JP2024055343A - Deterioration diagnosis method of exhaust emission control catalyst and deterioration diagnosis device of exhaust emission control catalyst - Google Patents

Deterioration diagnosis method of exhaust emission control catalyst and deterioration diagnosis device of exhaust emission control catalyst Download PDF

Info

Publication number
JP2024055343A
JP2024055343A JP2022162182A JP2022162182A JP2024055343A JP 2024055343 A JP2024055343 A JP 2024055343A JP 2022162182 A JP2022162182 A JP 2022162182A JP 2022162182 A JP2022162182 A JP 2022162182A JP 2024055343 A JP2024055343 A JP 2024055343A
Authority
JP
Japan
Prior art keywords
fuel ratio
exhaust
air
ammonia
purification catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022162182A
Other languages
Japanese (ja)
Inventor
有花 澤田
Yuka Sawada
浩之 糸山
Hiroyuki Itoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2022162182A priority Critical patent/JP2024055343A/en
Publication of JP2024055343A publication Critical patent/JP2024055343A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

To perform catalyst deterioration diagnosis accurately.SOLUTION: A prescribed value A is set, which is a threshold of the concentration combining an NOx component and an ammonia component in exhaust gas on the downstream side of a three-way catalyst 15 according to an exhaust air-fuel ratio. If an instantaneous value of the concentration combining an NOx component and an ammonia component in exhaust gas detected by an ammonia sensor 20 when an exhaust air-fuel ratio is richer than a theoretical air-fuel ratio is the prescribed value A or lower, and if the instantaneous value of the concentration combining an NOx component and an ammonia component in exhaust gas detected by the ammonia sensor 20 when the exhaust air-fuel ratio is leaner than the theoretical air-fuel ratio is the prescribed value A or higher, the three-way catalyst 15 is diagnosed as being deteriorated.SELECTED DRAWING: Figure 1

Description

本発明は、排気浄化触媒の劣化診断方法及び排気浄化触媒の劣化診断装置に関する。 The present invention relates to a method for diagnosing the deterioration of an exhaust purification catalyst and a device for diagnosing the deterioration of an exhaust purification catalyst.

例えば、特許文献1には、三元触媒の下流側における排ガス中のNOxの濃度をNOx検出手段で測定し、測定されたNOx濃度を用いて三元触媒の劣化診断を行う技術が開示されている。 For example, Patent Document 1 discloses a technique for measuring the concentration of NOx in exhaust gas downstream of a three-way catalyst using a NOx detection means, and diagnosing the deterioration of the three-way catalyst using the measured NOx concentration.

特許文献1においては、内燃機関がリーン運転状態からリッチ運転状態に移行した後、再びリーン運転状態とされるまでの間に検出されるNOx濃度に基づいて、三元触媒の貴金属成分であるPd及びRhのNOx還元能にかかる劣化の度合いを診断している。 In Patent Document 1, the degree of deterioration of the NOx reduction ability of the precious metal components Pd and Rh of the three-way catalyst is diagnosed based on the NOx concentration detected during the period from when the internal combustion engine shifts from a lean operating state to a rich operating state until it returns to a lean operating state.

特開2020-45885号公報JP 2020-45885 A

しかしながら、NOxの濃度を検出するセンサは、一般的にアンモニアに対しても感度をもっている。従って、特許文献1におけるNOx検出手段で検出されたNOx濃度は、アンモニアを含んだ濃度と考えられる。 However, sensors that detect NOx concentrations are generally also sensitive to ammonia. Therefore, the NOx concentration detected by the NOx detection means in Patent Document 1 is considered to be a concentration that includes ammonia.

つまり、特許文献1においては、排気ガス中のNOx成分とアンモニア成分とを合わせた濃度を排気ガス中のNOx濃度として三元触媒の劣化診断に用いてしまうことになる。そのため、特許文献1における触媒劣化診断は、診断に用いる排気ガス中のNOx濃度の値の精度が悪くなる場合があり、触媒劣化診断を精度良く実施できない虞がある。 In other words, in Patent Document 1, the combined concentration of NOx and ammonia components in the exhaust gas is used as the NOx concentration in the exhaust gas to diagnose deterioration of the three-way catalyst. Therefore, the catalyst deterioration diagnosis in Patent Document 1 may result in poor accuracy of the value of the NOx concentration in the exhaust gas used for diagnosis, and there is a risk that the catalyst deterioration diagnosis cannot be performed accurately.

本発明の排気浄化触媒の触媒劣化診断は、内燃機関の排気通路における排気浄化触媒の下流側に、排気ガス中のNOx濃度とアンモニア濃度に感度を有するアンモニアセンサを備えて診断するものであって、上記排気浄化触媒の下流側もしくは上記排気浄化触媒内における排気空燃比に応じて上記排気浄化触媒の下流側における排気ガス中のNOx成分とアンモニア成分を合わせた濃度の閾値を設定し、上記排気空燃比が理論空燃比よりもリッチとなる状態にあるときに上記アンモニアセンサで検出された排気ガス中のNOx成分とアンモニア成分を合わせた濃度が上記閾値以下になった場合、及び上記排気空燃比が理論空燃比よりもリーンとなる状態にあるときに上記アンモニアセンサで検出された排気ガス中のNOx成分とアンモニア成分を合わせた濃度が上記閾値以上になった場合に、上記排気浄化触媒が劣化していると診断する。 The catalyst deterioration diagnosis of the exhaust purification catalyst of the present invention is performed by providing an ammonia sensor that is sensitive to the NOx concentration and ammonia concentration in the exhaust gas downstream of the exhaust purification catalyst in the exhaust passage of the internal combustion engine, and a threshold value is set for the combined concentration of the NOx component and the ammonia component in the exhaust gas downstream of the exhaust purification catalyst according to the exhaust air-fuel ratio downstream of the exhaust purification catalyst or in the exhaust purification catalyst. When the combined concentration of the NOx component and the ammonia component in the exhaust gas detected by the ammonia sensor is below the threshold value when the exhaust air-fuel ratio is richer than the theoretical air-fuel ratio, and when the combined concentration of the NOx component and the ammonia component in the exhaust gas detected by the ammonia sensor is above the threshold value when the exhaust air-fuel ratio is leaner than the theoretical air-fuel ratio, the exhaust purification catalyst is diagnosed as deteriorated.

排気浄化触媒の内部が理論空燃比よりもリッチな環境下では、触媒反応により排気ガス中のNOx及び水素によってアンモニアが生成され、さらに生成されたアンモニアの一部が酸化反応により窒素等になり、残ったアンモニアが排気浄化触媒の下流側へと流出する。従って、排気浄化触媒が劣化している場合には、排気浄化触媒の内部が理論空燃比よりもリッチな環境下になっても十分な触媒反応が起こらず、排気浄化触媒の下流側へと流出するアンモニアの量も少なくなる。 When the inside of the exhaust purification catalyst is in an environment richer than the theoretical air-fuel ratio, ammonia is produced by the NOx and hydrogen in the exhaust gas through a catalytic reaction, and some of the produced ammonia is converted to nitrogen and the like through an oxidation reaction, with the remaining ammonia flowing out to the downstream side of the exhaust purification catalyst. Therefore, if the exhaust purification catalyst is deteriorated, even if the inside of the exhaust purification catalyst is in an environment richer than the theoretical air-fuel ratio, a sufficient catalytic reaction does not occur, and the amount of ammonia flowing out to the downstream side of the exhaust purification catalyst also decreases.

また、排気浄化触媒の内部が理論空燃比よりもリッチな環境下では、排気浄化触媒の酸素ストレージ能力が劣化していなければ、排気ガス中のNOxは、排気浄化触媒で還元されるため、排気ガス中のNOxが排気浄化触媒の下流側へ流出しにくくなる。 In addition, in an environment where the inside of the exhaust purification catalyst is richer than the theoretical air-fuel ratio, if the oxygen storage capacity of the exhaust purification catalyst has not deteriorated, the NOx in the exhaust gas is reduced by the exhaust purification catalyst, making it difficult for the NOx in the exhaust gas to flow downstream of the exhaust purification catalyst.

一方、排気浄化触媒の内部が理論空燃比よりもリーンな環境下では、排気ガス中のNOxは、排気浄化触媒で還元されず排気浄化触媒の下流側へ流出しやすくなる。 On the other hand, when the inside of the exhaust purification catalyst is in an environment leaner than the theoretical air-fuel ratio, the NOx in the exhaust gas is not reduced by the exhaust purification catalyst and tends to flow out downstream of the exhaust purification catalyst.

本発明によれば、排気浄化触媒の排気空燃比に応じたNOx及びアンモニアに関する特性と、NOx濃度とアンモニア濃度に感度を有するアンモニアセンサの特性と、を利用することで、排気浄化触媒の触媒劣化診断を精度良く実施することができる。 According to the present invention, by utilizing the characteristics of the exhaust purification catalyst related to NOx and ammonia according to the exhaust air-fuel ratio and the characteristics of the ammonia sensor that is sensitive to the NOx concentration and the ammonia concentration, it is possible to perform an accurate catalyst deterioration diagnosis of the exhaust purification catalyst.

本発明が適用される内燃機関の概略構成を模式的に示した説明図。1 is an explanatory diagram that illustrates a schematic configuration of an internal combustion engine to which the present invention is applied; 本発明の触媒劣化診断の概要を模式的に示した説明図。FIG. 2 is an explanatory diagram showing a schematic overview of the catalyst deterioration diagnosis of the present invention; 本発明に係る触媒劣化診断の流れを示すフローチャート。4 is a flowchart showing a flow of a catalyst deterioration diagnosis according to the present invention.

以下、本発明の一実施例を図面に基づいて詳細に説明する。図1は、この発明が適用される一実施例の内燃機関1の概略的な構成を示した説明図である。 Below, an embodiment of the present invention will be described in detail with reference to the drawings. Figure 1 is an explanatory diagram showing the general configuration of an internal combustion engine 1 according to an embodiment of the present invention.

内燃機関1は、4ストロークサイクルの火花点火式内燃機関(いわゆるガソリン機関)であって、各気筒に、吸気弁2ならびに排気弁3及び点火プラグ4を備えている。また図示例は、筒内直接噴射式機関として構成されており、筒内に向けて燃料を噴射する燃料噴射弁5が、例えば吸気弁2側に配置されている。なお、内燃機関1は、吸気ポート6へ向けて燃料を噴射するポート噴射型の構成であってもよい。 The internal combustion engine 1 is a four-stroke cycle spark ignition internal combustion engine (a so-called gasoline engine), and each cylinder is equipped with an intake valve 2, an exhaust valve 3, and an ignition plug 4. The illustrated example is configured as an in-cylinder direct injection engine, and a fuel injection valve 5 that injects fuel into the cylinder is disposed, for example, on the intake valve 2 side. Note that the internal combustion engine 1 may also be configured as a port injection type that injects fuel into an intake port 6.

各気筒の吸気ポート6に接続された吸気通路7のコレクタ部8上流側には、エンジンコントローラ9からの制御信号によって開度が制御される電子制御型スロットルバルブ10が設けられている。吸気通路7のスロットルバルブ10の上流側には、吸入空気量を検出するエアフロメータ11が配置されている。吸気通路7のエアフロメータ11の上流側には、エアクリーナ12が配置されている。 An electronically controlled throttle valve 10, whose opening is controlled by a control signal from an engine controller 9, is provided upstream of a collector section 8 in an intake passage 7 connected to the intake port 6 of each cylinder. An air flow meter 11 that detects the amount of intake air is provided upstream of the throttle valve 10 in the intake passage 7. An air cleaner 12 is provided upstream of the air flow meter 11 in the intake passage 7.

各気筒の排気ポート13は、1本の排気通路14として集合し、この排気通路14に、排気浄化のための排気浄化触媒としての三元触媒15が設けられている。三元触媒15は、例えば、微細な通路が形成されたモノリスセラミックス体の表面に触媒金属(貴金属)を含む触媒層をコーティングした、いわゆるモノリスセラミックス触媒である。なお、三元触媒15は、直列に配置された下流側の触媒(いわゆる、床下触媒)をさらに含む構成であってもよい。 The exhaust ports 13 of each cylinder are gathered into a single exhaust passage 14, and a three-way catalyst 15 is provided in this exhaust passage 14 as an exhaust purification catalyst for purifying the exhaust gas. The three-way catalyst 15 is, for example, a monolith ceramic catalyst in which a catalyst layer containing a catalytic metal (precious metal) is coated on the surface of a monolith ceramic body in which fine passages are formed. The three-way catalyst 15 may also be configured to further include a downstream catalyst (a so-called underfloor catalyst) arranged in series.

排気通路14の三元触媒15の入口側つまり三元触媒15よりも上流側の位置には、内燃機関1が排出する排気ガスの空燃比(換言すれば三元触媒15に流入する排気ガスの空燃比)を検出するための上流側空燃比センサ19が配置されている。この上流側空燃比センサ19は、排気空燃比に応じた出力が得られるいわゆる広域空燃比センサである。 An upstream air-fuel ratio sensor 19 is disposed on the inlet side of the three-way catalyst 15 in the exhaust passage 14, i.e., upstream of the three-way catalyst 15, to detect the air-fuel ratio of the exhaust gas discharged by the internal combustion engine 1 (in other words, the air-fuel ratio of the exhaust gas flowing into the three-way catalyst 15). This upstream air-fuel ratio sensor 19 is a so-called wide-range air-fuel ratio sensor that provides an output according to the exhaust air-fuel ratio.

また、排気通路14の三元触媒15の出口側ないし下流側に、三元触媒15から流出する排気ガス中のアンモニア濃度に感度を有するアンモニアセンサ20が配置されている。一実施例のアンモニアセンサ20は、排気ガス中のNOxの検出が可能ないわゆるNOxセンサと呼ばれる形式のセンサである。つまり、アンモニア濃度及びNOx濃度の双方に感度を有し、両者が1つの検出信号として出力される。また、好ましい一実施例においては、アンモニアセンサ20は、三元触媒15から流出する排気ガスの排気空燃比に応じた出力信号を、アンモニア・NOxの検出信号とは別に出力する構成となっている。つまり、アンモニアセンサ20は、三元触媒15から流出する排気ガスの排気空燃比を検出する下流側空燃比センサとしての機能を有している。この三元触媒15から流出する排気ガスの排気空燃比は、三元触媒15内部の空燃比環境に相当するものとみなされる。 そして、三元触媒15から流出する排気ガスの排気空燃比がリーンであれば、アンモニアセンサ20が出力するアンモニア・NOx検出信号はNOx濃度を示すものとみなされ、三元触媒15から流出する排気ガスの排気空燃比がリッチであれば、アンモニアセンサ20が出力するアンモニア・NOx検出信号はアンモニア濃度を示すものとみなされる。 In addition, an ammonia sensor 20 having sensitivity to the ammonia concentration in the exhaust gas flowing out from the three-way catalyst 15 is disposed on the outlet side or downstream side of the three-way catalyst 15 in the exhaust passage 14. The ammonia sensor 20 in one embodiment is a type of sensor called a NOx sensor capable of detecting NOx in the exhaust gas. That is, it is sensitive to both the ammonia concentration and the NOx concentration, and both are output as one detection signal. In addition, in a preferred embodiment, the ammonia sensor 20 is configured to output an output signal corresponding to the exhaust air-fuel ratio of the exhaust gas flowing out from the three-way catalyst 15 separately from the detection signal of ammonia and NOx. In other words, the ammonia sensor 20 functions as a downstream air-fuel ratio sensor that detects the exhaust air-fuel ratio of the exhaust gas flowing out from the three-way catalyst 15. The exhaust air-fuel ratio of the exhaust gas flowing out from the three-way catalyst 15 is considered to correspond to the air-fuel ratio environment inside the three-way catalyst 15. If the exhaust air-fuel ratio of the exhaust gas flowing out from the three-way catalyst 15 is lean, the ammonia/NOx detection signal output by the ammonia sensor 20 is considered to indicate the NOx concentration, and if the exhaust air-fuel ratio of the exhaust gas flowing out from the three-way catalyst 15 is rich, the ammonia/NOx detection signal output by the ammonia sensor 20 is considered to indicate the ammonia concentration.

なお、排気通路14には、アンモニアセンサ20とは別に独立した下流側空燃比センサを備える構成であってもよい。あるいは、三元触媒15の下流側での排気空燃比の検出を行わずに、三元触媒15に流入する排気ガスの排気空燃比(これは上流側空燃比センサ19によって検出される)に基づいて三元触媒15内部の空燃比環境を推定するようにしてもよい。 The exhaust passage 14 may be provided with a downstream air-fuel ratio sensor that is separate from the ammonia sensor 20. Alternatively, the exhaust air-fuel ratio downstream of the three-way catalyst 15 may not be detected, and the air-fuel ratio environment inside the three-way catalyst 15 may be estimated based on the exhaust air-fuel ratio of the exhaust gas flowing into the three-way catalyst 15 (which is detected by the upstream air-fuel ratio sensor 19).

さらに、三元触媒15は、当該三元触媒15の温度を検出するための触媒温度センサ25を備えている。一実施例においては、触媒温度センサ25は、三元触媒15の担体(モノリスセラミックス体)の温度を検出している。なお、このような担体温度を直接に検出する触媒温度センサ25に代えて、三元触媒15の上流側及び下流側の少なくとも一方に排気ガス温度を検出する排気温度センサを設け、排気ガス温度に基づいて三元触媒15の温度を推定する構成であってもよい。あるいは、内燃機関1から三元触媒15に与えられる投入熱量に基づいて三元触媒15の温度を推定することも可能である。 The three-way catalyst 15 further includes a catalyst temperature sensor 25 for detecting the temperature of the three-way catalyst 15. In one embodiment, the catalyst temperature sensor 25 detects the temperature of the carrier (monolith ceramic body) of the three-way catalyst 15. Note that instead of the catalyst temperature sensor 25 that directly detects the carrier temperature, an exhaust temperature sensor that detects the exhaust gas temperature may be provided on at least one of the upstream and downstream sides of the three-way catalyst 15, and the temperature of the three-way catalyst 15 may be estimated based on the exhaust gas temperature. Alternatively, the temperature of the three-way catalyst 15 may be estimated based on the amount of heat input provided to the three-way catalyst 15 from the internal combustion engine 1.

上流側空燃比センサ19、アンモニアセンサ20、触媒温度センサ25、及びエアフロメータ11の検出信号は、エンジンコントローラ9に入力される。エンジンコントローラ9には、さらに、機関回転速度を検出するためのクランク角センサ21、冷却水温を検出する水温センサ22、運転者に操作されるアクセルペダルの踏込量を検出するアクセル開度センサ23、等の多数のセンサ類の検出信号が入力されている。エンジンコントローラ9は、これらの入力信号に基づき、燃料噴射弁5による燃料噴射量及び噴射時期、点火プラグ4による点火時期、スロットルバルブ10の開度、等を最適に制御している。 The detection signals of the upstream air-fuel ratio sensor 19, the ammonia sensor 20, the catalyst temperature sensor 25, and the air flow meter 11 are input to the engine controller 9. The engine controller 9 also receives detection signals from a number of sensors, such as a crank angle sensor 21 for detecting the engine speed, a water temperature sensor 22 for detecting the cooling water temperature, and an accelerator opening sensor 23 for detecting the amount of depression of the accelerator pedal operated by the driver. Based on these input signals, the engine controller 9 optimally controls the amount and timing of fuel injection by the fuel injection valve 5, the ignition timing by the spark plug 4, the opening of the throttle valve 10, etc.

エンジンコントローラ9は、内燃機関1の種々の制御の中の1つとして、三元触媒15による排気浄化性能を最適化するために三元触媒15の酸素ストレージ量を目標酸素ストレージ量(例えば40~60%付近に設定される)に保つための空燃比制御を行う。空燃比制御においては、上流側空燃比センサ19が検出する排気空燃比(以下、これを上流側排気空燃比と呼ぶ)が目標空燃比に沿うように燃料噴射量がフィードバック制御(例えばPID制御等)される。ここで、目標空燃比は、上流側排気空燃比から推定される三元触媒15の酸素ストレージ量が目標酸素ストレージ量に一致するように演算される。従って、基本的には、三元触媒15の酸素ストレージ量は目標酸素ストレージ量付近に維持される。酸素ストレージ量が目標酸素ストレージ量付近にあるときに、三元触媒15内部の空燃比環境は理論空燃比相当となる。これにより、排気ガス中のCOならびにHCの酸化及びNOxの還元が効果的になされる。 As one of various controls of the internal combustion engine 1, the engine controller 9 performs air-fuel ratio control to maintain the oxygen storage amount of the three-way catalyst 15 at a target oxygen storage amount (for example, set to about 40 to 60%) in order to optimize the exhaust purification performance of the three-way catalyst 15. In the air-fuel ratio control, the fuel injection amount is feedback controlled (for example, PID control, etc.) so that the exhaust air-fuel ratio detected by the upstream air-fuel ratio sensor 19 (hereinafter, this is called the upstream exhaust air-fuel ratio) follows the target air-fuel ratio. Here, the target air-fuel ratio is calculated so that the oxygen storage amount of the three-way catalyst 15 estimated from the upstream exhaust air-fuel ratio matches the target oxygen storage amount. Therefore, basically, the oxygen storage amount of the three-way catalyst 15 is maintained near the target oxygen storage amount. When the oxygen storage amount is near the target oxygen storage amount, the air-fuel ratio environment inside the three-way catalyst 15 is equivalent to the theoretical air-fuel ratio. This effectively oxidizes CO and HC in the exhaust gas and reduces NOx.

酸素ストレージ量は、例えば、三元触媒15の上流側に配置された上流側空燃比センサ19の出力信号と排気流量とに基づいて推定可能である。排気流量は、例えばエアフロメータ11の出力信号から推定可能である。 The amount of oxygen storage can be estimated, for example, based on the output signal of the upstream air-fuel ratio sensor 19 located upstream of the three-way catalyst 15 and the exhaust flow rate. The exhaust flow rate can be estimated, for example, from the output signal of the air flow meter 11.

ここで、三元触媒15の内部が理論空燃比よりもリッチな環境下では、触媒反応により排気ガス中のNOx及び水素によってアンモニアが生成され、さらに生成されたアンモニアの一部が酸化反応により窒素等になり、残ったアンモニアが三元触媒15の下流側へと流出する。従って、三元触媒15が劣化している場合には、三元触媒15の内部が理論空燃比よりもリッチな環境下になっても十分な触媒反応が起こらず、三元触媒15の下流側へと流出するアンモニアの量も少なくなる。 Here, when the inside of the three-way catalyst 15 is in an environment richer than the theoretical air-fuel ratio, ammonia is generated by the NOx and hydrogen in the exhaust gas through a catalytic reaction, and some of the generated ammonia is converted to nitrogen and the like through an oxidation reaction, and the remaining ammonia flows out to the downstream side of the three-way catalyst 15. Therefore, when the three-way catalyst 15 is deteriorated, even if the inside of the three-way catalyst 15 is in an environment richer than the theoretical air-fuel ratio, a sufficient catalytic reaction does not occur, and the amount of ammonia flowing out to the downstream side of the three-way catalyst 15 also decreases.

また、三元触媒15の内部が理論空燃比よりもリッチな環境下では、三元触媒15の酸素ストレージ能力が劣化していなければ、排気ガス中のNOxが三元触媒15内で還元されるため、排気ガス中のNOxが三元触媒15の下流側へ流出しにくくなる。 In addition, in an environment where the inside of the three-way catalyst 15 is richer than the theoretical air-fuel ratio, if the oxygen storage capacity of the three-way catalyst 15 has not deteriorated, the NOx in the exhaust gas is reduced within the three-way catalyst 15, making it difficult for the NOx in the exhaust gas to flow downstream of the three-way catalyst 15.

一方、三元触媒15の内部が理論空燃比よりもリーンな環境下では、排気ガス中のNOxは、三元触媒15で還元されにくくなり、三元触媒15の下流側へ流出しやすくなる。また、三元触媒15の酸素ストレージ能力(酸素ストレージ量、酸素吸脱着速度)は、三元触媒15の劣化状態に応じて変化する。 On the other hand, when the inside of the three-way catalyst 15 is in an environment leaner than the theoretical air-fuel ratio, the NOx in the exhaust gas is less likely to be reduced by the three-way catalyst 15 and is more likely to flow downstream of the three-way catalyst 15. In addition, the oxygen storage capacity of the three-way catalyst 15 (oxygen storage amount, oxygen adsorption/desorption speed) changes depending on the deterioration state of the three-way catalyst 15.

従って、三元触媒15の内部が理論空燃比よりもリーンな環境下では、三元触媒15の劣化している場合、三元触媒15で処理できるNOxの量が減少することに起因して、三元触媒15の下流側へと流出するNOxの量が増加する。 Therefore, when the inside of the three-way catalyst 15 is in an environment leaner than the theoretical air-fuel ratio, if the three-way catalyst 15 is deteriorated, the amount of NOx that can be processed by the three-way catalyst 15 decreases, and the amount of NOx that flows out downstream of the three-way catalyst 15 increases.

そこで、このような排気空燃比(三元触媒15から流出する排気ガスの排気空燃比)に応じた三元触媒15におけるNOx処理特性及びアンモニア生成特性を利用して三元触媒15の触媒劣化診断を実施する。 Therefore, a catalyst deterioration diagnosis of the three-way catalyst 15 is performed by utilizing the NOx processing characteristics and ammonia generation characteristics of the three-way catalyst 15 according to such an exhaust air-fuel ratio (the exhaust air-fuel ratio of the exhaust gas flowing out from the three-way catalyst 15).

つまり、図2に示すように、排気空燃比に応じて三元触媒15の下流側における排気ガス中のNOx成分とアンモニア成分を合わせた濃度の閾値である規定値Aを設定し、排気空燃比が理論空燃比よりもリッチとなる状態にあるときにアンモニアセンサ20で検出された排気ガス中のNOx成分とアンモニア成分を合わせた濃度の瞬時値が規定値A以下になった場合、及び排気空燃比が理論空燃比よりもリーンとなる状態にあるときにアンモニアセンサ20で検出された排気ガス中のNOx成分とアンモニア成分を合わせた濃度の瞬時値が規定値A以上になった場合に、三元触媒15が劣化していると診断する。 In other words, as shown in FIG. 2, a specified value A is set as a threshold value for the combined concentration of NOx and ammonia components in the exhaust gas downstream of the three-way catalyst 15 according to the exhaust air-fuel ratio, and the three-way catalyst 15 is diagnosed as degraded when the instantaneous value of the combined concentration of NOx and ammonia components in the exhaust gas detected by the ammonia sensor 20 when the exhaust air-fuel ratio is richer than the theoretical air-fuel ratio becomes equal to or less than the specified value A, or when the instantaneous value of the combined concentration of NOx and ammonia components in the exhaust gas detected by the ammonia sensor 20 when the exhaust air-fuel ratio is leaner than the theoretical air-fuel ratio becomes equal to or more than the specified value A.

規定値Aは、アンモニアセンサ20で検出された排気空燃比に応じて設定される。規定値Aは、例えば、排気空燃比をパラメータとして規定値Aを割り付けたマップを予め作成しておき、このマップを用いることで求められる。 The specified value A is set according to the exhaust air-fuel ratio detected by the ammonia sensor 20. For example, the specified value A is determined by using a map that is created in advance and that assigns the specified value A using the exhaust air-fuel ratio as a parameter.

規定値Aは、排気空燃比が理論空燃比よりもリッチとなる状態では、排気空燃比が小さくなるほど大きくなり、排気空燃比が理論空燃比よりもリーンとなる状態では、排気空燃比が大きくなるほど大きくなるよう設定される。 The specified value A is set so that it increases as the exhaust air-fuel ratio decreases when the exhaust air-fuel ratio is richer than the stoichiometric air-fuel ratio, and increases as the exhaust air-fuel ratio increases when the exhaust air-fuel ratio is leaner than the stoichiometric air-fuel ratio.

三元触媒15の劣化診断は、エンジンコントローラ9内で行われる。つまり、エンジンコントローラ9は、閾値設定部及び診断部に相当するものである。 The deterioration diagnosis of the three-way catalyst 15 is performed within the engine controller 9. In other words, the engine controller 9 corresponds to a threshold setting unit and a diagnosis unit.

図2は、三元触媒15の劣化診断の概要を模式的に示した説明図である。図2に示すように、排気空燃比(三元触媒15から流出する排気ガスの排気空燃比)が理論空燃比よりもリッチとなる状態とは、例えば排気空燃比が理論空燃比より小さい(リッチとなる)所定の第1空燃比(空燃比14.6)よりも小さく(リッチと)なる状態である。なお、第1空燃比の値は、14.6に限定されるものではなく、理論空燃比14.7よりも小さい(リッチとなる)理論空燃比近傍の別に値に設定してもよい。 Figure 2 is an explanatory diagram that shows a schematic overview of the deterioration diagnosis of the three-way catalyst 15. As shown in Figure 2, a state in which the exhaust air-fuel ratio (the exhaust air-fuel ratio of the exhaust gas flowing out from the three-way catalyst 15) is richer than the theoretical air-fuel ratio is, for example, a state in which the exhaust air-fuel ratio is smaller (richer) than a predetermined first air-fuel ratio (air-fuel ratio 14.6) that is smaller (richer) than the theoretical air-fuel ratio. Note that the value of the first air-fuel ratio is not limited to 14.6, and may be set to another value near the theoretical air-fuel ratio that is smaller (richer) than the theoretical air-fuel ratio of 14.7.

排気空燃比(三元触媒15から流出する排気ガスの排気空燃比)が理論空燃比よりもリッチとなる状態にあるときに、アンモニアセンサ20で検出された排気ガス中のNOx成分とアンモニア成分を合わせた濃度の瞬時値が規定値A未満になった場合には、三元触媒15が劣化していると診断する。 When the exhaust air-fuel ratio (the exhaust air-fuel ratio of the exhaust gas flowing out from the three-way catalyst 15) is in a state richer than the theoretical air-fuel ratio, if the instantaneous value of the combined concentration of NOx components and ammonia components in the exhaust gas detected by the ammonia sensor 20 falls below a specified value A, the three-way catalyst 15 is diagnosed as degraded.

排気空燃比が第1空燃比よりも小さい状態では、三元触媒15の劣化診断として、三元触媒15の触媒金属(貴金属)の劣化が診断される。 When the exhaust air-fuel ratio is smaller than the first air-fuel ratio, the deterioration of the catalytic metal (precious metal) of the three-way catalyst 15 is diagnosed as a deterioration diagnosis of the three-way catalyst 15.

排気空燃比が理論空燃比よりもリーンとなる状態とは、例えば排気空燃比が理論空燃比より大きい(リーンとなる)所定の第2空燃比(空燃比14.8)よりも大きく(リーンと)なる状態である。なお、第2空燃比の値は、14.8に限定されるものではなく、理論空燃比14.7よりも大きい(リーンとなる)理論空燃比近傍の別に値に設定してもよい。 The state in which the exhaust air-fuel ratio is leaner than the theoretical air-fuel ratio is, for example, a state in which the exhaust air-fuel ratio is greater (leaner) than a predetermined second air-fuel ratio (air-fuel ratio of 14.8) that is greater (leaner) than the theoretical air-fuel ratio. Note that the value of the second air-fuel ratio is not limited to 14.8, and may be set to another value near the theoretical air-fuel ratio that is greater (leaner) than the theoretical air-fuel ratio of 14.7.

排気空燃比(三元触媒15から流出する排気ガスの排気空燃比)が理論空燃比よりもリーンとなる状態にあるときに、アンモニアセンサ20で検出された排気ガス中のNOx成分とアンモニア成分を合わせた濃度の瞬時値が規定値Aよりも大きく場合には、三元触媒15が劣化していると診断する。 When the exhaust air-fuel ratio (the exhaust air-fuel ratio of the exhaust gas flowing out from the three-way catalyst 15) is leaner than the theoretical air-fuel ratio, if the instantaneous value of the combined concentration of NOx components and ammonia components in the exhaust gas detected by the ammonia sensor 20 is greater than a specified value A, the three-way catalyst 15 is diagnosed as degraded.

排気空燃比が第2空燃比よりも大きい状態では、三元触媒15の劣化診断として、三元触媒15の触媒金属(貴金属)の劣化が診断される。なお、空燃比が第2空燃比よりも大きい状態では、三元触媒15の触媒金属(貴金属)の劣化にともなう三元触媒15の酸素ストレージ能力の劣化も診断されることになる。 When the exhaust air-fuel ratio is greater than the second air-fuel ratio, the deterioration of the catalytic metal (precious metal) of the three-way catalyst 15 is diagnosed as a deterioration diagnosis of the three-way catalyst 15. Note that when the air-fuel ratio is greater than the second air-fuel ratio, the deterioration of the oxygen storage capacity of the three-way catalyst 15 due to the deterioration of the catalytic metal (precious metal) of the three-way catalyst 15 is also diagnosed.

そして、排気空燃比が第1空燃比以上で第2空燃比以下となるストイキ領域にあるときには、排気空燃比がストイキ状態にあるとして、アンモニアセンサ20で検出された排気ガス中のNOx成分とアンモニア成分を合わせた濃度の瞬時値が規定値Aよりも大きい場合に、三元触媒15が劣化していると診断する。 When the exhaust air-fuel ratio is in a stoichiometric region, which is equal to or greater than the first air-fuel ratio and equal to or less than the second air-fuel ratio, the exhaust air-fuel ratio is determined to be in a stoichiometric state, and if the instantaneous value of the combined concentration of NOx components and ammonia components in the exhaust gas detected by the ammonia sensor 20 is greater than a specified value A, the three-way catalyst 15 is diagnosed as degraded.

つまり、排気空燃比が理論空燃比となる状態にあるときにアンモニアセンサ20で検出された排気ガス中のNOx成分とアンモニア成分を合わせた濃度の瞬時値が規定値A以上になった場合には、三元触媒15の性能が劣化していると診断する。 In other words, if the instantaneous value of the combined concentration of NOx and ammonia components in the exhaust gas detected by the ammonia sensor 20 when the exhaust air-fuel ratio is at the theoretical air-fuel ratio becomes equal to or exceeds a specified value A, the performance of the three-way catalyst 15 is diagnosed as degraded.

排気空燃比が第1空燃比以上で第2空燃比以下となる状態では、三元触媒15の劣化診断として、三元触媒15の触媒金属(貴金属)の劣化や、三元触媒15における酸素の吸脱着性能(吸脱着速度)の劣化が診断される。つまり、排気空燃比が第1空燃比以上で第2空燃比以下となる状態では、三元触媒15の触媒金属(貴金属)の劣化や三元触媒15における酸素の吸脱着性能(吸脱着速度)の劣化を含む三元触媒15の性能診断が行われることになる。 When the exhaust air-fuel ratio is equal to or greater than the first air-fuel ratio and equal to or less than the second air-fuel ratio, the deterioration of the catalytic metal (precious metal) of the three-way catalyst 15 and the deterioration of the oxygen adsorption/desorption performance (adsorption/desorption speed) of the three-way catalyst 15 are diagnosed as deterioration diagnosis of the three-way catalyst 15. In other words, when the exhaust air-fuel ratio is equal to or greater than the first air-fuel ratio and equal to or less than the second air-fuel ratio, the performance diagnosis of the three-way catalyst 15 is performed, including the deterioration of the catalytic metal (precious metal) of the three-way catalyst 15 and the deterioration of the oxygen adsorption/desorption performance (adsorption/desorption speed) of the three-way catalyst 15.

図3は、上述した実施例における触媒劣化診断の流れを示すフローチャートである。 Figure 3 is a flowchart showing the process for diagnosing catalyst deterioration in the above-described embodiment.

ステップS1では、アンモニアセンサ20を用いて三元触媒15の下流側の排気空燃比を検出する。 In step S1, the ammonia sensor 20 is used to detect the exhaust air-fuel ratio downstream of the three-way catalyst 15.

ステップS2では、ステップS2で検出された排気空燃比を用いて規定値Aを算出する。 In step S2, the specified value A is calculated using the exhaust air-fuel ratio detected in step S2.

ステップS3では、アンモニアセンサ20を用いて、三元触媒15下流側における排気ガス中のNOx成分とアンモニア成分を合わせた濃度を検出する。 In step S3, the ammonia sensor 20 is used to detect the combined concentration of NOx and ammonia components in the exhaust gas downstream of the three-way catalyst 15.

ステップS4では、ステップS1で検出した排気空燃比の値が第1空燃比(14.6)より小さいか否かを判定する。ステップS4において排気空燃比の値が第1空燃比(14.6)より小さい場合には、ステップS5へ進む。ステップS4において排気空燃比の値が第1空燃比(14.6)以上の場合には、ステップS6へ進む。 In step S4, it is determined whether the value of the exhaust air-fuel ratio detected in step S1 is smaller than the first air-fuel ratio (14.6). If the value of the exhaust air-fuel ratio is smaller than the first air-fuel ratio (14.6) in step S4, the process proceeds to step S5. If the value of the exhaust air-fuel ratio is equal to or greater than the first air-fuel ratio (14.6) in step S4, the process proceeds to step S6.

ステップS5では、排気ガス中のNOx成分とアンモニア成分を合わせた濃度が規定値Aより小さいか否かを判定する。ステップS5において排気ガス中のNOx成分とアンモニア成分を合わせた濃度が規定値Aより小さい場合は、ステップS7へ進む。ステップS5において排気ガス中のNOx成分とアンモニア成分を合わせた濃度が規定値A以上の場合は、ステップS1へ進む。 In step S5, it is determined whether the combined concentration of NOx and ammonia components in the exhaust gas is less than a specified value A. If in step S5 the combined concentration of NOx and ammonia components in the exhaust gas is less than the specified value A, the process proceeds to step S7. If in step S5 the combined concentration of NOx and ammonia components in the exhaust gas is equal to or greater than the specified value A, the process proceeds to step S1.

ステップS6では、排気ガス中のNOx成分とアンモニア成分を合わせた濃度が規定値Aより大きいか否かを判定する。ステップS6において排気ガス中のNOx成分とアンモニア成分を合わせた濃度が規定値Aより大きい場合は、ステップS7へ進む。ステップS6において排気ガス中のNOx成分とアンモニア成分を合わせた濃度が規定値A以下の場合は、ステップS1へ進む。 In step S6, it is determined whether the combined concentration of NOx and ammonia components in the exhaust gas is greater than a specified value A. If the combined concentration of NOx and ammonia components in the exhaust gas is greater than the specified value A in step S6, the process proceeds to step S7. If the combined concentration of NOx and ammonia components in the exhaust gas is equal to or less than the specified value A in step S6, the process proceeds to step S1.

ステップS7では、三元触媒15が劣化していると診断する。 In step S7, the three-way catalyst 15 is diagnosed as degraded.

以上説明してきたように、上述した実施例では、アンモニアセンサ20を利用して、三元触媒15の劣化診断を精度良く実施することができる。 As explained above, in the above-mentioned embodiment, the ammonia sensor 20 can be used to accurately diagnose the deterioration of the three-way catalyst 15.

また、上述した実施例では、内燃機関1の機関回転数が所定回転数以上の状態で内燃機関1への燃料供給を停止するいわゆる燃料カット時以外でも、三元触媒15の劣化診断が可能となる。そのため、このような燃料カットのシーンが少ないハイブリッド車両に内燃機関1が搭載されるような場合であっても、三元触媒15の劣化診断を行う機会を十分に確保できるとともに、三元触媒15の劣化診断の精度を向上させることができる。 In addition, in the above-described embodiment, deterioration diagnosis of the three-way catalyst 15 is possible even when the internal combustion engine 1 is not being supplied with fuel while the engine speed is equal to or higher than a predetermined speed, i.e., when fuel supply to the internal combustion engine 1 is stopped. Therefore, even when the internal combustion engine 1 is mounted on a hybrid vehicle in which such fuel cut-off situations occur infrequently, it is possible to ensure sufficient opportunities to perform deterioration diagnosis of the three-way catalyst 15 and to improve the accuracy of deterioration diagnosis of the three-way catalyst 15.

以上、本発明の具体的な実施例を説明してきたが、本発明は、上述した実施例に限定されるものではなく、その趣旨を逸脱しない範囲で種々の変更が可能である。 Although specific examples of the present invention have been described above, the present invention is not limited to the above examples, and various modifications are possible without departing from the spirit of the present invention.

例えば、三元触媒15の劣化診断を行う際には、アンモニアセンサ20で検出された排気ガス中のNOx成分とアンモニア成分を合わせた濃度の移動平均値を用いてもよい。 For example, when diagnosing deterioration of the three-way catalyst 15, a moving average value of the combined concentration of NOx components and ammonia components in the exhaust gas detected by the ammonia sensor 20 may be used.

また、三元触媒15の劣化診断を行う際には、アンモニアセンサ20で検出された排気ガス中のNOx成分とアンモニア成分を合わせた濃度の瞬時値と移動平均値とを運転状態に応じて使い分けるようにしてもよい。具体的には、内燃機関1の吸入空気量の変動が少ない場合は瞬時値を使用し、内燃機関1の吸入空気量の変動が大きい場合(加減速が激しい場合)は移動平均値を使用するようにしてもよい。 When diagnosing the deterioration of the three-way catalyst 15, the instantaneous value and the moving average value of the combined concentration of the NOx component and the ammonia component in the exhaust gas detected by the ammonia sensor 20 may be used depending on the operating state. Specifically, when the fluctuation in the intake air volume of the internal combustion engine 1 is small, the instantaneous value may be used, and when the fluctuation in the intake air volume of the internal combustion engine 1 is large (when acceleration and deceleration are severe), the moving average value may be used.

また、規定値Aは、三元触媒15の出口における排気ガス中のNOx成分とアンモニア成分を合わせた濃度に影響を与える要因、例えばEGR率や触媒温度等を考慮して補正するようにしてもよい。例えば、規定値Aは、内燃機関1におけるEGR率が大きくなるほど小さくなるよう補正してもよい。ここで、EGR率とは、排気ガスの一部を吸気通路7へEGRガスとして導入する際の吸気側流量に対するEGRガスの比である。また、規定値Aは、例えば、三元触媒15が活性化した状態であれば、触媒温度が低くなるほど大きくなるよう補正してもよい。これらの補正により、三元触媒15の劣化診断の精度は、一層向上させることができる。 The specified value A may be corrected taking into account factors that affect the combined concentration of NOx and ammonia components in the exhaust gas at the outlet of the three-way catalyst 15, such as the EGR rate and catalyst temperature. For example, the specified value A may be corrected to be smaller as the EGR rate in the internal combustion engine 1 increases. Here, the EGR rate is the ratio of EGR gas to the intake side flow rate when a portion of the exhaust gas is introduced as EGR gas into the intake passage 7. In addition, the specified value A may be corrected to be larger as the catalyst temperature decreases, for example, if the three-way catalyst 15 is in an activated state. These corrections can further improve the accuracy of the deterioration diagnosis of the three-way catalyst 15.

上述した実施例は、排気浄化触媒の劣化診断方法及び排気浄化触媒の劣化診断装置に関するものである。 The above-described embodiment relates to a method for diagnosing the deterioration of an exhaust gas purification catalyst and a device for diagnosing the deterioration of an exhaust gas purification catalyst.

1…内燃機関
9…エンジンコントローラ
10…スロットルバルブ
11…エアフロメータ
14…排気通路
15…三元触媒
19…上流側空燃比センサ
20…アンモニアセンサ
25…触媒温度センサ
Reference Signs List 1 internal combustion engine 9 engine controller 10 throttle valve 11 air flow meter 14 exhaust passage 15 three-way catalyst 19 upstream air-fuel ratio sensor 20 ammonia sensor 25 catalyst temperature sensor

Claims (7)

内燃機関の排気通路における排気浄化触媒の下流側に、排気ガス中のNOx濃度とアンモニア濃度に感度を有するアンモニアセンサを備え、このアンモニアセンサの検出信号を用いて上記排気浄化触媒の劣化診断を行う排気浄化触媒の劣化診断方法において、
上記排気浄化触媒の下流側もしくは上記排気浄化触媒内における排気空燃比に応じて上記排気浄化触媒の下流側における排気ガス中のNOx成分とアンモニア成分を合わせた濃度の閾値を設定し、
上記排気空燃比が理論空燃比よりもリッチとなる状態にあるときに上記アンモニアセンサで検出された排気ガス中のNOx成分とアンモニア成分を合わせた濃度が上記閾値以下になった場合、及び上記排気空燃比が理論空燃比よりもリーンとなる状態にあるときに上記アンモニアセンサで検出された排気ガス中のNOx成分とアンモニア成分を合わせた濃度が上記閾値以上になった場合に、上記排気浄化触媒が劣化していると診断する、排気浄化触媒の劣化診断方法。
A method for diagnosing deterioration of an exhaust purification catalyst, comprising: providing an ammonia sensor, which is sensitive to a NOx concentration and an ammonia concentration in exhaust gas, downstream of an exhaust purification catalyst in an exhaust passage of an internal combustion engine; and diagnosing deterioration of the exhaust purification catalyst using a detection signal of the ammonia sensor,
setting a threshold value for a combined concentration of NOx components and ammonia components in the exhaust gas downstream of the exhaust purification catalyst according to an exhaust air-fuel ratio downstream of the exhaust purification catalyst or within the exhaust purification catalyst;
The deterioration diagnosis method for an exhaust purification catalyst diagnoses that the exhaust purification catalyst is deteriorated when the combined concentration of NOx components and ammonia components in the exhaust gas detected by the ammonia sensor becomes equal to or lower than the threshold value when the exhaust air-fuel ratio is richer than the stoichiometric air-fuel ratio, and when the combined concentration of NOx components and ammonia components in the exhaust gas detected by the ammonia sensor becomes equal to or higher than the threshold value when the exhaust air-fuel ratio is leaner than the stoichiometric air-fuel ratio.
上記排気空燃比が理論空燃比となる状態にあるときに上記アンモニアセンサで検出された排気ガス中のNOx成分とアンモニア成分を合わせた濃度が上記閾値以上になった場合に、上記排気浄化触媒が劣化していると診断する、請求項1に記載の排気浄化触媒の劣化診断方法。 The method for diagnosing deterioration of an exhaust purification catalyst according to claim 1, in which the exhaust purification catalyst is diagnosed as being deteriorated if the combined concentration of NOx components and ammonia components in the exhaust gas detected by the ammonia sensor becomes equal to or greater than the threshold value when the exhaust air-fuel ratio is in a theoretical air-fuel ratio state. 上記排気空燃比が理論空燃比よりもリッチとなる状態とは、上記排気空燃比が理論空燃比より小さい所定の第1空燃比よりも小さくなる状態であり、
上記排気空燃比が理論空燃比よりもリーンとなる状態とは、上記排気空燃比が理論空燃比より大きい所定の第2空燃比よりも大きくなる状態であり、
上記排気空燃比が上記第1空燃比以上で上記第2空燃比以下となる状態にあるときに上記アンモニアセンサで検出された排気ガス中のNOx成分とアンモニア成分を合わせた濃度が上記閾値以上になった場合に、上記排気浄化触媒が劣化していると診断する請求項2に記載の排気浄化触媒の劣化診断方法。
The state in which the exhaust air-fuel ratio is richer than the stoichiometric air-fuel ratio is a state in which the exhaust air-fuel ratio is smaller than a predetermined first air-fuel ratio that is smaller than the stoichiometric air-fuel ratio,
The state in which the exhaust air-fuel ratio is leaner than the stoichiometric air-fuel ratio is a state in which the exhaust air-fuel ratio is greater than a predetermined second air-fuel ratio that is greater than the stoichiometric air-fuel ratio,
3. The method for diagnosing deterioration of an exhaust gas purification catalyst according to claim 2, further comprising the step of diagnosing that the exhaust gas purification catalyst is deteriorated when a combined concentration of NOx components and ammonia components in the exhaust gas detected by the ammonia sensor becomes equal to or higher than the threshold value while the exhaust gas air-fuel ratio is equal to or higher than the first air-fuel ratio and equal to or lower than the second air-fuel ratio.
上記閾値は、上記排気空燃比が理論空燃比よりもリッチとなる状態では、上記排気空燃比が小さくなるほど大きくなり、上記排気空燃比が理論空燃比よりもリーンとなる状態では、上記排気空燃比が大きくなるほど大きくなる請求項1に記載の排気浄化触媒の劣化診断方法。 The method for diagnosing deterioration of an exhaust purification catalyst according to claim 1, wherein the threshold value increases as the exhaust air-fuel ratio decreases when the exhaust air-fuel ratio is richer than the theoretical air-fuel ratio, and increases as the exhaust air-fuel ratio increases when the exhaust air-fuel ratio is leaner than the theoretical air-fuel ratio. 上記アンモニアセンサで検出された排気ガス中のNOx成分とアンモニア成分を合わせた濃度は、瞬時値もしくは瞬時値の移動平均である請求項1に記載の排気浄化触媒の劣化診断方法。 The method for diagnosing deterioration of an exhaust purification catalyst according to claim 1, wherein the combined concentration of NOx and ammonia components in the exhaust gas detected by the ammonia sensor is an instantaneous value or a moving average of the instantaneous values. 上記閾値は、上記排気浄化触媒の出口における排気ガス中のNOx成分とアンモニア成分を合わせた濃度に影響を与える要因を考慮して補正する請求項1に記載の排気浄化触媒の劣化診断方法。 The method for diagnosing deterioration of an exhaust purification catalyst according to claim 1, in which the threshold value is corrected taking into account factors that affect the combined concentration of NOx components and ammonia components in the exhaust gas at the outlet of the exhaust purification catalyst. 内燃機関の排気通路に設けられた排気浄化触媒と、
上記排気浄化触媒の下流側に設けられ、排気ガス中のNOx濃度とアンモニア濃度に感度を有するアンモニアセンサと、
上記排気浄化触媒の下流側もしくは上記排気浄化触媒内における排気空燃比に応じて上記排気浄化触媒の下流側における排気ガス中のNOx成分とアンモニア成分を合わせた濃度の閾値を設定する閾値設定部と、
上記排気空燃比が理論空燃比よりもリッチとなる状態にあるときに上記アンモニアセンサで検出された排気ガス中のNOx成分とアンモニア成分を合わせた濃度が上記閾値以下になった場合、及び上記排気空燃比が理論空燃比よりもリーンとなる状態にあるときに上記アンモニアセンサで検出された排気ガス中のNOx成分とアンモニア成分を合わせた濃度が上記閾値以上になった場合に、上記排気浄化触媒が劣化していると診断する診断部と、を有する排気浄化触媒の劣化診断装置。
an exhaust purification catalyst provided in an exhaust passage of the internal combustion engine;
an ammonia sensor provided downstream of the exhaust purification catalyst and sensitive to NOx concentration and ammonia concentration in the exhaust gas;
a threshold setting unit that sets a threshold value of a combined concentration of NOx components and ammonia components in exhaust gas downstream of the exhaust purification catalyst in accordance with an exhaust air-fuel ratio downstream of the exhaust purification catalyst or within the exhaust purification catalyst;
and a diagnosis unit which diagnoses that the exhaust purification catalyst is deteriorated when the combined concentration of NOx components and ammonia components in the exhaust gas detected by the ammonia sensor becomes equal to or lower than the threshold value when the exhaust air-fuel ratio is richer than the stoichiometric air-fuel ratio, and when the combined concentration of NOx components and ammonia components in the exhaust gas detected by the ammonia sensor becomes equal to or higher than the threshold value when the exhaust air-fuel ratio is leaner than the stoichiometric air-fuel ratio.
JP2022162182A 2022-10-07 2022-10-07 Deterioration diagnosis method of exhaust emission control catalyst and deterioration diagnosis device of exhaust emission control catalyst Pending JP2024055343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022162182A JP2024055343A (en) 2022-10-07 2022-10-07 Deterioration diagnosis method of exhaust emission control catalyst and deterioration diagnosis device of exhaust emission control catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022162182A JP2024055343A (en) 2022-10-07 2022-10-07 Deterioration diagnosis method of exhaust emission control catalyst and deterioration diagnosis device of exhaust emission control catalyst

Publications (1)

Publication Number Publication Date
JP2024055343A true JP2024055343A (en) 2024-04-18

Family

ID=90716399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022162182A Pending JP2024055343A (en) 2022-10-07 2022-10-07 Deterioration diagnosis method of exhaust emission control catalyst and deterioration diagnosis device of exhaust emission control catalyst

Country Status (1)

Country Link
JP (1) JP2024055343A (en)

Similar Documents

Publication Publication Date Title
JP4737010B2 (en) Catalyst deterioration diagnosis device
US6502389B2 (en) Air-fuel ratio control system for internal combustion engine and control method therof
JP6323354B2 (en) Exhaust gas purification device for internal combustion engine
US6301882B1 (en) Exhaust gas purification control apparatus of engine
US10648391B2 (en) Abnormality diagnosis system for an exhaust gas purification apparatus
JP2008240577A (en) Deterioration diagnosis device and deterioration diagnosis method for oxidation catalyst
JP2008175173A (en) Air-fuel ratio control device
JP3316066B2 (en) Failure diagnosis device for exhaust gas purification device
US7854113B2 (en) Catalyst temperature estimation device
JP3988518B2 (en) Exhaust gas purification device for internal combustion engine
EP3401522B1 (en) Exhaust gas control system for internal combustion engine and method of controlling exhaust gas control system for internal combustion engine
JP5212826B2 (en) Catalyst abnormality diagnosis device
KR20180090759A (en) Method for heating and regenerating a particulate filter in an exhaust gas of an otto engine
US7513104B2 (en) Diagnostic apparatus for internal combustion engine
JP2007327394A (en) Exhaust emission control device of internal combustion engine
JP2007177629A (en) Diagnostic device and diagnostic method for internal combustion engine
JP2024055343A (en) Deterioration diagnosis method of exhaust emission control catalyst and deterioration diagnosis device of exhaust emission control catalyst
JP2009150367A (en) Catalyst degradation diagnostic apparatus for internal combustion engine
JP2012137050A (en) Abnormality detector for inter-cylinder air-fuel ratio dispersion in multi-cylinder internal combustion engine
JP3799770B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
WO2024075265A1 (en) Method and device for diagnosing deterioration of exhaust gas purification catalyst
JP2000297704A (en) Exhaust emission control device for internal combustion engine
JP4411755B2 (en) Exhaust purification catalyst deterioration state diagnosis device
JP4275046B2 (en) Engine control device
JP2015014213A (en) Deterioration detection device for selective reduction type catalyst