JP2023145098A - embankment - Google Patents

embankment Download PDF

Info

Publication number
JP2023145098A
JP2023145098A JP2022052386A JP2022052386A JP2023145098A JP 2023145098 A JP2023145098 A JP 2023145098A JP 2022052386 A JP2022052386 A JP 2022052386A JP 2022052386 A JP2022052386 A JP 2022052386A JP 2023145098 A JP2023145098 A JP 2023145098A
Authority
JP
Japan
Prior art keywords
embankment
wall
water
steel sheet
sheet pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022052386A
Other languages
Japanese (ja)
Inventor
祐輔 持田
Yusuke Mochida
真治 妙中
Shinji Myonaka
俊介 森安
Shunsuke Moriyasu
彰久 亀山
Akihisa Kameyama
輝樹 西山
Teruki Nishiyama
裕章 中山
Hiroaki Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2022052386A priority Critical patent/JP2023145098A/en
Publication of JP2023145098A publication Critical patent/JP2023145098A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Revetment (AREA)

Abstract

【課題】壁体を用いて補強された堤防において、天端部分に設置される構造物と壁体との相互作用によって越水時における堤防の強度を向上させる。【解決手段】堤体の水域側の部分に打設される第1の壁体と、前記堤体の前記水域とは反対側の部分に打設される第2の壁体と、少なくとも前記第2の壁体の上方を含む領域に設置され、前記第2の壁体の最外縁から前記水域とは反対側に水平方向に300mm以上の張り出し長さBで張り出す不透水性の構造物とを備える堤防が提供される。【選択図】図1An object of the present invention is to improve the strength of an embankment reinforced with walls when water overflows through interaction between the walls and a structure installed at the top. [Solution] A first wall body is cast in a part of the embankment body on the water body side, a second wall body is cast in a part of the embankment body on the side opposite to the water body, and at least the first wall body is cast in a part of the embankment body on the side opposite to the water body. an impermeable structure installed in an area including above the second wall, and extending horizontally from the outermost edge of the second wall to the side opposite to the water area with an overhang length B of 300 mm or more; An embankment is provided. [Selection diagram] Figure 1

Description

本発明は、堤防に関する。 The present invention relates to an embankment.

河川などの堤防では、地震による堤体の亀裂や沈下、および増水時の越流に伴う堤体の浸食などによる破堤や決壊などが懸念される。この対策として、例えば特許文献1には、堤体の幅方向両側の法肩部に堤体の連続方向に延びる鋼矢板壁を打設し、それぞれの鋼矢板壁の頭部をタイロッドで連結する堤防の補強構造が記載されている。このような二重鋼矢板壁による補強構造は、地震時には2列の鋼矢板壁が土の変形および移動を抑制するため、液状化対策として有効であることが知られている。 For river embankments, there are concerns about cracks and subsidence in the embankment bodies due to earthquakes, and breaches and collapses due to erosion of the embankment bodies due to overflow during rising waters. As a countermeasure against this, for example, Patent Document 1 discloses that steel sheet pile walls extending in the continuous direction of the embankment body are cast on the slope shoulders on both sides in the width direction of the embankment body, and the heads of each steel sheet pile wall are connected with tie rods. The reinforcement structure of the embankment is described. It is known that such a reinforced structure using double steel sheet pile walls is effective as a countermeasure against liquefaction because the two rows of steel sheet pile walls suppress soil deformation and movement during an earthquake.

特開2003-13451号公報Japanese Patent Application Publication No. 2003-13451

ところで、上記のような二重鋼矢板壁による堤防の補強構造については、地震時の液状化対策としては研究が進んでいるものの、増水によって越流や洗掘が発生した場合における堤防の強度を向上させるための合理的な構造については未だ十分に提案されているとはいえない。例えば、堤防の多くは天端部分が道路や遊歩道として整備されているため、鋼矢板壁の上部にはコンクリート舗装や床版といった構造物が設置されるが、越水時におけるこれらの構造物と壁体との相互作用については解明されていない。 By the way, research is progressing on the reinforcing structure of embankments using double steel sheet pile walls as described above as a countermeasure against liquefaction during earthquakes, but it is difficult to improve the strength of embankments in the event of overflow or scouring caused by rising water. It cannot be said that sufficient proposals have been made regarding a rational structure for improving the performance. For example, the tops of many embankments are constructed as roads or promenades, so structures such as concrete pavement and floor slabs are installed on top of steel sheet pile walls, but these structures cannot be used when water overflows. The interaction with the wall has not been elucidated.

そこで、本発明は、壁体を用いて補強された堤防において、天端部分に設置される構造物と壁体との相互作用によって越水時における堤防の強度を向上させる構造を実現することを目的とする。 Therefore, the present invention aims to realize a structure in which the strength of the embankment is improved when water overflows through interaction between the wall and a structure installed at the top of the embankment reinforced using walls. purpose.

[1]堤体の水域側の部分に打設される第1の壁体と、上記堤体の上記水域とは反対側の部分に打設される第2の壁体と、少なくとも上記第2の壁体の上方を含む領域に設置され、上記第2の壁体の最外縁から上記水域とは反対側に水平方向に300mmよりも大きい張り出し長さBで張り出す不透水性の構造物とを備える堤防。
[2]上記張り出し長さBは、堤高Hの関数f(H)を含む式(i)および式(ii)を満たす、[1]に記載の堤防。

Figure 2023145098000002

[3]上記張り出し長さBは、堤高Hの関数f(H)を含む式(i)および式(iii)を満たす、[1]に記載の堤防。
Figure 2023145098000003

[4]上記張り出し長さBは、さらに、洗掘された領域の最も上記第2の壁体側の位置から上記第2の壁体までの距離である地盤残存長さLをさらに含む式(iv)を満たす、[2]または[3]に記載の堤防。
Figure 2023145098000004

[5]上記地盤残存長さLは、係数βおよび受動崩壊角φを用いて式(v)で定義される、[4]に記載の堤防。
Figure 2023145098000005

[6]上記地盤残存長さLは、係数βを用いて式(vi)で定義される、[4]に記載の堤防。
Figure 2023145098000006

[7]上記不透水性の構造物は、上記堤体の天端面上に設置される天端構造物である、[1]から[6]のいずれか1項に記載の堤防。
[8]上記天端構造物は、舗装構造体である、[7]に記載の堤防。
[9]上記第1および第2の壁体の少なくともいずれかと、上記舗装構造体の不透水部分とは、止水部材で接続される、[8]に記載の堤防。
[10]上記天端構造物は、頂版コンクリートである、[7]に記載の堤防。
[11]上記不透水性の構造物は、上記第2の壁体から上記水域とは反対側に張り出す張り出し部材である、[1]から[6]のいずれか1項に記載の堤防。
[12]上記第1および第2の壁体の少なくともいずれかは、鋼矢板壁である、[1]から[11]のいずれか1項に記載の堤防。
[13]堤体に打設される壁体と、少なくとも上記壁体の上方を含む領域に設置され、上記壁体から水域とは反対側に水平方向に300mmよりも大きい張り出し長さBで張り出し、上面側に不透水性部分を含み、下面側に透水性部分を含む構造物と、上記壁体と上記不透水性部分とを接続する止水部材と
を備える堤防。 [1] A first wall cast in a portion of the embankment body on the water area side, a second wall cast in a part of the embankment body opposite to the water area, and at least the second wall body cast in a portion of the embankment body on the side opposite to the water area an impermeable structure installed in an area including above the wall and extending horizontally from the outermost edge of the second wall to the side opposite to the water area with an overhang length B greater than 300 mm; Embankment with
[2] The embankment according to [1], wherein the overhang length B satisfies equations (i) and (ii) including a function f(H) of the embankment height H.
Figure 2023145098000002

[3] The embankment according to [1], wherein the overhang length B satisfies equations (i) and (iii) including a function f(H) of the embankment height H.
Figure 2023145098000003

[4] The above-mentioned overhang length B is determined by the formula (iv ), the embankment according to [2] or [3].
Figure 2023145098000004

[5] The embankment according to [4], wherein the ground remaining length L is defined by equation (v) using a coefficient β and a passive collapse angle φ.
Figure 2023145098000005

[6] The embankment according to [4], wherein the ground remaining length L is defined by formula (vi) using a coefficient β.
Figure 2023145098000006

[7] The embankment according to any one of [1] to [6], wherein the impermeable structure is a crown structure installed on the crown face of the embankment body.
[8] The embankment according to [7], wherein the crown structure is a pavement structure.
[9] The embankment according to [8], wherein at least one of the first and second walls and the impermeable portion of the pavement structure are connected by a water stop member.
[10] The embankment according to [7], wherein the crown structure is made of concrete.
[11] The embankment according to any one of [1] to [6], wherein the impermeable structure is an overhanging member that overhangs from the second wall body to a side opposite to the water body.
[12] The embankment according to any one of [1] to [11], wherein at least one of the first and second walls is a steel sheet pile wall.
[13] A wall to be cast on the embankment and a wall installed in an area including at least the upper part of the wall and extending horizontally from the wall to the side opposite to the water area with an overhang length B greater than 300 mm. An embankment comprising: a structure including an impermeable portion on the upper surface side and a water permeable portion on the lower surface side; and a water stop member connecting the wall and the impermeable portion.

上記の構成によれば、堤体に壁体が打設された堤防において、壁体の上方を含む領域に設置された不透水性の構造物が所定の張り出し長さで張り出すことで、越水時において川裏側における越流水の落水地点が壁体から遠くなり、基礎地盤の洗掘が発生している状況でも壁体に対する地盤支持力が維持される。従って、上記の構成によれば越水時における堤防の強度を向上させることができる。 According to the above configuration, in an embankment in which a wall is cast on the embankment, an impermeable structure installed in an area including above the wall extends over a predetermined overhang length. During periods of flooding, the point where overflow water falls on the back side of the river is farther away from the wall, and the ground bearing capacity for the wall is maintained even in situations where the foundation ground is scoured. Therefore, according to the above configuration, the strength of the embankment during overflow can be improved.

本発明の第1の実施形態に係る堤防の構造を示す概略的な断面図である。1 is a schematic cross-sectional view showing the structure of an embankment according to a first embodiment of the present invention. 図1に示した堤防の越水時の状態を示す図である。FIG. 2 is a diagram showing the state of the embankment shown in FIG. 1 when water overflows. 張り出し長さの下限値について説明するための図である。FIG. 3 is a diagram for explaining a lower limit value of an overhang length. 本発明の第2の実施形態に係る堤防の構造を示す概略的な断面図である。It is a schematic sectional view showing the structure of the embankment concerning the 2nd embodiment of the present invention. 本発明の第3の実施形態に係る堤防の構造を示す概略的な断面図である。FIG. 7 is a schematic cross-sectional view showing the structure of an embankment according to a third embodiment of the present invention. 本発明の第3の実施形態に係る堤防の構造を示す概略的な斜視図である。It is a schematic perspective view which shows the structure of the embankment based on the 3rd Embodiment of this invention. 本発明の実施形態において止水部材が設けられる例について説明するための図である。FIG. 3 is a diagram for explaining an example in which a water stop member is provided in an embodiment of the present invention. 本発明の実施形態において止水部材が設けられる例について説明するための図である。FIG. 3 is a diagram for explaining an example in which a water stop member is provided in an embodiment of the present invention.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複した説明を省略する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. Note that, in this specification and the drawings, components having substantially the same functional configuration are designated by the same reference numerals and redundant explanation will be omitted.

図1は、本発明の第1の実施形態に係る堤防の構造を示す概略的な断面図である。本実施形態において、堤防10は、堤体1の川表側(水域である河川2側)の部分に打設される第1の壁体である鋼矢板壁11と、堤体1の川裏側(河川2とは反対側)の部分に打設される第2の壁体である鋼矢板壁12と、鋼矢板壁11,12のそれぞれの頭部を連結する連結部材であるタイロッド13とを含む。堤体1は川表側の法面1A、川裏側の法面1Bおよび天端面1Cを有する。なお、本実施形態では連結部材としてタイロッド13が配置されるが、鋼矢板壁11,12の間を連結し、引張力やせん断力を伝達可能な部材であれば連結部材は特に限定されない。例えばそれぞれの鋼矢板壁に対して直角に設置される鋼材による壁体で連結部材を構成してもよい。あるいは、例えば後述する例のように天端面に設けられる部材として鋼矢板壁11,12の頭部にまたがって頂版コンクリートが打設されるような場合は、別途の連結部材は設けられなくてもよい。 FIG. 1 is a schematic cross-sectional view showing the structure of an embankment according to a first embodiment of the present invention. In this embodiment, the embankment 10 includes a steel sheet pile wall 11, which is a first wall installed on the river front side of the embankment body 1 (river 2 side, which is a water area), and a steel sheet pile wall 11, which is a first wall installed on the river front side of the embankment body 1 (the river side side, which is a water body). It includes a steel sheet pile wall 12 which is a second wall to be cast in a portion (on the opposite side of the river 2), and a tie rod 13 which is a connecting member that connects the heads of each of the steel sheet pile walls 11 and 12. . The embankment body 1 has a slope 1A on the front side of the river, a slope 1B on the back side of the river, and a top surface 1C. In addition, although the tie rod 13 is arrange|positioned as a connection member in this embodiment, the connection member is not specifically limited as long as it is a member which can connect between the steel sheet pile walls 11 and 12 and can transmit tensile force and shear force. For example, the connecting member may be constructed of a wall made of steel installed perpendicularly to each steel sheet pile wall. Alternatively, for example, as in the example described later, when concrete is poured across the heads of the steel sheet pile walls 11 and 12 as a member provided on the top surface, a separate connecting member may not be provided. Good too.

上記のような堤防10では、さらに、堤体1の天端面1C上に舗装構造体14が設置される。舗装構造体14は、天端面1C上を道路や遊歩道として利用するために設置され、例えば表層側からアスファルト混合物で形成される表層および基層、ならびに砕石などで形成される路盤を含む。このような舗装構造体14は、本実施形態における天端構造物の例であり、川裏側の鋼矢板壁12の最外縁から長さBだけ川裏側に張り出して設置される。ここで、最外縁は、例えば鋼矢板壁12が全体として波形断面である場合には、波形が川裏側に張り出した部分の川裏側の面を意味する。鋼矢板壁が直線状断面である場合には、単に川裏側の面が最外縁になる。張り出し長さBは、鋼矢板壁12の川裏側の最外縁から舗装構造体14の川裏側の端部までの距離である。例えば鋼矢板壁12がハット形鋼矢板またはU形鋼矢板で構成されて波形断面になる場合は、波形断面が川裏側に突出している部分を張り出し距離Bの基準にする。また、基礎地盤に対する舗装構造体14の上面の高さを堤高Hとする。 In the embankment 10 as described above, a pavement structure 14 is further installed on the top surface 1C of the embankment body 1. The pavement structure 14 is installed to use the top surface 1C as a road or promenade, and includes, for example, a surface layer and a base layer formed from an asphalt mixture from the surface side, and a roadbed formed from crushed stone or the like. Such a pavement structure 14 is an example of the top structure in this embodiment, and is installed so as to protrude by a length B from the outermost edge of the steel sheet pile wall 12 on the river side. Here, the outermost edge means, for example, when the steel sheet pile wall 12 has a corrugated cross section as a whole, the surface on the river side where the corrugation extends to the river side. If the steel sheet pile wall has a straight cross section, the surface on the river side will simply be the outermost edge. The overhang length B is the distance from the outermost edge of the steel sheet pile wall 12 on the river side to the end of the pavement structure 14 on the river side. For example, when the steel sheet pile wall 12 is composed of a hat-shaped steel sheet pile or a U-shaped steel sheet pile and has a corrugated cross section, the portion of the corrugated cross section that protrudes toward the river side is used as the reference for the overhang distance B. Further, the height of the upper surface of the pavement structure 14 with respect to the foundation ground is defined as the embankment height H.

図2は、図1に示した堤防の越水時の状態を示す図である。図示された状態では、河川2の水位が上昇して堤防10の上面、すなわち舗装構造体14の上面の高さを超えて越流が発生し、堤体1の川裏側の法面1Bは既に流失している。この状態において、舗装構造体14を越えて川裏側に到達した越流水は、舗装構造体14の端部から落下して基礎地盤を洗掘する。舗装構造体14の端部から越流水が基礎地盤に到達する落水地点Pまでの水平移動距離をdとし、落水地点Pにおいて越流水が発生させる定在渦の直径をRとする。野口賢二ら「津波遡上による護岸越波および前面洗掘の大規模模型実験」海岸工学論文集,第44巻,pp.296-300,1997によれば、水流による洗掘幅(両側)は定在渦の直径Rに比例する。従って、鋼矢板壁12の川裏側で地盤が残存する距離sは、以下の式(1)で表すことができる。ただし係数αは未知である。 FIG. 2 is a diagram showing the state of the embankment shown in FIG. 1 when water overflows. In the illustrated state, the water level of the river 2 rises and overflow occurs beyond the height of the upper surface of the embankment 10, that is, the upper surface of the pavement structure 14, and the slope 1B on the river side of the embankment body 1 has already been It has been washed away. In this state, overflow water that has crossed the pavement structure 14 and reached the back side of the river falls from the end of the pavement structure 14 and scours the foundation ground. Let d be the horizontal movement distance from the end of the pavement structure 14 to the overflow point P where the overflow water reaches the foundation ground, and let R be the diameter of the standing vortex generated by the overflow water at the overflow point P. According to Kenji Noguchi et al., “Large-scale model experiment of seawall overtopping and front scouring due to tsunami run-up,” Coastal Engineering Journal, Vol. 44, pp. 296-300, 1997, the width of scouring (on both sides) by water current is fixed. It is proportional to the diameter R of the existing vortex. Therefore, the distance s where the ground remains on the river side of the steel sheet pile wall 12 can be expressed by the following equation (1). However, the coefficient α is unknown.

Figure 2023145098000007
Figure 2023145098000007

この距離sを確保することによって、川裏側で基礎地盤の洗掘が発生している状況でも鋼矢板壁12に対する地盤支持力を維持し、鋼矢板壁11,12の変形や変位を防止して川裏側以外では堤体1の流失を防ぎ、堤防10の機能を維持することができる。そこで、以下では、式(1)に基づいて、必要な距離sを確保するために舗装構造体14の張り出し長さBをどのように設定すればよいかを検討する。 By securing this distance s, the ground supporting force for the steel sheet pile wall 12 can be maintained even in situations where the foundation ground is scoured on the back side of the river, and deformation and displacement of the steel sheet pile walls 11 and 12 can be prevented. The function of the embankment 10 can be maintained by preventing the embankment body 1 from being washed away in areas other than the back side of the river. Therefore, below, based on equation (1), we will consider how to set the overhang length B of the pavement structure 14 in order to secure the necessary distance s.

まず、越流水の水平移動距離dは、越流水が舗装構造体14の端部を通過する時点での流速vを用いて以下の式(2)で表される。ここで、gは重力加速度である。さらに、流速vと、堤防10の近傍における河川2の最大水位が堤高Hを超える越流水深h、および越流水が舗装構造体14の端部を通過する時点での限界水深hとの間には式(3)の関係が成り立つ。式(3)は、河川2の最大水位部分では越流方向、すなわち堤防10に交差する方向の流速がほぼ0であると仮定し、越流水深hが全水頭に等しいものとして流速vを算出している。ここで、日野幹雄「明解 水理学」丸善株式会社,p.107,2001に従って、式(3)において限界水深hを越流水深hの2/3として流速vを算出すると式(4)のようになり、これを式(2)に代入すると式(5)が得られる。

Figure 2023145098000008
First, the horizontal movement distance d of the overflow water is expressed by the following equation (2) using the flow velocity v at the time when the overflow water passes the end of the pavement structure 14. Here, g is gravitational acceleration. Further, the flow velocity v, the overflow water depth h 0 where the maximum water level of the river 2 near the embankment 10 exceeds the embankment height H, and the critical water depth h c at the time when the overflow water passes the end of the pavement structure 14. The relationship of equation (3) holds true between them. Equation (3) assumes that the flow velocity in the overflow direction, that is, the direction crossing the embankment 10, is almost 0 in the maximum water level part of the river 2, and the flow velocity v is calculated assuming that the overflow water depth h0 is equal to the total water head. It is being calculated. Here, according to Mikio Hino, "Clear Hydraulics", Maruzen Co., Ltd., p. 107, 2001, in equation (3), if the critical water depth h c is set to 2/3 of the overflow water depth h 0 , and the flow velocity v is calculated, equation (4) is obtained. By substituting this into equation (2), equation (5) is obtained.
Figure 2023145098000008

一方、定在渦の直径Rは、以下の式(6)で算出される。ここで、qは越流水の流量であり、限界水深hと流速vとの積である。限界水深hを越流水深hの2/3とし、また式(4)で算出した流速vを用いて算出したqを代入すると式(7)が得られる。 On the other hand, the diameter R of the standing vortex is calculated using the following equation (6). Here, q is the flow rate of overflow water, and is the product of the critical water depth hc and the flow velocity v. Equation (7) is obtained by setting the critical water depth h c to 2/3 of the overflow water depth h 0 and substituting q calculated using the flow velocity v calculated by Equation (4).

Figure 2023145098000009
Figure 2023145098000009

さらに、式(1)の係数αを決定するために実験を実施した。浸食減少が最も発生しやすいD50=0.5mmの地盤材料を使用し、堤高Hを400mmとした堤防10の模型で、越流水深hを20mm,30mm,40mmに設定して、越流水によって式(7)から算出された定在渦の直径Rと実測された洗掘範囲の大きさとを比較したところ、係数α≒7であった。この結果は既往の洗掘実験の結果とも整合する。また、河川の越水時の実績から、越流水深hは最大で0.6m程度である。そこで、上記の式(1)に、式(5)で算出したd、式(7)で算出したR、ならびにα=7、h=0.6(m)およびg=9.8(m/s)を代入すると、式(8)が得られる。鋼矢板壁12の川裏側で地盤が残存する最低限の条件をs>0として、式(8)を張り出しの長さBの条件式にすると式(9)が得られる。 Furthermore, an experiment was conducted to determine the coefficient α of equation (1). Using a ground material with D 50 = 0.5 mm, where erosion is most likely to occur, and a model of levee 10 with a levee height H of 400 mm, the overflow water depth h 0 was set to 20 mm, 30 mm, and 40 mm, and overflow was carried out. When the diameter R of the standing vortex calculated from equation (7) using running water was compared with the size of the actually measured scour range, the coefficient α≈7 was found. This result is consistent with the results of previous scour experiments. Furthermore, based on actual experience when rivers overflow, the maximum overflow water depth h0 is approximately 0.6 m. Therefore, in the above formula (1), d calculated by formula (5), R calculated by formula (7), α = 7, h 0 = 0.6 (m) and g = 9.8 (m /s 2 ), equation (8) is obtained. If the minimum condition that the ground remains on the river side of the steel sheet pile wall 12 is s>0, and the equation (8) is changed to a conditional equation for the overhang length B, the equation (9) is obtained.

Figure 2023145098000010
Figure 2023145098000010

一方、三戸部佑太ら「海岸堤防裏法尻洗掘による津波エネルギー減衰の減災効果に関する数値実験」土木学会論文集B2(海岸工学),Vol.74,No.2,I_223-I_228,2018では、堤高Hおよび越流水深hから洗掘幅(両側)Lを算出する実験式として式(10)が提案されている。式(10)で上記の例と同様にh=0.6(m)として算出した洗掘幅L=4.24H0.18で式(1)のαRを置き換え、それ以外の項は上記の式(9)と同様にh=0.6(m)およびg=9.8(m/s)、s>0として張り出しの長さBの条件式にすると式(11)が得られる。 On the other hand, in Yuta Mitobe et al., "Numerical experiment on the mitigation effect of tsunami energy attenuation by scouring behind the coastal embankment," Transactions of the Japan Society of Civil Engineers B2 (Coastal Engineering), Vol. 74, No. 2, I_223-I_228, 2018, Equation (10) has been proposed as an empirical formula for calculating the scour width (both sides) L f from the height H and the overflow water depth h 0 . In equation (10), αR in equation (1) is replaced with scour width L f =4.24H 0.18 , which is calculated as h 0 =0.6 (m) in the same way as in the above example, and the other terms are Similarly to the above equation (9), if we set h 0 = 0.6 (m) and g = 9.8 (m/s 2 ) and s > 0 as a conditional expression for the overhang length B, equation (11) becomes can get.

Figure 2023145098000011
Figure 2023145098000011

なお、式(5)に示すように、堤高Hが大きい場合は水平移動距離dが大きくなって常に洗掘幅を上回り、従って上記の式(9)および式(11)の右辺の値は0未満になる。この場合、張り出し長さBの下限値は、鋼矢板壁が土砂を含む濁流により損傷を受けないように、少なくとも鋼矢板表面が洗掘範囲に入らないように設定される。本発明者らの知見によれば、そのような張り出し長さBの下限値は300mmである。図3に示すように、河川堤防で一般的な堤高Hが2m~6mの範囲において、越流による洗掘が発生している越流水深hが0.2m以上を対象とすると、特に洗掘深さが深くなり矢板の安定性に影響を与える越流水深hが大きい領域において、洗掘影響範囲Aが鋼矢板壁に達しないためには300mm以上の張り出し長さが必要となる。このような張り出し長さBは、一般的に鋼矢板壁の頭部の保護のために打設される笠コンクリートによる張り出し長さを超えている。なお、一般的な笠コンクリートによる張り出し長さの例は、鋼管杭協会「鋼矢板 設計から施工まで」,pp.353-354,1998等に記載されており、最大でも175mm程度である。 As shown in equation (5), when the bank height H is large, the horizontal movement distance d becomes large and always exceeds the scour width, so the values on the right side of equations (9) and (11) above are becomes less than 0. In this case, the lower limit of the overhang length B is set so that at least the surface of the steel sheet pile does not enter the scouring range so that the steel sheet pile wall is not damaged by muddy currents containing earth and sand. According to the findings of the present inventors, the lower limit of such an overhang length B is 300 mm. As shown in Figure 3, in a river embankment with a typical height H of 2 m to 6 m, if we target the overflow water depth h 0 of 0.2 m or more where scouring occurs due to overflow, especially In areas where the overflow water depth h0 is large, where the scouring depth becomes deep and affects the stability of the sheet pile, an overhang length of 300 mm or more is required to prevent the scouring influence area A from reaching the steel sheet pile wall. . Such an overhang length B exceeds the overhang length of cap concrete that is generally cast to protect the head of a steel sheet pile wall. An example of the overhang length of general cap concrete is described in the Steel Pipe Pile Association's "Steel Sheet Pile - From Design to Construction", pp. 353-354, 1998, and is about 175 mm at maximum.

また、上記のように張り出し長さBを設定する場合、舗装構造体14のような天端構造物は、越水時において上面側から下面側に越流水が透過しない不透水性の部材である。例えば、天端構造物において舗装構造体やコンクリートのような不透水性の部分と保護ネットのような透水性の部分とが存在する場合は、不透水性の部分だけを天端構造物として扱って張り出し長さBを設定する。ただし、透過した越流水によって天端構造物の下面側で堤体1の流失が発生しなければよいため、天端構造物の不透水性の部分においても必ずしも完全な水密性は必要とされず、実質的に不透水性であればよい。 In addition, when setting the overhang length B as described above, the top structure such as the pavement structure 14 is an impermeable member that does not allow overflow water to pass from the upper surface side to the lower surface side when water overflows. . For example, if a crown structure has an impermeable part such as a pavement structure or concrete and a permeable part such as a protective net, only the impermeable part is treated as the crown structure. Set the overhang length B. However, since it is sufficient that the overflow water that has permeated does not wash away the embankment body 1 on the underside of the crown structure, complete watertightness is not necessarily required even in the impermeable parts of the crown structure. , as long as it is substantially water-impermeable.

上記の式(9)および式(11)では鋼矢板壁12の川裏側で地盤が残存する最低限の条件をs>0としたが、より安全側を考慮する場合、以下で説明する例のように鋼矢板壁12の川裏側で地盤が残存する距離sの下限値Lを設定してもよい。この場合、式(9)および式(11)の右辺を堤高Hの関数f(H)として、以下の式(12)の条件が設定される。 In the above equations (9) and (11), the minimum condition for the remaining ground on the river side of the steel sheet pile wall 12 is set to s>0, but when considering the safer side, the following example You may set the lower limit value L of the distance s where the ground remains on the river side of the steel sheet pile wall 12 as shown in FIG. In this case, the conditions of the following equation (12) are set, with the right sides of equations (9) and (11) being a function f(H) of the embankment height H.

Figure 2023145098000012
Figure 2023145098000012

第1の例として、鋼矢板壁12の根入れ部の地盤において受働抵抗を発揮する範囲を考慮する。鋼管杭協会「鋼矢板 設計から施工まで」,1998に従って、弾性床上の梁の理論から、地中に埋め込まれた杭の杭頭部が回転しない条件で第一不動点の深さを算出し、その深さから受動崩壊角φを延ばした線が基板面と交わる点の杭からの距離として上記の下限値Lを算出すると以下の式(13)のようになる。ここで、βはβ=(E/4EI)1/4として算出される係数であり、Eは変形係数、E,Iは鋼矢板のヤング係数および断面二次モーメントである。 As a first example, consider the range in which passive resistance is exerted in the ground at the embedded part of the steel sheet pile wall 12. According to the Steel Pipe Pile Association's "Steel Sheet Pile - From Design to Construction", 1998, from the theory of beams on elastic floors, the depth of the first fixed point of the pile embedded in the ground is calculated under the condition that the pile head does not rotate. When the above lower limit L is calculated as the distance from the pile to the point where a line obtained by extending the passive collapse angle φ from that depth intersects with the substrate surface, the following equation (13) is obtained. Here, β is a coefficient calculated as β=(E s /4EI) 1/4 , E s is a deformation coefficient, and E and I are Young's modulus and moment of inertia of the steel sheet pile.

Figure 2023145098000013
Figure 2023145098000013

第2の例として、日本建築学会「建築基礎構造設計指針」p277,2019によれば、傾斜地盤近傍の杭の水平抵抗について、傾斜面までの距離が2.5/βよりも大きければ、傾斜面の影響を無視して設計できるものとされている。この傾斜面を、越流水による洗掘で基礎地盤が消失した部分に置き換えて考えれば、上記の下限値Lは以下の式(14)のように算出される。なお、βは第1の例と同じくβ=(kD/4EI)1/4として算出される係数である。 As a second example, according to the Architectural Institute of Japan "Architectural Foundation Structure Design Guidelines" p277, 2019, regarding the horizontal resistance of piles near sloped ground, if the distance to the slope is greater than 2.5/β, the slope It is said that the design can be done while ignoring the influence of surfaces. If this slope is replaced with a portion where the foundation ground has disappeared due to scouring by overflow water, the above lower limit value L is calculated as shown in the following equation (14). Note that β is a coefficient calculated as β=( kh D/4EI) 1/4 as in the first example.

Figure 2023145098000014
Figure 2023145098000014

図4は、本発明の第2の実施形態に係る堤防の構造を示す概略的な断面図である。本実施形態に係る堤防20では、天端構造物として頂版コンクリート24が設置される。鋼矢板壁11,12の頭部は頂版コンクリート24に埋め込まれている。既に述べたように、この場合において鋼矢板壁11,12の間に別途の連結部材は設けられなくてもよい。それ以外の構成については上記の第1の実施形態と同様であるため、重複した詳細な説明は省略する。本実施形態でも、鋼矢板壁12の川裏側の最外縁から頂版コンクリート24の川裏側の端部までの距離である張り出し長さBを堤高Hに応じて上述した式(9)、式(11)または式(12)に従って設定することによって、川裏側で基礎地盤の洗掘が発生している状況でも鋼矢板壁12に対する地盤支持力を維持することができる。 FIG. 4 is a schematic cross-sectional view showing the structure of an embankment according to a second embodiment of the present invention. In the embankment 20 according to this embodiment, a concrete top slab 24 is installed as a top structure. The heads of the steel sheet pile walls 11 and 12 are embedded in the top slab concrete 24. As already mentioned, in this case, there is no need to provide a separate connecting member between the steel sheet pile walls 11 and 12. The rest of the configuration is the same as that of the first embodiment, so redundant detailed explanation will be omitted. In this embodiment as well, the overhang length B, which is the distance from the outermost edge of the steel sheet pile wall 12 on the river side to the end of the top slab concrete 24 on the river side, is calculated according to the embankment height H using the formula (9) or the formula By setting according to equation (11) or equation (12), the ground supporting force for the steel sheet pile wall 12 can be maintained even in a situation where the foundation ground is scoured on the back side of the river.

図5および図6は、本発明の第3の実施形態に係る堤防の構造を示す概略的な断面図および斜視図である。なお、図6の斜視図は堤体1を透視して図示されている。本実施形態に係る堤防30では、不透水性の天端構造物が設置される代わりに、鋼矢板壁12の頭部に打設される笠コンクリート34から法面に沿って川裏側に、不透水性の張り出し部材35が設置される。張り出し部材35は、例えば鋼板、コンクリート板または樹脂板で形成される。本実施形態のように、堤体1の鋼矢板壁12の上方を含む領域に設置される不透水性の構造物が天端構造物ではない場合も、張り出し部材35の水平方向での張り出し長さBを堤高Hとの関係において式(9)、式(11)、式(12)または式(13)を満たすように設定すれば、川裏側で基礎地盤の洗掘が発生している状況でも鋼矢板壁12に対する地盤支持力を維持することができる。 5 and 6 are a schematic cross-sectional view and a perspective view showing the structure of an embankment according to a third embodiment of the present invention. Note that the perspective view in FIG. 6 shows the embankment body 1 seen through. In the embankment 30 according to the present embodiment, instead of installing an impermeable crown structure, an impermeable structure is installed from the cap concrete 34 cast at the head of the steel sheet pile wall 12 to the back side of the river along the slope. A water-permeable overhang member 35 is installed. The overhanging member 35 is formed of, for example, a steel plate, a concrete plate, or a resin plate. As in this embodiment, even when the impermeable structure installed in the area including above the steel sheet pile wall 12 of the embankment body 1 is not a crown structure, the overhang length of the overhang member 35 in the horizontal direction If B is set to satisfy Equation (9), Equation (11), Equation (12), or Equation (13) in relation to levee height H, scouring of the foundation ground will occur on the back side of the river. The ground supporting force for the steel sheet pile wall 12 can be maintained even under such conditions.

図7および図8は、本発明の実施形態において止水部材が設けられる例について説明するための図である。図7には、上記の第1の実施形態と同様に堤体1に鋼矢板壁11,12が打設され、天端構造物として舗装構造体14が設置された堤防40の例が示されている。堤防40では、川表側の鋼矢板壁11の頭部と舗装構造体14との間が、止水部材46で接続されている。 FIGS. 7 and 8 are diagrams for explaining an example in which a water stop member is provided in the embodiment of the present invention. FIG. 7 shows an example of an embankment 40 in which steel sheet pile walls 11 and 12 are placed on the embankment body 1 and a pavement structure 14 is installed as the crown structure, similar to the first embodiment described above. ing. In the embankment 40, the head of the steel sheet pile wall 11 on the river front side and the pavement structure 14 are connected by a water stop member 46.

上述の通り、舗装構造体14は、越水時において上面側から下面側に越流水が透過しないという点では不透水性の構造物である。ただし、舗装構造体14は例えば表層側からアスファルト混合物で形成される表層および基層、ならびに砕石などで形成される路盤を含み、路盤部分については必ずしも不透水性ではない。つまり、越流水は舗装構造体14の上面側から下面側には透過しないが、舗装構造体14と鋼矢板との接続部分、または舗装構造体14の路盤部分の下側を通って川表側から川裏側に越流水が透過する可能性はある。このようにして越流水が舗装構造体14と鋼矢板壁11,12との間を透過して流れると、最終的には舗装構造体14が鋼矢板壁11,12から浮き上がり、堤体1の天端面1Cが崩れることになる。そうすると、上述したように舗装構造体14が越流水の落水地点Pを遠ざけることによって鋼矢板壁12の川裏側の地盤を残存させる効果も得られなくなってしまう。 As described above, the pavement structure 14 is a water-impermeable structure in that overflow water does not permeate from the upper surface side to the lower surface side when water overflows. However, the pavement structure 14 includes, for example, a surface layer and a base layer formed of an asphalt mixture from the surface layer side, and a roadbed formed of crushed stone, etc., and the roadbed portion is not necessarily impermeable to water. In other words, overflow water does not permeate from the upper side to the lower side of the pavement structure 14, but passes through the connecting part between the pavement structure 14 and the steel sheet pile, or the underside of the roadbed part of the pavement structure 14, and then flows from the river surface side. There is a possibility that overflow water will penetrate to the other side of the river. When the overflow water passes through and flows between the pavement structure 14 and the steel sheet pile walls 11 and 12 in this way, the pavement structure 14 eventually rises from the steel sheet pile walls 11 and 12 and the dam body 1 The top surface 1C will collapse. In this case, as described above, the effect of leaving the ground on the river side of the steel sheet pile wall 12 by moving the pavement structure 14 away from the falling point P of the overflow water cannot be obtained.

そこで、図7の例では、鋼矢板壁11の頭部と舗装構造体14の不透水部分との間を膨潤ゴムなどの止水部材46で接続し、越流水が舗装構造体14と鋼矢板壁11,12との間を透過して流れることを防止する。これによって、舗装構造体14のように天端構造物が部分的に不透水性の層を含む場合も、天端構造物の川裏側に張り出した部分の機能を維持することができる。なお、止水部材は、鋼矢板壁12の頭部と舗装構造体14の不透水部分との間を接続してもよい。 Therefore, in the example shown in FIG. 7, the head of the steel sheet pile wall 11 and the impermeable part of the pavement structure 14 are connected with a water stop member 46 such as swollen rubber, so that overflow water can flow between the pavement structure 14 and the steel sheet pile. This prevents the liquid from flowing between the walls 11 and 12. As a result, even when the crown structure includes a partially water-impermeable layer like the pavement structure 14, the function of the portion of the crown structure overhanging to the river side can be maintained. In addition, the water stop member may connect between the head of the steel sheet pile wall 12 and the water-impermeable part of the pavement structure 14.

図8の例では、川表側の鋼矢板壁11のみが打設される堤防50において、鋼矢板壁11と舗装構造体14の不透水部分との間が止水部材46で接続されている。これによって、鋼矢板壁11の川裏側の最外縁から舗装構造体14が長さBだけ川裏側に張り出した部分が、越流水の落水地点P(図2参照)を遠ざけることによって鋼矢板壁11の川裏側の地盤を残存させ、鋼矢板壁11による堤体1の補強効果を保持することができる。なお、この場合の張り出し長さBも、上記の第1の実施形態で説明した例と同様に算出される。 In the example of FIG. 8, in the embankment 50 where only the steel sheet pile wall 11 on the river front side is poured, the steel sheet pile wall 11 and the impermeable portion of the pavement structure 14 are connected by a water stop member 46. As a result, the portion of the pavement structure 14 that extends from the outermost edge of the river side of the steel sheet pile wall 11 to the river side by a length B moves the steel sheet pile wall 11 away from the falling point P (see FIG. 2) of overflow water. The ground on the back side of the river can be left and the reinforcing effect of the steel sheet pile wall 11 on the embankment body 1 can be maintained. Note that the overhang length B in this case is also calculated in the same manner as in the example described in the first embodiment.

なお、例えば上記で第2および第3の実施形態として説明したように、鋼矢板壁の上方を含む領域に設置される不透水性の構造物が頂版コンクリートや笠コンクリートなどを含み、鋼矢板壁の頭部がこれらの構造物に埋め込まれる場合、越流水が鋼矢板壁と構造物との間を流れることはないため、上述のような止水部材は不要である。 Note that, for example, as described in the second and third embodiments above, the impermeable structure installed in the area including above the steel sheet pile wall includes top plate concrete, cap concrete, etc. When the head of the wall is embedded in these structures, overflow water will not flow between the steel sheet pile wall and the structure, so a water stop member as described above is not necessary.

以上で説明したような本発明の実施形態によれば、堤体1に壁体(鋼矢板壁11,12)が打設された堤防において、壁体の上方を含む領域に不透水性の構造物(天端構造物である舗装構造体14もしくは頂版コンクリート24、または張り出し部材35)が設置され、この構造物が壁体の川裏側に所定の張り出し長さBで張り出すようにすることで、越水時において川裏側における越流水の落水地点Pを壁体から遠ざけ、基礎地盤の洗掘が発生している状況でも壁体に対する地盤支持力を維持することができる。 According to the embodiment of the present invention as described above, in the embankment in which the walls (steel sheet pile walls 11 and 12) are placed on the embankment body 1, an impermeable structure is provided in the area including the upper part of the wall. (paving structure 14 or top slab concrete 24, or overhanging member 35) is installed so that this structure overhangs the river side of the wall by a predetermined overhang length B. In this way, the point P of the overflow water on the back side of the river is moved away from the wall at the time of overflow, and the ground supporting force for the wall can be maintained even in a situation where the foundation ground is scoured.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はこれらの例に限定されない。本発明の属する技術の分野の当業者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although preferred embodiments of the present invention have been described above in detail with reference to the accompanying drawings, the present invention is not limited to these examples. It is clear that those skilled in the art to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims, and these also include: It is understood that it naturally falls within the technical scope of the present invention.

10,20,30,40,50…堤防、1…堤体、1A…法面、1B…法面、1C…天端面、2…河川、11,12…鋼矢板壁、13…タイロッド、14…舗装構造体、24…頂版コンクリート、34…笠コンクリート、35…張り出し部材、46…止水部材。
10, 20, 30, 40, 50... Embankment, 1... Embankment body, 1A... Slope, 1B... Slope, 1C... Top surface, 2... River, 11, 12... Steel sheet pile wall, 13... Tie rod, 14... Paving structure, 24...Top slab concrete, 34...Cap concrete, 35...Overhanging member, 46...Water stop member.

Claims (13)

堤体の水域側の部分に打設される第1の壁体と、
前記堤体の前記水域とは反対側の部分に打設される第2の壁体と、
少なくとも前記第2の壁体の上方を含む領域に設置され、前記第2の壁体の最外縁から前記水域とは反対側に水平方向に300mm以上の張り出し長さBで張り出す不透水性の構造物と
を備える堤防。
a first wall that is cast on a water area side portion of the embankment;
a second wall installed in a portion of the embankment opposite to the water area;
An impervious wall installed in an area including at least above the second wall, and extending horizontally from the outermost edge of the second wall to the side opposite to the water area with an overhang length B of 300 mm or more. Embankment with structures and.
前記張り出し長さBは、堤高Hの関数f(H)を含む式(i)および式(ii)を満たす、請求項1に記載の堤防。
Figure 2023145098000015
The levee according to claim 1, wherein the overhang length B satisfies equations (i) and (ii) including a function f(H) of levee height H.
Figure 2023145098000015
前記張り出し長さBは、堤高Hの関数f(H)を含む式(i)および式(iii)を満たす、請求項1に記載の堤防。
Figure 2023145098000016
The levee according to claim 1, wherein the overhang length B satisfies equations (i) and (iii) including a function f(H) of levee height H.
Figure 2023145098000016
前記張り出し長さBは、さらに、洗掘された領域の最も前記第2の壁体側の位置から前記第2の壁体までの距離である地盤残存長さLをさらに含む式(iv)を満たす、請求項2または請求項3に記載の堤防。
Figure 2023145098000017
The overhang length B further satisfies formula (iv), which further includes a ground remaining length L, which is the distance from the position closest to the second wall in the scoured area to the second wall. , the embankment according to claim 2 or claim 3.
Figure 2023145098000017
前記地盤残存長さLは、係数βおよび受動崩壊角φを用いて式(v)で定義される、請求項4に記載の堤防。
Figure 2023145098000018
The embankment according to claim 4, wherein the ground remaining length L is defined by equation (v) using a coefficient β and a passive collapse angle φ.
Figure 2023145098000018
前記地盤残存長さLは、係数βを用いて式(vi)で定義される、請求項4に記載の堤防。
Figure 2023145098000019
The embankment according to claim 4, wherein the ground remaining length L is defined by equation (vi) using a coefficient β.
Figure 2023145098000019
前記不透水性の構造物は、前記堤体の天端面上に設置される天端構造物である、請求項1から請求項6のいずれか1項に記載の堤防。 The embankment according to any one of claims 1 to 6, wherein the impermeable structure is a crown structure installed on the crown face of the embankment body. 前記天端構造物は、舗装構造体である、請求項7に記載の堤防。 The embankment according to claim 7, wherein the crown structure is a pavement structure. 前記第1および第2の壁体の少なくともいずれかと、前記舗装構造体の不透水部分とは、止水部材で接続される、請求項8に記載の堤防。 The embankment according to claim 8, wherein at least one of the first and second walls and an impermeable portion of the pavement structure are connected by a water stop member. 前記天端構造物は、頂版コンクリートである、請求項7に記載の堤防。 The embankment according to claim 7, wherein the crown structure is made of concrete. 前記不透水性の構造物は、前記第2の壁体から前記水域とは反対側に張り出す張り出し部材である、請求項1から請求項6のいずれか1項に記載の堤防。 The embankment according to any one of claims 1 to 6, wherein the impermeable structure is an overhang member that extends from the second wall to a side opposite to the water body. 前記第1および第2の壁体の少なくともいずれかは、鋼矢板壁である、請求項1から請求項11のいずれか1項に記載の堤防。 The embankment according to any one of claims 1 to 11, wherein at least one of the first and second walls is a steel sheet pile wall. 堤体に打設される壁体と、
少なくとも前記壁体の上方を含む領域に設置され、前記壁体から水域とは反対側に水平方向に300mmよりも大きい張り出し長さBで張り出し、上面側に不透水性部分を含み、下面側に透水性部分を含む構造物と、
前記壁体と前記不透水性部分とを接続する止水部材と
を備える堤防。
A wall to be installed on the embankment body,
It is installed in an area that includes at least the upper part of the wall, extends horizontally from the wall to the side opposite to the water area with an overhang length B larger than 300 mm, includes an impermeable part on the upper surface side, and has an impermeable part on the lower surface side. A structure including a water-permeable part;
An embankment comprising: a water stop member connecting the wall and the impermeable part.
JP2022052386A 2022-03-28 2022-03-28 embankment Pending JP2023145098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022052386A JP2023145098A (en) 2022-03-28 2022-03-28 embankment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022052386A JP2023145098A (en) 2022-03-28 2022-03-28 embankment

Publications (1)

Publication Number Publication Date
JP2023145098A true JP2023145098A (en) 2023-10-11

Family

ID=88253422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022052386A Pending JP2023145098A (en) 2022-03-28 2022-03-28 embankment

Country Status (1)

Country Link
JP (1) JP2023145098A (en)

Similar Documents

Publication Publication Date Title
US5697736A (en) Seawalls and shoreline reinforcement systems
JP5157710B2 (en) Embankment reinforcement structure
JP5817272B2 (en) Embankment reinforcement structure
JP7149919B2 (en) Improvement structure and improvement method of existing wharf
KR100965467B1 (en) Eco-pillar debris barrier
CN108547262A (en) Dam body for blocking mountain channel mountain torrents, mud-rock flow
CN112575777A (en) Frame reinforcing system and method for high-speed railway pier foundation penetrating through under channel
CN110593205B (en) High-order debris flow multistage self-adaptive barrier pile group disaster reduction structure and implementation method
JP2023145098A (en) embankment
CN217399721U (en) A kind of support structure in soft soil area
CN213204004U (en) Repair and reinforcement structure for canal slopes on two banks under downstream bridge of main canal river entering section
JP2025006352A (en) Embankment
KR100397536B1 (en) Lateral Movement Prevention Construction Method of Bridge Abutment for using Sheet piles
JPH01226920A (en) Earthquake-resistant structure of river embankments
CN208701620U (en) It is a kind of for blocking the dam body of mountain channel mountain torrents, mud-rock flow
CN218090948U (en) A sloping retaining wall
de Llano Torrent control and streambed stabilization
CN218667392U (en) Channel structure suitable for Chengdu clay section
JP7489350B2 (en) Improvement structure and method of existing wharf
JP7495904B2 (en) Improvement structure and method of existing wharf
CN111549726B (en) Construction method of water level fluctuation area slope surface bollard protection structure
CN217026896U (en) River sluice flood control dyke structure
CN111851425B (en) Ecological retaining dam
Chen et al. Sluices and barrages
CN220888175U (en) A bridge head fill embankment structure

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20241115