JP2023040895A - 電子装置、電子装置の製造方法および測定方法 - Google Patents

電子装置、電子装置の製造方法および測定方法 Download PDF

Info

Publication number
JP2023040895A
JP2023040895A JP2021148086A JP2021148086A JP2023040895A JP 2023040895 A JP2023040895 A JP 2023040895A JP 2021148086 A JP2021148086 A JP 2021148086A JP 2021148086 A JP2021148086 A JP 2021148086A JP 2023040895 A JP2023040895 A JP 2023040895A
Authority
JP
Japan
Prior art keywords
chip
metal pattern
light
transmissive region
transmissive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021148086A
Other languages
English (en)
Inventor
和俊 夏目
Kazutoshi Natsume
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2021148086A priority Critical patent/JP2023040895A/ja
Priority to US17/880,273 priority patent/US20230077954A1/en
Publication of JP2023040895A publication Critical patent/JP2023040895A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L24/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/16148Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the bump connector connecting to a bonding area protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81908Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving monitoring, e.g. feedback loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/1469Assemblies, i.e. hybrid integration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/202Electromagnetic wavelength ranges [W]
    • H01L2924/2026Infrared radiation 700=<W<3000 nm

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

Figure 2023040895000001
【課題】チップ間の距離を測定することが可能な電子装置、電子装置の製造方法および測定方法を提供する。
【解決手段】第1チップと、バンプにより前記第1チップに接合された第2チップと、前記第1チップの前記第2チップに対向する面である第1面に設けられた第1金属パターンと、前記第2チップの前記第1チップに対向する面である第2面に設けられた第2金属パターンと、を具備し、前記第1チップは第1透過領域を有し、前記第1透過領域の光の透過率は、前記第1チップのうち前記第1透過領域以外の領域の透過率よりも高く、前記第1金属パターンおよび前記第2金属パターンは、前記第1チップおよび前記第2チップの厚さ方向において前記第1透過領域に重なり、前記第1面および前記第2面の広がる方向において、前記第2金属パターンは前記第1金属パターンの外側に位置する電子装置。
【選択図】 図4A

Description

本開示は電子装置、電子装置の製造方法および測定方法に関するものである。
バンプを用いて、チップを基板にフリップチップボンディングすることで、電子装置を形成する。静電容量を測定することで、ギャップなどの実装状態を評価する技術がある(例えば特許文献1)。
特開2010-56429号公報
2つのチップをフリップチップボンディングで接合した後に、光学的な方法によって、2つのチップ間の距離(ギャップ)を測定することは困難であった。そこで、チップ間の距離を測定することが可能な電子装置、電子装置の製造方法および測定方法を提供することを目的とする。
本開示に係る電子装置は、第1チップと、バンプにより前記第1チップに接合された第2チップと、前記第1チップの前記第2チップに対向する面である第1面に設けられた第1金属パターンと、前記第2チップの前記第1チップに対向する面である第2面に設けられた第2金属パターンと、を具備し、前記第1チップは第1透過領域を有し、前記第1透過領域の光の透過率は、前記第1チップのうち前記第1透過領域以外の領域の透過率よりも高く、前記第1金属パターンおよび前記第2金属パターンは、前記第1チップおよび前記第2チップの厚さ方向において前記第1透過領域に重なり、前記第1面および前記第2面の広がる方向において、前記第2金属パターンは前記第1金属パターンの外側に位置する。
本開示に係る電子装置の製造方法は、第1チップと第2チップとを有する電子装置の製造方法であって、前記第1チップは第1透過領域を有し、前記第1透過領域の光の透過率は、前記第1チップのうち前記第1透過領域以外の領域の透過率よりも高く、前記第1チップの前記第2チップに対向する面である第1面に第1金属パターンが設けられ、前記第2チップの前記第1チップに対向する面である第2面に第2金属パターンが設けられ、前記製造方法は、前記第1チップおよび前記第2チップの厚さ方向において前記第1金属パターンおよび前記第2金属パターンが前記第1透過領域に重なり、前記第1面および前記第2面の広がる方向において前記第2金属パターンが前記第1金属パターンの外側に位置するように配置した前記第1チップと前記第2チップとを、バンプにより接合する工程と、前記接合する工程の後、前記第1透過領域を通じて前記第1金属パターンおよび前記第2金属パターンに光を入射し、前記第1金属パターンで反射された光および前記第2金属パターンで反射された光を用いて、前記第1チップと前記第2チップとの間の距離を測定する工程と、を有する。
本開示に係る電子装置の測定方法は、第1チップと第2チップとを有する電子装置の測定方法であって、前記第1チップと前記第2チップとはバンプにより接合され、前記第1チップは第1透過領域を有し、前記第1透過領域の光の透過率は、前記第1チップのうち前記第1透過領域以外の領域の透過率よりも高く、前記第1チップの前記第2チップに対向する面である第1面に第1金属パターンが設けられ、前記第2チップの前記第1チップに対向する面である第2面に第2金属パターンが設けられ、前記第1チップおよび前記第2チップの厚さ方向において、前記第1金属パターンおよび前記第2金属パターンは前記第1透過領域に重なり、前記第1面および前記第2面の広がる方向において、前記第2金属パターンは前記第1金属パターンの外側に位置し、前記測定方法は、前記第1透過領域を通じて前記第1金属パターンおよび前記第2金属パターンに光を入射する工程と、前記第1金属パターンで反射された光および前記第2金属パターンで反射された光を用いて、前記第1チップと前記第2チップとの間の距離を測定する工程と、を有する。
本開示によればチップ間の距離を測定することが可能な電子装置、電子装置の製造方法および測定方法を提供することが可能である。
図1Aは、第1実施形態に係る電子装置を例示する平面図である。 図1Bは、図1Aの線A-Aに沿った断面図である。 図2は、透過領域付近を拡大した図である。 図3Aは、電子装置の製造方法を例示する断面図である。 図3Bは、電子装置の製造方法を例示する断面図である。 図3Cは、電子装置の製造方法を例示する断面図である。 図4Aは、電子装置の製造方法を例示する断面図である。 図4Bは、電子装置の製造方法を例示する断面図である。 図5Aは、第2実施形態に係る電子装置を例示する平面図である。 図5Bは、図5Aの線A-Aに沿った断面図である。 図6Aは、電子装置の製造方法を例示する断面図である。 図6Bは、電子装置の製造方法を例示する断面図である。
[本開示の実施形態の説明]
最初に本開示の実施形態の内容を列記して説明する。
本開示の一形態は、(1)第1チップと、バンプにより前記第1チップに接合された第2チップと、前記第1チップの前記第2チップに対向する面である第1面に設けられた第1金属パターンと、前記第2チップの前記第1チップに対向する面である第2面に設けられた第2金属パターンと、を具備し、前記第1チップは第1透過領域を有し、前記第1透過領域の光の透過率は、前記第1チップのうち前記第1透過領域以外の領域の透過率よりも高く、前記第1金属パターンおよび前記第2金属パターンは、前記第1チップおよび前記第2チップの厚さ方向において前記第1透過領域に重なり、前記第1面および前記第2面の広がる方向において、前記第2金属パターンは前記第1金属パターンの外側に位置する電子装置である。第1透過領域を透過した光が、第1金属パターンおよび第2金属パターンで反射される。第1金属パターンの反射光および第2金属パターンの反射光を用いて、第1チップと第2チップとの間の距離を測定することができる。
(2)前記第2チップは第2透過領域を有し、前記第2透過領域の光の透過率は、前記第2チップのうち前記第2透過領域以外の領域の透過率よりも高く、前記第2透過領域は、前記厚さ方向において前記第1透過領域に重なり、前記第1金属パターンおよび前記第2金属パターンは、前記第1チップおよび前記第2チップの厚さ方向において前記第1透過領域および前記第2透過領域に重なってもよい。第2透過領域を透過した光が、第1金属パターンおよび第2金属パターンで反射される。第1金属パターンの反射光および第2金属パターンの反射光を用いて、第1チップと第2チップとの間の距離を測定することができる。
(3)前記第1チップは、複数の前記透過領域および複数の前記第1金属パターンを有し、前記第2チップは、複数の前記第2金属パターンを有してもよい。複数の位置で距離を測定することで、第1チップと第2チップとの間の傾きを測定することができる。
(4)前記第1チップの前記第1面とは反対側の面である第3面に設けられた第3金属パターンを具備し、前記第1面および前記第2面の広がる方向において、前記第3金属パターンは前記第1金属パターンおよび前記第2金属パターンの外側に位置してもよい。第1金属パターンの反射光および第3金属パターンの反射光を用いて、第1チップの厚さを測定することができる。
(5)前記第2チップの前記第2面とは反対側の面である第4面に設けられた第4金属パターンを具備し、前記第1面および前記第2面の広がる方向において、前記第4金属パターンは前記第1金属パターンおよび前記第2金属パターンの外側に位置してもよい。第2金属パターンの反射光および第4金属パターンの反射光を用いて、第2チップの厚さを測定することができる。
(6)前記第1チップは、第1基板、受光層および第1電極を有し、前記バンプは前記第1電極に接続され、前記第1透過領域は、前記第1基板を含み、前記受光層および前記第1電極は、前記第1透過領域以外の領域に設けられてもよい。第1透過領域に入射する光は、受光層で吸収されず、第1電極で吸収および反射されず、第1透過領域を透過する。第1透過領域を透過した光が、第1金属パターンおよび第2金属パターンで反射される。
(7)前記第2チップは、第2基板および第2電極を有し、前記バンプは前記第2電極に接続され、前記第2透過領域は、前記第2基板を含み、前記第2電極は前記第2透過領域外の領域に設けられてもよい。第2透過領域に入射する光は、第2電極で吸収および反射されず、第2透過領域を透過する。第2透過領域を透過した光が、第1金属パターンおよび第2金属パターンで反射される。
(8)第1チップと第2チップとを有する電子装置の製造方法であって、前記第1チップは第1透過領域を有し、前記第1透過領域の光の透過率は、前記第1チップのうち前記第1透過領域以外の領域の透過率よりも高く、前記第1チップの前記第2チップに対向する面である第1面に第1金属パターンが設けられ、前記第2チップの前記第1チップに対向する面である第2面に第2金属パターンが設けられ、前記製造方法は、前記第1チップおよび前記第2チップの厚さ方向において前記第1金属パターンおよび前記第2金属パターンが前記第1透過領域に重なり、前記第1面および前記第2面の広がる方向において前記第2金属パターンが前記第1金属パターンの外側に位置するように配置した前記第1チップと前記第2チップとを、バンプにより接合する工程と、前記接合する工程の後、前記第1透過領域を通じて前記第1金属パターンおよび前記第2金属パターンに光を入射し、前記第1金属パターンで反射された光および前記第2金属パターンで反射された光を用いて、前記第1チップと前記第2チップとの間の距離を測定する工程と、を有する電子装置の製造方法である。第1透過領域を透過した光が、第1金属パターンおよび第2金属パターンで反射される。第1金属パターンの反射光および第2金属パターンの反射光を用いて、第1チップと第2チップとの間の距離を測定することができる。
(9)前記第1チップの前記第1面とは反対側の面である第3面に第3金属パターンが設けられ、前記第1面および前記第2面の広がる方向において、前記第3金属パターンは前記第1金属パターンおよび前記第2金属パターンの外側に位置し、前記接合する工程の後、前記第3金属パターンに光を入射し、かつ前記第1透過領域を通じて前記第1金属パターンに光を入射し、前記第1金属パターンで反射された光および前記第3金属パターンで反射された光を用いて、前記第1チップの厚さを測定する工程を有してもよい。第1チップの厚さを測定することができる。
(10)前記第2チップの前記第2面とは反対側の面である第4面に設けられた第4金属パターンを具備し、前記第2チップは第2透過領域を有し、前記第2透過領域の光の透過率は、前記第2チップのうち前記第2透過領域以外の領域の透過率よりも高く、前記第1面および前記第2面の広がる方向において、前記第4金属パターンは前記第1金属パターンおよび前記第2金属パターンの外側に位置し、前記接合する工程は、前記厚さ方向において前記第2透過領域は前記第1透過領域に重なり、前記第4金属パターンは前記第1透過領域および前記第2透過領域に重なるように、前記第1チップと前記第2チップとを接合する工程であり、前記接合する工程の後、前記第1透過領域を通じて前記第2金属パターンに光を入射し、前記第1透過領域および前記第2透過領域を通じて前記第4金属パターンに光を入射し、前記第2金属パターンで反射された光、および前記第4金属パターンで反射された光を用いて、前記第2チップの厚さを測定する工程を有してもよい。第2チップの厚さを測定することができる。
(11)第1チップと第2チップとを有する電子装置の測定方法であって、前記第1チップと前記第2チップとはバンプにより接合され、前記第1チップは第1透過領域を有し、前記第1透過領域の光の透過率は、前記第1チップのうち前記第1透過領域以外の領域の透過率よりも高く、前記第1チップの前記第2チップに対向する面である第1面に第1金属パターンが設けられ、前記第2チップの前記第1チップに対向する面である第2面に第2金属パターンが設けられ、前記第1チップおよび前記第2チップの厚さ方向において、前記第1金属パターンおよび前記第2金属パターンは前記第1透過領域に重なり、前記第1面および前記第2面の広がる方向において、前記第2金属パターンは前記第1金属パターンの外側に位置し、前記測定方法は、前記第1透過領域を通じて前記第1金属パターンおよび前記第2金属パターンに光を入射する工程と、前記第1金属パターンで反射された光および前記第2金属パターンで反射された光を用いて、前記第1チップと前記第2チップとの間の距離を測定する工程と、を有する電子装置の測定方法である。第1金属パターンの反射光および第2金属パターンの反射光を用いて、第1チップと第2チップとの間の距離を測定することができる。
[本開示の実施形態の詳細]
本開示の実施形態に係る電子装置、電子装置の製造方法および測定方法の具体例を、以下に図面を参照しつつ説明する。なお、本開示はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
<第1実施形態>
図1Aは、第1実施形態に係る電子装置100を例示する平面図である。図1Bは、図1Aの線A-Aに沿った断面図である。図2は、透過領域付近を拡大した図である。
図1Aから図2に示すように、電子装置100はセンサチップ10(第1チップ)とIC(Integrated Circuit、集積回路)チップ30(第2チップ)とを備える、半導体受光素子である。センサチップ10とICチップ30とは、複数のバンプ28により接合され、かつ電気的に接続されている。
Z軸方向はセンサチップ10およびICチップ30の厚さ方向である。Z軸方向において、センサチップ10とICチップ30とは離間し、かつ対向する。センサチップ10とICチップ30との間には、アンダーフィル19が充填されている。アンダーフィル19は、例えばエポキシなどの樹脂である。
センサチップ10およびICチップ30は、X軸方向に延伸する辺およびY軸方向に延伸する辺を有する。センサチップ10のY軸方向の長さY1は、例えば4.5mmである。X軸方向の長さX1は、例えば10mmである。ICチップ30のY軸方向の長さY2は、例えば7.5mmである。X軸方向の長さX2は、例えば12mmである。X軸方向、Y軸方向およびZ軸方向は、互いに直交する。
センサチップ10の面10a(第1面)は、ICチップ30に対向する。面10b(第3面)は、センサチップ10の面10aとは反対側の面である。ICチップ30の面30a(第2面)は、センサチップ10に対向する面である。面30b(第4面)は、ICチップ30の面30aとは反対側の面である。面10a、10b、30aおよび30bは、XY平面に平行に延伸する。XY平面は、面10aおよび面10bが広がる方向である。ギャップgとは、Z軸方向に沿った面10aと面30aとの間の距離であり、例えば0.016mmである。
センサチップ10は、例えばFPA(Focal Plane Array、フォーカルプレーンアレイ)センサなどである。ICチップ30は、回路基板であり、例えば読み出し回路(ROIC:Readout Integrated Circuit)を有する。センサチップ10は、赤外光などの光を受光することで、光の強度に応じた電気信号(電流)を出力する。電気信号は、センサチップ10からICチップ30に入力される。
図1Bに示すように、センサチップ10は、基板12(第1基板)と半導体層11とを有する。基板12の半導体層11とは反対側の面(裏面)には、反射防止膜23が設けられている。半導体層11は、基板12のICチップ30に対向する面(主面)に積層されている。半導体層11は、センサチップ10の面内の中央側にメサ13を有する。メサ13は、ICチップ30に向けて突出する。
図2に示すように、半導体層11は、n型半導体層14、受光層16、半導体層18、p型半導体層20、およびコンタクト層22を含む。基板12の表面から順に、n型半導体層14、受光層16、および半導体層18が積層されている。半導体層18の表面のうち一部にp型半導体層20、およびコンタクト層22が積層されている。
n型半導体層14は、基板12の主面の全体を覆うように設けられる。n型半導体層14、受光層16、半導体層18、p型半導体層20、およびコンタクト層22がメサ13を形成する。複数のメサ15が、メサ13に設けられ、メサ13からICチップ30に向けて突出する。p型半導体層20およびコンタクト層22がメサ15を形成する。複数のメサ15の間には溝が設けられており、これらの溝を介して複数のメサ15は互いに分離されている。絶縁膜17は、メサ15の上面および側面、メサ13の上面および側面、n型半導体層14の表面を覆う。絶縁膜17の表面が面10aである。
メサ15の先端面には電極24(第1電極)が設けられている。複数の電極24はp型電極とn型電極とを含む。図2に示す2つの電極24のうち1つはn型電極であり、絶縁膜17の表面に設けられ、p型半導体層20には電気的に接続されておらず、不図示の配線によりn型半導体層14に電気的に接続される。図2に示す2つの電極24のうちもう1つはp型電極であり、絶縁膜17の開口部を通じてコンタクト層22の表面に設けられ、コンタクト層22およびp型半導体層20と電気的に接続されている。
基板12およびn型半導体層14は、例えばn型のインジウムリン(n-InP)などで形成されている。n型のドーパントとして例えばシリコン(Si)が用いられる。受光層16は、例えばインジウムガリウム砒素(InGaAs)などで形成されている。半導体層18は、例えばノンドープのインジウムガリウム砒素リン(InGaAsP)などで形成されている。p型半導体層20は、例えばp型のインジウムリン(p-InP)などで形成されている。コンタクト層22は、例えばp型のInGaAsなどで形成されている。p型のドーパントとして例えば亜鉛(Zn)が用いられる。
基板12の厚さは、例えば0.5mmである。n型半導体層14、受光層16、半導体層18、p型半導体層20、およびコンタクト層22を合わせた厚さ(半導体層11の厚さ)は、基板12の厚さより小さく、例えば数μmである。基板12および半導体層11は、上位以外の化合物半導体で形成されてもよい。
絶縁膜17および反射防止膜23は、例えば窒化シリコン(SiN)で形成されている。電極24は、例えば複数の金属を組み合わせで形成される。
ICチップ30は、基板32(第2基板)および電極34(第2電極)を有する。面30aに複数の電極34が設けられている。基板32は、例えばシリコン(Si)などで形成されている。基板32の厚さは、例えば0.75mmである。電極34は、例えば複数の金属を組み合わせで形成される。バンプ28は電極24と電極34とに接合され、かつこれら2つの電極を電気的に接続する。バンプ28は、例えばインジウム(In)などの半田で形成されている。
基板12、n型半導体層14、半導体層18、p型半導体層20、およびコンタクト層22のバンドギャップは、赤外光のエネルギーよりも大きい。受光層16のバンドギャップは、赤外光のエネルギーと同程度である。受光層16は、赤外光を吸収しやすく、特に波長1100nmから1700nmの範囲の光に対して高い吸収率を有する。赤外光は基板12およびn型半導体層14を透過し、受光層16に吸収される。受光層16は赤外光を吸収して、キャリア(電子および正孔)を生成する。センサチップ10が発生させる電流が、ICチップ30に読み出され、例えば画像情報などが生成される。
図1Aに示すように、電子装置100は4つの透過領域40を有する。透過領域40は図1Aにおいて破線で囲まれた部分である。透過領域40の平面内での大きさは、例えば2.4mm×1.2mmである。4つの透過領域40は、センサチップ10のXY平面内の四隅の近傍に位置する。透過領域40はZ軸方向において面10bから面30bまでの部分を含む。透過領域40の赤外光に対する透過率は、透過領域40以外の領域の透過率に比べて高い。図2に示すように、透過領域40は透過領域42(第1透過領域)および透過領域44(第2透過領域)を含む。
センサチップ10は透過領域42を有する。透過領域42は、XY平面内においてメサ13の外側に位置する。具体的には、透過領域42は、メサ13よりもセンサチップ10の側縁に近い部分に設けられる。透過領域42は、基板12、n型半導体層14および絶縁膜17を含み、受光層16、半導体層18、p型半導体層20、コンタクト層22および電極24を含まない。言い換えれば、受光層16、半導体層18、p型半導体層20、コンタクト層22および電極24は、透過領域42以外の領域に設けられている。センサチップ10の面10bに反射防止膜23が設けられる。反射防止膜23は、基板12を裏面側から透視したときにメサ13に重なる部分に設けられている。透過領域42に反射防止膜23は設けられていない。
透過領域42は、受光層16および電極24を含まない。このため、透過領域42に入射する赤外光は、受光層16によって吸収されず、また電極24により吸収および反射されず、透過領域42を透過する。透過領域42の赤外光に対する透過率は、センサチップ10のうち透過領域42以外の領域の透過率に比べて高く、例えば90%以上である。
金属パターン50(第1金属パターン)は、センサチップ10の面10aに設けられ、透過領域42に位置する。金属パターン50は、例えばAuなどの金属で形成されている。金属パターン50の厚さは例えば80nmである。金属パターン50の平面形状は例えば円形または正方形などである。幅は例えば1mmである。金属パターン50の平面形状が円形の場合、幅とは直径を意味する。金属パターン50の平面形状が正方形の場合、幅とは一辺の長さを意味する。
ICチップ30は透過領域44を有する。透過領域44は、基板32を含み、電極34を含まない。透過領域44は、Z軸方向において透過領域42に重なる部分を有する。具体的には、面10aのZ軸方向の上方からセンサチップ10を透視したときに、透過領域42と透過領域44とが重なる部分が存在する。Z軸方向から透視したとき、透過領域44と透過領域42の全体とが一致するように重なってもよい。または、Z軸方向から透視したとき、透過領域44の一部と透過領域42の一部とが重なってもよい。透過領域44に入射する赤外光は、電極34により吸収および反射されず、透過領域44を透過する。透過領域44の赤外光に対する透過率は、ICチップ30のうち透過領域44以外の領域の透過率に比べて高く、例えば90%以上である。
金属パターン52(第2金属パターン)は、面30aに設けられ、透過領域44に位置し、かつXY平面内で金属パターン50の外側に位置する。すなわち、図1Aに示すように、平面視した際に、金属パターン50および52は互いに重ならない。金属パターン52は、例えばAuなどの金属で形成されている。金属パターン52の厚さは例えば80nmである。金属パターン52の平面形状は例えば円形または正方形などである。幅は例えば1mmである。
センサチップ10の裏面側(図2の上側)から透過領域40に赤外光を入射すると、赤外光は基板12およびn型半導体層14を透過し、金属パターン50および52それぞれの表面で反射される。反射光を用いて、センサチップ10とICチップ30との間の距離(ギャップ)gを測定することができる。
(製造方法)
図3Aから図4Bは、電子装置100の製造方法を例示する断面図である。例えば有機金属気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)などで、InPのウェハ(基板12)の表面に、n型半導体層14、受光層16、半導体層18、p型半導体層20、コンタクト層22を順にエピタキシャル成長する。エッチングなどで、メサ13およびメサ15を形成する。化学気相成長法(CVD:Chemical Vapor Deposition)などにより、絶縁膜17および反射防止膜23を設ける。シリコンウェハ(基板32)に蒸着およびリフトオフなどで、電極24および金属パターン50を形成する。ウェハをダイシングして、センサチップ10およびICチップ30を形成する。
図3Aに示すように、センサチップ10の電極24上にはバンプ25を形成する。ICチップ30の電極34上にはバンプ27を形成する。バンプ25とバンプ27とが対向し、かつ透過領域42と透過領域44とが対向するように、センサチップ10とICチップ30との位置合わせを行う。Z軸方向において、金属パターン50および52は、透過領域42および44に重なる。具体的には、面10aの上方(Z軸方向)からセンサチップ10を透視したときに、金属パターン50および52は、透過領域42と透過領域44とが重なる部分の内側に位置する。XY平面内において、金属パターン52は、金属パターン50の外側に位置する。
図3Bに示すように、リフロー処理を行い、センサチップ10とICチップ30とをフリップチップボンディングする。具体的には、バンプ25とバンプ27とを接触させ、半田の融点以上の温度まで加熱する。バンプ25とバンプ27とは溶融し、バンプ28を形成する。バンプ28が固化し、センサチップ10とICチップ30とが接合される。図3Cに示すように、センサチップ10とICチップ30との間にアンダーフィル19を充填する。
図4Aおよび図4Bは、ギャップgの測定の工程を示す。測定には測定装置60を用いる。図4Aおよび図4Bに示すように、測定装置60は、制御部61、光源62、センサ64、レンズ66および68を有する。光源62は、例えばレーザ光源であり、赤外光を出射する。光源62の出射光の波長は、例えば900nmから1700nmの範囲で変更可能である。センサ64は、例えばCCD(Charge Coupled Device)またはCMOS(Complementary Metal Oxide Semiconductor)などを備えるアレイセンサである。レンズ66および68は集光レンズである。制御部61は、センサ64が出力する電気信号を処理する装置であり、例えばコンピュータおよび処理回路などを含む。制御部61は、センサ64が反射光を受光する位置に基づいて、例えば三角測量を応用して、対象物までの距離を測定する。測定装置60は、制御部61、光源62、センサ64、レンズ66および68を1つの筐体に収納した装置でもよい。
電子装置100は、不図示の可動式ステージの上に配置される。図4Aおよび図4Bの例では面30bは下側に向けられる。光源62およびセンサ64は、センサチップ10の面10bよりも上に配置する。光源62とセンサチップ10との間にレンズ66が位置する。センサ64とセンサチップ10との間にレンズ68が位置する。
光源62から電子装置100に向けてレーザ光を出射する。光源62の出射光の面10aの法線方向(Z軸方向)に対する角度(入射角)θは、0°以上、90°未満であり、例えば35°である。
図4Aに示すように、光源62の出射光は、レンズ66で集光され、センサチップ10の透過領域42を透過し、金属パターン50に入射し、金属パターン50の表面(金属パターン50と絶縁膜17との界面)で反射される。金属パターン50からの反射光は、透過領域42を透過し、レンズ68で集光され、センサ64に入射する。制御部61は、金属パターン50の反射光に対するセンサ64上の受光位置を特定し、金属パターン50からレンズ68までの距離L1を測定する。距離L1の測定後、不図示の可動式ステージなどで電子装置100をXY平面に平行に移動させる。電子装置100のZ軸方向の位置は変えない。
図4Bに示すように、光源62の出射光は、センサチップ10の透過領域42を透過し、金属パターン52に入射し、金属パターン52の表面で反射される。金属パターン52からの反射光は、透過領域42を透過し、センサ64に入射する。金属パターン52の反射光に対するセンサ64上の受光位置は、金属パターン50の反射光に対するセンサ64上の受光位置から変わる。制御部61は、金属パターン52の反射光に対するセンサ64上の受光位置を特定し、金属パターン52からレンズ68までの距離L2を測定する。
制御部61は、距離L2から距離L1を減算することで、センサチップ10とICチップ30との間の距離(ギャップg)を算出する。
図1Aに示すように、4つの金属パターン50および4つの金属パターン52が設けられている。金属パターンの4つのペアに対して図4Aおよび図4Bの測定を行い、それぞれの位置におけるギャップgを取得する。ギャップgが例えば0.016mm±0.005mmなど、公差範囲内に入っていれば、当該製品は良品である。
第1実施形態によれば、センサチップ10は透過領域42を有する。金属パターン50はセンサチップ10の面10aに設けられ、透過領域42に位置する。金属パターン52は、ICチップ30の面30aに設けられ、透過領域42に重なる。透過領域42は赤外光に対して高い透過率を有する。赤外光は透過領域42を透過して、金属パターン50および52に照射される。金属パターン52は金属パターン50の外側に位置するため、赤外光は金属パターン50に遮られずに、金属パターン52に照射される。赤外光は金属パターン50および52で反射される。金属パターン50の反射光、および金属パターン52の反射光を用いて、センサチップ10とICチップ30との間のギャップgを測定することができる。
画像認識による距離の測定では、基板12による光の散乱、および球面収差などで、像が不鮮明になり、精度の高い測定が難しい。第1実施形態によれば、金属パターン50からの反射光、および金属パターン52からの反射光を用いて、ギャップgを測定する。光の散乱、および球面収差の影響を抑制し、精度の高い測定をすることができる。測定装置60は、赤外光の光源62と、距離を測定可能なセンサ64を有する。分解能の高いレンズなど高価な装置を使用しなくてよいため、低コストかつ簡単な工程で測定が可能である。
センサチップ10およびICチップ30はそれぞれウェハのダイシングで形成される。ダイシングの切断面が粗い場合、側面からのギャップgの測定は難しい。また、アンダーフィル19を設けた後は、センサチップ10の側面が見えにくくなり、ギャップgの測定が困難である。第1実施形態によれば、アンダーフィル19の充填後でも、赤外光を透過領域42に透過させ、金属パターン50および52からの反射光を用いてギャップgを測定することができる。
受光層16および電極24は、センサチップ10のうち透過領域42以外の領域に設けられている。受光層16はInGaAsで形成され、赤外光に対して高い吸収率を有する。透過領域42は受光層16および電極24を含まない。したがって、受光層16による赤外光の吸収、電極24による吸収および反射などを抑制することができる。透過領域42は、基板12およびn型半導体層14を有する。基板12およびn型半導体層14は、InPで形成されており、赤外光を吸収しにくく、透過させる。透過領域42の赤外光に対する透過率は、例えば80%以上、90%以上などである。透過率は、測定に用いる光の波長に依存し、基板12およびn型半導体層14の厚さによっても変化する。具体的な例として、基板12およびn型半導体層14が薄いほど、透過率が高い。光源62からの光が透過領域42の基板12およびn型半導体層14を透過し、金属パターン50および52に入射することで、反射光が発生する。反射光を用いてギャップgを測定することができる。
金属パターン50および52は、例えばAuなどの金属で形成されており、赤外光を反射する。金属パターン50および52の赤外光に対する反射率は、例えば70%以上、80%以上、90%以上などである。反射率が高いほど反射光の強度が大きくなる。反射光が距離の測定に十分な強度を有していればよい。光を適切な方向に反射させるため、金属パターン50および52の表面は平坦であることが好ましい。光の波長と金属との組み合わせによって、反射率および吸収率は変化する。電極24および34は、複数の金属の多層構造で形成されることがあり、光に対して高い吸収率を有する。一方、Au製の金属パターン50および52は、例えば波長が900nmから1700nmの光に対して、90%以上の高い反射率を有する。このため、金属パターン50および52から、高い強度を有する反射光が生じる。
図1Aに示すように、電子装置100は4つの透過領域40を有する。透過領域40は、センサチップ10の4つの頂点の近傍に設けられている。4つの透過領域40それぞれに、金属パターン50および52が設けられている。4つの透過領域40において、ギャップgを測定する。4つのギャップgを比較することで、センサチップ10とICチップ30との間の傾きを調べることができる。センサチップ10がICチップ30に対して傾斜している場合、バンプ28による接合が不良になる恐れがある。4つのギャップgが例えば0.016mm±0.005mmなど、公差範囲内に入っていればよい。センサチップ10とICチップ30とが互いに平行に近い状態で接合されることで、接合の不良が抑制される。
透過領域42の数、金属パターンのペア(金属パターン50および52)の数は4つ以下でもよいし、4つ以上でもよい。電子装置100の全体におけるギャップgを測定するため、少なくとも4つの透過領域42および金属パターンのペアが設けられ、特にセンサチップ10の四隅に設けられることが好ましい。
光源62の出射光のスポットサイズ(直径)は例えば75μmである。スポットサイズ、および入射角θなどに応じて、透過領域40の大きさを定める。光源62からのレーザ光が受光層16および電極などに遮られずに金属パターン50および52に照射され、かつ金属パターン50からの反射光および金属パターン52からの反射光が遮られずにセンサ64に入射されればよい。入射角θは例えば最小で0°である。つまり、光を垂直に入射し、垂直に反射される反射光で測定を行う。光は赤外光でもよいし、赤外光以外の光でもよく、透過領域40を透過し、金属パターンで反射されればよい。
測定装置60をICチップ30の面30bに対向する位置に配置し、ICチップ30の透過領域44に赤外光を照射してもよい。透過領域44は、Siの基板32を含み、電極34は含まない。赤外光は、電極34で反射および吸収されず、透過領域44を透過し、金属パターン50および52で反射される。反射光は透過領域44を透過し、センサ64に入射する。反射光を用いてギャップgを測定する。電子装置100は半導体受光素子以外の装置でもよい。
<第2実施形態>
図5Aは、第2実施形態に係る電子装置200を例示する平面図である。図5Bは、図5Aの線A-Aに沿った断面図である。
図5Aおよび図5Bに示すように、電子装置200は4つの透過領域40を有する。4つの透過領域40のそれぞれに、金属パターン50、52、54および56が設けられている。
金属パターン50はセンサチップ10の面10aに設けられている。金属パターン52はICチップ30の面30aに設けられている。金属パターン54(第3金属パターン)はセンサチップ10の面10bに設けられている。金属パターン56(第4金属パターン)はICチップ30の面30bに設けられている。
X軸方向に沿って、金属パターン54、金属パターン50、金属パターン52、および金属パターン56がこの順に並ぶ。金属パターン54は、金属パターン50、52および56の外側に位置する。金属パターン56は、金属パターン50、52および54の外側に位置する。金属パターン50、52、54および56は、互いに重ならない。金属パターン50、52、54および56の材料は同一であり、例えばAuなどの金属である。
(製造方法)
図6Aおよび図6Bは、電子装置200の製造方法を例示する断面図である。フリップチップ実装、およびアンダーフィル19の形成の工程は、第1実施形態と同じである。
図6Aに示すように、測定装置60を面10bの上に配置する。光源62の出射光を金属パターン54に照射する。金属パターン54から生じる反射光は、センサ64に入射する。制御部61は、金属パターン54の反射光に対するセンサ64上の受光位置を特定し、金属パターン54からレンズ68までの距離L3を測定する。
図6Bに示すように、光源62の出射光を、透過領域42および44を透過させて、金属パターン56に照射する。金属パターン56から生じる反射光は、透過領域42および44を透過し、センサ64に入射する。制御部61は、金属パターン56の反射光に対するセンサ64上の受光位置を特定し、金属パターン56からレンズ68までの距離L4を測定する。
図5Aの工程と同様に、金属パターン50に赤外光を照射し、反射光をセンサ64で受光する。図5Bの工程と同様に、金属パターン52に赤外光を照射し、反射光をセンサ64で受光する。距離L1およびL2を測定する。
制御部61は、距離L1から距離L3を減算することで、センサチップ10の厚さT1を算出する。制御部61は、距離L4から距離L2を減算することで、ICチップ30の厚さT2を算出する。
第2実施形態によれば、金属パターン50はセンサチップ10の面10aに設けられ、透過領域42に位置する。金属パターン54は面10bに設けられている。金属パターン52は、ICチップ30の面30aに設けられ、透過領域42に重なる。金属パターン56は、面30bに設けられ、透過領域42および44に重なる。赤外光は金属パターン54で反射される。透過領域42を透過した赤外光は、金属パターン50で反射される。金属パターン54からの反射光および金属パターン50からの反射光を用いて、センサチップ10の厚さT1を測定することができる。
透過領域42透過した赤外光は、金属パターン52で反射される。透過領域42および44を透過した光は、金属パターン56で反射される。金属パターン52からの反射光および金属パターン56からの反射光を用いて、ICチップ30の厚さT2を測定することができる。第2実施形態によれば、ギャップgとともに、厚さT1およびT2を測定することができる。
低コストの測定装置60を用い、簡単な工程で、ギャップg、厚さT1およびT2を測定することができる。画像認識による測定に比べて、精度も高い。アンダーフィル19の充填後であっても、測定は可能である。
4つの透過領域40のそれぞれにおいて、ギャップg、厚さT1およびT2を測定することが好ましい。電子装置100の複数の位置において、ギャップg、厚さT1およびT2が公差の範囲内であるか検査することができる。
測定装置60をICチップ30の面30bに対向する位置に配置し、ICチップ30の透過領域44に赤外光を照射してもよい。赤外光は金属パターン56で反射される。赤外光は、透過領域44を透過し、金属パターン50および52で反射される。反射光は透過領域44を透過し、センサ64に入射する。赤外光は、透過領域44および42を透過し、金属パターン54で反射される。反射光は、透過領域44および42を透過し、センサ64に入射する。反射光を用いてギャップg、厚さT1およびT2を測定する。
図5Aの例では、金属パターン54および金属パターン56の両方が、透過領域40に位置する。センサチップ10側およびICチップ30側のどちらから光を照射してもよい。金属パターン54および金属パターン56のどちらか1つが、透過領域40に位置していればよい。例えば金属パターン54が透過領域40の外側に位置し、金属パターン56が透過領域40に位置する場合、光をセンサチップ10側から照射する。金属パターン54で光が反射される。透過領域40を透過した光が、金属パターン56で反射される。金属パターン54および56のうち少なくとも一方が、透過領域42および44に重なればよい。
以上、本開示の実施形態について詳述したが、本開示は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本開示の要旨の範囲内において、種々の変形・変更が可能である。
10 センサチップ
11、18 半導体層
12、32 基板
13、15 メサ
14 n型半導体層
16 受光層
17 絶縁膜
19 アンダーフィル
20 p型半導体層
22 コンタクト層
23 反射防止膜
24、34 電極
25、27、28 バンプ
40、42、44 透過領域
50、52、54、56 金属パターン
60 測定装置
61 制御部
62 光源
64 センサ
66、68 レンズ
100、200 電子装置

Claims (11)

  1. 第1チップと、
    バンプにより前記第1チップに接合された第2チップと、
    前記第1チップの前記第2チップに対向する面である第1面に設けられた第1金属パターンと、
    前記第2チップの前記第1チップに対向する面である第2面に設けられた第2金属パターンと、を具備し、
    前記第1チップは第1透過領域を有し、
    前記第1透過領域の光の透過率は、前記第1チップのうち前記第1透過領域以外の領域の透過率よりも高く、
    前記第1金属パターンおよび前記第2金属パターンは、前記第1チップおよび前記第2チップの厚さ方向において前記第1透過領域に重なり、
    前記第1面および前記第2面の広がる方向において、前記第2金属パターンは前記第1金属パターンの外側に位置する電子装置。
  2. 前記第2チップは第2透過領域を有し、
    前記第2透過領域の光の透過率は、前記第2チップのうち前記第2透過領域以外の領域の透過率よりも高く、
    前記第2透過領域は、前記厚さ方向において前記第1透過領域に重なり、
    前記第1金属パターンおよび前記第2金属パターンは、前記第1チップおよび前記第2チップの厚さ方向において前記第1透過領域および前記第2透過領域に重なる請求項1に記載の電子装置。
  3. 前記第1チップは、複数の前記透過領域および複数の前記第1金属パターンを有し、
    前記第2チップは、複数の前記第2金属パターンを有する請求項1または請求項2に記載の電子装置。
  4. 前記第1チップの前記第1面とは反対側の面である第3面に設けられた第3金属パターンを具備し、
    前記第1面および前記第2面の広がる方向において、前記第3金属パターンは前記第1金属パターンおよび前記第2金属パターンの外側に位置する請求項1から請求項3のいずれか一項に記載の電子装置。
  5. 前記第2チップの前記第2面とは反対側の面である第4面に設けられた第4金属パターンを具備し、
    前記第1面および前記第2面の広がる方向において、前記第4金属パターンは前記第1金属パターンおよび前記第2金属パターンの外側に位置する請求項2に記載の電子装置。
  6. 前記第1チップは、第1基板、受光層および第1電極を有し、
    前記バンプは前記第1電極に接続され、
    前記第1透過領域は、前記第1基板を含み、
    前記受光層および前記第1電極は、前記第1透過領域以外の領域に設けられている請求項1から請求項5のいずれか一項に記載の電子装置。
  7. 前記第2チップは、第2基板および第2電極を有し、
    前記バンプは前記第2電極に接続され、
    前記第2透過領域は、前記第2基板を含み、
    前記第2電極は前記第2透過領域外の領域に設けられている請求項2に記載の電子装置。
  8. 第1チップと第2チップとを有する電子装置の製造方法であって、
    前記第1チップは第1透過領域を有し、
    前記第1透過領域の光の透過率は、前記第1チップのうち前記第1透過領域以外の領域の透過率よりも高く、
    前記第1チップの前記第2チップに対向する面である第1面に第1金属パターンが設けられ、
    前記第2チップの前記第1チップに対向する面である第2面に第2金属パターンが設けられ、
    前記製造方法は、
    前記第1チップおよび前記第2チップの厚さ方向において前記第1金属パターンおよび前記第2金属パターンが前記第1透過領域に重なり、前記第1面および前記第2面の広がる方向において前記第2金属パターンが前記第1金属パターンの外側に位置するように配置した前記第1チップと前記第2チップとを、バンプにより接合する工程と、
    前記接合する工程の後、前記第1透過領域を通じて前記第1金属パターンおよび前記第2金属パターンに光を入射し、前記第1金属パターンで反射された光および前記第2金属パターンで反射された光を用いて、前記第1チップと前記第2チップとの間の距離を測定する工程と、を有する電子装置の製造方法。
  9. 前記第1チップの前記第1面とは反対側の面である第3面に第3金属パターンが設けられ、
    前記第1面および前記第2面の広がる方向において、前記第3金属パターンは前記第1金属パターンおよび前記第2金属パターンの外側に位置し、
    前記接合する工程の後、前記第3金属パターンに光を入射し、かつ前記第1透過領域を通じて前記第1金属パターンに光を入射し、前記第1金属パターンで反射された光および前記第3金属パターンで反射された光を用いて、前記第1チップの厚さを測定する工程を有する請求項8に記載の電子装置の製造方法。
  10. 前記第2チップの前記第2面とは反対側の面である第4面に設けられた第4金属パターンを具備し、
    前記第2チップは第2透過領域を有し、
    前記第2透過領域の光の透過率は、前記第2チップのうち前記第2透過領域以外の領域の透過率よりも高く、
    前記第1面および前記第2面の広がる方向において、前記第4金属パターンは前記第1金属パターンおよび前記第2金属パターンの外側に位置し、
    前記接合する工程は、前記厚さ方向において前記第2透過領域は前記第1透過領域に重なり、前記第4金属パターンは前記第1透過領域および前記第2透過領域に重なるように、前記第1チップと前記第2チップとを接合する工程であり、
    前記接合する工程の後、前記第1透過領域を通じて前記第2金属パターンに光を入射し、前記第1透過領域および前記第2透過領域を通じて前記第4金属パターンに光を入射し、前記第2金属パターンで反射された光、および前記第4金属パターンで反射された光を用いて、前記第2チップの厚さを測定する工程を有する請求項8または請求項9に記載の電子装置の製造方法。
  11. 第1チップと第2チップとを有する電子装置の測定方法であって、
    前記第1チップと前記第2チップとはバンプにより接合され、
    前記第1チップは第1透過領域を有し、
    前記第1透過領域の光の透過率は、前記第1チップのうち前記第1透過領域以外の領域の透過率よりも高く、
    前記第1チップの前記第2チップに対向する面である第1面に第1金属パターンが設けられ、
    前記第2チップの前記第1チップに対向する面である第2面に第2金属パターンが設けられ、
    前記第1チップおよび前記第2チップの厚さ方向において、前記第1金属パターンおよび前記第2金属パターンは前記第1透過領域に重なり、
    前記第1面および前記第2面の広がる方向において、前記第2金属パターンは前記第1金属パターンの外側に位置し、
    前記測定方法は、
    前記第1透過領域を通じて前記第1金属パターンおよび前記第2金属パターンに光を入射する工程と、
    前記第1金属パターンで反射された光および前記第2金属パターンで反射された光を用いて、前記第1チップと前記第2チップとの間の距離を測定する工程と、を有する電子装置の測定方法。
JP2021148086A 2021-09-10 2021-09-10 電子装置、電子装置の製造方法および測定方法 Pending JP2023040895A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021148086A JP2023040895A (ja) 2021-09-10 2021-09-10 電子装置、電子装置の製造方法および測定方法
US17/880,273 US20230077954A1 (en) 2021-09-10 2022-08-03 Electronic device, method of manufacturing and measuring method for electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021148086A JP2023040895A (ja) 2021-09-10 2021-09-10 電子装置、電子装置の製造方法および測定方法

Publications (1)

Publication Number Publication Date
JP2023040895A true JP2023040895A (ja) 2023-03-23

Family

ID=85479876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021148086A Pending JP2023040895A (ja) 2021-09-10 2021-09-10 電子装置、電子装置の製造方法および測定方法

Country Status (2)

Country Link
US (1) US20230077954A1 (ja)
JP (1) JP2023040895A (ja)

Also Published As

Publication number Publication date
US20230077954A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
CN114545550B (zh) 具有集成边缘外耦合器的集成光子装置
US10347786B2 (en) Optical sensor package including a cavity formed in an image sensor die
US20110158273A1 (en) Semiconductor laser device, optical pickup device and semiconductor device
US10180235B2 (en) Optical module, in particular opto-electronic module, and method of manufacturing the same
CN106449546B (zh) 影像传感芯片封装结构及其封装方法
US10720751B2 (en) Optical package structure, optical module, and method for manufacturing the same
TW201719940A (zh) 晶圓級封裝模組的製作方法
US8384174B2 (en) Chip package
KR101285473B1 (ko) 반도체 장치와, 반도체 장치의 검사 방법 및 반도체 장치의검사 장치
JP2023040895A (ja) 電子装置、電子装置の製造方法および測定方法
TW201824528A (zh) 影像感測晶片封裝結構及其封裝方法
US20220317391A1 (en) Bonded structure and method for manufacturing a bonded structure
JP6405368B2 (ja) 光学式センサ
CN113031249B (zh) 一种基于光电反馈的微镜控制装置
JP7494753B2 (ja) 電子装置の測定方法、測定装置および測定プログラム
Pruijmboom et al. A VCSEL-based miniature laser-self-mixing interferometer with integrated optical and electronic components
JP2022147340A (ja) 電子装置およびその製造方法
KR100725288B1 (ko) 광도파로와 수광소자 간의 결합구조가 개선된 광 수신장치및 그 결합방법
TWI612651B (zh) 封裝結構及封裝方法
KR20150049743A (ko) 간섭계 반사측정장치 모듈
KR20240014311A (ko) 반도체 패키지 및 반도체 패키지의 제조 방법
US11626525B2 (en) Package structure and method for manufacturing the same
JP2023138380A (ja) ガスセンサ
CN118231485A (zh) 光电转换元件和气体传感器
JPH0149017B2 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240521

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20240607

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20240607