-low adhesion surface.

前記細胞培養基材の培養面とは、細胞が培養時に接触する面を指す。培養面の一部又は全部を表面処理することができる。また、培養面以外の面が表面処理されることは妨げられない。 The culture surface of the cell culture substrate refers to the surface that comes into contact with the cells during culture. A part or all of the culture surface can be surface-treated. In addition, surfaces other than the culture surface can also be surface-treated.

前記表面処理は、本発明の細胞リプログラミング剤の有効成分である前記式(1)で表されるポリペプチドを前記細胞培養基材の培養面に固定(例えば、コーティング)することができる手段であれば特に限定されない。例えば、塗布、浸漬、吹き付け等が挙げられる。なお、プラスチックを材質とする細胞培養基材を用いる際には、任意選択で、プラズマ処理等の表面処理を先に行ってから、本発明の細胞リプログラミング剤で表面処理することが好ましい。また、本発明の細胞リプログラミング剤を表面処理に用いる際に、公知の添加剤を混合し、使用しても良い。 The surface treatment is not particularly limited as long as it is a means capable of immobilizing (e.g., coating) the polypeptide represented by formula (1), which is the active ingredient of the cell reprogramming agent of the present invention, on the culture surface of the cell culture substrate. Examples include application, immersion, spraying, etc. When using a cell culture substrate made of plastic, it is preferable to optionally perform a surface treatment such as plasma treatment before surface treatment with the cell reprogramming agent of the present invention. In addition, when using the cell reprogramming agent of the present invention for surface treatment, known additives may be mixed and used.

細胞培養基材の培養面の表面処理に用いる場合の本発明の細胞リプログラミング剤の有効成分である前記式(1)で表されるポリペプチドの濃度は特に限定されず、例えば0.001~0.5重量%(w/v)、好ましくは0.01~0.25重量%(w/v)とすることができる。 When used for surface treatment of the culture surface of a cell culture substrate, the concentration of the polypeptide represented by formula (1), which is the active ingredient of the cell reprogramming agent of the present invention, is not particularly limited and can be, for example, 0.001 to 0.5% by weight (w/v), preferably 0.01 to 0.25% by weight (w/v).

本発明の細胞リプログラミング剤を用いて細胞培養基材を表面処理する場合、前記表面処理の後に、水を除去するために乾燥をすることができる。乾燥を行う手段は特に限定されず、例えば減圧乾燥、乾燥剤により行うことができる。 When a cell culture substrate is surface-treated using the cell reprogramming agent of the present invention, the substrate can be dried to remove water after the surface treatment. There are no particular limitations on the means for drying, and drying can be performed, for example, under reduced pressure or using a desiccant.

さらに前記乾燥を行った後に、細胞培養基材を滅菌することができる。滅菌を行う手段は特に限定されず、例えばエチレンオキサイドガス、電子線、ガンマ線、オートクレーブ等の手段により行うことができる。 Furthermore, after the drying, the cell culture substrate can be sterilized. The means for sterilization are not particularly limited, and can be, for example, ethylene oxide gas, electron beam, gamma ray, autoclave, etc.

本発明の細胞リプログラミング剤は、別の態様において、培養媒体に添加して使用することができる。 In another embodiment, the cell reprogramming agent of the present invention can be added to a culture medium for use.

本発明の細胞リプログラミング剤を添加する培養媒体としては、通常の細胞培養に用いられる液性培地、ゲル状培地等を広く使用することができる。培地には、動物由来成分であるFBS、FCS等の血清/血漿添加剤、アルブミン等のタンパク質添加剤が含まれても良い。例えば、αMEM培地、Neurobasal培地、Neural Progenitor Basal培地、NS-A培地、BME培地、BGJb培地、CMRL 1066培地、最小必須培地(MEM)、GMEM培地、Eagle MEM培地、ダルベッコ改変イーグル培地(DMEM)、Glasgow MEM培地、Improved MEM Zinc Option培地、IMDM培地、Medium 199培地、DMEM/F12培地、StemPro-34SFM培地、ハム培地、RPMI 1640培地、HTF培地、Fischer’s培地等が挙げられる。さらには、動物由来成分を含まない(xeno-free)培地又は無血清(serum-free)培地では、mTeSR培地、Stem Fit培地、Cellartis DEF-CS500培地、Cellartis MSC-CS500培地、NutriStem培地、PluriStem Human ES/iPS 培地、Fibroblast Growth Medium培地、Mammary Epithelial Cell Growth培地等が例示される。ゲル状のヒドロゲル培地としては、ソフト・アガー培地、マトリゲル培地、Methylcellulose-based 培地等が例示されるが、これらに限定されない。また、培地には、その他公知の添加物を含んでもよい。 As the culture medium to which the cell reprogramming agent of the present invention is added, liquid media, gel media, etc. used in normal cell culture can be widely used. The medium may contain serum/plasma additives such as FBS and FCS, which are animal-derived components, and protein additives such as albumin. Examples include αMEM medium, Neurobasal medium, Neural Progenitor Basal medium, NS-A medium, BME medium, BGJb medium, CMRL 1066 medium, Minimum Essential Medium (MEM), GMEM medium, Eagle MEM medium, Dulbecco's Modified Eagle Medium (DMEM), Glasgow MEM medium, Improved MEM Zinc Option medium, IMDM medium, Medium 199 medium, DMEM/F12 medium, StemPro-34SFM medium, Ham's medium, RPMI 1640 medium, HTF medium, Fischer's medium, etc. Furthermore, examples of xeno-free or serum-free culture media include mTeSR medium, Stem Fit medium, Cellartis DEF-CS500 medium, Cellartis MSC-CS500 medium, NutriStem medium, PluriStem Human ES/iPS medium, Fibroblast Growth Medium medium, Mammary Epithelial Cell Growth medium, etc. Examples of gel-like hydrogel culture media include, but are not limited to, soft agar medium, Matrigel medium, and Methylcellulose-based medium. In addition, the culture media may contain other known additives.

本発明の細胞リプログラミング剤の培養媒体への添加量は特に限定されず、本発明の細胞リプログラミング剤の有効成分である前記式(1)で表されるポリペプチドの終濃度で例えば0.001~0.5重量%(w/v)、好ましくは0.01~0.25重量%(w/v)とすることができる。 The amount of the cell reprogramming agent of the present invention added to the culture medium is not particularly limited, and the final concentration of the polypeptide represented by formula (1), which is the active ingredient of the cell reprogramming agent of the present invention, can be, for example, 0.001 to 0.5% by weight (w/v), preferably 0.01 to 0.25% by weight (w/v).

また、本発明の細胞リプログラミング剤で表面処理した細胞培養基材と、本発明の細胞リプログラミング剤を添加した培養媒体を組み合わせて、細胞培養に用いることもできる。 In addition, a cell culture substrate surface-treated with the cell reprogramming agent of the present invention can be combined with a culture medium to which the cell reprogramming agent of the present invention has been added and used for cell culture.

<スフェロイド形成剤>
前記式(1)で表されるポリペプチドを含む、本発明の細胞リプログラミング剤は、別の態様において、スフェロイド形成剤として使用することができる。
<Spheroid forming agent>
In another embodiment, the cell reprogramming agent of the present invention, which comprises the polypeptide represented by formula (1), can be used as a spheroid-forming agent.

スフェロイドの形成方法としては、本発明の細胞リプログラミング剤を培養面に有する細胞培養器具を用いて細胞培養を行う、又は、本発明の細胞リプログラミング剤を添加した培養媒体中で細胞培養を行うことができる。なお、本発明の細胞リプログラミング剤を培養面に有する細胞培養器具の取得方法、本発明の細胞リプログラミング剤を添加した培養媒体の取得方法は、「<表面処理剤、添加剤としての使用>」において記載されている方法を好ましく用いることができる。 As a method for forming spheroids, cells can be cultured using a cell culture instrument having the cell reprogramming agent of the present invention on its culture surface, or cells can be cultured in a culture medium to which the cell reprogramming agent of the present invention has been added. Note that the methods described in "<Use as a surface treatment agent and additive>" can be preferably used as a method for obtaining a cell culture instrument having the cell reprogramming agent of the present invention on its culture surface, and a method for obtaining a culture medium to which the cell reprogramming agent of the present invention has been added.

スフェロイド形成に用いられる細胞は特に制限されず、例えば 皮膚組織由来の線維芽細胞、各種臓器由来の上皮細胞をはじめ、肺、肝臓、すい臓、腎臓、腸、軟骨、骨、中枢神経、末梢神経等各組織由来体細胞の初代培養細胞が挙げられる。しかしながら、これら初代培養細胞では、平面培養を行った場合には本来備えている機能が失われ、また異常活性化が惹起されることが多く、併せてアノイキスと言われるアポトーシス(プログラムされた細胞死)を誘発することが問題となる。そうしたなか、本発明の細胞リプログラミング剤で初代培養細胞のスフェロイドを形成させると、アポトーシスの発生を抑制し、生存、増殖を補助しながら生理機能を維持する効果が確認されている。このことから、平面培養した細胞に比べ、スフェロイド形成した細胞では生体機能を高度に維持でき、生体機能を反映したモデルを提供できることが期待されている。一方、株化したがん細胞でスフェロイド形成させることも有用である。がん細胞をスフェロイド形成させると、患者生体に存在した時の「悪性腫瘍機能」を再現でき、抗がん剤への薬剤耐性をもたらす酵素、ポンプ受容体等の活性状況が維持されることが知られている。このことから、がん細胞スフェロイドは、がん患者モデルとして病態を再現できるものとして、創薬研究用途に応用が期待されている。さらにiPS細胞の分化誘導の場合では、一旦スフェロイド培養して胚様体(embryoid body)を作製したのちに、各臓器に分化させる方法が多用される。この場合は、スフェロイド形成することで三胚葉(内胚葉、中胚葉、外胚葉)への分化が促進されることが知られており、臓器細胞への分化誘導工程を促進することが大きな効用となっている。 The cells used for spheroid formation are not particularly limited, and examples include primary cultured cells of somatic cells derived from various tissues such as fibroblasts derived from skin tissues, epithelial cells derived from various organs, and somatic cells derived from various tissues such as the lung, liver, pancreas, kidney, intestine, cartilage, bone, central nervous system, and peripheral nervous system. However, when these primary cultured cells are cultured on a plate, their original functions are lost and abnormal activation is often induced, and apoptosis (programmed cell death) called anoikis is also induced, which is a problem. In this situation, it has been confirmed that when spheroids are formed from primary cultured cells using the cell reprogramming agent of the present invention, the occurrence of apoptosis is suppressed, and the physiological functions are maintained while supporting survival and proliferation. For this reason, it is expected that spheroid-formed cells can maintain their biological functions to a high degree compared to cells cultured on a plate, and a model reflecting biological functions can be provided. On the other hand, it is also useful to form spheroids from established cancer cells. It is known that when cancer cells are cultured in spheroids, the "malignant tumor functions" when they exist in the patient's body can be reproduced, and the activity of enzymes, pump receptors, etc. that cause drug resistance to anticancer drugs can be maintained. For this reason, cancer cell spheroids are expected to be used in drug discovery research as a cancer patient model that can reproduce the pathology. Furthermore, in the case of differentiation induction of iPS cells, a method is often used in which spheroids are first cultured to create embryoid bodies, and then differentiated into each organ. In this case, it is known that the formation of spheroids promotes differentiation into the three germ layers (endoderm, mesoderm, and ectoderm), and the promotion of the differentiation induction process into organ cells is a major benefit.

スフェロイド形成の培地としては血清含有であっても無血清培地であっても良い。血清含有培地としては例えば、αMEM培地、Neurobasal培地、Neural Progenitor Basal培地、NS-A培地、BME培地、BGJb培地、CMRL 1066培地、最小必須培地(MEM)、GMEM培地、Eagle MEM培地、ダルベッコ改変イーグル培地(DMEM)、Glasgow MEM培地、Improved MEM Zinc Option培地、IMDM培地、Medium 199培地、DMEM/F12培地、StemPro-34SFM培地、ハム培地、RPMI 1640培地、HTF培地、Fischer’s培地、及びこれらの混合培地等が挙げられるが、これらに限定されない。添加する血清(例えば、ウシ胎児血清(FBS)、ヒト血清等)の濃度は、2~20%が用いられるが、5~10%が好ましく使用される。 The medium for spheroid formation may be serum-containing or serum-free. Examples of serum-containing media include, but are not limited to, αMEM medium, Neurobasal medium, Neural Progenitor Basal medium, NS-A medium, BME medium, BGJb medium, CMRL 1066 medium, Minimum Essential Medium (MEM), GMEM medium, Eagle MEM medium, Dulbecco's Modified Eagle Medium (DMEM), Glasgow MEM medium, Improved MEM Zinc Option medium, IMDM medium, Medium 199 medium, DMEM/F12 medium, StemPro-34SFM medium, Ham's medium, RPMI 1640 medium, HTF medium, Fischer's medium, and mixed media thereof. The concentration of serum (e.g., fetal bovine serum (FBS), human serum, etc.) to be added is 2 to 20%, but 5 to 10% is preferably used.

無血清培地(SFM)とは、動物由来成分を含まないもの(xeno-free)と未処理又は未精製の血清をいずれも含まない培地(serum-free)を意味し、遺伝子組み換え法で製造された増殖因子(basic-FGF、EGF、インシュリン、等)を含有する培地が挙げられる。SFMは任意の血清代替物を含んでもよい。血清代替物としては、例えば、KnockOut Serum Replacement、アルブミン(例えば、脂質リッチアルブミン、組換えアルブミン等のアルブミン代替物、植物デンプン、デキストラン及びタンパク質加水分解物等)、トランスフェリン(又は他の鉄輸送体)、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3’-チオグリセロールあるいはこれらの均等物等が挙げられる。これらは1種単独で、又は2種以上を組み合わせて使用することができる。 Serum-free medium (SFM) refers to a medium that does not contain animal-derived components (xeno-free) or raw or unpurified serum (serum-free), and includes media containing recombinantly produced growth factors (basic-FGF, EGF, insulin, etc.). SFM may contain any serum substitute. Examples of serum substitutes include KnockOut Serum Replacement, albumin (e.g., albumin substitutes such as lipid-rich albumin, recombinant albumin, vegetable starch, dextran, and protein hydrolysates), transferrin (or other iron transporters), fatty acids, insulin, collagen precursors, trace elements, 2-mercaptoethanol, 3'-thioglycerol, or equivalents thereof. These may be used alone or in combination of two or more.

培地は、その他公知の添加物を含んでもよい。添加物は特に限定されないが、例えば、成長因子(例えば、インシュリン、成長ホルモン、EGF、FGF、TGF、BMP、Activin、Wnt、LIF、Noggin等)、バルプロ酸、フォルスコリン、レチノイン酸、各種阻害剤/活性剤(例えば、A83-01、DZNep、Y27632、SB202190、PD0325901、CHIR99021)、ポリアミン類、ミネラル、糖類(例えば、グルコース等)、有機酸(例えば、ピルビン酸、乳酸等)、アミノ酸(例えば、非必須アミノ酸(NEAA)、L-グルタミン等)、還元剤(例えば、2-メルカプトエタノール等)、ビタミン類(例えば、アスコルビン酸、d-ビオチン等)、ステロイド、抗生物質(例えば、ストレプトマイシン、ペニシリン等)、界面活性剤(例えば、Tween-20、Nonidet P-40)緩衝剤(例えば、HEPES等)、栄養添加物(例えば、B27 supplement、N2 supplement、StemPro-Nutrient Supplement、KnockOut Media、GlutaMax等)を挙げることができる。これらは1種単独で、又は2種以上を組み合わせて使用することができる。各添加物は公知の濃度範囲で含まれることが好ましい。 The medium may contain other known additives. The additives are not particularly limited, and examples thereof include growth factors (e.g., insulin, growth hormone, EGF, FGF, TGF, BMP, Activin, Wnt, LIF, Noggin, etc.), valproic acid, forskolin, retinoic acid, various inhibitors/activators (e.g., A83-01, DZNep, Y27632, SB202190, PD0325901, CHIR99021), polyamines, minerals, sugars (e.g., glucose, etc.), organic acids (e.g., pyruvic acid, lactic acid, etc.), amino acids (e.g., non-essential amino acids (NEAA), L-glutamine, etc.), reducing agents (e.g., 2-mercaptoethanol, etc.), vitamins (e.g., ascorbic acid, d-biotin, etc.), steroids, antibiotics (e.g., streptomycin, penicillin, etc.), surfactants (e.g., Tween-20, Nonidet P-40), buffers (e.g., HEPES, etc.), nutritional additives (e.g., B27 supplement, N2 supplement, StemPro-Nutrient Supplement, KnockOut Media, GlutaMax, etc. These may be used alone or in combination of two or more. Each additive is preferably contained within a known concentration range.

スフェロイド形成における培養条件は、目的とするスフェロイドが形成されるものであれば特に限定されない。例えば、培養温度は、30~45℃、好ましくは34~38℃とすることができる。また、培養は0.05~10%CO2雰囲気下、好ましくは3~10%CO2雰囲気下、より好ましくは、4~6%CO2雰囲気下で実施することができる。スフェロイドを形成する培養期間は、例えば、0.5~100時間程度、好ましくは0.5時間~14日間程度、より好ましくは1日間~4日間程度である。また、任意選択で、培養期間中に1回以上、培地の交換を行うことができる。 The culture conditions for spheroid formation are not particularly limited as long as the desired spheroids are formed. For example, the culture temperature can be 30 to 45°C, preferably 34 to 38°C. The culture can be performed in an atmosphere of 0.05 to 10% CO2 , preferably 3 to 10% CO2 , more preferably 4 to 6% CO2 . The culture period for forming spheroids is, for example, about 0.5 to 100 hours, preferably about 0.5 hours to 14 days, more preferably about 1 day to 4 days. Optionally, the medium can be replaced once or more during the culture period.

スフェロイドの大きさとしては通常、直径が10~500μm程度、好ましくは50~200μm程度である。スフェロイドは大きくなりすぎると内部に栄養が浸透しにくくなるため、適当なサイズに達するとスフェロイドを分離するのが望ましい。得られたスフェロイドはトリプシン及び/又はコラゲナーゼによる酵素処理で細胞をばらばらにした後、再度本発明の細胞リプログラミング剤を用いた培養を行うことにより、繰り返しスフェロイドを形成することができる。 The size of the spheroids is usually about 10 to 500 μm in diameter, preferably about 50 to 200 μm. If the spheroids become too large, it becomes difficult for nutrients to penetrate into the interior, so it is desirable to separate the spheroids when they reach an appropriate size. The obtained spheroids can be disaggregated by enzymatic treatment with trypsin and/or collagenase, and then cultured again using the cell reprogramming agent of the present invention, allowing spheroids to be repeatedly formed.

培養における細胞の濃度は、スフェロイドが効率的に形成されるものであればよく、特に限定されないが、例えば、約1×103~約1×107個/well、好ましくは約3×103~約5×106個/wellが挙げられる。 The cell concentration in culture is not particularly limited as long as spheroids are efficiently formed, but examples include about 1 × 10 3 to about 1 × 10 7 cells/well, and preferably about 3 × 10 3 to about 5 × 10 6 cells/well.

本発明の細胞リプログラミング剤を適用したスフェロイドの形成方法においては、本発明の細胞リプログラミング剤のポリペプチドが培養細胞に必要な足場剤又は接着因子のような受容体/リガンド作用を発揮して、さらにはサイトカイン、ケモカイン、ホルモン等と同様のシグナル伝達因子として作用し、細胞の自己組織化を促進することで、スフェロイドの形成が促進されると考えられる。 In the method for forming spheroids using the cell reprogramming agent of the present invention, it is believed that the polypeptide of the cell reprogramming agent of the present invention exerts receptor/ligand action like a scaffolding agent or adhesion factor necessary for cultured cells, and further acts as a signal transduction factor similar to cytokines, chemokines, hormones, etc., and promotes the self-organization of cells, thereby promoting the formation of spheroids.

本発明の別の態様において、本発明の細胞リプログラミング剤、及び培養細胞を含む、細胞培養系を提供する。培養細胞としては、スフェロイド形成に用いられる細胞として上記列挙したものが広く使用される。当該培養系を用いて多能性幹細胞又はがん幹細胞を作製する際には、体細胞又はがん細胞がそれぞれ好ましく用いられる。 In another aspect of the present invention, a cell culture system is provided that includes the cell reprogramming agent of the present invention and cultured cells. As the cultured cells, those listed above as cells used for spheroid formation are widely used. When producing pluripotent stem cells or cancer stem cells using the culture system, somatic cells or cancer cells, respectively, are preferably used.

本発明の別の態様において、本発明の細胞リプログラミング剤を用いて体細胞等を培養する工程を含む、幹細胞の製造方法を提供する。 In another aspect of the present invention, a method for producing stem cells is provided, which comprises a step of culturing somatic cells or the like using the cell reprogramming agent of the present invention.

本発明における「幹細胞」とは、幹細胞未分化マーカー遺伝子を発現する細胞であり、例えば、多能性幹細胞、がん幹細胞、体性幹細胞、間葉系幹細胞、等が挙げられる。その中でも、本発明の細胞リプログラミング剤は、多能性幹細胞、がん幹細胞の製造に好ましく用いられる。以下、多能性幹細胞、がん幹細胞の製造方法に関して詳述する。 In the present invention, "stem cells" refer to cells that express stem cell undifferentiation marker genes, and examples thereof include pluripotent stem cells, cancer stem cells, somatic stem cells, mesenchymal stem cells, etc. Among these, the cell reprogramming agent of the present invention is preferably used for producing pluripotent stem cells and cancer stem cells. The method for producing pluripotent stem cells and cancer stem cells is described in detail below.

<多能性幹細胞の製造方法>
本発明の別の態様において、本発明の細胞リプログラミング剤を用いて体細胞を培養する、多能性幹細胞の製造方法を提供する。本発明の細胞リプログラミング剤を用いて体細胞を培養することで、培養細胞がスフェロイドを形成し、簡便且つ効率的に多能性幹細胞を作製することができる。
<Method for producing pluripotent stem cells>
In another aspect of the present invention, there is provided a method for producing pluripotent stem cells, comprising culturing somatic cells with the cell reprogramming agent of the present invention. By culturing somatic cells with the cell reprogramming agent of the present invention, the cultured cells form spheroids, and pluripotent stem cells can be produced simply and efficiently.

多能性幹細胞を製造する際の本発明の細胞リプログラミング剤の使用方法としては、例えば、本発明の細胞リプログラミング剤を細胞培養基材の培養面を表面処理するために使用すること、及び/又は本発明の細胞リプログラミング剤を培養媒体に添加して使用することが挙げられるが、これに限定されない。好ましくは、培養面が本発明の細胞リプログラミング剤で表面処理された細胞培養基材を用いて、体細胞を培養する。細胞リプログラミング剤の、細胞培養基材の培養面を表面処理するための使用、及び培養媒体への添加による使用については、<表面処理剤、添加剤としての使用>の項における記載と同様である。 Methods of using the cell reprogramming agent of the present invention when producing pluripotent stem cells include, but are not limited to, using the cell reprogramming agent of the present invention to surface treat the culture surface of a cell culture substrate and/or adding the cell reprogramming agent of the present invention to a culture medium. Preferably, somatic cells are cultured using a cell culture substrate whose culture surface has been surface treated with the cell reprogramming agent of the present invention. The use of the cell reprogramming agent to surface treat the culture surface of a cell culture substrate and the use of the cell reprogramming agent by adding it to a culture medium are the same as those described in the section <Use as a surface treatment agent and additive>.

本発明の多能性幹細胞の製造に供される体細胞は、哺乳類(ヒト、マウス、ラット、ウシ、ブタ、サル、ヒツジ、ウサギ、イヌ等)由来のものであれば特に限定されず、広く用いることができる。その中でも、ヒト、サル、マウスが好ましく、ヒトが特に好ましい。また、体細胞の種類も特に限定されず、線維芽細胞、上皮細胞、軟骨細胞、筋細胞、骨細胞、肝細胞、膵細胞、腸内細胞、神経細胞、骨髄細胞、皮膚細胞等を広く用いることができる。また、健常者由来の体細胞であっても、疾患を持つ患者由来の体細胞であっても、本発明の多能性幹細胞の製造に用いることができる。 The somatic cells used in the production of the pluripotent stem cells of the present invention are not particularly limited as long as they are derived from mammals (humans, mice, rats, cows, pigs, monkeys, sheep, rabbits, dogs, etc.), and can be widely used. Among these, humans, monkeys, and mice are preferred, and humans are particularly preferred. The type of somatic cells is also not particularly limited, and a wide range of cells can be used, including fibroblasts, epithelial cells, chondrocytes, muscle cells, bone cells, liver cells, pancreatic cells, intestinal cells, nerve cells, bone marrow cells, and skin cells. In addition, somatic cells derived from healthy individuals and somatic cells derived from patients with diseases can be used in the production of the pluripotent stem cells of the present invention.

多能性幹細胞の製造に用いられる培地としては、<スフェロイド形成剤>の項において列挙したものを広く使用することができる。 As the medium used for producing pluripotent stem cells, a wide range of media can be used, including those listed in the section on spheroid-forming agents.

また、本発明における多能性幹細胞の製造方法においては、細胞増殖因子(例えばPDGF、TGF-β、Activin、BMP、Noggin、LIF、R-Spondin、Wnt-3a、EGF、TPO、SCF、Neuregulin)、Mesenchymal stem cell maintenance medium、レチノイン酸等の各種分化増殖補助剤を添加する必要はない。本発明の細胞リプログラミング剤を使用すると、細胞増殖因子を培地に添加せずとも、体細胞から多能性幹細胞を製造することが可能である。 Furthermore, in the method of producing pluripotent stem cells of the present invention, there is no need to add various differentiation and proliferation supplements such as cell growth factors (e.g., PDGF, TGF-β, Activin, BMP, Noggin, LIF, R-Spondin, Wnt-3a, EGF, TPO, SCF, Neuregulin), mesenchymal stem cell maintenance medium, and retinoic acid. By using the cell reprogramming agent of the present invention, it is possible to produce pluripotent stem cells from somatic cells without adding cell growth factors to the medium.

多能性幹細胞の製造方法としては、本発明の細胞リプログラミング剤を培養面に有する細胞培養基材を用いて細胞培養を行うこと以外は、通常のスフェロイドの形成方法に準じて行うことができる。例えば、non-adhesive surface細胞培養法、hanging drop細胞培養法、micromolding techniquesの利用、rotary細胞培養法等が挙げられ、non-adhesive surface細胞培養法が特に好ましい。 The method for producing pluripotent stem cells can be carried out in accordance with the usual method for forming spheroids, except that the cells are cultured using a cell culture substrate having the cell reprogramming agent of the present invention on its culture surface. Examples of the method include the non-adhesive surface cell culture method, the hanging drop cell culture method, the use of micromolding techniques, and the rotary cell culture method, with the non-adhesive surface cell culture method being particularly preferred.

多能性幹細胞の製造における培養条件は特に限定されないが、例えば、培養温度は、20~40℃、好ましくは34~38℃とすることができる。また、培養は3~10%CO2雰囲気下、好ましくは、4~6%CO2雰囲気下で実施することができる。培養期間は、例えば、10~40日間程度、好ましくは15~30日間程度である。また、任意選択で、培養期間中に1回以上、培地の交換を行うことができる。また、任意選択で、培養期間中に1回以上、細胞培養基材の交換を行うことができる。 The culture conditions for producing pluripotent stem cells are not particularly limited, but for example, the culture temperature can be 20 to 40°C, preferably 34 to 38°C. The culture can be performed in an atmosphere of 3 to 10% CO2 , preferably 4 to 6% CO2 . The culture period is, for example, about 10 to 40 days, preferably about 15 to 30 days. Optionally, the medium can be replaced at least once during the culture period. Optionally, the cell culture substrate can be replaced at least once during the culture period.

多能性幹細胞の製造におけるスフェロイドの大きさとしては通常、直径が10~500μm程度、好ましくは50~200μm程度である。スフェロイドは大きくなりすぎると内部に栄養が浸透しにくくなるため、適当なサイズに達するとスフェロイドを分離するのが望ましい。得られたスフェロイドはトリプシン及び/又はコラゲナーゼによる酵素処理で細胞をばらばらにした後、再度本発明の細胞リプログラミング剤を用いた培養を行うことにより、再び多能性幹細胞としての機能を有するスフェロイドを形成することができる。 The size of the spheroids used in the production of pluripotent stem cells is usually about 10 to 500 μm in diameter, preferably about 50 to 200 μm. If the spheroids become too large, it becomes difficult for nutrients to penetrate into the interior, so it is desirable to separate the spheroids when they reach an appropriate size. The obtained spheroids can be disaggregated by enzymatic treatment with trypsin and/or collagenase, and then cultured again using the cell reprogramming agent of the present invention to form spheroids that function as pluripotent stem cells again.

培養における体細胞の濃度は、多能性幹細胞が効率的に産生されるものであればよく、特に限定されないが、例えば、約1×103~約1×107個/well、好ましくは約3×103~約5×106個/wellが挙げられる。 The concentration of somatic cells in the culture is not particularly limited as long as pluripotent stem cells are efficiently produced, but examples include about 1 x 103 to about 1 x 107 cells/well, preferably about 3 x 103 to about 5 x 106 cells/well.

本発明の多能性幹細胞の製造方法において、幹細胞未分化マーカーの発現を確認することにより、多能性幹細胞が製造できたことを確認することができる。幹細胞未分化マーカーとしては例えば、OCT4、SOX1、SOX2、SOX3、SOX18、NANOG、Klf2、Klf4、Essrb、Sall4、Tcl1、Tcl3、c-Myc、c-Mycn、LIN28、SSEA-1、SSEA-3、SSEA-4、TRA-1-60、TRA-1-81、AP、Fzd1-10、TDGF-1等が挙げられる。 In the method for producing pluripotent stem cells of the present invention, it is possible to confirm that pluripotent stem cells have been produced by confirming the expression of stem cell undifferentiation markers. Examples of stem cell undifferentiation markers include OCT4, SOX1, SOX2, SOX3, SOX18, NANOG, Klf2, Klf4, Essrb, Sall4, Tcl1, Tcl3, c-Myc, c-Mycn, LIN28, SSEA-1, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, AP, Fzd1-10, and TDGF-1.

また、本発明により得られる多能性幹細胞が分化誘導能を有することの確認は、三胚葉関連遺伝子の確認により行うことができる。三胚葉(内胚葉、中胚葉、外胚葉)関連遺伝子としては、例えば、SOX17、FOXA2、Nestin、Flk1/KDRAFP、Cripto、Bmp4/Wnt3、GATA4、GATA6、Brachyury、HAND1、CXCR4、SOX1、Otx-2、Pax2、Pax6、MAP2が挙げられる。 Furthermore, whether the pluripotent stem cells obtained by the present invention have the ability to induce differentiation can be confirmed by confirming the three germ layers-related genes. Examples of genes related to the three germ layers (endoderm, mesoderm, and ectoderm) include SOX17, FOXA2, Nestin, Flk1/KDRAFP, Cripto, Bmp4/Wnt3, GATA4, GATA6, Brachyury, HAND1, CXCR4, SOX1, Otx-2, Pax2, Pax6, and MAP2.

本発明の製造方法により得られる多能性幹細胞は、ES細胞、神経幹細胞、間葉系幹細胞、転写因子による細胞運命変換(iPS細胞)、化合物カクテル(各種サイトカイン、ホルモン、作動薬、阻害剤薬等)によるExtraembryonic endoderm細胞(XEN-like細胞)のような段階的胚分化の表現形質を持つもの、さらにはiPS細胞の浮遊培養で得られる胚様体(embryoid body)の特徴を持つもの等、種々の分化状態を含む不均一な細胞の集団であっても良い。 The pluripotent stem cells obtained by the manufacturing method of the present invention may be a heterogeneous population of cells including various differentiation states, such as ES cells, neural stem cells, mesenchymal stem cells, cell fate conversion by transcription factors (iPS cells), cells with phenotypes of stepwise embryonic differentiation such as extraembryonic endoderm cells (XEN-like cells) produced by a chemical cocktail (various cytokines, hormones, agonists, inhibitors, etc.), and even cells with characteristics of embryoid bodies obtained by suspension culture of iPS cells.

本発明における多能性幹細胞の製造方法では、人工多能性幹細胞iPS細胞の半年~1年といった培養期間と比較し、非常に短期間(10~40日間程度)に多能性幹細胞を製造することができる。また、人工多能性幹細胞iPS細胞で知られているような、外部遺伝子の組み込みが無いことから、移植における腫瘍形成リスクがない。加えて、ヒトの皮膚組織からでも採取し易い線維芽細胞のような体細胞を用いて、簡便に自己の多能性幹細胞を作製することが可能であるため、免疫拒絶の問題を回避することができる。そのため、移植治療応用を視野に入れた場合、本邦の再生医療安全確保法における取り扱い区分がiPS細胞の第1種再生医療等(高リスク)とは異なり、第2種再生医療等(中リスク)となることが考えられる。 The method for producing pluripotent stem cells in the present invention allows pluripotent stem cells to be produced in a very short period of time (approximately 10 to 40 days) compared to the six months to a year required for culturing induced pluripotent stem cells (iPS cells). In addition, since there is no incorporation of foreign genes, as is known with induced pluripotent stem cells (iPS cells), there is no risk of tumor formation during transplantation. In addition, it is possible to easily produce autologous pluripotent stem cells using somatic cells such as fibroblasts, which are easy to collect even from human skin tissue, and therefore the problem of immune rejection can be avoided. Therefore, when considering the application of iPS cells in transplantation therapy, it is considered that the classification of iPS cells under the Regenerative Medicine Safety Act in Japan will be Type 2 regenerative medicine (medium risk) rather than Type 1 regenerative medicine (high risk).

さらに、本発明における多能性幹細胞の製造方法では、ダイレクト・リプログラミング法による多能性幹細胞の製造期間(約60日間)よりも短期間に多能性幹細胞を製造することができる。また、本発明における多能性幹細胞の製造方法はスフェロイド形成によるダイレクト・リプログラミング法であるため、化合物カクテルによるダイレクト・リプログラミング法よりも樹立に用いる材料組織の選択、拡大培養方法等において適用範囲が広い。 Furthermore, the method for producing pluripotent stem cells in the present invention allows pluripotent stem cells to be produced in a shorter time than the production period (approximately 60 days) required by the direct reprogramming method. In addition, since the method for producing pluripotent stem cells in the present invention is a direct reprogramming method using spheroid formation, it has a wider range of applications in terms of the selection of tissue materials used for establishment, expansion culture methods, etc., than the direct reprogramming method using a compound cocktail.

本発明の製造方法により得られる多能性幹細胞の用途は特に限定されず、各種の試験・研究、疾病の治療等に使用することができる。 The uses of the pluripotent stem cells obtained by the manufacturing method of the present invention are not particularly limited, and they can be used for various tests and research, disease treatment, etc.

<がん幹細胞の製造方法>
本発明の別の態様において、本発明の細胞リプログラミング剤を用いてがん細胞を培養する、がん幹細胞の製造方法を提供する。本発明の細胞リプログラミング剤を用いてがん細胞を培養することで、細胞がスフェロイドを形成し、簡便且つ効率的にがん幹細胞を作製することができる。
<Method of producing cancer stem cells>
In another aspect of the present invention, there is provided a method for producing cancer stem cells, comprising culturing cancer cells using the cell reprogramming agent of the present invention. By culturing cancer cells using the cell reprogramming agent of the present invention, the cells form spheroids, and cancer stem cells can be produced simply and efficiently.

がん幹細胞を製造する際の本発明の細胞リプログラミング剤の使用方法としては、例えば、本発明の細胞リプログラミング剤を細胞培養基材の培養面を表面処理するために使用すること、及び/又は本発明の細胞リプログラミング剤を培養媒体に添加して使用することが挙げられるが、これに限定されない。好ましくは、培養面が本発明の細胞リプログラミング剤で表面処理された細胞培養基材を用いて、がん細胞を培養する。細胞リプログラミング剤の、細胞培養基材の培養面を表面処理するための使用、及び培養媒体への添加による使用については、<表面処理剤、添加剤としての使用>の項における記載と同様である。 Methods of using the cell reprogramming agent of the present invention when producing cancer stem cells include, but are not limited to, using the cell reprogramming agent of the present invention to surface treat the culture surface of a cell culture substrate and/or adding the cell reprogramming agent of the present invention to a culture medium. Preferably, cancer cells are cultured using a cell culture substrate whose culture surface has been surface treated with the cell reprogramming agent of the present invention. The use of the cell reprogramming agent to surface treat the culture surface of a cell culture substrate and the use of the cell reprogramming agent by adding it to a culture medium are the same as those described in the section <Use as a surface treatment agent and additive>.

本発明のがん幹細胞の製造に供されるがん細胞は、哺乳類(ヒト、マウス、ラット、ウシ、ブタ、サル、ヒツジ、ウサギ、イヌ等)由来のものであれば特に限定されず、広く用いることができる。その中でも、ヒト、サル、マウスが好ましく、ヒトが特に好ましい。また、がんの種類も特に限定されず、例えば大腸がん、乳がん、卵巣がん、子宮頚がん、子宮内膜がん、前立腺がん、胃がん、肝臓がん、食道がん、膵臓がん、膀胱がん、胆管がん、喉頭がん、黒色腫、肺がん、慢性リンパ球性白血病、慢性骨髄性白血病、甲状腺がん、多発性骨髄腫、肉腫等、広く用いることができる。また、株化細胞、患者検体由来初代培養細胞、患者検体由来継代可能細胞(PDCC)、動物移植がん組織由来がん細胞(PDOX)、実験動物由来がん細胞等、広く用いることができる。 The cancer cells used in the production of the cancer stem cells of the present invention are not particularly limited as long as they are derived from mammals (humans, mice, rats, cows, pigs, monkeys, sheep, rabbits, dogs, etc.), and can be widely used. Among them, humans, monkeys, and mice are preferred, and humans are particularly preferred. The type of cancer is also not particularly limited, and a wide range of cancers can be used, including, for example, colon cancer, breast cancer, ovarian cancer, cervical cancer, endometrial cancer, prostate cancer, stomach cancer, liver cancer, esophageal cancer, pancreatic cancer, bladder cancer, bile duct cancer, laryngeal cancer, melanoma, lung cancer, chronic lymphocytic leukemia, chronic myeloid leukemia, thyroid cancer, multiple myeloma, and sarcoma. In addition, a wide range of cancers can be used, including established cell lines, primary cultured cells derived from patient specimens, patient specimen-derived passaging-capable cells (PDCC), cancer cells derived from animal transplanted cancer tissues (PDOX), and cancer cells derived from experimental animals.

多能性幹細胞の製造に用いられる培地としては、<スフェロイド形成剤>の項において列挙したものを広く使用することができる。その中でも、DMEM/F12培地が好ましい。 As a medium for producing pluripotent stem cells, a wide range of media can be used, including those listed in the section on spheroid-forming agents. Among these, DMEM/F12 medium is preferred.

また、本発明におけるがん幹細胞の製造方法においては、細胞増殖因子(例えばPDGF、TGF-β、Activin、BMP、Noggin、LIF、R-Spondin、Wnt-3a、EGF、TPO、SCF、Neuregulin)、Mesenchymal stem cell maintenance medium、レチノイン酸等の各種分化増殖補助剤を添加する必要はない。本発明の細胞リプログラミング剤を使用すると、細胞増殖因子を培地に添加せずとも、がん細胞からがん幹細胞を製造することが可能である。 In addition, in the method for producing cancer stem cells of the present invention, there is no need to add various differentiation and proliferation auxiliary agents such as cell growth factors (e.g., PDGF, TGF-β, Activin, BMP, Noggin, LIF, R-Spondin, Wnt-3a, EGF, TPO, SCF, Neuregulin), mesenchymal stem cell maintenance medium, and retinoic acid. By using the cell reprogramming agent of the present invention, it is possible to produce cancer stem cells from cancer cells without adding cell growth factors to the medium.

がん幹細胞の製造方法としては、本発明の細胞リプログラミング剤を培養面に有する細胞培養基材を用いて細胞培養を行うこと以外は、通常のスフェロイドの形成方法に準じて行うことができる。例えば、non-adhesive surface細胞培養法、hanging drop細胞培養法、micromolding techniquesの利用、rotary細胞培養法等が挙げられ、non-adhesive surface細胞培養法が特に好ましい。 The method for producing cancer stem cells can be carried out in accordance with the usual method for forming spheroids, except that the cells are cultured using a cell culture substrate having the cell reprogramming agent of the present invention on the culture surface. Examples include the non-adhesive surface cell culture method, the hanging drop cell culture method, the use of micromolding techniques, and the rotary cell culture method, with the non-adhesive surface cell culture method being particularly preferred.

がん幹細胞の製造における培養条件は特に限定されないが、例えば、培養温度は、20~40℃、好ましくは34~38℃とすることができる。また、培養は3~10%CO2雰囲気下、好ましくは、4~6%CO2雰囲気下で実施することができる。培養期間は、例えば、10~40日間程度、好ましくは15~30日間程度である。また、任意選択で、培養期間中に1回以上、培地の交換を行うことができる。また、任意選択で、培養期間中に1回以上、細胞培養基材の交換を行うことができる。 The culture conditions for producing cancer stem cells are not particularly limited, but for example, the culture temperature can be 20 to 40°C, preferably 34 to 38°C. The culture can be performed in an atmosphere of 3 to 10% CO2 , preferably 4 to 6% CO2 . The culture period is, for example, about 10 to 40 days, preferably about 15 to 30 days. Optionally, the medium can be replaced at least once during the culture period. Optionally, the cell culture substrate can be replaced at least once during the culture period.

がん幹細胞の製造におけるスフェロイドの大きさとしては通常、直径が10~500μm程度、好ましくは50~200μm程度である。スフェロイドは大きくなりすぎると内部に栄養が浸透しにくくなるため、適当なサイズに達するとスフェロイドを分離するのが望ましい。得られたスフェロイドは細胞をばらばらにした後、再度本発明の細胞リプログラミング剤を用いた培養を行うことにより、再びがん幹細胞としての機能を有するスフェロイドを形成することができる。 The size of the spheroids used in the production of cancer stem cells is usually about 10 to 500 μm in diameter, preferably about 50 to 200 μm. If the spheroids become too large, it becomes difficult for nutrients to penetrate into the interior, so it is desirable to separate the spheroids when they reach an appropriate size. The obtained spheroids can be disaggregated and then cultured again using the cell reprogramming agent of the present invention to form spheroids that once again function as cancer stem cells.

培養におけるがん細胞の濃度は、がん幹細胞が効率的に産生されるものであればよく、特に限定されないが、例えば、約1×103~約1×107個/well、好ましくは約3×103~約5×106個/wellが挙げられる。 The concentration of cancer cells in the culture is not particularly limited as long as cancer stem cells are efficiently produced, but examples include about 1 x 103 to about 1 x 107 cells/well, preferably about 3 x 103 to about 5 x 106 cells/well.

本発明のがん幹細胞の製造方法において、がん細胞表面マーカーの発現を確認することにより、がん幹細胞が製造できたことを確認することができる。がん細胞表面マーカーとしては例えば、CD133、CD44、CD24、ABCB5、EAS、CD34、CD38、CD90、CD117、CXCR4 等が挙げられる。 In the method for producing cancer stem cells of the present invention, it is possible to confirm that cancer stem cells have been produced by confirming the expression of cancer cell surface markers. Examples of cancer cell surface markers include CD133, CD44, CD24, ABCB5, EAS, CD34, CD38, CD90, CD117, and CXCR4.

また、本発明の製造方法により得られるがん幹細胞は、幹細胞未分化マーカーの発現も確認できる。幹細胞未分化マーカーとしては、例えばOCT4、SOX1、SOX2、SOX3、SOX18、NANOG、Klf2、Klf4、Essrb、Sall4、Tcl1、Tcl3、c-MYC、c-MYCn、LIN28、SSEA-1、SSEA-3、SSEA-4、TRA-1-60、TRA-1-81、AP、Fzd1-10、TDGF-1等が挙げられる。 In addition, the expression of stem cell undifferentiation markers can be confirmed in the cancer stem cells obtained by the manufacturing method of the present invention. Examples of stem cell undifferentiation markers include OCT4, SOX1, SOX2, SOX3, SOX18, NANOG, Klf2, Klf4, Essrb, Sall4, Tcl1, Tcl3, c-MYC, c-MYCn, LIN28, SSEA-1, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, AP, Fzd1-10, and TDGF-1.

本発明の製造方法により得られるがん幹細胞は、種々のがん幹細胞を含む不均一ながん幹細胞の集団であっても良く、がん細胞をさらに含んでいても良い。 The cancer stem cells obtained by the production method of the present invention may be a heterogeneous population of cancer stem cells containing various cancer stem cells, and may further contain cancer cells.

本発明の製造方法により得られるがん幹細胞の用途は特に限定されず、各種の試験・研究、疾病の治療等に使用することができる。 The uses of the cancer stem cells obtained by the manufacturing method of the present invention are not particularly limited, and they can be used for various tests and research, disease treatment, etc.

<幹細胞の分化誘導>
本発明の製造方法により得られる多能性幹細胞を公知の方法で分化誘導することにより、内胚葉系器官(例えば、肝臓、膵臓、腸管、肺、甲状腺、副甲状腺、尿路、脂肪組織、軟骨組織等)、中胚葉系器官(例えば、腎臓、尿管、心臓、血液、生殖腺、副腎皮質、筋肉、骨格、真皮、結合組織、中皮等)、外胚葉系器官(例えば、脳、脊髄、副腎髄質、表皮、毛髪・爪・皮膚腺、感覚器、末梢神経、水晶体等)の細胞へと分化することができる。さらに公知の方法を用いて、上記器官のオルガノイド、組織を製造することもできる。
<Induction of stem cell differentiation>
By inducing differentiation of the pluripotent stem cells obtained by the production method of the present invention using a known method, they can be differentiated into cells of endodermal organs (e.g., liver, pancreas, intestinal tract, lung, thyroid, parathyroid, urinary tract, adipose tissue, cartilage tissue, etc.), mesodermal organs (e.g., kidney, ureter, heart, blood, gonads, adrenal cortex, muscle, skeleton, dermis, connective tissue, mesothelium, etc.), and ectodermal organs (e.g., brain, spinal cord, adrenal medulla, epidermis, hair, nails, skin glands, sensory organs, peripheral nerves, lens, etc.). Furthermore, organoids and tissues of the above organs can also be produced using known methods.

分化誘導については、ES細胞、iPS細胞等の多能性幹細胞で報告されている分化処理方法を参考に任意の細胞への分化誘導法を用いて適宜行うことができる。例えば、造血系細胞への分化誘導は、文献(Niwa A, Heike T, Saito K, et al. A Nobel serum-free monolayer culture for orderly hematopoietic differentiation of human pluripotent cells via mesodermal progenitors. PLos One 2011; issue7,Vol.6, )に記載の方法に従って行うことができる。 Differentiation induction can be appropriately performed using any cell differentiation induction method with reference to the differentiation treatment methods reported for pluripotent stem cells such as ES cells and iPS cells. For example, differentiation induction into hematopoietic cells can be performed according to the method described in the literature (Niwa A, Heike T, Saito K, et al. A Nobel serum-free monolayer culture for orderly hematopoietic differentiation of human pluripotent cells via mesodermal progenitors. PLos One 2011; issue7,Vol.6, ).

本発明の方法で得られるオルガノイド、組織は、被検物質の薬効/毒性評価又は作用メカニズムの解明、あるいは生物現象メカニズムの解析に用いることが可能である。 The organoids and tissues obtained by the method of the present invention can be used to evaluate the efficacy/toxicity of test substances, to clarify their mechanisms of action, or to analyze the mechanisms of biological phenomena.

以下、本発明を実施例によりさらに説明するが、本発明はこれに限定されるものではない。 The present invention will be further explained below with reference to examples, but the present invention is not limited thereto.

実施例1:健常ヒト新生児線維芽細胞のスフェロイド培養と幹細胞未分化マーカー遺伝子の発現
(方法)
式(1)で表されるポリペプチド(ユニクス株式会社製、PURECOLLA)の水溶液(0.125%)(細胞リプログラミング剤)2mLを市販のポリスチレン製6well平底培養容器(CellBIND、CORNING社)に添加し、4℃で24時間静置した。
Example 1: Spheroid culture of healthy human neonatal fibroblasts and expression of stem cell undifferentiation marker genes (Method)
2 mL of an aqueous solution (0.125%) of the polypeptide represented by formula (1) (UNIX Corporation, PURECOLLA) (cell reprogramming agent) was added to a commercially available polystyrene 6-well flat-bottom culture vessel (CellBIND, Corning) and left to stand at 4°C for 24 hours.

その後、余分な細胞リプログラミング剤を除去し、37℃の乾燥機内で96時間乾燥して細胞リプログラミング剤塗布処理を完成した。健常ヒト新生児線維芽細胞(Lonza社:Normal Human Dermal Fibroblasts-Neonatal、以下「線維芽細胞」と記載)は無血清培地(Promo Cell社; Fibroblast Basal Medium, basic-FGF 5 ng/ mL及びInsulin2.5μg/mL)で維持培養した。上記細胞リプログラミング剤塗布培養容器に、上記培地2mLに浮遊させた線維芽細胞2×106個/wellを播種し、37℃、5%CO2条件下で培養した。対照として、細胞リプログラミング剤を塗布しない同型培養容器に線維芽細胞2×106個/wellを播種した。培養開始後2日目と20日目に顕微鏡観察を行い、スフェロイド形成状況を撮影した(図5)。 After that, excess cell reprogramming agent was removed, and the cells were dried in a dryer at 37 °C for 96 hours to complete the cell reprogramming agent application process. Healthy human neonatal fibroblasts (Lonza: Normal Human Dermal Fibroblasts-Neonatal, hereinafter referred to as "fibroblasts") were maintained and cultured in serum-free medium (Promo Cell; Fibroblast Basal Medium, basic-FGF 5 ng/mL and Insulin 2.5 μg/mL). Fibroblasts suspended in 2 mL of the above medium were seeded in the above cell reprogramming agent-coated culture vessel at 2 × 10 6 cells /well and cultured under 37 °C and 5% CO 2 conditions. As a control, fibroblasts were seeded in the same type of culture vessel without the cell reprogramming agent. Microscopic observation was performed on the 2nd and 20th days after the start of culture, and the spheroid formation status was photographed (Figure 5).

遺伝子mRNAの発現解析はリアルタイム-PCR法で行った。線維芽細胞を上記と同じ方法でスフェロイド培養し、20日目(Day20)にスフェロイドを15mL遠心チューブに集めて遠心分離を行い、リン酸緩衝液PBS(-)で細胞を洗浄し回収した。対照の細胞リプログラミング剤無し培養容器で培養した細胞は(Day0)、培地を除去した後PBS(-)で洗浄し、0.05%トリプシン-EGTAで培養容器から細胞を剥離分散させて15mL遠心チューブに集め、再度PBS(-)洗浄した。回収したスフェロイド及び対照細胞からRNAを抽出して、リアルタイム-PCR法による幹細胞未分化マーカー遺伝子の発現解析を行った。 Gene mRNA expression analysis was performed using real-time PCR. Fibroblasts were cultured as spheroids using the same method as above, and on day 20 (Day 20), the spheroids were collected in a 15 mL centrifuge tube and centrifuged, and the cells were washed and collected with phosphate buffer PBS(-). For the control cells cultured in a culture vessel without a cell reprogramming agent (Day 0), the medium was removed and the cells were washed with PBS(-), detached and dispersed from the culture vessel with 0.05% trypsin-EGTA, collected in a 15 mL centrifuge tube, and washed again with PBS(-). RNA was extracted from the collected spheroids and control cells, and expression analysis of stem cell undifferentiation marker genes was performed using real-time PCR.

具体的には、各細胞にNucleoZOL(マッハライ・ナーゲル社)試薬を加えて、試薬メーカー推奨プロトコールに従ってtotal-RNAを抽出し、幹細胞未分化マーカー検出の鋳型RNAとした。リアルタイム-PCR解析では、QuantiFast Probe RT-PCR Kits (QIAGEN;No.204454)とTaqMan Gene Expression Assay Probe(Thermo Fisher Scientific社)のPCRプローブを使用し、Rotor-Gene Q(QIAGEN社)装置を用いてPCR解析を行った。検出を試みた遺伝子は、スフェロイド形成に関与することが予想されるサイトカイン、ケモカイン類の他に、幹細胞未分化マーカー遺伝子の発現検出用プローブとしてiPS細胞作製(非特許文献1)で用いられる転写因子SOX2(sex-determining region Y-box 2)、OCT4(octamer binding transcription factor 4)、NANOG(homeodomain transcription factor)の3種と、内在性コントロール遺伝子としてβ-Actin を使用した。遺伝子発現解析では、ΔΔCt法(デルタデルタCt法)による相対定量を行った。ΔΔCt法解析の結果は、対照とする「細胞リプログラミング剤なし、平面2次元増殖Day0」の細胞が発現する遺伝子量を相対的に「1.0」とし、比較する「スフェロイド増殖の20日目の発現量」の増加倍率を求めた(図6)。 Specifically, NucleoZOL (Machrei-Nagel) reagent was added to each cell, and total-RNA was extracted according to the protocol recommended by the reagent manufacturer, and used as template RNA for stem cell undifferentiation marker detection. For real-time PCR analysis, QuantiFast Probe RT-PCR Kits (QIAGEN; No. 204454) and TaqMan Gene Expression Assay Probe (Thermo Fisher Scientific) PCR probes were used, and PCR analysis was performed using a Rotor-Gene Q (QIAGEN) device. The genes that were detected included cytokines and chemokines that are expected to be involved in spheroid formation, as well as three types of transcription factors used in iPS cell production (Non-Patent Document 1) as probes for detecting the expression of stem cell undifferentiation marker genes: SOX2 (sex-determining region Y-box 2), OCT4 (octamer binding transcription factor 4), and NANOG (homeodomain transcription factor), and β-Actin was used as an endogenous control gene. In gene expression analysis, relative quantification was performed using the ΔΔCt method (delta delta Ct method). The results of the ΔΔCt method analysis were calculated by setting the amount of genes expressed by the control cells in "no cell reprogramming agent, planar 2D growth day 0" at a relative value of "1.0," and calculating the increase rate of the "expression amount on day 20 of spheroid growth" (Figure 6).

(結果)
図5に、細胞リプログラミング剤処理培養容器を用いた線維芽細胞のスフェロイド培養結果を示した。細胞リプログラミング剤無しの対照容器では、線維芽細胞は底面に接着2次元増殖した(培養2日目)。一方、細胞リプログラミング剤塗布処理をした培養容器では、細胞が凝集体/スフェロイドを形成し3次元増殖した。培養開始2日目から20日目にかけてスフェロイドを構成する細胞が増殖してスフェロイド自体のサイズも増大した。
(result)
Figure 5 shows the results of spheroid culture of fibroblasts using culture vessels treated with a cell reprogramming agent. In a control vessel without a cell reprogramming agent, fibroblasts adhered to the bottom and proliferated two-dimensionally (culture day 2). On the other hand, in a culture vessel coated with a cell reprogramming agent, cells formed aggregates/spheroids and proliferated three-dimensionally. From day 2 to day 20 of culture, the cells that make up the spheroids proliferated, and the size of the spheroids themselves also increased.

図6に、遺伝子mRNAのリアルタイム-PCR結果を示した。培養開始20日目の線維芽細胞スフェロイドでは、幹細胞の性質を定義するマーカータンパクSOX2、OCT4、NANOGの遺伝子発現量が増加し、幹細胞の性質を獲得している事を見出した。具体的には、対照とする細胞リプログラミング剤無しで培養した線維芽細胞のSOX2、OCT4、NANOG遺伝子発現量を相対的に1.0とし、3次元スフェロイド培養した20日目のSOX2、OCT4、NANOG遺伝子発現量をΔΔCt法で相対較した。その結果、SOX2は34.4倍に増加、OCT4は5.1倍に増加、NANOGは9.1倍に増加した。 Figure 6 shows the results of real-time PCR of gene mRNA. In fibroblast spheroids on the 20th day of culture, the gene expression levels of marker proteins SOX2, OCT4, and NANOG, which define the properties of stem cells, increased, and it was found that the fibroblast spheroids had acquired the properties of stem cells. Specifically, the gene expression levels of SOX2, OCT4, and NANOG in fibroblasts cultured without a cell reprogramming agent (control) were set at 1.0, and the gene expression levels of SOX2, OCT4, and NANOG on the 20th day of 3D spheroid culture were compared relatively using the ΔΔCt method. As a result, SOX2 increased 34.4-fold, OCT4 increased 5.1-fold, and NANOG increased 9.1-fold.

(考察)
図5では、線維芽細胞をポリプロピレン製細胞培養容器で培養すると、一般的に容器底面は親水化処理又は疎水化処理により細胞との接着性が高められているため、細胞は培養容器の底面に接着して増殖する(2次元接着増殖)。これに対して、式(1)で表されるポリペプチドの水溶液を培養容器にコーティングすると、細胞は底面に接着せず、細胞どうしが動き回り相互に凝集して3次元の立体的な細胞集合体であるスフェロイドを形成した。ヒトの身体は細胞の立体的な集合体として構築されて生命現象が営まれるため、2次元培養細胞よりも3次元培養の方が生体内組織を反映しており、様々な生理機能及び遺伝子発現が制御されている。
(Discussion)
In Figure 5, when fibroblasts are cultured in a polypropylene cell culture vessel, the bottom of the vessel is generally treated to be hydrophilic or hydrophobic to enhance adhesion to cells, so the cells adhere to the bottom of the vessel and grow (two-dimensional adhesion and growth). In contrast, when the vessel is coated with an aqueous solution of the polypeptide represented by formula (1), the cells do not adhere to the bottom, but move around among themselves and aggregate with each other to form spheroids, which are three-dimensional cell aggregates. Since the human body is constructed as a three-dimensional aggregate of cells and life phenomena are carried out, three-dimensional cultures reflect in vivo tissues better than two-dimensional cultured cells, and various physiological functions and gene expression are controlled.

図6の結果より、細胞リプログラミング剤処理をした培養容器で線維芽細胞をスフェロイド培養すると、従来のiPS細胞製造法で用いる遺伝子を導入することなく、化合物によるdirect-reprogrammingで用いる化合物カクテルを使用することなく、多能性幹細胞の特徴を持った幹細胞を誘導できることを見出した。 The results in Figure 6 show that when fibroblasts are cultured as spheroids in a culture vessel treated with a cell reprogramming agent, stem cells with the characteristics of pluripotent stem cells can be induced without the introduction of genes used in conventional iPS cell production methods, and without the use of chemical cocktails used in direct-reprogramming with chemicals.

即ち、新規なdirect-reprogramming機序で体細胞の線維芽細胞から多能性幹細胞の特徴を備えた細胞を誘導できる、新規な細胞リプログラミング剤スフェロイド培養法を見出したと言える。 In other words, we have discovered a new cell reprogramming agent spheroid culture method that can induce cells with the characteristics of pluripotent stem cells from somatic fibroblast cells using a novel direct-reprogramming mechanism.

なお、幹細胞未分化マーカーのmRNA発現量増加倍率は、この数値に限定されるものではない。また、ヒト幹細胞未分化マーカーとしてはSOX2、OCT3/4、NANOG以外にもKlf4、Essrb、Sall4、Lin28、SSEA、TRA-1-60、c-MYC等が知られており、本発明はこれら実施例の3種遺伝子により限定されるものではない。 The increase in mRNA expression level of the stem cell undifferentiation marker is not limited to this value. In addition, other than SOX2, OCT3/4, and NANOG, other known human stem cell undifferentiation markers include Klf4, Essrb, Sall4, Lin28, SSEA, TRA-1-60, and c-MYC, and the present invention is not limited to these three genes in the examples.

実施例2:健常ヒト新生児線維芽細胞で作製した幹細胞の初期三胚葉への分化誘導
(方法)
健常ヒト新生児線維芽細胞のスフェロイド形成と幹細胞誘導を経時的に観察するため、96well丸底培養容器を用いた培養を行った。式(1)で表されるポリペプチド(ユニクス株式会社製、PURECOLLA)の水溶液(0.125%)(細胞リプログラミング剤)を市販のポリスチレン製96well丸底培養容器(Nunclon Delta 96U Bottom、Thermo Scientific社)に100μL/wellで添加し、4℃で24時間静置した。その後、余分な細胞リプログラミング剤を除去し、37℃の乾燥機内で96時間乾燥して細胞リプログラミング剤塗布処理を完成した。線維芽細胞は無血清培地(Promo Cell社; Fibroblast Basal Medium, basic-FGF 5 ng/ mL及びInsulin2.5μg/mL)で維持培養した。上記細胞リプログラミング剤塗布培養容器に、上記培地に浮遊させた線維芽細胞4×104個/well/100μLを播種し、37℃、5%CO2条件下で培養した。
Example 2: Induction of differentiation of stem cells generated from healthy human neonatal fibroblasts into the three early germ layers (Method)
To observe the spheroid formation and stem cell induction of healthy human neonatal fibroblasts over time, culture was performed using a 96-well round-bottom culture vessel. An aqueous solution (0.125%) of the polypeptide represented by formula (1) (Unix Corporation, PURECOLLA) (cell reprogramming agent) was added at 100μL/well to a commercially available polystyrene 96-well round-bottom culture vessel (Nunclon Delta 96U Bottom, Thermo Scientific) and left at 4℃ for 24 hours. After that, excess cell reprogramming agent was removed, and the cells were dried in a dryer at 37℃ for 96 hours to complete the cell reprogramming agent application process. Fibroblasts were maintained and cultured in serum-free medium (Promo Cell; Fibroblast Basal Medium, basic-FGF 5 ng/mL and Insulin 2.5μg/mL). Fibroblasts suspended in the above-mentioned medium were seeded at 4 x 104 cells/well/100 µL into the cell reprogramming agent-coated culture vessel and cultured under conditions of 37°C and 5% CO2 .

スフェロイド形成の観察は、培養開始後0日目、2日目、20日目に顕微鏡観察を行った(図7)。 Spheroid formation was observed under a microscope on days 0, 2, and 20 after the start of culture (Figure 7).

実施例1で見出した幹細胞未分化マーカー遺伝子の発現機序を経時的に調べるため、転写因子SOX2(sex-determining region Y-box 2)、OCT4(octamer binding transcription factor 4)、NANOG (homeodomain transcription factor)の3種、及び内在性コントロール遺伝子としてβ-Actin のTaqMan Gene Expression Assay Probeを使用し、リアルタイム-PCR解析を行った。発現解析ではΔΔCt法(デルタデルタCt法)による相対定量を行った(図8)。 To investigate the mechanism of expression of the stem cell undifferentiation marker genes found in Example 1 over time, real-time PCR analysis was performed using TaqMan Gene Expression Assay Probes for three transcription factors, SOX2 (sex-determining region Y-box 2), OCT4 (octamer binding transcription factor 4), and NANOG (homeodomain transcription factor), as well as β-Actin as an endogenous control gene. Expression analysis was performed using relative quantification using the ΔΔCt method (delta delta Ct method) (Figure 8).

線維芽細胞から誘導した幹細胞が分化誘導能を持つかどうかを調べるためには、分化の初期段階を示す三胚葉関連遺伝子の発現解析を行った。上記と同様の細胞リプログラミング剤処理96well培養容器を用いて線維芽細胞を同様の方法で培養した。三胚葉分化関連遺伝子の発現検出用プローブには、胚葉マーカー遺伝子であるSOX17(sex-determining region Y-box 17;内胚葉)、HAND1(Heart-and neural crest derivatives-expressed protein-1;中胚葉)、MAP2 (microtubule associated protein 2:外胚葉)の3種、及び内在性コントロール遺伝子としてβ-Actin のTaqMan Gene Expression Assay Probeを使用し、リアルタイム-PCR解析を行った。発現解析では、ΔΔCt法(デルタデルタCt法)による相対定量を行った(図9)。 To investigate whether stem cells induced from fibroblasts have the ability to induce differentiation, we performed expression analysis of three germ layer-related genes that indicate the early stage of differentiation. Fibroblasts were cultured in the same manner as above using a 96-well culture vessel treated with a cell reprogramming agent. The probes for detecting the expression of the three germ layer-related genes were three germ layer marker genes: SOX17 (sex-determining region Y-box 17; endoderm), HAND1 (heart-and neural crest derivatives-expressed protein-1; mesoderm), and MAP2 (microtubule associated protein 2; ectoderm), as well as a TaqMan Gene Expression Assay Probe for β-Actin as an endogenous control gene, and real-time PCR analysis was performed. In the expression analysis, relative quantification was performed using the ΔΔCt method (delta delta Ct method) (Figure 9).

(結果)
結果を図7に、96well丸底培養容器で線維芽細胞のスフェロイドが経時的に生長する状況を示した。細胞リプログラミング剤処理した96well丸底培養容器を用いることで、細胞は1個のスフェロイドを形成するため、スフェロイドごとの遺伝子発現及び生理活性を均質に測定できた。
(result)
The results are shown in Figure 7. The growth of fibroblast spheroids over time in a 96-well round-bottom culture vessel. By using a 96-well round-bottom culture vessel treated with a cell reprogramming agent, the cells formed a single spheroid, allowing the gene expression and physiological activity of each spheroid to be measured uniformly.

図8に、幹細胞未分化マーカーmRNAのリアルタイム-PCR結果を示した。その結果、線維芽細胞スフェロイドの培養開始5日目以降、幹細胞未分化マーカーSOX2、OCT4、NANOGの遺伝子発現量が経時的に増加する事を見出した。 Figure 8 shows the results of real-time PCR of stem cell undifferentiation marker mRNA. As a result, it was found that the gene expression levels of stem cell undifferentiation markers SOX2, OCT4, and NANOG increased over time from the fifth day of culturing fibroblast spheroids.

具体的には、対照とする細胞リプログラミング剤無しで2次元接着培養(Day0)した線維芽細胞のSOX2、OCT4、NANOG遺伝子発現量を相対的に1.0とし、3次元スフェロイド培養した5日目(Day5)、10日目(Day10)、20日目(Day20)のSOX2、OCT4、NANOG遺伝子発現量をΔΔCt相対定量で比較した。いずれの遺伝子も経時的に増加して20日目に最高値を示し、SOX2は144.0倍に増加、OCT4は30.1倍に増加、NANOGは35.4倍に増加した。 Specifically, the gene expression levels of SOX2, OCT4, and NANOG in fibroblasts cultured in 2D adhesion (Day 0) without the cell reprogramming agent as a control were set at 1.0 relative to each other, and the gene expression levels of SOX2, OCT4, and NANOG on Day 5 (Day 5), Day 10 (Day 10), and Day 20 (Day 20) after 3D spheroid culture were compared using ΔΔCt relative quantification. All genes increased over time, reaching their peak on Day 20, with SOX2 increasing 144.0-fold, OCT4 increasing 30.1-fold, and NANOG increasing 35.4-fold.

図9では、三胚葉関連遺伝子mRNAのリアルタイム-PCR結果を示した。その結果、線維芽細胞のスフェロイド培養開始5日目以降、三胚葉への分化を定義するマーカータンパクSOX17、HAND1、MAP2の遺伝子発現量が増加する事を見出した。 Figure 9 shows the results of real-time PCR of the mRNA of genes related to the three germ layers. As a result, it was found that the gene expression levels of the marker proteins SOX17, HAND1, and MAP2, which define differentiation into the three germ layers, increased from the fifth day onwards when fibroblast spheroid culture was started.

具体的には、対照とする細胞リプログラミング剤無しで2次元接着培養(Day0)した線維芽細胞のSOX17、GATA6、MAP2遺伝子発現量を相対的に1.0とし、3次元スフェロイド培養した5日目(Day5)、10日目(Day10)、20日目(Day20)のSOX17、HAND1、MAP2遺伝子発現量をΔΔCt相対定量で比較した。いずれの遺伝子も経時的に増加して20日目に最高値を示し、SOX17は359.6倍に増加、HAND1は4.2倍に増加、MAP2は28.6倍に増加した。 Specifically, the gene expression levels of SOX17, GATA6, and MAP2 in fibroblasts cultured in 2D adhesion (Day 0) without the cell reprogramming agent as a control were set at a relative value of 1.0, and the gene expression levels of SOX17, HAND1, and MAP2 on Day 5 (Day 5), Day 10 (Day 10), and Day 20 (Day 20) in 3D spheroid culture were compared using ΔΔCt relative quantification. All genes increased over time, reaching their peak on Day 20, with SOX17 increasing 359.6-fold, HAND1 increasing 4.2-fold, and MAP2 increasing 28.6-fold.

(考察)
図7では、体細胞である線維芽細胞から、多能性幹細胞の特徴を持つ幹細胞を作製(direct-reprogramming)できることを示した。さらに培養容器の形状に関しても、平底培養容器でも丸底培養容器でも同様に達成できる事を示した。
(Discussion)
In Figure 7, we showed that it is possible to directly reprogram stem cells with the characteristics of pluripotent stem cells from somatic fibroblasts. Furthermore, we showed that this can be achieved in both flat-bottom and round-bottom culture vessels.

図8では、細胞リプログラミング剤処理をした96well培養容器で線維芽細胞をスフェロイド培養すると、1個の均質なスフェロイドを作製できることから、精密な遺伝子発現解析が可能になる。その結果、iPS細胞作製で用いる転写因子遺伝子の導入法をとらず、さらには化合物によるdirect-reprogrammingで用いる化合物カクテルを培養液に添加することなく、SOX2、OCT4、NANOG遺伝子の発現増強を伴う多能性幹細胞に初期化(direct-reprogramming)できることを見出した。即ち、細胞リプログラミング剤によるスフェロイド培養法で、体細胞の線維芽細胞から多能性幹細胞の特性を備えた細胞を作製する新規なdirect-reprogramming法を発明したといえる。 In Figure 8, when fibroblasts are cultured as spheroids in a 96-well culture vessel treated with a cell reprogramming agent, a single homogenous spheroid can be produced, enabling precise gene expression analysis. As a result, we found that direct reprogramming is possible to initialize pluripotent stem cells with enhanced expression of SOX2, OCT4, and NANOG genes without using the method of introducing transcription factor genes used in iPS cell production, and without adding to the culture medium a compound cocktail used in direct reprogramming with compounds. In other words, we have invented a new direct reprogramming method to produce cells with the characteristics of pluripotent stem cells from somatic fibroblast cells using a spheroid culture method with a cell reprogramming agent.

図9の結果から、線維芽細胞から作製した幹細胞が、三次元細胞集塊である胚様体(embryoid body)の形質を持つ細胞に分化誘導(differentiation)出来る事を示した。一般的に幹細胞から成熟臓器細胞を分化誘導するためには、幹細胞から一旦目的臓器系列の胚葉に分化誘導する工程が必要である。本培養方法は、従来のiPS細胞法又は化合物によるdirect-reprogramming法とは異なる機序で、体細胞から幹細胞への初期化(direct-reprogramming)をもたらし、同時にSOX17(内胚葉マーカー遺伝子)陽性、HAND1(中胚葉マーカー遺伝子)、MAP2(外胚葉マーカー遺伝子)陽性の胚葉体に分化誘導(differentiation)を実現する新規培養法であると言える。 The results in Figure 9 show that stem cells created from fibroblasts can be induced to differentiate into cells with the characteristics of embryoid bodies, which are three-dimensional cell clusters. In general, in order to induce differentiation from stem cells into mature organ cells, a process is required in which the stem cells are first induced to differentiate into the germ layer of the target organ lineage. This culture method uses a mechanism different from the conventional iPS cell method or direct-reprogramming method using chemical compounds, and can be said to be a new culture method that brings about the initialization (direct-reprogramming) of somatic cells into stem cells and at the same time realizes the induction of differentiation into embryoid bodies that are positive for SOX17 (endodermal marker gene), HAND1 (mesoderm marker gene), and MAP2 (ectoderm marker gene).

なお、幹細胞未分化マーカー遺伝子はSOX2、OCT4、NANOG以外にもKlf4、Essrb、Sall4、Lin28、SSEA、TRA-1-60等が知られており、本発明はこれらの遺伝子によって限定されるものではない。同様に三胚葉マーカー遺伝子もSOX17、HAND1、MAP2以外に知られており、本発明はこれらのマーカー遺伝子によって限定されるものではない。さらに、幹細胞未分化マーカーならびに三胚葉マーカーの遺伝子発現量増加率は、この数値に限定されるものではない。 Note that, in addition to SOX2, OCT4, and NANOG, other known stem cell undifferentiation marker genes include Klf4, Essrb, Sall4, Lin28, SSEA, and TRA-1-60, and the present invention is not limited to these genes. Similarly, other known three germ layer marker genes include SOX17, HAND1, and MAP2, and the present invention is not limited to these marker genes. Furthermore, the gene expression increase rates of the stem cell undifferentiation markers and the three germ layer markers are not limited to these values.

実施例3:健常ヒト新生児線維芽細胞スフェロイドにおける幹細胞マーカー蛋白質の発現
(方法)
線維芽細胞スフェロイドに幹細胞が誘導されているかを確認するため、蛍光色素標識抗体を用いた免疫染色法で、幹細胞マーカー蛋白質の発現を調べた。式(1)で表されるポリペプチド(ユニクス株式会社製、PURECOLLA)の水溶液(0.125%)(細胞リプログラミング剤)を用い、市販のポリスチレン製96well丸底培養容器(Nunclon Delta 96U Bottom、Thermo Scientific社)に100μL/wellで添加し、前述実施例2と同様の方法で細胞リプログラミング剤塗布処理を完成させた。線維芽細胞は無血清培地(富士フイルム和光純薬(株); DMEM/F12培地、ヒト・血清アルブミン遺伝子組み換え体0.5mg/mL、ヒト・トランスフェリン遺伝子組み換え体 10μg/mL、basic-FGF 5 ng/ mL及びInsulin2.5μg/mL)で維持培養した。上記細胞リプログラミング剤塗布培養容器に、上記培地に浮遊させた線維芽細胞4×104個/well/100μLを播種し、37℃、5%CO2条件下で培養した。培養開始後20日目に96well丸底培養容器からスフェロイドを回収し、4%パラホルムアルデヒド溶液で細胞固定の後、免疫染色を行った。蛍光標識抗体にはR&D system社製のヒト幹細胞マーカー蛋白質検出用の、NL557蛍光色素標識抗SOX2抗体(オレンジ色蛍光)、NL493蛍光色素標識抗NANOG抗体(ミドリ色蛍光)、及びNL637標識抗OCT4抗体(アカ色蛍光)の3種を同時に反応させて、蛍光顕微鏡観察を行った。
Example 3: Expression of stem cell marker proteins in healthy human neonatal fibroblast spheroids (Methods)
To confirm whether stem cells were induced in the fibroblast spheroids, the expression of stem cell marker proteins was examined by immunostaining using fluorescent dye-labeled antibodies. An aqueous solution (0.125%) of a polypeptide represented by formula (1) (Unix Corporation, PURECOLLA) (cell reprogramming agent) was added at 100 μL/well to a commercially available 96-well round-bottom culture vessel made of polystyrene (Nunclon Delta 96U Bottom, Thermo Scientific), and the cell reprogramming agent coating process was completed in the same manner as in Example 2. Fibroblasts were maintained and cultured in serum-free medium (FUJIFILM Wako Pure Chemical Industries, Ltd.; DMEM/F12 medium, human serum albumin recombinant 0.5 mg/mL, human transferrin recombinant 10 μg/mL, basic-FGF 5 ng/mL, and insulin 2.5 μg/mL). Fibroblasts ( 4 x 104 cells/well/100μL) suspended in the above medium were seeded on the cell reprogramming agent-coated culture vessel and cultured under 37℃ and 5% CO2 conditions. On the 20th day after the start of culture, spheroids were collected from the 96-well round-bottom culture vessel, fixed with 4% paraformaldehyde solution, and then immunostained. Three types of fluorescently labeled antibodies, NL557 fluorescent dye-labeled anti-SOX2 antibody (orange fluorescence), NL493 fluorescent dye-labeled anti-NANOG antibody (green fluorescence), and NL637-labeled anti-OCT4 antibody (red fluorescence), for detecting human stem cell marker proteins manufactured by R&D System, were reacted simultaneously and observed under a fluorescent microscope.

(結果)
図10に、線維芽細胞スフェロイドの免疫染色による蛍光顕微鏡観察写真を示した。幹細胞マーカータンパクであるSOX2(オレンジ)、OCT4(アカ)、NANOG(ミドリ)を示す蛍光が検出され、スフェロイドを形成する細胞に3種幹細胞マーカー蛋白を発現する幹細胞が誘導されていることが確認できた。
(result)
Fluorescence microscopy images of immunostained fibroblast spheroids are shown in Figure 10. Fluorescence indicating the stem cell marker proteins SOX2 (orange), OCT4 (red), and NANOG (green) was detected, confirming that stem cells expressing the three stem cell marker proteins were induced in the cells forming the spheroids.

(考察)
図6、図8ではリアルタイム-PCR解析で、スフェロイドを形成する細胞が幹細胞未分化マーカー遺伝子を発現している事を見出した。ここでは、線維芽細胞スフェロイドに未分化マーカー遺伝子から作られるマーカー蛋白質も発現していることが分かり、幹細胞の存在が遺伝子とタンパク質の両面で確認できた。
(Discussion)
In Figures 6 and 8, real-time PCR analysis revealed that the cells forming the spheroids expressed stem cell undifferentiation marker genes. Here, it was found that the marker protein made from the undifferentiation marker gene was also expressed in the fibroblast spheroids, confirming the presence of stem cells in terms of both genes and proteins.

実施例4:健常ヒト新生児線維芽細胞スフェロイドにおける幹細胞の検出
(方法)
線維芽細胞スフェロイドに誘導された幹細胞を検出するため、蛍光色素標識抗体を用いた免疫染色法で、スフェロイド構成細胞に含まれる幹細胞を検出した。式(1)で表されるポリペプチド(ユニクス株式会社製、PURECOLLA)の水溶液(0.125%)(細胞リプログラミング剤)を用い、市販のポリスチレン製96well丸底培養容器(Nunclon Delta 96U Bottom、Thermo Scientific社)に100μL/wellで添加し、前述実施例2と同様の方法で細胞リプログラミング剤塗布処理を完成させた。線維芽細胞は無血清培地(富士フイルム和光純薬(株); DMEM/F12培地、ヒト・血清アルブミン遺伝子組み換え体0.5mg/mL、ヒト・トランスフェリン遺伝子組み換え体 10μg/mL、basic-FGF 5 ng/ mL及びInsulin2.5μg/mL)で維持培養した。上記細胞リプログラミング剤塗布培養容器に、上記培地に浮遊させた線維芽細胞2×104個/well/100μLを播種し、37℃、5%CO2条件下で培養した。培養開始後20日目に96well丸底培養容器からスフェロイドを無菌的に回収し、アキュターゼ酵素試薬で細胞を分散した後、免疫染色用培養器(MilliCell Chamber、ミリポア社)に移して同一培地で培養を継続した。24時間後に4%パラホルムアルデヒド溶液で細胞を固定し、免疫染色を行った。蛍光標識抗体にはR&D system社製のNL493蛍光色素標識抗NANOG抗体(ミドリ色蛍光)を使用し、蛍光顕微鏡観察を行った。
Example 4: Detection of stem cells in healthy human neonatal fibroblast spheroids (Methods)
To detect stem cells induced into fibroblast spheroids, stem cells contained in the spheroid-constituting cells were detected by immunostaining using fluorescent dye-labeled antibodies. A solution (0.125%) of a polypeptide represented by formula (1) (PURECOLLA, manufactured by Unix Corporation) (cell reprogramming agent) was added at 100 μL/well to a commercially available 96-well round-bottom culture vessel made of polystyrene (Nunclon Delta 96U Bottom, Thermo Scientific Co., Ltd.), and the cell reprogramming agent coating process was completed in the same manner as in Example 2 above. Fibroblasts were maintained and cultured in serum-free medium (FUJIFILM Wako Pure Chemical Industries, Ltd.; DMEM/F12 medium, human serum albumin recombinant 0.5 mg/mL, human transferrin recombinant 10 μg/mL, basic-FGF 5 ng/mL, and insulin 2.5 μg/mL). Fibroblasts (2 x 104 cells/well/100μL) suspended in the above medium were seeded on the cell reprogramming agent-coated culture vessel and cultured under 37℃ and 5% CO2 conditions. On the 20th day after the start of culture, spheroids were aseptically collected from the 96-well round-bottom culture vessel, dispersed with Accutase enzyme reagent, and then transferred to an immunostaining incubator (MilliCell Chamber, Millipore) and cultured in the same medium. After 24 hours, the cells were fixed with 4% paraformaldehyde solution and immunostained. NL493 fluorescent dye-labeled anti-NANOG antibody (green fluorescence) manufactured by R&D system was used as the fluorescent-labeled antibody, and observation was performed under a fluorescent microscope.

(結果)
図11に、スフェロイドを分散させて得た細胞集団内にNANOG蛋白陽性の幹細胞が存在する事を示した。図11では大多数の線維芽細胞の核はNANOG陰性であるが、細胞の核部分にNANOG抗体陽性のミドリ色蛍光を強く示すものが認められ、幹細胞マーカー細胞が誘導できている事を示した。
(result)
Figure 11 shows the presence of NANOG protein-positive stem cells in the cell population obtained by dispersing spheroids. In Figure 11, the nuclei of the majority of fibroblasts are NANOG negative, but some cells show strong NANOG antibody-positive green fluorescence in the nuclei, indicating that stem cell marker cells have been induced.

(考察)
NANOG蛋白はホメオボックス転写因子であり、細胞質で作られて核内に移行し、幹細胞の多能性維持に重要な役割を果たしている。スフェロイド全体で幹細胞マーカー蛋白が確認できたこと(図10)に加え、細胞レベルにおいても核内NANOG蛋白陽性の幹細胞を誘導できることを示した。
(Discussion)
NANOG protein is a homeobox transcription factor that is produced in the cytoplasm and translocates into the nucleus, where it plays an important role in maintaining the pluripotency of stem cells. In addition to confirming stem cell marker proteins throughout the spheroids (Figure 10), we also demonstrated that it is possible to induce stem cells that are positive for NANOG protein in the nucleus at the cellular level.

実施例5:ヒト成人皮膚線維芽細胞のスフェロイド培養による幹細胞の作製
(方法)
健常ヒト成人皮膚線維芽細胞で幹細胞を誘導(direct-reprogramming)するために、実施例2と同様の方法で成人皮膚線維芽細胞を培養しスフェロイドを形成させた。式(1)で表されるポリペプチド(ユニクス株式会社製、PURECOLLA)の水溶液(0.125%)(細胞リプログラミング剤)を市販のポリスチレン製96well丸底培養容器(Nunclon Delta 96U Bottom、Thermo Scientific社)に添加し、4℃で24時間静置した。その後、細胞リプログラミング剤を除去し、37℃の乾燥機内で96時間乾燥して細胞リプログラミング剤塗布処理を完成した。健常ヒト成人皮膚線維芽細胞(Lonza社, Normal Human Dermal Fibroblast-Adult、以下「成人皮膚線維芽細胞」と記載)は無血清培地(富士フイルム和光純薬(株); DMEM/F12培地、ヒト・血清アルブミン遺伝子組み換え体0.5mg/mL、ヒト・トランスフェリン遺伝子組み換え体 10μg/mL、basic-FGF 5 ng/ mL及びInsulin2.5μg/mL)で維持培養した。上記細胞リプログラミング剤塗布96well丸底培養容器を使用し、上記培地100μLに浮遊させた成人皮膚線維芽細胞2×104個/wellを播種し、それぞれ37℃、5%CO2条件下で培養した。
Example 5: Preparation of stem cells by spheroid culture of human adult skin fibroblasts (Method)
In order to induce stem cells (direct-reprogramming) in healthy adult human dermal fibroblasts, adult dermal fibroblasts were cultured to form spheroids in the same manner as in Example 2. An aqueous solution (0.125%) of a polypeptide represented by formula (1) (Unix Corporation, PURECOLLA) (cell reprogramming agent) was added to a commercially available polystyrene 96-well round-bottom culture vessel (Nunclon Delta 96U Bottom, Thermo Scientific) and allowed to stand at 4°C for 24 hours. The cell reprogramming agent was then removed, and the vessel was dried in a dryer at 37°C for 96 hours to complete the cell reprogramming agent application process. Healthy human adult dermal fibroblasts (Lonza, Normal Human Dermal Fibroblast-Adult, hereafter referred to as "adult dermal fibroblasts") were maintained and cultured in serum-free medium (FUJIFILM Wako Pure Chemical Industries, Ltd.; DMEM/F12 medium, human serum albumin recombinant 0.5mg/mL, human transferrin recombinant 10μg/mL, basic-FGF 5ng/mL, and insulin 2.5μg/mL). Using the above-mentioned cell reprogramming agent-coated 96-well round-bottom culture vessel, 2× 104 adult dermal fibroblasts suspended in 100μL of the above-mentioned medium were seeded/well and cultured at 37℃ and 5% CO2 .

幹細胞マーカー遺伝子の検出は、リアルタイム-PCR法でmRNAの発現解析を行った。具体的には、培養開始20日目(Day20)にスフェロイドを15mL遠心チューブに集めて遠心分離を行い、リン酸緩衝液PBS(-)で細胞を洗浄し回収した。対照の細胞リプログラミング剤無し培養容器で2次元培養した細胞は(Day0)、培地を除去した後PBS(-)で洗浄し、0.05%トリプシン-EGTAでプレートから細胞を剥離分散させて15mL遠心チューブに集め、再度PBS(-)洗浄した。スフェロイドにNucleoZOL(マッハライ・ナーゲル社)試薬を加えて、試薬メーカー推奨プロトコールに従ってRNAを抽出し鋳型RNAとした。リアルタイム-PCR解析では、QuantiFast Probe RT-PCR Kits (QIAGEN;No.204454)とTaqMan Gene Expression Assay Probe(Thermo Fisher Scientific社)のPCRプローブを使用し、Rotor-Gene Q(QIAGEN社)装置を用いてPCR解析した。遺伝子の検出には、幹細胞未分化マーカー遺伝子の発現検出用プローブとして、転写因子SOX2(sex-determining region Y-box 2)、OCT4(octamer binding transcription factor 4)、NANOG(homeodomain transcription factor)の3種と、内在性コントロール遺伝子としてβ-Actin を使用した(図13)。 To detect stem cell marker genes, mRNA expression analysis was performed using real-time PCR. Specifically, on the 20th day after the start of culture (Day 20), spheroids were collected in a 15 mL centrifuge tube and centrifuged, and the cells were washed and collected with phosphate buffer PBS (-). For the control cells cultured in a 2D culture vessel without a cell reprogramming agent (Day 0), the medium was removed and the cells were washed with PBS (-), detached and dispersed from the plate with 0.05% trypsin-EGTA, collected in a 15 mL centrifuge tube, and washed again with PBS (-). NucleoZOL (Machrei-Nagel) reagent was added to the spheroids, and RNA was extracted according to the protocol recommended by the reagent manufacturer to use as template RNA. For real-time PCR analysis, QuantiFast Probe RT-PCR Kits (QIAGEN; No. 204454) and the PCR probe of TaqMan Gene Expression Assay Probe (Thermo Fisher Scientific) were used, and PCR analysis was performed using a Rotor-Gene Q (QIAGEN) device. To detect the genes, we used three types of transcription factors, SOX2 (sex-determining region Y-box 2), OCT4 (octamer binding transcription factor 4), and NANOG (homeodomain transcription factor), as probes to detect the expression of stem cell undifferentiated marker genes, and β-Actin as an endogenous control gene (Figure 13).

スフェロイドに誘導した幹細胞が初期三胚葉に分化できるかを調べるため、三胚葉マーカー遺伝子発現をリアルタイム-PCR法で調べた。検出用プローブには、三胚葉マーカー遺伝子であるSOX17(sex-determining region Y-box 17;内胚葉)、GATA6(GATA family of zinc finger transcription factors;内胚葉)、HAND1(Heart- and neural crest derivatives-expressed protein 1;中胚葉)、SOX1(HMG-box (high mobility group) DNA-binding domain;外胚葉)の4種、及び内在性コントロール遺伝子としてβ-Actin のTaqMan Gene Expression Assay Probeを使用した(図14)。
遺伝子発現解析では、ΔΔCt法(デルタデルタCt法)による相対定量を行った。ΔΔCt法解析の結果は、対照とする「細胞リプログラミング剤なし、平面2次元増殖Day0」の細胞が発現する遺伝子量を相対的に「1.0」とし、比較する「スフェロイド増殖の20日目の発現量」の増加倍率を求めた。
To examine whether the spheroid-induced stem cells could differentiate into the three early germ layers, we examined the expression of three germ layer marker genes by real-time PCR. The detection probes used were the four three germ layer marker genes SOX17 (sex-determining region Y-box 17; endoderm), GATA6 (GATA family of zinc finger transcription factors; endoderm), HAND1 (Heart- and neural crest derivatives-expressed protein 1; mesoderm), and SOX1 (HMG-box (high mobility group) DNA-binding domain; ectoderm), as well as the TaqMan Gene Expression Assay Probe for β-Actin as an endogenous control gene (Figure 14).
In gene expression analysis, relative quantification was performed using the ΔΔCt method (delta delta Ct method). The results of the ΔΔCt method analysis were calculated by setting the amount of genes expressed by the control cells in the "no cell reprogramming agent, planar 2D growth day 0" as "1.0" relative to the "expression amount on the 20th day of spheroid growth" for comparison.

(結果)
図12に、細胞リプログラミング剤処理培養容器を用いた成人皮膚線維芽細胞のスフェロイド培養結果を示した。細胞リプログラミング剤無しの対照容器では、成人皮膚線維芽細胞は底面に接着2次元増殖した(培養2日目)。一方、細胞リプログラミング剤塗布処理をした培養容器では、細胞がスフェロイドを形成し3次元増殖した。
(result)
The results of spheroid culture of adult dermal fibroblasts using culture vessels treated with a cell reprogramming agent are shown in Figure 12. In the control vessel without the cell reprogramming agent, adult dermal fibroblasts adhered to the bottom and proliferated in two dimensions (culture day 2). On the other hand, in the culture vessels coated with the cell reprogramming agent, the cells formed spheroids and proliferated in three dimensions.

図13に、遺伝子mRNAのリアルタイム-PCR結果を示した。
培養開始20日目の成人皮膚線維芽細胞スフェロイドでは、幹細胞の性質を定義するマーカー蛋白SOX2、OCT4、NANOGの遺伝子発現量が増加し、幹細胞の性質を獲得している事を見出した。具体的には、2次元培養した対照細胞のSOX2、OCT4、NANOG遺伝子発現量を相対的に1.0とし、3次元スフェロイド培養した20日目のSOX2、OCT4、NANOG遺伝子発現量をΔΔCt法で相対較した。その結果、SOX2は9.4倍に増加、OCT4は13.0倍に増加、NANOGは50.5倍に増加した。
FIG. 13 shows the results of real-time PCR of gene mRNA.
In adult dermal fibroblast spheroids on the 20th day of culture, the gene expression levels of marker proteins SOX2, OCT4, and NANOG, which define the properties of stem cells, increased, and it was found that the cells had acquired the properties of stem cells. Specifically, the gene expression levels of SOX2, OCT4, and NANOG in the control cells cultured in 2D were set at 1.0 relative to each other, and the gene expression levels of SOX2, OCT4, and NANOG on the 20th day of 3D spheroid culture were compared using the ΔΔCt method. As a result, SOX2 increased 9.4-fold, OCT4 increased 13.0-fold, and NANOG increased 50.5-fold.

図14に、同様に三胚葉への分化を定義するマーカー蛋白SOX17、GATA6、HAND1、SOX1の発現量が増加する事を示した。対照細胞のSOX17、GATA6、HAND1、SOX1遺伝子発現量を相対的に1.0とし、3次元スフェロイド培養した20日目(Day20)のSOX17、GATA6、MAP2遺伝子発現量をΔΔCt相対定量で比較した。いずれの遺伝子も発現量が増加し、SOX17は11.4倍に増加、GATA6は2.2倍に増加、HAND1は33.9倍に増加、SOX1は7.1倍に増加した。 Figure 14 shows that the expression levels of marker proteins SOX17, GATA6, HAND1, and SOX1, which define differentiation into the three germ layers, increased. The gene expression levels of SOX17, GATA6, HAND1, and SOX1 in control cells were set at 1.0 relative to each other, and the gene expression levels of SOX17, GATA6, and MAP2 on day 20 (Day 20) of 3D spheroid culture were compared using ΔΔCt relative quantification. The expression levels of all genes increased, with SOX17 increasing 11.4-fold, GATA6 increasing 2.2-fold, HAND1 increasing 33.9-fold, and SOX1 increasing 7.1-fold.

(考察)
これまで化合物による体細胞ダイレクト・リプログラミング技術では、マウスの胎児線維芽細胞又は成体線維芽細胞を使用した幹細胞誘導の実験が報告されている。しかしながら、ヒト成人由来の線維芽細胞への応用技術は未だに確立されていない。ここでは、ヒト新生児由来の線維芽細胞に加えて成人皮膚線維芽細胞においても、本発明の細胞リプログラミング剤で、安定して再現性良く幹細胞を作製できる方法を見出したと言える。
(Discussion)
So far, experiments on stem cell induction using mouse fetal fibroblasts or adult fibroblasts have been reported for somatic cell direct reprogramming technology using chemical compounds. However, the technology for application to human adult fibroblasts has not yet been established. Here, it can be said that a method for stably and reproducibly producing stem cells using the cell reprogramming agent of the present invention has been found for human neonatal fibroblasts as well as adult skin fibroblasts.

患者個人の最も低侵襲で検体採取し易い皮膚由来線維芽細胞を用いて、細胞リプログラミング剤スフェロイド培養法により幹細胞を誘導できることから、個別化再生治療、個別化診断法・治療薬スクリーニングへの実用技術となる。 Since stem cells can be induced by cell reprogramming agent spheroid culture using skin-derived fibroblasts, which are the least invasive and easiest to collect samples from individual patients, this technology will be useful for personalized regenerative therapy, personalized diagnostic methods, and therapeutic drug screening.

実施例6:健常ヒト成人乳腺上皮細胞のスフェロイド培養と幹細胞未分化マーカー遺伝子の発現
(方法)
式(1)で表されるポリペプチド(ユニクス株式会社製、PURECOLLA)の水溶液(0.125%)(細胞リプログラミング剤)を市販のポリスチレン製6well平底培養容器(CellBIND、CORNING社)、あるいはポリスチレン製96well丸底培養容器(Nunclon Delta 96U Bottom、Thermo Scientific社)に添加し、4℃で24時間静置した。
Example 6: Spheroid culture of healthy human adult mammary epithelial cells and expression of stem cell undifferentiation marker genes (Method)
An aqueous solution (0.125%) of the polypeptide represented by formula (1) (PURECOLLA, manufactured by Unix Corporation) (cell reprogramming agent) was added to a commercially available polystyrene 6-well flat-bottom culture vessel (CellBIND, manufactured by Corning) or a polystyrene 96-well round-bottom culture vessel (Nunclon Delta 96U Bottom, manufactured by Thermo Scientific) and left to stand at 4°C for 24 hours.

その後、細胞リプログラミング剤を除去し、37℃の乾燥機内で96時間乾燥して細胞リプログラミング剤塗布処理を完成した。健常ヒト成人乳腺上皮細胞(Lonza社:Human Mammary Epithelial Cells、以下「乳腺上皮細胞」と記載)は無血清培地(Promo Cell社; Mammary Epithelial Cell Growth Medium, EGF 5 ng/ mL及びInsulin2.5μg/mL)で維持培養した。上記細胞リプログラミング剤塗布培養容器に、6well平底培養容器の場合は上記培地2mLに浮遊させた乳腺上皮細胞2×106個/wellを播種し、96well丸底培養容器の場合は上記培地100μLに浮遊させた乳腺上皮細胞2×104個/wellを播種し、それぞれ37℃、5%CO2条件下で培養した。対照として、細胞リプログラミング剤を塗布しない同型培養容器に乳腺上皮細胞を同様条件で播種した。培養開始後2日目と20日目に顕微鏡観察を行い、スフェロイド形成状況を撮影した(図15)。 Thereafter, the cell reprogramming agent was removed, and the cells were dried in a dryer at 37°C for 96 hours to complete the cell reprogramming agent application process. Healthy human adult mammary epithelial cells (Lonza: Human Mammary Epithelial Cells, hereinafter referred to as "mammary epithelial cells") were maintained and cultured in serum-free medium (Promo Cell; Mammary Epithelial Cell Growth Medium, EGF 5 ng/mL and Insulin 2.5μg/mL). In the case of a 6-well flat-bottom culture vessel, 2×10 6 cells/well of mammary epithelial cells suspended in 2mL of the above medium were seeded in the above cell reprogramming agent-coated culture vessel, and in the case of a 96-well round-bottom culture vessel, 2×10 4 cells/well of mammary epithelial cells suspended in 100μL of the above medium were seeded, and each was cultured under 37°C and 5% CO2 conditions. As a control, mammary epithelial cells were seeded under the same conditions in the same type of culture vessel without the cell reprogramming agent. On days 2 and 20 after the start of culture, microscopic observation was performed, and the state of spheroid formation was photographed ( FIG. 15 ).

体細胞の乳腺上皮細胞から幹細胞を誘導(direct-reprogramming)できるかを調べるため、細胞リプログラミング剤処理をした96well培養容器で乳腺上皮細胞を培養しスフェロイドを形成させた。遺伝子mRNAの発現解析はリアルタイム-PCR法で行った。 To investigate whether stem cells can be induced (direct reprogramming) from somatic mammary epithelial cells, mammary epithelial cells were cultured in a 96-well culture vessel treated with a cell reprogramming agent and allowed to form spheroids. Gene mRNA expression analysis was performed using real-time PCR.

具体的には、培養開始20日目(Day20)にスフェロイドを15mL遠心チューブに集めて遠心分離を行い、リン酸緩衝液PBS(-)で細胞を洗浄し回収した。対照の細胞リプログラミング剤無し培養容器で2次元培養した細胞は(Day0)、培地を除去した後PBS(-)で洗浄し、0.05%トリプシン-EGTAでプレートから細胞を剥離分散させて15mL遠心チューブに集め、再度PBS(-)洗浄した。スフェロイドにNucleoZOL(マッハライ・ナーゲル社)試薬を加えて、試薬メーカー推奨プロトコールに従ってRNAを抽出し鋳型RNAとした。リアルタイム-PCR解析では、QuantiFast Probe RT-PCR Kits (QIAGEN;No.204454)とTaqMan Gene Expression Assay Probe(Thermo Fisher Scientific社)のPCRプローブを使用し、Rotor-Gene Q(QIAGEN社)装置を用いてPCR解析した。検出を試みた遺伝子は、幹細胞未分化マーカー遺伝子の発現検出用プローブとして、転写因子SOX2(sex-determining region Y-box 2)、OCT4(octamer binding transcription factor 4)、NANOG(homeodomain transcription factor)の3種と、内在性コントロール遺伝子としてβ-Actin を使用した(図16)。 Specifically, on the 20th day after the start of culture (Day 20), the spheroids were collected in a 15 mL centrifuge tube and centrifuged, and the cells were washed and collected with phosphate buffer PBS(-). For the control cells cultured in 2D culture vessels without cell reprogramming agents (Day 0), the medium was removed and washed with PBS(-), the cells were detached and dispersed from the plate with 0.05% trypsin-EGTA, collected in a 15 mL centrifuge tube, and washed again with PBS(-). NucleoZOL (Machler-Nagel) reagent was added to the spheroids, and RNA was extracted according to the protocol recommended by the reagent manufacturer to serve as template RNA. For real-time PCR analysis, QuantiFast Probe RT-PCR Kits (QIAGEN; No. 204454) and the PCR probe of TaqMan Gene Expression Assay Probe (Thermo Fisher Scientific) were used, and PCR analysis was performed using a Rotor-Gene Q (QIAGEN) device. The genes we attempted to detect were the three transcription factors SOX2 (sex-determining region Y-box 2), OCT4 (octamer binding transcription factor 4), and NANOG (homeodomain transcription factor) as probes for detecting the expression of stem cell undifferentiated marker genes, and β-Actin as an endogenous control gene (Figure 16).

初期三胚葉分化関連遺伝子の検出用プローブには、三胚葉マーカー遺伝子であるSOX17(sex-determining region Y-box 17;内胚葉)、GATA6(GATA family of zinc finger transcription factors;中胚葉)、MAP2 (microtubule associated protein 2:外胚葉)の3種、及び内在性コントロール遺伝子としてβ-Actin のTaqMan Gene Expression Assay Probeを使用した(図17)。 The probes used to detect genes related to early three germ layer differentiation were the three germ layer marker genes SOX17 (sex-determining region Y-box 17; endoderm), GATA6 (GATA family of zinc finger transcription factors; mesoderm), and MAP2 (microtubule associated protein 2; ectoderm), as well as the TaqMan Gene Expression Assay Probe for β-Actin as an endogenous control gene (Figure 17).

遺伝子発現解析では、ΔΔCt法(デルタデルタCt法)による相対定量を行った。ΔΔCt法解析の結果は、対照とする「細胞リプログラミング剤なし、平面2次元増殖Day0」の細胞が発現する遺伝子量を相対的に「1.0」とし、比較する「スフェロイド増殖の20日目の発現量」の増加倍率を求めた。 For gene expression analysis, relative quantification was performed using the ΔΔCt method (delta delta Ct method). The results of the ΔΔCt analysis were calculated by setting the amount of genes expressed by the control cells in the "no cell reprogramming agent, planar 2D growth day 0" to a relative value of "1.0," and calculating the increase fold of the "expression amount on day 20 of spheroid growth."

(結果)
図15に、細胞リプログラミング剤処理培養容器を用いた乳腺上皮細胞のスフェロイド培養結果を示した。細胞リプログラミング剤無しの対照容器では、乳腺上皮細胞は底面に接着し平面2次元増殖が見られた(培養2日目)。一方、細胞リプログラミング剤塗布処理をした培養容器では、細胞が自己組織化してスフェロイドを形成し3次元増殖した。培養開始2日目から20日目にかけてスフェロイドを構成する細胞が増殖してスフェロイド自体のサイズも増大した。
(result)
Figure 15 shows the results of spheroid culture of mammary epithelial cells using a culture vessel treated with a cell reprogramming agent. In a control vessel without a cell reprogramming agent, mammary epithelial cells adhered to the bottom and showed planar two-dimensional proliferation (2 days of culture). On the other hand, in a culture vessel coated with a cell reprogramming agent, the cells self-organized to form spheroids and proliferated in 3D. From the 2nd to 20th day of culture, the cells that make up the spheroids proliferated, and the size of the spheroids themselves also increased.

図16に、乳腺上皮細胞から誘導(direct-reprogramming)した幹細胞未分化マーカー遺伝子の発現を調べるため、mRNAのリアルタイム-PCR解析結果を示した。その結果、乳腺上皮細胞2次元接着培養(Day0)に比べ、スフェロイドの培養開始20日目(Day20)に幹細胞未分化マーカータンパクSOX2、OCT4、NANOGの遺伝子発現量が増加する事を見出した。 Figure 16 shows the results of real-time PCR analysis of mRNA to investigate the expression of stem cell undifferentiation marker genes induced (direct-reprogramming) from mammary epithelial cells. As a result, it was found that the gene expression levels of stem cell undifferentiation marker proteins SOX2, OCT4, and NANOG increased on the 20th day (Day 20) from the start of spheroid culture compared to 2D adherent culture of mammary epithelial cells (Day 0).

具体的には、対照とする細胞リプログラミング剤無しで2次元接着培養した乳腺上皮細胞のSOX2、OCT4、NANOG遺伝子発現量を相対的に1.0とし、3次元スフェロイド培養した20日目(Day20)のSOX2、OCT4、NANOG遺伝子発現量をΔΔCt相対定量で比較した。いずれの遺伝子も20日目に増加しており、SOX2は24.0倍、OCT4は1.5倍、NANOGは28.7倍に増加した。 Specifically, the gene expression levels of SOX2, OCT4, and NANOG in mammary epithelial cells cultured in 2D adhesion without cell reprogramming agents as a control were set at a relative value of 1.0, and the gene expression levels of SOX2, OCT4, and NANOG on day 20 (Day 20) of 3D spheroid culture were compared using ΔΔCt relative quantification. All genes increased on day 20, with SOX2 increasing 24.0-fold, OCT4 1.5-fold, and NANOG 28.7-fold.

図17に、初期三胚葉関連遺伝子mRNAのリアルタイム-PCR結果を示した。その結果、乳腺上皮細胞のスフェロイド培養開始20日目に、三胚葉への分化を定義するマーカー遺伝子のうちSOX17、MAP2の遺伝子発現量が増加する事を見出した。 Figure 17 shows the results of real-time PCR of mRNA of genes related to the early three germ layers. As a result, it was found that the gene expression levels of SOX17 and MAP2, which are marker genes that define differentiation into the three germ layers, increased on the 20th day after the start of spheroid culture of mammary epithelial cells.

具体的には、対照とする細胞リプログラミング剤無しで2次元接着培養(Day0)した乳腺上皮細胞のSOX17、GATA4、MAP2遺伝子発現量を相対的に1.0とし、3次元スフェロイド培養した20日目(Day20)のSOX17、GATA6、MAP2遺伝子発現量をΔΔCt相対定量で比較した。その結果、培養開始20日目にSOX17は124.7倍、MAP2は2.7倍に増加した。一方、中胚葉マーカーのGATA6遺伝子発現は検出されなかった。 Specifically, the gene expression levels of SOX17, GATA4, and MAP2 in mammary epithelial cells cultured in 2D adhesion (Day 0) without cell reprogramming agents as a control were set at 1.0 relative to each other, and the gene expression levels of SOX17, GATA6, and MAP2 on Day 20 of 3D spheroid culture were compared using ΔΔCt relative quantification. As a result, on Day 20 of culture, SOX17 increased 124.7-fold and MAP2 increased 2.7-fold. On the other hand, no expression of the mesodermal marker GATA6 gene was detected.

(考察)
図15の結果から、成人乳腺上皮細胞においても、多能性幹細胞の特徴を持つ幹細胞を作製(direct-reprogramming)できることを示した。さらに培養容器の形状に関しても、平底培養容器でも丸底培養容器でも同様に達成できる事を示した。
(Discussion)
The results in Figure 15 show that it is possible to directly reprogram adult mammary epithelial cells to produce stem cells with the characteristics of pluripotent stem cells. Furthermore, it was shown that this can be achieved in both flat-bottom and round-bottom culture vessels.

図16では、細胞リプログラミング剤処理をした96well培養容器で乳腺上皮細胞をスフェロイド培養すると、1個の均質なスフェロイドを作製できることから、精密な遺伝子発現解析が可能になる。その結果、iPS細胞作製で用いる転写因子遺伝子の導入法をとらず、さらには化合物によるdirect-reprogrammingで用いる化合物カクテルを培養液に添加することなく、SOX2、OCT4、NANOG遺伝子の発現増強を伴う多能性幹細胞に初期化(direct-reprogramming)できることを見出した。即ち、細胞リプログラミング剤によるスフェロイド培養法で、体細胞の乳腺上皮細胞から多能性幹細胞の特性を備えた細胞を作製する新規なdirect-reprogramming法を発明したといえる。 In Figure 16, when mammary epithelial cells are cultured as spheroids in a 96-well culture vessel treated with a cell reprogramming agent, a single homogenous spheroid can be produced, enabling precise gene expression analysis. As a result, it was found that direct reprogramming to pluripotent stem cells with enhanced expression of SOX2, OCT4, and NANOG genes is possible without using the method of introducing transcription factor genes used in iPS cell production, and without adding to the culture medium a compound cocktail used in direct reprogramming with compounds. In other words, it can be said that a new direct reprogramming method has been invented to produce cells with the characteristics of pluripotent stem cells from somatic mammary epithelial cells using a spheroid culture method with a cell reprogramming agent.

図17の結果から、乳腺上皮細胞から本法で作製した幹細胞が、各種臓器細胞に分化する初期段階の三胚葉体に分化誘導(differentiation)出来る事を示した。一般的に幹細胞から成熟臓器細胞を分化誘導するためには、幹細胞から一旦目的臓器系列の胚葉に分化誘導する工程が必要である。本培養方法は、従来のiPS細胞法、化合物によるdirect-reprogramming法とは異なる機序で、体細胞から幹細胞への初期化(direct-reprogramming)をもたらし、同時にSOX17(内胚葉マーカー遺伝子)陽性、MAP2(外胚葉マーカー遺伝子)陽性の胚様体に分化誘導(differentiation)を実現する新規培養法であると言える。 The results in Figure 17 show that stem cells created from mammary epithelial cells using this method can be induced to differentiate into triploid bodies, which are the early stage of differentiation into various organ cells. In general, in order to induce differentiation of stem cells into mature organ cells, a process is required in which the stem cells are first induced to differentiate into the germ layer of the target organ lineage. This culture method uses a mechanism different from the conventional iPS cell method and direct reprogramming methods using chemical compounds, and can be said to be a new culture method that brings about the initialization (direct reprogramming) of somatic cells into stem cells and at the same time realizes the induction of differentiation into embryoid bodies that are positive for SOX17 (endodermal marker gene) and MAP2 (ectoderm marker gene).

なお、幹細胞未分化マーカー遺伝子はSOX2、OCT4、NANOG以外にもKlf4、Essrb、Sall4、Lin28等が知られており、本発明はこれらの遺伝子によって限定されるものではない。同様に初期三胚葉マーカー遺伝子もSOX17、GATA4、MAP2以外に知られており、本発明はこれらのマーカー遺伝子によって限定されるものではない。さらに、幹細胞マーカーならびに初期三胚葉体マーカーの遺伝子発現量増加率は、この数値に限定されるものではない。 Note that, in addition to SOX2, OCT4, and NANOG, other known stem cell undifferentiation marker genes include Klf4, Essrb, Sall4, Lin28, etc., and the present invention is not limited to these genes. Similarly, other known early three germ layer marker genes include SOX17, GATA4, and MAP2, and the present invention is not limited to these marker genes. Furthermore, the gene expression increase rates of stem cell markers and early three germ layer markers are not limited to these values.

実施例7:がん細胞の2次元接着培養と3次元スフェロイド培養
(方法)
式(1)で表されるポリペプチド(ユニクス株式会社製、PURECOLLA)の水溶液(0.125%)(細胞リプログラミング剤)2mLを市販のポリスチレン製6well平底培養容器(CellBIND、CORNING社)に添加し、4℃で24時間静置した。
Example 7: 2D adhesion culture and 3D spheroid culture of cancer cells (Methods)
2 mL of an aqueous solution (0.125%) of the polypeptide represented by formula (1) (UNIX Corporation, PURECOLLA) (cell reprogramming agent) was added to a commercially available polystyrene 6-well flat-bottom culture vessel (CellBIND, Corning) and left to stand at 4°C for 24 hours.

その後、細胞リプログラミング剤を除去し、37℃の乾燥機内で96時間乾燥して細胞リプログラミング剤塗布処理を完成した。ヒトがん細胞として、一般的ながん細胞株であるA549細胞(ヒト肺がん細胞、ATCC CCL-185, carcinoma)、ES2細胞(ヒト卵巣がん細胞、ATCC CRL-1978, clear cell carcinoma)、HOS-143細胞(ヒト骨肉腫細胞、ATCC CRL-8303, osteosarcoma)を用いた。それぞれのがん細胞を2×105個/well/100μLの条件で培養容器に播種し、37℃、5%CO2条件下で培養した。培地はDMEM培地に10%FBS、ペニシリン/ストレプトマイシンを添加したものを使用した。対照として、細胞リプログラミング剤を塗布しない同型培養容器にがん細胞2×106個/wellを播種した。培養開始後4日目、15日目に顕微鏡観察を行い、スフェロイド形成状況を撮影した(図18)。 After that, the cell reprogramming agent was removed, and the cells were dried in a dryer at 37°C for 96 hours to complete the cell reprogramming agent application process. As human cancer cells, A549 cells (human lung cancer cells, ATCC CCL-185, carcinoma), ES2 cells (human ovarian cancer cells, ATCC CRL-1978, clear cell carcinoma), and HOS-143 cells (human osteosarcoma cells, ATCC CRL-8303, osteosarcoma), which are common cancer cell lines, were used. Each cancer cell was seeded in a culture vessel at 2× 105 cells/well/100μL and cultured at 37°C and 5% CO2. The medium used was DMEM medium supplemented with 10% FBS and penicillin/streptomycin. As a control, 2× 106 cancer cells/well were seeded in the same type of culture vessel without the cell reprogramming agent. Microscopic observation was performed on the 4th and 15th days after the start of culture, and the spheroid formation status was photographed (Figure 18).

(結果)
結果を図18に示す。細胞リプログラミング剤無しの培養容器では、細胞は底面に接着して増殖した(2次元接着増殖)。一方、細胞リプログラミング剤を処理した培養容器では、細胞が凝集体を形成し複数個のスフェロイドを形成した。培養開始4日目から15日目にかけてスフェロイドを構成する細胞が増殖してスフェロイド自体のサイズも増大することが見られた。
(result)
The results are shown in Figure 18. In culture vessels without a cell reprogramming agent, the cells adhered to the bottom and proliferated (two-dimensional adhesion and proliferation). On the other hand, in culture vessels treated with a cell reprogramming agent, the cells formed aggregates and formed multiple spheroids. From the 4th to 15th day of culture, the cells constituting the spheroids proliferated, and the size of the spheroids themselves increased.

(考察)
実施例1~6の結果と同様に、がん細胞においても、スフェロイドを形成することが明らかとなった。2次元培養したがん細胞に比べ3次元スフェロイド培養したがん細胞は生体内の病状に近い特性を現すと言われている。換言すると、がん細胞を3次元培養できると、培養容器の中でがんの病状を反映したモデルを作製できると言える。
(Discussion)
As with the results of Examples 1 to 6, it was revealed that cancer cells also form spheroids. It is said that cancer cells cultured in 3D spheroids exhibit characteristics closer to the pathology in vivo than cancer cells cultured in 2D. In other words, if cancer cells can be cultured in 3D, it can be said that a model that reflects the pathology of cancer can be created in a culture vessel.

式(1)で表されるポリペプチド細胞リプログラミング剤は、3種のがん細胞株A549細胞(肺がん)、ES2(卵巣がん)、HOS-143B(骨肉腫)を同様にスフェロイド形成させたことから、これら3種細胞に限定された反応ではなく、広く共通してインビトロの(in vitro;培養容器内)がんモデルを提供できる方法と言える。 The polypeptide cell reprogramming agent represented by formula (1) induced spheroid formation in three cancer cell lines, A549 cells (lung cancer), ES2 (ovarian cancer), and HOS-143B (osteosarcoma), in a similar manner, suggesting that this method is not limited to these three cell types, but can provide a common in vitro (in vitro; in a culture vessel) cancer model.

実施例8:細胞リプログラミング剤の濃度の検討
(方法)
式(1)で表されるポリペプチド(ユニクス株式会社製、PURECOLLA)の水溶液(0.5%)の4倍希釈~1024倍希釈まで希釈液(細胞リプログラミング剤)を調製し、これを100μlずつ市販の96 well平底プレート(CellBIND、corning社)のwellへ添加し、4℃で16時間放置した。
Example 8: Examination of the concentration of cell reprogramming agents (Method)
A 4-fold to 1024-fold dilution solution (cell reprogramming agent) of an aqueous solution (0.5%) of the polypeptide represented by formula (1) (PURECOLLA, manufactured by Unix Corporation) was prepared, and 100 μl of each solution was added to wells of a commercially available 96-well flat-bottom plate (CellBIND, Corning) and left at 4°C for 16 hours.

その後、余分な細胞リプログラミング剤を除去し、室温で減圧乾燥を24時間行った。
細胞リプログラミング剤でコーティングされた培養プレートにHOS-143B(ヒト骨肉腫)を3,000 cells/well播種し、37℃、5% CO2条件下で培養した。培地はDMEM+10%FBSを用いた。
Thereafter, excess cell reprogramming agent was removed, and the cells were dried under reduced pressure at room temperature for 24 hours.
HOS-143B (human osteosarcoma) was seeded at 3,000 cells/well on a culture plate coated with a cell reprogramming agent and cultured at 37°C under 5% CO2 conditions. DMEM + 10% FBS was used as the medium.

3日間培養後、顕微鏡を用いて細胞を観察した。 After culturing for 3 days, the cells were observed under a microscope.

(結果)
結果を図19に示す。式(1)で表されるポリペプチドの水溶液の256倍希釈溶液までのコートプレートにおいて、スフェロイドの形成が認められ、さらに希釈したものでは、スフェロイドの形成が認められなかった。
(result)
The results are shown in Figure 19. Spheroid formation was observed on the coated plate with up to 256-fold diluted solutions of the aqueous solution of the polypeptide represented by formula (1), but no spheroid formation was observed with further diluted solutions.

(考察)
式(1)で表されるポリペプチドの水溶液のスフェロイド形成能には濃度依存性があることが明らかとなった。
(Discussion)
It was revealed that the spheroid-forming ability of an aqueous solution of the polypeptide represented by formula (1) is concentration-dependent.

実施例9:プレート形状に関する検討
(方法)
式(1)で表されるポリペプチド(ユニクス株式会社製、PURECOLLA)の水溶液(0.125%)(細胞リプログラミング剤)を200μlずつ市販の96 well平底プレート(Thermofisher社)、V底プレート(Thermofisher社)、U底プレート(Thermofisher社)のwellへ添加し、4℃で16時間放置した。
Example 9: Study on plate shape (method)
An aqueous solution (0.125%) of the polypeptide represented by formula (1) (PURECOLLA, manufactured by Unix Corporation) (cell reprogramming agent) was added in an amount of 200 μl per well of a commercially available 96-well flat-bottom plate (Thermofisher), V-bottom plate (Thermofisher), or U-bottom plate (Thermofisher) and left at 4° C. for 16 hours.

その後、余分な細胞リプログラミング剤を除去し、室温で減圧乾燥を24時間行った。 Then, excess cell reprogramming agent was removed and the cells were dried under reduced pressure at room temperature for 24 hours.

細胞リプログラミング剤でコーティングされた培養プレートにHeLa細胞(ヒト子宮頸部類上皮がん、JCRB9004,国立研究開発法人 医薬基盤・健康・栄養研究所)及びHOS-143B(ヒト骨肉腫)を2,000 cells/well播種し、37℃、5% CO2条件下で培養した。培地はDMEM+10%FBSを用いた。2日間培養後、顕微鏡を用いて細胞を観察した。 HeLa cells (human cervical epithelioid carcinoma, JCRB9004, National Institutes of Biomedical Innovation, Health and Nutrition) and HOS-143B (human osteosarcoma) were seeded at 2,000 cells/well on a culture plate coated with a cell reprogramming agent and cultured at 37°C and 5% CO2 . DMEM + 10% FBS was used as the medium. After 2 days of culture, the cells were observed under a microscope.

(結果)
結果を図20に示す。コートなしのwellでは、細胞は接着伸展が見られた。一方、式(1)で表されるポリペプチドの水溶液をコートしたV底プレートでは1つのスフェロイド形成がみられ、U底プレートでは数個のスフェロイドの形成がみられた。平底プレートでは数多くの小さなスフェロイド形成が見られた。
(result)
The results are shown in Figure 20. In the uncoated wells, the cells were observed to adhere and spread. On the other hand, in the V-bottom plate coated with an aqueous solution of the polypeptide represented by formula (1), one spheroid was formed, and in the U-bottom plate, several spheroids were formed. In the flat-bottom plate, many small spheroids were formed.

(考察)
式(1)で表されるポリペプチドをコートしたプレートでは、どのような形状のプレートでも、スフェロイド(細胞塊)を形成することが確認できた。
(Discussion)
It was confirmed that spheroids (cell clusters) were formed on plates coated with the polypeptide represented by formula (1) regardless of the shape of the plate.

実施例10:アポトーシスの誘導抑制に関する検討
(方法)
プレート底面の形状の異なる二種類の96 well細胞培養用プレート{(U字底プレート#163320;Corning, NY, USA)、(V字底プレート#277143;Thermo Fisher Scientific, MA, USA)}に二種類の濃度の式(1)で表されるポリペプチド(ユニクス株式会社製、PURECOLLA)の水溶液(0.5%溶液を4倍希釈と8倍希釈したもの)を各々100μL/well、200μL/wellずつ注入し、4℃で一晩静置した。その後、余分な細胞リプログラミング剤を除去し、クリーンベンチ内で約6時間乾燥して細胞リプログラミング剤処理を完成した。細胞株2種(イヌ尿細管由来 MDCK II細胞及びHOS-143B細胞)をそれぞれ3,000 個/well/100μLとなるよう播種し、37℃ 5% CO2雰囲気下のインキュベーター内で6日間培養した。対照は、細胞リプログラミング剤なしのプレートで培養した。3日後及び6日後にCaspase活性測定キット(Apo-ONE Homogeneous Caspase-3/7 Assay kit;Promega, WI, USA)を用いて1 well中のアポトーシス活性を測定した。すなわち、蛍光前駆基質、bis-(N-CBZ-L-aspartyl-L-glutamyl-L-valyl-aspartic acid amide)rhodamine 110(Z-DEVD-rhodamine 110)を付属のバッファーを用いて100倍濃度となるよう希釈したものを50μLずつwell内に添加し、well内のスフェロイドを崩さないようプレートを穏やかに揺らすことにより混和した後、室温にて1時間静置した。その後、培養液を100μLずつ黒色の96 well細胞培養用プレート(#237105;Thermo Fisher Scientific, MA, USA)に移し、プレートリーダーを用いて蛍光590nm(励起光560nm)の値を測定した。細胞を加えず試薬のみの値をblank値として測定値より差し引いた値を用いて、各培養日数における測定値とし、式(1)で表されるポリペプチドの水溶液でコーティングしていないプレート(対照)と比較した相対値をブロットした。
Example 10: Study on the Induction and Inhibition of Apoptosis (Method)
Two types of 96-well cell culture plates with different bottom shapes (U-bottom plate #163320; Corning, NY, USA, V-bottom plate #277143; Thermo Fisher Scientific, MA, USA) were filled with two different concentrations of the polypeptide represented by formula (1) (PURECOLLA, Unix Corporation) at 100μL/well and 200μL/well, respectively, and left to stand overnight at 4℃. After that, the excess cell reprogramming agent was removed, and the cells were dried in a clean bench for about 6 hours to complete the cell reprogramming agent treatment. Two types of cell lines (canine renal tubule-derived MDCK II cells and HOS-143B cells) were seeded at 3,000 cells/well/100μL, and cultured in an incubator at 37℃ in a 5% CO2 atmosphere for 6 days. The control was cultured in a plate without the cell reprogramming agent. After 3 and 6 days, apoptosis activity in each well was measured using a caspase activity measurement kit (Apo-ONE Homogeneous Caspase-3/7 Assay kit; Promega, WI, USA). A fluorescent precursor substrate, bis-(N-CBZ-L-aspartyl-L-glutamyl-L-valyl-aspartic acid amide)rhodamine 110 (Z-DEVD-rhodamine 110), was diluted 100-fold with the included buffer and added to each well in an amount of 50 μL. The plate was gently rocked to avoid disrupting the spheroids in the wells, and then the plate was left to stand at room temperature for 1 hour. Then, 100 μL of the culture medium was transferred to a black 96-well cell culture plate (#237105; Thermo Fisher Scientific, MA, USA), and the fluorescence value at 590 nm (excitation light 560 nm) was measured using a plate reader. The value obtained by adding only the reagent without adding cells was used as a blank value, and this value was subtracted from the measured value to obtain the measured value at each culture day. The relative values compared with those of a plate (control) that was not coated with an aqueous solution of the polypeptide represented by formula (1) were blotted.

(結果)
結果を図21及び図22に示す。式(1)で表されるポリペプチドの水溶液でコーティングしていないプレートでの培養細胞に比較して、MDCK II及びHOS-143Bのいずれの細胞においても、式(1)で表されるポリペプチドの濃度に依存して、アポトーシスが抑制されることを見出した。なお、アポトーシスの抑制効果は、培養6日目の方が顕著であった。
(result)
The results are shown in Figures 21 and 22. It was found that apoptosis was suppressed in both MDCK II and HOS-143B cells depending on the concentration of the polypeptide represented by formula (1), compared to cells cultured on a plate not coated with an aqueous solution of the polypeptide represented by formula (1). The inhibitory effect on apoptosis was more significant on the sixth day of culture.

(考察)
従来、初代培養細胞のアノイキスによる細胞死、スフェロイド形成細胞に発生するスフェロイド中心部分のアポトーシス、ネクローシスの誘導による生細胞減少が3次元スフェロイド培養の大きな問題であった。しかし、本発明の細胞リプログラミング剤は、細胞のスフェロイド形成時のアポトーシス誘導を抑制しており、スフェロイドを用いた幹細胞製造のみならず創薬研究、医療応用に極めて有用であることを見出した。
(Discussion)
In the past, major problems in 3D spheroid culture were cell death due to anoikis in primary cultured cells, apoptosis occurring in the central part of spheroid-forming cells, and a decrease in viable cells due to the induction of necrosis. However, the cell reprogramming agent of the present invention suppresses the induction of apoptosis during cell spheroid formation, and we found that it is extremely useful not only for stem cell production using spheroids, but also for drug discovery research and medical applications.

実施例11:がん幹細胞マーカーの遺伝子発現検出
(方法)
実施例7と同様の方法で、細胞リプログラミング剤処理培養容器を完成し、実施例7と同様の3種がん細胞を培養した。培養開始4日と15日目に、各培養容器から3種がん細胞スフェロイドそれぞれを15mL遠心チューブに集めて遠心分離を行い、リン酸緩衝液PBS(-)で細胞を洗浄した。対照の細胞リプログラミング剤無しプレートで培養したがん細胞は、培地を除去した後PBS(-)で洗浄し、0.05%トリプシン-EGTAでプレートから細胞を剥離分散させて15mL遠心チューブに集め、再度PBS(-)洗浄した。回収したスフェロイド及び対照細胞からmRNAを抽出して、リアルタイムPCR法によるがん幹細胞マーカー遺伝子の発現解析を行った。
Example 11: Detection of gene expression of cancer stem cell markers (method)
A cell reprogramming agent-treated culture vessel was completed in the same manner as in Example 7, and the same three types of cancer cells as in Example 7 were cultured. On the 4th and 15th days after the start of culture, the three types of cancer cell spheroids were collected from each culture vessel into a 15 mL centrifuge tube, centrifuged, and the cells were washed with phosphate buffer PBS(-). After removing the medium, the cancer cells cultured on the control plate without the cell reprogramming agent were washed with PBS(-), detached and dispersed from the plate with 0.05% trypsin-EGTA, collected in a 15 mL centrifuge tube, and washed again with PBS(-). mRNA was extracted from the collected spheroids and control cells, and expression analysis of cancer stem cell marker genes was performed by real-time PCR.

具体的には、各細胞にNucleoZOL(マッハライ・ナーゲル社)試薬を加えて、試薬メーカー推奨プロトコールに従ってRNAを抽出し、幹細胞マーカー検出の鋳型RNAとした。リアルタイム-PCR解析では、QuantiFast Probe RT-PCR Kits (QIAGEN;No.204454)とTaqMan Gene Expression Assay Probe(Thermo Fisher Scientific社)のPCRプローブを使用し、Rotor-Gene Q(QIAGEN社)装置を用いてPCR解析を行った。がん幹細胞マーカー遺伝子の発現検出用プローブには、CD24(mucin-type glycoprotein, ligand for P-selectin, Oncogene)、CD44(cell surface glycoprotein involved cell-cell interaction, adhesion and migration, cancer stem cell marker)、CD133(five transmembrane glycoprotein, stem cell marker and cancer stem cell marker protein)PCRプローブの3種を使用した。内在性コントロール遺伝子には、β-Actinを用いた。幹細胞未分化マーカー遺伝子の発現検出用プローブは、iPS細胞作製で用いられる転写因子SOX2(sex-determining region Y-box 2)、OCT4(octamer binding transcription factor 4)、NANOG(homeodomain transcription factor)の3種と、内在性コントロール遺伝子としてβ-Actin を使用した。遺伝子発現解析では、ΔΔCt法(デルタデルタCt法)による相対定量を行った。ΔΔCt法解析の結果は、対照とする「細胞リプログラミング剤なし、2次元接着増殖4日目」の細胞が発現する遺伝子量を相対的に「1.0」とし、比較する「スフェロイド増殖の15日目の発現量」の増加倍率を求めた(図23~25)。 Specifically, NucleoZOL (Machrei-Nagel) reagent was added to each cell, and RNA was extracted according to the protocol recommended by the reagent manufacturer, and used as template RNA for stem cell marker detection. For real-time PCR analysis, QuantiFast Probe RT-PCR Kits (QIAGEN; No. 204454) and TaqMan Gene Expression Assay Probe (Thermo Fisher Scientific) PCR probes were used, and PCR analysis was performed using a Rotor-Gene Q (QIAGEN) device. Three types of probes were used to detect the expression of cancer stem cell marker genes: CD24 (mucin-type glycoprotein, ligand for P-selectin, Oncogene), CD44 (cell surface glycoprotein involved cell-cell interaction, adhesion and migration, cancer stem cell marker), and CD133 (five transmembrane glycoprotein, stem cell marker and cancer stem cell marker protein) PCR probes. β-Actin was used as an endogenous control gene. The probes used to detect the expression of stem cell undifferentiation marker genes were three transcription factors used in iPS cell production: SOX2 (sex-determining region Y-box 2), OCT4 (octamer binding transcription factor 4), and NANOG (homeodomain transcription factor), as well as β-Actin as an endogenous control gene. For gene expression analysis, relative quantification was performed using the ΔΔCt method (delta delta Ct method). The results of the ΔΔCt method analysis were calculated by setting the amount of genes expressed by the control cells "without cell reprogramming agent, 2D adhesion growth on day 4" as "1.0" relatively, and calculating the increase fold of the "expression amount on day 15 of spheroid growth" (Figures 23-25).

(結果)
がん幹細胞マーカー遺伝子の発現結果を図23、24、25に示す。
(result)
The results of expression of cancer stem cell marker genes are shown in Figures 23, 24, and 25.

図23ではA549肺がん細胞におけるがん幹細胞マーカーCD24、CD44、CD133の遺伝子発現量が、培養時間の経過(4日目から15日目)とともに増加する事を見出した。 In Figure 23, we found that the gene expression levels of cancer stem cell markers CD24, CD44, and CD133 in A549 lung cancer cells increased over the course of culture time (from day 4 to day 15).

具体的には、スフェロイド培養4日目にCD24は2.2倍に増加、15日目に4.2倍に増加、CD44は4日目に1.6倍、15日目に2.9倍に増加、CD133は4日目に3.4倍に増加、15日目に13.5倍に増加した。 Specifically, CD24 increased 2.2-fold on day 4 of spheroid culture and 4.2-fold on day 15, CD44 increased 1.6-fold on day 4 and 2.9-fold on day 15, and CD133 increased 3.4-fold on day 4 and 13.5-fold on day 15.

図24では、ES2卵巣がん細胞におけるCD24の遺伝子発現量が、スフェロイド培養4日目に11.6倍に増加、15日目に63.2倍に増加した。CD44は4日目に1.3倍に増加、15日目に2.9倍に増加した。CD133は接着増殖細胞では検出されなかったため、スフェロイド培養した4日目を対照値1.0とした場合に15日目には8.5倍に増加した。 In Figure 24, the gene expression level of CD24 in ES2 ovarian cancer cells increased 11.6-fold on day 4 of spheroid culture and 63.2-fold on day 15. CD44 increased 1.3-fold on day 4 and 2.9-fold on day 15. CD133 was not detected in adherent proliferating cells, and increased 8.5-fold on day 15, assuming a control value of 1.0 on day 4 of spheroid culture.

図25では、HOS-143B骨肉腫細胞のCD24が4日目に1.34倍に増加、15日目に1.2倍に増加し、CD44は4日目に2.3倍に増加、15日目に1.9倍に増加し、CD133は4日目に0.3倍に減少したものの15日目には2.1倍に増加した。 In Figure 25, CD24 in HOS-143B osteosarcoma cells increased 1.34-fold on day 4 and 1.2-fold on day 15, CD44 increased 2.3-fold on day 4 and 1.9-fold on day 15, and CD133 decreased 0.3-fold on day 4 but increased 2.1-fold on day 15.

(考察)
A549細胞、ES2細胞、HOS-143細胞は、接着増殖する細胞として樹立されたがん細胞株である。がん細胞分化ヒエラルキーでは、がん幹細胞から分化程度が進行した“分化型がん細胞株”として分類されている。従って、通常の2次元接着培養した細胞では、CD24、CD44、CD133のがん幹細胞マーカー遺伝子は発現していないか、非常に低レベルの発現であることが分かっている。こうしたがん細胞を、本発明の細胞リプログラミング剤で培養すると、3次元構造をもったスフェロイドを形成して増殖し、培養4日目以降から15日目にはがん幹細胞の指標であるCD24、CD44、CD133遺伝子の発現が増大することを見出した。
(Discussion)
A549 cells, ES2 cells, and HOS-143 cells are cancer cell lines established as cells that grow by adhesion. In the cancer cell differentiation hierarchy, they are classified as "differentiated cancer cell lines" that have progressed in the degree of differentiation from cancer stem cells. Therefore, it is known that cancer stem cell marker genes CD24, CD44, and CD133 are not expressed or are expressed at very low levels in cells cultured in a normal 2D adhesion culture. When these cancer cells are cultured with the cell reprogramming agent of the present invention, they form spheroids with a three-dimensional structure and grow, and it has been found that the expression of CD24, CD44, and CD133 genes, which are indicators of cancer stem cells, increases from the 4th day of culture to the 15th day.

従来、がん幹細胞を取得するためには、がん患者検体から摘出したがん組織をマウスに移植する方法、がん組織からセルソーターで分取した微量のがん幹細胞を、多くの高額な増殖因子・ホルモンを添加した培養液で長期間かけて増やすことが行われてきた。こうしたなか本培養法は、細胞リプログラミング剤培養のみで簡便かつ大量のがん幹細胞を作製する方法を提供するものと言える。 Conventionally, cancer stem cells have been obtained by transplanting cancer tissue extracted from cancer patient specimens into mice, or by extracting minute amounts of cancer stem cells from cancer tissue using a cell sorter and multiplying them over a long period of time in culture medium containing many expensive growth factors and hormones. In this context, this culture method can be said to provide a simple method for producing large amounts of cancer stem cells by simply culturing them with cell reprogramming agents.

なお、がん幹細胞マーカーとしてはCD24、CD44、CD133以外にも知られているが、本発明はこれらの実施例により限定されるものではない。 Note that cancer stem cell markers other than CD24, CD44, and CD133 are also known, but the present invention is not limited to these examples.

実施例12:がん細胞における幹細胞未分化マーカー転写因子の遺伝子発現検出
(方法)
実施例7及び11と同様の方法で培養容器のコーティングを完成し、3種がん細胞A549細胞、ES2細胞、143B細胞を培養した。幹細胞未分化マーカー遺伝子の発現検出用プローブには転写因子SOX2(sex-determining region Y-box 2)、OCT4(octamer binding transcription factor 4)、NANOG(homeodomain transcription factor)の3種と、内在性コントロール遺伝子としてβ-Actin を使用した。遺伝子発現解析では、ΔΔCt法(デルタデルタCt法)による相対定量を行った。ΔΔCt法解析の結果は、対照とする「細胞リプログラミング剤なし、2次元接着増殖4日目」の細胞が発現する遺伝子量を相対的に「1.0」とし、比較する「スフェロイド増殖の15日目の発現量」の増加倍率を求めた(図26~28)。
Example 12: Detection of gene expression of stem cell undifferentiation marker transcription factor in cancer cells (method)
Coating of the culture vessel was completed in the same manner as in Examples 7 and 11, and three types of cancer cells, A549 cells, ES2 cells, and 143B cells, were cultured. Three types of transcription factors, SOX2 (sex-determining region Y-box 2), OCT4 (octamer binding transcription factor 4), and NANOG (homeodomain transcription factor), were used as probes to detect the expression of stem cell undifferentiated marker genes, and β-Actin was used as an endogenous control gene. In gene expression analysis, relative quantification was performed using the ΔΔCt method (delta delta Ct method). The results of the ΔΔCt method analysis were calculated by setting the gene amount expressed by the control cells "without cell reprogramming agent, 2D adhesion growth on the 4th day" to "1.0" relatively, and calculating the increase fold of the "expression amount on the 15th day of spheroid growth" to be compared (Figures 26 to 28).

(結果)
図26では、A549肺がん細胞における幹細胞未分化マーカーSOX2、OCT4、NANOGの遺伝子発現量が、経時的に(4日目から15日目にかけて)増加する事を示した。
(result)
FIG. 26 shows that the gene expression levels of stem cell undifferentiation markers SOX2, OCT4, and NANOG in A549 lung cancer cells increased over time (from day 4 to day 15).

具体的には、SOX2は4日目に5.0倍、15日目に6.0倍に増加し、OCT4は4日目に1.6倍、15日目に3.7倍に増加し、NANOGは4日目に10.6倍に増加、15日目に55.7倍に増加した。 Specifically, SOX2 increased 5.0-fold on day 4 and 6.0-fold on day 15, OCT4 increased 1.6-fold on day 4 and 3.7-fold on day 15, and NANOG increased 10.6-fold on day 4 and 55.7-fold on day 15.

図27では、ES2卵巣がん細胞のSOX2が4日目に1.1倍で変化無し、15日目に3.4倍に増加し、OCT4は4日目に2.6倍に増加、15日目に4.6倍に増加し、NANOGは4日目に3.9倍に増加、15日目には10.9倍に増加した。 In Figure 27, SOX2 in ES2 ovarian cancer cells was unchanged at 1.1-fold on day 4 and increased 3.4-fold on day 15, OCT4 increased 2.6-fold on day 4 and increased 4.6-fold on day 15, and NANOG increased 3.9-fold on day 4 and increased 10.9-fold on day 15.

図28では、HOS-143B骨肉腫細胞のSOX2が4日目に3.5倍に増加、15日目に1.6倍に増加し、OCT4は4日目に2.5倍に増加、15日目に2.4倍に増加し、NANOGは4日目に1.6倍に増加、15日目には1.4倍に増加した。 In Figure 28, SOX2 in HOS-143B osteosarcoma cells increased 3.5-fold on day 4 and 1.6-fold on day 15, OCT4 increased 2.5-fold on day 4 and 2.4-fold on day 15, and NANOG increased 1.6-fold on day 4 and 1.4-fold on day 15.

(考察)
SOX2、OCT4、NANOG等の幹細胞未分化マーカー遺伝子は、一部のがん組織において発現していることが臨床上知られている。従来SOX2、OCT4、NANOG 転写因子はES細胞、iPS細胞が持つ幹細胞未分化マーカーであることから、これらの遺伝子発現を伴うがん細胞は「がん幹細胞」の特性を有すると考えられている。ここで用いたA549細胞、ES2細胞、HOS-143細胞では、SOX2、OCT4、NANOG等の幹細胞未分化マーカー遺伝子は発現していないか非常に低レベルの発現であることが分かっている。こうしたなか、これら3種がん細胞を本発明の細胞リプログラミング剤で培養すると、3次元構造をもったスフェロイドを形成して増殖し、培養4日目以降から15日目には幹細胞のマーカーであるSOX2、OCT4、NANOG遺伝子の発現が増大することを見出した。
(Discussion)
It is clinically known that stem cell undifferentiation marker genes such as SOX2, OCT4, and NANOG are expressed in some cancer tissues. Conventionally, SOX2, OCT4, and NANOG transcription factors are stem cell undifferentiation markers possessed by ES cells and iPS cells, so cancer cells with expression of these genes are considered to have the characteristics of "cancer stem cells". It is known that the stem cell undifferentiation marker genes such as SOX2, OCT4, and NANOG are not expressed or are expressed at a very low level in the A549 cells, ES2 cells, and HOS-143 cells used here. Under these circumstances, when these three types of cancer cells are cultured with the cell reprogramming agent of the present invention, they form spheroids with a three-dimensional structure and grow, and it was found that the expression of the stem cell markers SOX2, OCT4, and NANOG genes increased from the 4th day of culture to the 15th day.

以上より、本細胞リプログラミング剤でがん細胞を培養することで、簡便かつ大量に、SOX2、OCT4、NANOGの幹細胞未分化マーカー遺伝子が発現し、かつCD24、CD44、CD133のがん幹細胞マーカー遺伝子発現を伴うがん幹細胞の作製方法を発明するに至った。
なお、がん幹細胞未分化マーカーとしては、SOX2、OCT4、NANOG以外にも知られているが、本発明はこれらの実施例により限定されるものではない。
Based on the above, the researchers have invented a method for easily and mass-produced cancer stem cells that express the undifferentiated stem cell marker genes SOX2, OCT4, and NANOG, as well as the cancer stem cell marker genes CD24, CD44, and CD133, by culturing cancer cells with this cell reprogramming agent.
It should be noted that, although other cancer stem cell undifferentiation markers are known in addition to SOX2, OCT4, and NANOG, the present invention is not limited to these examples.

実施例13:ポリペプチドの分子量の検討
(1)ポリペプチド成分の限外ろ過による分画
(方法)
式(1)で表されるポリペプチド(ユニクス株式会社製 PURECOLLA)を、分画分子量の異なる3種限外ろ過膜で分画し、分子量の異なるポリペプチドサンプルが示すスフェロイド形成能を調べた。 実験は限外ろ過膜を備えた遠沈管(アミコン遠心分離式限外ろ過フィルターユニット)3種を用いて、細胞リプログラミング剤原料水溶液に溶解するポリペプチドの分子量に基づく分画を行った。使用した限外ろ過膜の分子量分画範囲は10万以上、5万以上、1万以上の3種である。
細胞リプログラミング剤ポリペプチドについては、限外ろ過前のサンプルにFluoroDY-495 Protein Labeling kit試薬による蛍光色素標識を行い、分画後に電気泳動法でポリペプチドの蛍光可視化を行った。電気泳動は、5%~25%ポリアクリルアミドの濃度グラジエントゲルを用い、200mV、30分の条件で実施した。泳動後のゲルを蛍光イメージング装置(Bio-Rad, Gel Doc)で解析した。結果を図29に示す。
Example 13: Examination of the molecular weight of the polypeptide (1) Fractionation of the polypeptide component by ultrafiltration (method)
The polypeptide represented by formula (1) (PURECOLLA, manufactured by Unix Corporation) was fractionated using three types of ultrafiltration membranes with different molecular weight cutoffs, and the spheroid formation ability of the polypeptide samples with different molecular weights was examined. In the experiment, three types of centrifuge tubes (Amicon centrifugal ultrafiltration filter units) equipped with ultrafiltration membranes were used to fractionate the polypeptide dissolved in the cell reprogramming agent raw material solution based on its molecular weight. The molecular weight cutoff ranges of the ultrafiltration membranes used were three types: 100,000 or more, 50,000 or more, and 10,000 or more.
For the cell reprogramming agent polypeptide, the sample before ultrafiltration was labeled with a fluorescent dye using the FluoroDY-495 Protein Labeling kit reagent, and after fractionation, the polypeptide was visualized fluorescently by electrophoresis. Electrophoresis was performed using a 5% to 25% polyacrylamide gradient gel at 200 mV for 30 minutes. The gel after electrophoresis was analyzed using a fluorescent imaging device (Bio-Rad, Gel Doc). The results are shown in Figure 29.

(結果)限外ろ過により、細胞リプログラミング剤ポリペプチドは下記4種の分子量分画(図29;レーン(B), (C), (E), (F))サンプルに分離できた。なお、図29中の(M)は分子量マーカーを示す。
(A):細胞リプログラミング剤ポリペプチド原料(広範囲の分子量ポリペプチドを含む)
(B):分子量10万以上
(C):分子量10万以下
(E):分子量5万以下
(F):分子量1万以下
ゲル泳動レーン(A)はポリペプチド原料であり、ゲル最上部に見える分子量10万以上の白いバンドから14,000以下の小ペプチドまで広範な分子量のペプチド混合物であることが検出できた。分画(B)は分子量10万以上の濃いバンドとして検出できた。分画(C)は分子量10万以下で14,000より小さい分子を含むブロードな混合物として検出できた。分画(E)は分子量5万から14,000以下にわたるブロードな混合物として、分画(F)は分子量1万以下の混合物としてそれぞれ検出できた。なお、式(Pro-Hyp-Gly)nで示されるポリペプチドは三重らせん構造を有することが知られていることから、上記分子量は三重らせん構造の複合体としての分子量と考えられる。
(Results) By ultrafiltration, the cell reprogramming agent polypeptide was separated into the following four molecular weight fractions (Figure 29; lanes (B), (C), (E), and (F)). Note that (M) in Figure 29 indicates a molecular weight marker.
(A): Cell reprogramming agent polypeptide source (including a wide range of molecular weight polypeptides)
(B): Molecular weight of 100,000 or more
(C): Molecular weight less than 100,000
(E): Molecular weight less than 50,000
(F): Molecular weight of 10,000 or less Gel lane (A) is the polypeptide raw material, and a wide range of peptides with molecular weights was detected, from the white band with a molecular weight of 100,000 or more visible at the top of the gel to small peptides with a molecular weight of 14,000 or less. Fraction (B) was detected as a dark band with a molecular weight of 100,000 or more. Fraction (C) was detected as a broad mixture with a molecular weight of 100,000 or less and including molecules smaller than 14,000. Fraction (E) was detected as a broad mixture with a molecular weight ranging from 50,000 to 14,000 or less, and fraction (F) was detected as a mixture with a molecular weight of 10,000 or less. Since the polypeptide represented by the formula (Pro-Hyp-Gly)n is known to have a triple helical structure, the above molecular weights are considered to be the molecular weights of a triple helical structure complex.

(2)分画成分のスフェロイド形成活性
(方法)
(1)により得られた限外ろ過サンプル(A), (B), (C), (E), (F)をそれぞれポリスチレン製96wellプレートに実施例2と同じ方法で塗布し、細胞のスフェロイド形成活性を調べた。結果を図30に示す。
(2) Spheroid-forming activity of fractionated components (Method)
The ultrafiltration samples (A), (B), (C), (E), and (F) obtained in (1) were each applied to a 96-well polystyrene plate in the same manner as in Example 2, and the spheroid formation activity of the cells was examined. The results are shown in Figure 30.

(結果)
スフェロイド形成活性を示したのはサンプル(A)とサンプル(B)であり、その他のサンプル(C), (E), (F)はスフェロイド形成を示さず、底面への接着増殖を示した。以上より、本細胞リプログラミング剤ポリペプチドが示すスフェロイド形成活性は、分子量10万以上のポリペプチドによりもたらされたものと考えられる。
(result)
Samples (A) and (B) showed spheroid formation activity, while the other samples (C), (E), and (F) did not show spheroid formation and showed adhesion and proliferation to the bottom. From the above, it is considered that the spheroid formation activity shown by this cell reprogramming agent polypeptide is brought about by the polypeptide with a molecular weight of 100,000 or more.

(考察)
細胞リプログラミング剤となるポリペプチドの活性分子の分子量は、10万以上であることを見出した。式(Pro-Hyp-Gly)nで示されるポリペプチドは三重らせん構造を有することが知られていることから、当該分子量は三重らせん構造の複合体における分子量であるものと考えられる。この活性分子が受容体/リガンド結合を惹起し、スフェロイド形成活性やアポトーシス抑制、幹細胞誘導を惹起しているものと考えられる。
(Discussion)
It was found that the molecular weight of the active molecule of the polypeptide that serves as a cell reprogramming agent is 100,000 or more. Since the polypeptide represented by the formula (Pro-Hyp-Gly)n is known to have a triple helical structure, the molecular weight is considered to be the molecular weight in the triple helical structure complex. It is considered that this active molecule induces receptor/ligand binding, and induces spheroid formation activity, apoptosis suppression, and stem cell induction.

Claims (17)

下記式(1)で表されるポリペプチドを含む、細胞リプログラミング剤。
(Pro-Hyp-Gly)n (1)
(式中、Hypはヒドロキシプロリンを表し、nは100~1000の整数を表す)
A cell reprogramming agent comprising a polypeptide represented by the following formula (1):
(Pro-Hyp-Gly)n (1)
(In the formula, Hyp represents hydroxyproline, and n represents an integer of 100 to 1000.)
幹細胞の製造に用いられる、請求項1に記載の細胞リプログラミング剤。 The cell reprogramming agent according to claim 1, which is used in the production of stem cells. 前記幹細胞が、多能性細胞又はがん幹細胞である、請求項2に記載の細胞リプログラミング剤。 The cell reprogramming agent according to claim 2, wherein the stem cells are pluripotent cells or cancer stem cells. スフェロイド形成に用いられる、請求項1に記載の細胞リプログラミング剤。 The cell reprogramming agent according to claim 1, which is used for forming spheroids. 下記式(1)で表されるポリペプチドを含む、スフェロイド形成剤。
(Pro-Hyp-Gly)n (1)
(式中、Hypはヒドロキシプロリンを表し、nは100~1000の整数を表す)
A spheroid-forming agent comprising a polypeptide represented by the following formula (1):
(Pro-Hyp-Gly)n (1)
(In the formula, Hyp represents hydroxyproline, and n represents an integer of 100 to 1000.)
請求項1~4のいずれか1項に記載の細胞リプログラミング剤又は請求項5に記載のスフェロイド形成剤で培養面が表面処理された、細胞培養基材。 A cell culture substrate, the culture surface of which is treated with the cell reprogramming agent according to any one of claims 1 to 4 or the spheroid forming agent according to claim 5. 請求項1~4のいずれか1項に記載の細胞リプログラミング剤又は請求項5に記載のスフェロイド形成剤、及び培養細胞を含む、細胞培養系。 A cell culture system comprising a cell reprogramming agent according to any one of claims 1 to 4 or a spheroid forming agent according to claim 5, and cultured cells. 請求項1~4のいずれか1項に記載の細胞リプログラミング剤又は請求項5に記載のスフェロイド形成剤を用いて細胞を培養する工程を含む、幹細胞の製造方法。 A method for producing stem cells, comprising a step of culturing cells using the cell reprogramming agent according to any one of claims 1 to 4 or the spheroid forming agent according to claim 5. 前記幹細胞が、SOX2、OCT4、NANOGから選択される少なくとも1種の幹細胞未分化マーカー遺伝子を発現する、請求項8に記載の製造方法。 The method of claim 8, wherein the stem cells express at least one stem cell undifferentiation marker gene selected from SOX2, OCT4, and NANOG. 前記幹細胞が、多能性幹細胞又はがん幹細胞である、請求項8に記載の製造方法。 The method according to claim 8, wherein the stem cells are pluripotent stem cells or cancer stem cells. 請求項8に記載の方法により得られる幹細胞を用いた、オルガノイド又は組織の製造方法。 A method for producing an organoid or tissue using stem cells obtained by the method according to claim 8. 下記式(1)で表されるポリペプチドを含む、アポトーシス抑制剤。
(Pro-Hyp-Gly)n (1)
(式中、Hypはヒドロキシプロリンを表し、nは100~1000の整数を表す)
An apoptosis inhibitor comprising a polypeptide represented by the following formula (1):
(Pro-Hyp-Gly)n (1)
(In the formula, Hyp represents hydroxyproline, and n represents an integer of 100 to 1000.)
スフェロイドのアポトーシスを抑制する、請求項12に記載のアポトーシス抑制剤。 The apoptosis inhibitor according to claim 12, which inhibits apoptosis in spheroids. 下記式(1)で表されるポリペプチドを含む、細胞培養補助剤。
(Pro-Hyp-Gly)n (1)
(式中、Hypはヒドロキシプロリンを表し、nは100~1000の整数を表す)
A cell culture auxiliary comprising a polypeptide represented by the following formula (1):
(Pro-Hyp-Gly)n (1)
(In the formula, Hyp represents hydroxyproline, and n represents an integer of 100 to 1000.)
幹細胞の製造に用いられる、請求項14に記載の細胞培養補助剤。 The cell culture supplement according to claim 14, which is used in the production of stem cells. 前記幹細胞が、多能性細胞又はがん幹細胞である、請求項15に記載の細胞培養補助剤。 The cell culture supplement according to claim 15, wherein the stem cells are pluripotent cells or cancer stem cells. スフェロイド形成に用いられる、請求項14に記載の細胞培養補助剤。 The cell culture supplement according to claim 14, which is used for forming spheroids.
JP2023190173A 2022-11-24 2023-11-07 Cell reprogramming agent for producing stem cells and method for producing stem cells Pending JP2024076356A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022187030 2022-11-24
JP2022187030 2022-11-24

Publications (1)

Publication Number Publication Date
JP2024076356A true JP2024076356A (en) 2024-06-05

Family

ID=91330757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023190173A Pending JP2024076356A (en) 2022-11-24 2023-11-07 Cell reprogramming agent for producing stem cells and method for producing stem cells

Country Status (1)

Country Link
JP (1) JP2024076356A (en)

Similar Documents

Publication Publication Date Title
WO2011007900A1 (en) Pluripotent stem cell that can be isolated from body tissue
Shariati et al. Organoid technology: Current standing and future perspectives
CN107075476B (en) Method for inducing three-dimensional osteogenic differentiation of stem cells using hydrogel
CN106795487A (en) The enrichment procedure of pancreatic progenitor cell
US20220090009A1 (en) Human pluripotent stem cell-based system for generating endothelial cells
US11236304B2 (en) Method for differentiating induced pluripotent stem cells, which are prepared from endocardium-derived adult stem cells, into cardiovascular cells, and use thereof
TW201522638A (en) Method for preparing pluripotent stem cells
Oh et al. Human-induced pluripotent stem cells generated from intervertebral disc cells improve neurologic functions in spinal cord injury
US20230383247A1 (en) Methods and Culture Substrates for Controlled Induction of Biomimetic Neural Tissues Comprising Singular Rosette Structures
Ghionzoli et al. Human amniotic fluid stem cell differentiation along smooth muscle lineage
Jiang et al. Generation of cardiac spheres from primate pluripotent stem cells in a small molecule-based 3D system
Lin et al. Integrated generation of induced pluripotent stem cells in a low-cost device
WO2012133942A1 (en) Pluripotent stem cell capable of being isolated from fat tissue or umbilical cord of biological body
US12060579B2 (en) Human pluripotent stem cell derived endocardial endothelium
JP2024059771A (en) Cell reprogramming method
Dierickx et al. Embryonic template-based generation and purification of pluripotent stem cell-derived cardiomyocytes for heart repair
JP7198524B2 (en) Method for producing spheroids and method for expressing pluripotent stem cell markers
WO2018025975A1 (en) Method for inducing differentiation of pluripotent stem cells in vitro
US20240294881A1 (en) Cell culture supplement for producing stem cells, and method for producing stem cells
EP4349850A1 (en) Cell culture supplement for producing stem cells, and method for producing stem cells
JP2024076356A (en) Cell reprogramming agent for producing stem cells and method for producing stem cells
JP6870783B2 (en) Cell culture substrate
JP7501051B2 (en) Cell structure containing small intestinal epithelial cell layer, its use, and its manufacturing method
CN117242170A (en) Reprogramming somatic cells on microcarriers
Besser Engineering a Compartmentalized Hydrogel Platform for In Vitro Assembly of Neuromuscular Junctions

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231114