JP2022182538A - プラント制御システム、プラント制御方法及びプログラム - Google Patents

プラント制御システム、プラント制御方法及びプログラム Download PDF

Info

Publication number
JP2022182538A
JP2022182538A JP2021090146A JP2021090146A JP2022182538A JP 2022182538 A JP2022182538 A JP 2022182538A JP 2021090146 A JP2021090146 A JP 2021090146A JP 2021090146 A JP2021090146 A JP 2021090146A JP 2022182538 A JP2022182538 A JP 2022182538A
Authority
JP
Japan
Prior art keywords
control
data
learning
plant
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021090146A
Other languages
English (en)
Other versions
JP7535475B2 (ja
Inventor
敬規 高田
Takanori Takada
大輝 黒川
Daiki Kurokawa
佑樹 田内
Yuki Tanaka
哲 服部
Satoru Hattori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2021090146A priority Critical patent/JP7535475B2/ja
Priority to CN202210253569.3A priority patent/CN115407726A/zh
Priority to DE102022204937.3A priority patent/DE102022204937A1/de
Publication of JP2022182538A publication Critical patent/JP2022182538A/ja
Application granted granted Critical
Publication of JP7535475B2 publication Critical patent/JP7535475B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41885Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by modeling, simulation of the manufacturing system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/14Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories having counter-pressure devices acting on rolls to inhibit deflection of same under load; Back-up rolls
    • B21B13/147Cluster mills, e.g. Sendzimir mills, Rohn mills, i.e. each work roll being supported by two rolls only arranged symmetrically with respect to the plane passing through the working rolls
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32339Object oriented modeling, design, analysis, implementation, simulation language
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33027Artificial neural network controller
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33038Real time online learning, training, dynamic network
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34477Fault prediction, analyzing signal trends
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45145Milling

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Human Computer Interaction (AREA)
  • Feedback Control In General (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

【課題】プラント制御システムにおいて、プラントの制御を乱すリスクを少ない状態で、制御ルールを効率的に修正する。【解決手段】対象プラントの実績データと制御操作の組合せを学習する制御方法学習ユニットと、制御方法学習部が学習した実績データと制御操作の組合せに応じて対象プラントの制御を実行する制御実行ユニットと、対象プラントの実績データと制御操作と制御対象の状態変化の組み合わせを学習する状態変化ルール学習ユニットとを備える。対象プラントの実績データと制御操作と制御対象の状態変化の定められた組み合わせに従って制御対象の状態変化を予測することで制御出力の良否判定を行い、良否判定結果と実績データと教師データを学習データとして制御ルールを学習する。【選択図】図3

Description

本発明は、プラント制御システム、プラント制御方法及びプログラムに関する。
従来から、各種のプラントにおいてはその制御により適正な制御結果を得るために、各種制御理論に基づいたプラント制御が実行されている。
プラントの一例を説明すると、例えば圧延機制御において、板の波打ち状態を制御する形状制御を対象とした制御理論として、ファジィ制御やニューロ・ファジィ制御が適用されている。ファジィ制御は、クーラントを利用した形状制御に、また、ニューロ・ファジィ制御は、センジミア圧延機の形状制御に適用されている。このうち、ニューロ・ファジィ制御を適用した形状制御は、特許文献1に示されるように、形状検出器で検出された実績形状パターンと目標形状パターンの差と、予め設定された基準形状パターンとの類似割合を求めるものである。そして、求めた類似割合から、予め設定された基準形状パターンに対する制御操作端操作量によって表現された制御ルールにより、操作端に対する制御出力量を求めることにより行われている。
以下、ニューロ・ファジィ制御を用いたセンヂミア圧延機の形状制御の従来技術について説明する。
センヂミア圧延機の形状制御では、ニューロ・ファジィ制御が用いられる。図31に示すように、センヂミア圧延機50は、パターン認識部51で、形状検出器52にて検出した実形状より形状のパターン認識が行われ、実形状が予め設定された基準形状パターンのどれに最も近いかが演算される。形状検出器52で検出した実形状のデータは、形状検出前処理部54でパターン認識用の前処理が行われる。
そして、制御演算部53で、予め設定された形状パターンに対する制御操作端操作量で構成される制御ルールを用いて制御が実行される。
ここでは、図32に示すように、パターン認識部51は、形状検出器52にて検出した実績の形状パターン(ε)と、目標形状(εref)との差分(Δε)が、パターン1からパターン8の形状のどれに最も近いかを演算する。そして、制御演算部53は、演算結果に基づいて、パターン1からパターン8の制御方法のいずれかを選択し実行する。
特許2804161号 特開2018-180799号公報
特許文献1に記載された従来技術は、予め代表的な形状を基準形状パターンとして設定し、基準波形パターンに対する制御操作端操作量との関係を示す制御ルールを基に制御を行っている。制御ルールの学習についても、基準波形パターンに対する制御操作端操作量に関するものであり、予め定めている代表的な基準形状パターンはそのまま用いている。そのため、特定の形状パターンにしか反応しない形状制御となってしまうという問題がある。
基準形状パターンは、人間が予め対象となる圧延機に関する知識や、形状実績と手動介入操作を蓄積した経験より定めたものであるが、対象となる圧延機及び被圧延材で発生する全ての形状を網羅する事は困難である。そのため、基準形状パターンとは異なる形状が発生した場合、形状制御による制御が実行されず、形状偏差が抑制されずに残ってしまい、あるいは似たような基準形状パターンと誤認識し、誤った制御操作を行って、逆に形状を悪化させてしまう場合もある。
そのため、従来の形状制御においては、予め設定された基準形状パターンとそれに対する制御ルールを用いて制御ルールの学習をし、制御を実行するため、制御精度の向上に限界があるという問題があった。
この問題を解決するために、例えば特許文献2に記載された技術が提案されている。特許文献2には、制御時に外乱を発生させて、学習によりニューラルネットを徐々に賢くする処理が記載されている。しかしながら、特許文献2に記載されたような制御外乱を発生させる処理は、実際に制御対象プラントを運用して、その運用時に制御外乱を発生させるものであり、制御対象プラントの実運用を乱すものであり、運用上、あまり好ましいとは言えない。さらに、制御対象プラントをある程度運用しない限り、ニューラルネットが適正にならないものであり、運転初期時には、適正な制御ができない可能性が高い。
本発明の目的は、プラントの制御を乱すリスクを少なくして、制御ルールを効率的に修正できるプラント制御システム、プラント制御方法及びプログラムを提供することにある。
上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
本願は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、プラント制御システムは、制御対象プラントに対して、制御対象プラントの実績データの組合せのパターンを認識して、制御を実行するものに適用される。
そして、プラント制御システムは、制御対象プラントの実績データと制御操作の組合せを学習する制御方法学習ユニットと、制御方法学習ユニットが学習した実績データと制御操作の組合せに応じて制御対象プラントの制御を実行する制御実行ユニットと、制御対象プラントの実績データと制御操作と制御対象の状態変化の組み合わせを学習する状態変化ルール学習ユニットとを備える。
ここで、制御実行ユニットは、
制御対象プラントの実績データと制御操作の定められた組合せに従って制御出力を与える制御ルール実行部と、
制御対象プラントの実績データと制御操作と制御対象の状態変化の定められた組み合わせに従って、制御対象の状態変化を予測し前記制御出力の良否判定を推定する制御出力良否判定実行部と、
制御出力良否判定実行部での良否判定を元に新規操作探索用操作量を演算する新規探索操作量演算部と、
制御出力良否判定実行部での良否判定を用いて、制御出力を前記制御対象プラントに出力した場合に前記制御対象プラントの実績データが悪化すると判断した場合に、制御出力を前記制御対象プラントに出力することを阻止する制御出力抑制部とを備える。
また、状態変化ルール学習ユニットは、
制御対象プラントの実績データより、実績データと制御操作と、制御操作による制御効果が実績データに表れるまでの時間遅れの間の制御対象の状態変化量の組合せを抽出して学習データを作成し、学習データを用いて学習する状態変化ルール学習部とを備える。
さらに、制御方法学習ユニットは、
制御出力良否判定実行部での制御出力の良否判定と、制御出力を用いて教師データを得る学習データ作成部と、実績データと教師データを学習データとして学習する制御ルール学習部とを備える。
本発明によれば、制御中に形状制御で使用される形状パターンと操作方法の制御ルールを、プラントへのリスクを少なくして、効率的に自動修正し、経年的なプラントの環境変化に対応した、最適なものとすることが可能になる。そのため、本発明によれば、制御精度の向上、制御部の立上げ期間の短縮、経年変化に対する対応が可能となる。
また、本発明によると、制御ルールの性能を予め評価することにより、新たな制御ルールの適用によるプラントへのリスク低減と、最適な制御ルールの選択による制御性能が向上するという効果がある。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施の形態例に係るプラント制御システムの概要を示す構成図である。 本発明の一実施の形態例に係る制御ルール実行部の具体的な構成例を示す図である。 本発明の一実施例に係る制御出力良否判定実行部の例を示す構成図である。 本発明の一実施の形態例に係る制御ルール学習部の具体的な構成例を示す図である。 本発明の一実施例に係る状態変化ルール学習部の例を示す構成図である。 センヂミア圧延機の形状制御における制御方法に対する制御結果良否判定の例を示す図である。 本発明の一実施の形態例に係る良否判定誤差検証部の例を示す構成図である。 本発明の一実施の形態例に係るセンヂミア圧延機の形状制御に用いる場合のニューラルネット構成を示す図である。 本発明の一実施の形態例に係る形状偏差と制御方法を説明する図である。 本発明の一実施の形態例に係る制御入力データ作成部の例を示す構成図である。 本発明の一実施の形態例に係る制御出力演算部の例を示す構成図である。 本発明の一実施の形態例に係るセンヂミア圧延機の状態変化予測に用いる場合のニューラルネット構成を示す図である。 本発明の一実施の形態例に係る制御結果良否判定部の例を示す構成図である。 本発明の一実施の形態例に係る新規探索操作量演算部における操作量演算方法を示す図である。 本発明の一実施の形態例に係る制御出力判定部の例を示す構成図である。 本発明の一実施の形態例に係る制御出力演算部の例を示す構成図である。 本発明の一実施の形態例に係る学習データ作成部における処理段階と処理内容を示す図である。 本発明の一実施の形態例に係る学習データデータベースに保存されるデータ例を示す図である。 本発明の一実施の形態例に係るニューラルネット管理テーブルの例を示す図である。 本発明の一実施の形態例に係る学習データデータベースの例を示す構成図である。 本発明の一実施の形態例に係る学習データデータベースに保存されるデータ例を示す図である。 本発明の一実施の形態例に係る検証データデータベースの例を示す図である。 本発明の一実施の形態例に係るニューラルネット管理テーブルの例を示す図である。 本発明の一実施の形態例に係る学習データデータベースの例を示す図である。 本発明の一実施の形態例に係る良否判定誤差データベースの例を示す図である。 本発明の一実施の形態例に係る良否評価値データベースの例を示す図である。 本発明の一実施の形態例に係るプラント制御システムが制御ルール評価ユニットを備えた例を示す構成図である。 本発明の一実施の形態例に係る制御ルール評価データデータベースの例を示す図である。 本発明の一実施の形態例に係る制御ルール評価値データベースの例を示す図である。 本発明の一実施の形態例に係るプラント制御システムのハードウェア構成例を示すブロック図である。 センヂミア圧延機の例を示す構成図である。 センヂミア圧延機の形状制御における制御ルールの一覧の例を示す図である。
以下、本発明の一実施の形態例(以下、「本例」と称する)のプラント制御システムを、添付図面を参照して説明する。
まず、本例を説明するに先立って、本発明に至る経緯とその概要について、プラント制御システムを圧延機の形状制御装置に適用した場合を例にして説明する。
まず、本発明の目的の一つである、プラントへのリスクを少ない状態で、制御ルールを効率的に修正できるプラント制御システムを得るためには、下記の要件(1),(2),(3),(4)が必要になる。
・要件(1):制御ルールを改善させるには、制御結果の良い制御操作を学習できていない場合には、制御操作を大きく変更して、制御結果が良かった場合に新たな制御操作方法として取り入れるようにし、制御結果の良い制御操作を学習できている場合には、制御操作を変更しないか小さな変更に留めて、それに対する制御結果が良かった場合に新たな制御操作方法として取り入れるようにする。
・要件(2):圧延の実績データ、制御操作と形状パターンの変化の組み合わせを、実機データを元に学習することにより、機械モデルを用いたシミュレータよりも、精度よく制御結果の良否が推定可能なモデルを構築し、定期的な自動学習によって常に最新のプラント状態に適合したモデルを構築する。
・要件(3):制御操作による形状変化を推定するモデルを用いて、従来技術で簡易の機械モデルでのみ行っていたプラントへの制御出力抑制機能の信頼性を高める。
・要件(4):従来技術で一回の制御結果の良否判定で行っていた制御ルール学習データの生成機能において、制御操作による形状変化を推定するモデルを用いることにより、プラントデータに含まれるノイズの影響を抑え、効果の小さな微調整も学習データの対象とすることを可能にし、同時に、制御効果の誤判定を防止することによって、学習データの変動を抑え、制御性能を安定させる。
これらの要件(1)~(4)を実現するためには、制御装置内で、圧延の実績データ、制御操作及び制御操作による形状変化の組合せを学習可能なニューラルネットを構成するのが好ましい。そして、制御装置は、ニューラルネットに制御操作の出力を入力して得た値で、圧延機で発生した形状パターンに対する制御操作の出力による制御結果の良否を推定することが必要になる。さらに、制御装置は、制御結果の良否の推定値を用いて、新規制御操作探索用の制御操作量の演算方法を選択する。
圧延機の簡易モデル等を用いて検証し、明らかに形状が悪化すると考えられる出力に対しては、制御装置は、圧延機の制御操作端に対して出力しないようにして形状悪化を防止する。このとき、制御装置は、制御結果の良否の推定値を、出力抑制の判断に使用することで、保護の信頼性を高め、抑制の範囲を適正化することによって、制御機能による対応可能範囲を拡大することができる。また、圧延機の簡易モデル等が得られない場合でも、制御結果の良否の推定値を用いることで出力抑制の判断が実行可能となり、制御装置の適用対象範囲を広げることができる。
制御結果の良否の推定精度が不十分な適用初期の段階においては、悪いと推定された制御操作についても、プラントに出力することで、圧延の実績データ、制御操作及び制御操作による形状変化の組合せについて、学習している範囲を拡大していくことが必要である。
制御結果の良否判定推定精度が十分に高い段階では、プラントに操作量を出力しなくても制御結果の良否を推定できるので、制御装置は、制御ルールの学習データを生成することが可能になる。
制御装置は、制御操作による形状変化を推定可能なニューラルネットを用いて制御結果の良否を推定することにより、プラントデータが持つノイズの影響を少なくでき、効果の小さな微調整データについての良否判定が可能となる。これにより、制御装置は、学習データを生成することができる。さらに、制御装置は、ノイズによる誤った良否判定を防止することで、学習データの精度を高めることができる。
また、経年変化によるプラントの環境変化等で制御結果の良否判定の推定精度が低下した場合、制御装置は、直近のプラントの実績データを用いて再学習することによって、最新のプラント状態に適合した制御結果の良否判定の推定が可能になる。
制御結果の良否判定の推定精度を確認するためには、ニューラルネットの学習に使用したデータとは別に精度検証用としてテストデータが用意される。そして、制御装置は、この精度検証用のテストデータに含まれる圧延実績データと制御操作を、ニューラルネットに入力することにより出力された形状変化の予測値を用いた良否予測値と、テストデータに含まれる制御結果の良否との誤差を元に、良否判定の予測誤差を確認することが可能になる。
図1は、本例のプラント制御システムの構成を示す。
図1のプラント制御システムは、制御実行ユニット20、制御方法学習ユニット21、状態変化ルール学習ユニット22、複数のデータベースDB(DB1~DB8)、及び各データベースDBの管理テーブルTBを備える。
制御実行ユニット20は、制御対象プラント1からの実績データSiを入力して制御ルール(ニューラルネット)に従い定めた制御操作量出力SOを制御対象プラント1に与えて、制御対象プラント1を制御する。ここでの制御対象プラント1は、既に説明した図31に示すセンヂミア圧延機50とする。
ここで、制御ルールとは、図26で説明したように、例えば検出した実績の形状パターンA(ε)と目標形状(εref)との差分a(Δε)が、用意された複数のパターンの形状のどれに最も近いかを演算するルールである。制御実行ユニット20は、この制御ルールによる演算結果に基づいて、いずれかのパターンの制御方法を選択して実行する。
制御方法学習ユニット21は、制御実行ユニット20にて作成した制御入力データS1などを入力して学習を行い、学習した制御ルールを制御実行ユニット20における制御ルールに反映させる。
状態変化ルール学習ユニット22は、制御対象プラント1の制御操作前後の実績データSiなどを入力して学習を行い、学習した状態変化ルールを制御実行ユニット20における状態変化ルールに反映させる。
制御実行ユニット20は、制御入力データ作成部2、制御ルール実行部10、制御出力演算部3、制御出力抑制部4、制御出力判定部5、制御出力良否判定実行部17、新規探索操作量演算部33、及び制御出力操作方法選択部18を備える。
制御実行ユニット20は、制御対象プラント1である圧延機の実績データSiより、制御入力データ作成部2を用いて、制御ルール実行部10の入力データS1を作成する。
制御ルール実行部10は、制御対象の実績データSiと制御操作端操作指令S2の関係を表現するニューラルネット(制御ルール)を用いて、入力データS1から制御操作端操作指令S2を作成する制御ルール実行処理を行う。制御出力演算部3は、制御操作端操作指令S2をもとに、制御操作端への制御操作量S3を演算する。これにより、制御実行ユニット20は、制御対象プラント1の実績データSiに応じて、ニューラルネットを用いて制御操作量S3を作成する。
また、制御出力良否判定実行部17は、制御対象の実績データSiと制御操作量S3とその制御操作による形状変化の関係を表現するニューラルネット(状態変化ルール)を用いて、制御対象の実績データSiと制御操作量S3から制御出力良否判定推定値S9を作成する制御出力良否判定実行処理を行う。さらに、制御出力良否判定実行部17は、制御対象の実績データSiと後述する選択制御操作量S8から制御結果良否判定推定値S11を作成する。
新規探索操作量演算部33は、制御操作量S3と制御出力良否判定推定値S9を元に、新規探索制御操作量S12を演算する新規探索操作量演算処理を行う。
制御出力操作方法選択部18は、制御操作量S3と新規探索制御操作量S12を元に選択制御操作量S8と制御方法選択フラグS14を作成する。
また、制御実行ユニット20内の制御出力判定部5は、制御対象プラント1からの実績データSi及び制御出力操作方法選択部18からの選択制御操作量S8を用いて、制御操作端への制御操作量出力可否データS4を決定する制御出力判定処理を行う。制御出力抑制部4は、制御操作量出力可否データS4と制御結果良否判定推定値S11を元に、制御操作端への選択制御操作量S8の出力可否を決定し、可とされた選択制御操作量S8を、制御対象プラント1に与える制御操作量出力SOとして出力する。これにより、異常と判断される選択制御操作量S8は、制御実行ユニット20から制御対象プラント1に出力されなくなる。
以上のように構成された制御実行ユニット20は、その処理を実行するために、制御ルールデータベースDB1、出力判定データベースDB3及び良否判定データベースDB4、状態変化ルールデータベースDB5及び良否判定誤差データベースDB7を参照する。
制御ルールデータベースDB1は、制御実行ユニット20内の制御ルール実行部10と、後述する制御方法学習ユニット21内の制御ルール学習部802の双方にアクセス可能に接続されている。
制御ルールデータベースDB1には、制御ルール学習部802における学習結果としての制御ルール(ニューラルネット)が格納される。制御ルール実行部10は、制御ルールデータベースDB1に格納された制御ルールを参照する。
学習データデータベースDB2には、制御ルール学習部802で得られた学習データが格納される。
出力判定データベースDB3は、制御実行ユニット20内の制御出力判定部5にアクセス可能に接続されている。
良否判定データベースDB4には、良否判定のためのデータが格納される。
状態変化ルールデータベースDB5には、状態変化ルール学習部31における学習結果としての状態変化ルール(ニューラルネット)が格納される。この状態変化ルールデータベースDB5は、制御実行ユニット20内の制御出力良否判定実行部17、後述する状態変化ルール学習ユニット22内の状態変化ルール学習部31及び状態変化ルール良否判定誤差検証部34のいずれにもアクセス可能に接続されている。制御出力良否判定実行部17と状態変化ルール良否判定誤差検証部34は、状態変化ルールデータベースDB5に格納された状態変化ルールを参照する。
学習データデータベースDB6には、状態変化ルール学習部31で学習された学習データが格納される。
良否判定誤差データベースDB7には、良否判定をするのに必要な良否判定誤差が格納される。
図2は、本例の制御ルール実行部10の具体的な構成例を示す。
制御ルール実行部10には、制御入力データ作成部2で作成された入力データS1が入力される。制御ルール実行部10は、入力データS1を処理して制御出力演算部3に制御操作端操作指令S2を与える。制御ルール実行部10は、ニューラルネット101を備えており、ニューラルネット101は、図26に示すような形状制御ルールに則した制御操作端操作指令S2を出力する。
制御ルール実行部10は、さらにニューラルネット選択部102を備えており、制御ルールデータベースDB1に格納された制御ルールを参照することで、ニューラルネット101における制御ルールとして最適な制御ルールを選択し、ニューラルネット101に実行させる。
このように制御ルール実行部10は、オペレータ班や制御目的で分けられた複数のニューラルネットから、必要なニューラルネットを選択して使用している。制御ルールデータベースDB1には、制御対象プラント1からのデータとして、ニューラルネット及び良否判定基準を選択できるような実績データ(操業班のデータ等)Siも含むのが良い。
なお、ニューラルネットを実行すると制御ルールになることから、本明細書では、ニューラルネットと制御ルールは同義の意味で使用する。
図3は、制御出力良否判定実行部17の具体的な構成を示す。
制御出力良否判定実行部17には、制御対象プラント1から入力される実績データSiと制御出力演算部3で作成された制御操作量S3が入力される。制御出力良否判定実行部17は、これらの入力データに基づいて制御出力良否判定推定値S9を生成し新規探索操作量演算部33に与える。
また、制御出力良否判定実行部17には、制御対象プラント1から入力される実績データSiと制御出力操作方法選択部18で作成された選択制御操作量S8が入力される。制御出力良否判定実行部17は、これらの入力データに基づいて制御結果良否判定推定値S11を生成し、制御出力抑制部4及び学習データ作成部801に与える。
制御出力良否判定実行部17は、ニューラルネット171及びニューラルネット選択部172を備える。
ニューラルネット171は、実績データSiに対して、制御操作量S3(制御パターン)を出力した場合の形状変化の予測値S20を過去の制御実績を元に推定する。
ニューラルネット選択部172は、状態変化ルールデータベースDB5に格納された状態変化ルールを参照することで、ニューラルネット171における状態変化ルールとして、最適な状態変化ルールを選択する。
このように制御出力良否判定実行部17は、制御対象となる材料性質の違いで分けられた複数のニューラルネットから、必要なニューラルネットを選択する。
状態変化ルールデータベースDB5には、制御対象プラント1からのデータとして、制御対象となる材料性質を選択できるような実績データ(鋼種や板幅のデータ等)Siを含むのが良い。なお、ニューラルネットを実行すると状態変化ルールになることから、本明細書においてはニューラルネットと状態変化ルールは、同義の意味で使用する。
制御結果良否判定部6は、制御対象プラント1からの実績データSi及びニューラルネットが推定した形状変化S20、良否判定データベースDB4に記憶された良否判定データS5並びに良否判定誤差データベースDB7に記憶された良否判定誤差データS21を用いて、実績データSiが良くなる方向に変化するか、悪くなる方向に変化するか判定する制御結果良否判定処理を行う。そして、制御結果良否判定部6は、判定結果を示す制御結果良否データS9あるいはS11を出力する。
図6は、センヂミア圧延機の形状制御における制御方法に対する制御結果良否判定の具体例を示す図である。図6は、図26に示す形状制御ルールごとの制御結果良否判定結果を示す。
図1の説明に戻ると、制御方法学習ユニット21は、制御実行ユニット20で使用するニューラルネット101の学習を実行する。
制御方法学習ユニット21は、学習データ作成部801及び制御ルール学習部802を備える。
制御方法学習ユニット21内の学習データ作成部801は、制御実行ユニット20にて作成した制御操作端操作指令S2、選択制御操作量S8、制御方法選択フラグS14、制御出力良否判定実行部17で作成した制御結果良否判定推定値S11、制御出力判定部5で作成した制御操作量出力可否データS4を用いて、ニューラルネットの学習に使用する新規の教師データS7aを作成する学習データ作成処理を行う。学習データ作成部801が作成した学習データS7aは、制御ルール学習部802に与える。
教師データS7aは、制御ルール実行部10が出力する制御操作端操作指令S2に対応するものである。
図4は、制御ルール学習部802の具体的な構成例を示す。
制御ルール学習部802は、入力データ作成部114、教師データ作成部115、ニューラルネット処理部110、及びニューラルネット選択部113を備える。
制御ルール学習部802には、外部からの入力として制御入力データ作成部2からの入力データS1と、学習データ作成部801からの新規の教師データS7aが入力されている。また、制御ルール学習部802は、制御ルールデータベースDB1及び学習データデータベースDB2に蓄積されたデータを参照する。
制御ルール学習部802において、入力データS1は入力データ作成部114を介してニューラルネット処理部110に取り込まれる。
また、制御ルール学習部802において、学習データ作成部801からの新規の教師データS7aは、教師データ作成部115において学習データデータベースDB2に記憶されている過去の教師データS7bも含めた合計の教師データS7cとして、ニューラルネット処理部110に与えられる。これらの教師データS7a,S7bは、適宜、学習データデータベースDB2に記憶されて利用される。
同様に、制御入力データ作成部2からの入力データS8aは、入力データ作成部114において学習データデータベースDB2に記憶されている過去の入力データS8bも含めた合計の入力データS8cとして、ニューラルネット処理部110に与えられる。これらの入力データS8a,S8bについても、適宜、学習データデータベースDB2に記憶されて利用される。
ニューラルネット処理部110は、ニューラルネット111とニューラルネット学習制御部112により構成される。
ニューラルネット111は、入力データ作成部114からの入力データS8c、教師データ作成部115からの教師データS7c、ニューラルネット選択部113が選択した制御ルール(ニューラルネット)を取り込み、最終的に決定したニューラルネットを制御ルールデータベースDB1に格納する。
ニューラルネット学習制御部112は、入力データ作成部114、教師データ作成部115、ニューラルネット選択部113に対して、適宜のタイミングでこれらを制御し、ニューラルネット111の入力を得、また処理結果を制御ルールデータベースDB1に格納する。
ここで、図2の制御ルール実行部10におけるニューラルネット101と、図4の制御方法学習ユニット21におけるニューラルネット111は、いずれも同じ概念のニューラルネットであるが、以下のように相違している。
すなわち、制御ルール実行部10におけるニューラルネット101は、予め定められた内容のニューラルネットであり、入力データS1を与えたときに対応する出力としての制御操作端操作指令S2を求めるニューラルネットである。
一方、制御方法学習ユニット21におけるニューラルネット111は、入力データS1と制御操作端操作指令S2についての入力データS8c、教師データS7cを学習データとして設定したときに、この入出力関係を学習により求めるニューラルネットである。
制御方法学習ユニット21における基本的な処理の考え方は、以下のとおりである。
まず、制御操作量出力可否データS4の内容が「可」かつ制御結果良否判定推定値S11の内容が「良」(実績データSiが良くなる方向に変化)の場合、制御実行ユニット20が、制御対象プラント1に制御操作量出力SOを出力する。ここで、学習データ作成部801は、制御出力操作方法選択部18が出力した選択制御操作量S8が正しいと判断し、ニューラルネットの出力が選択制御操作量S8となるように学習データを作成する。
一方、制御操作量出力可否データS4の内容が「否」、又は、制御対象プラント1に制御操作量出力SOを出力した制御結果良否判定推定値S11の内容が「否」(実績データSiが悪くなる方向に変化)の場合、学習データ作成部801は、制御出力操作方法選択部18が出力した選択制御操作量S8が誤っていると判断する。
この場合、学習データ作成部801は、制御方法選択フラグS14から、制御出力操作方法選択部18において制御操作量S3を選択していた場合かどうかを確認する。この確認で制御操作量S3を選択していた場合、学習データ作成部801は、制御ルール実行部10が出力した制御操作端操作指令S2は誤っていると判断し、ニューラルネットの出力が出ないように学習データを作成する。このとき、制御出力として、同じ制御操作端に対して+方向、-方向の2種類の出力が出るようにニューラルネット出力を構成しておき、出力した側の制御操作端操作指令S2が出力されないように学習データを作成する。
また、図4に示す制御ルール学習部802は、ニューラルネット学習制御部112によるデータ処理の結果として、以下のように処理を行う。
まず、制御ルール学習部802は、制御実行ユニット20への入力データS1から求めたデータS8cと、教師データ作成部115にて作成した教師データS7cの組合せである学習データを用いて、制御ルール実行部10にて用いたニューラルネット101の学習を実行する。
実際には、制御ルール学習部802は、制御ルール実行部10のニューラルネット101と同じニューラルネット111を制御ルール学習部802内に備えて、各種条件で運用テストしてそのときの応答を学習し、学習の結果としてより良い結果を生じることが確認された制御ルールを得る。
ここでの学習は、複数個の学習データを用いて行わせる必要があるため、過去に作成された学習データを蓄積している学習データデータベースDB2より、過去の学習データを複数個取り出して、学習し処理を実行する。そして、今回の学習データは、学習データデータベースDB2に格納される。また、学習したニューラルネットは、制御ルール実行部10で利用するために、制御ルールデータベースDB1に格納される。
ニューラルネットの学習は、新しい学習データが作成される毎に、過去の学習データを一緒に用いて学習しても良いし、学習データがある程度(例えば100個分)蓄積されてから、過去の学習データを一緒に用いて学習しても良い。
このような構成とすることで、制御出力操作方法選択部18が新規探索操作量を選択することで、新規探索操作量を対象プラントに出力し、その制御結果に応じて学習データを作成し、新たな制御方法を学習することが可能になる。
図1の説明に戻ると、状態変化ルール学習ユニット22は、制御実行ユニット20で使用するニューラルネット171(図3)の学習を実行する。制御対象プラント1において、機器位置が変化した場合、実際に制御効果が実績データSiの変化となって現れるのには時間を要する。このため、その時間だけ時間遅れさせたデータを用いて学習を実行する。なお、図1などにおいて、「Z-1」と記載した処理部DLは、各データが伝送される際に、適宜の時間遅れがあることを示す。
状態変化ルール学習ユニット22は、状態変化ルール学習部31、良否判定誤差検証部34、良否判定データベースDB4を備える。
図5は、状態変化ルール学習部31の具体的な構成を示す。
状態変化ルール学習部31は、入力データ作成部314、教師データ作成部315、ニューラルネット処理部310、ニューラルネット選択部313、学習データ作成部316を備える。
状態変化ルール学習部31は、外部からの入力として、制御対象プラント1の圧延実績データSiと時間遅れした圧延実績データSi-1を得る。
さらに、状態変化ルール学習部31は、状態変化ルールデータベースDB5及び学習データデータベースDB6、検証データデータベースDB8にアクセス可能として接続されている。
学習データ作成部316は、時間遅れした圧延実績データSi-1より、圧延状態変数と制御操作量を抽出して、入力データS12aとして入力データ作成部314に出力する。また、学習データ作成部316は、圧延実績データSiから形状偏差を抽出し、時間遅れした圧延実績データSi-1から形状偏差を抽出し、その差分より形状変化量を求めて、教師データS13aとして教師データ作成部315に出力する。
教師データS13aは、教師データ作成部315において、学習データデータベースDB6に記憶されている過去の教師データS13bも含めた合計の教師データS13cとして、ニューラルネット処理部310に与えられる。これらの教師データS13a、S13bは、適宜、学習データデータベースDB6に記憶されて、利用される。
同様に、入力データS12aは、入力データ作成部314において、学習データデータベースDB6に記憶されている過去の入力データS12bも含めた合計の入力データS12cとして、ニューラルネット処理部310に与えられる。これらの入力データS12a、S12bは、適宜、学習データデータベースDB6に記憶されて、利用される。
このとき、学習データ作成部316は、一定の比率で作成した教師データS13aと入力データS12aを学習データデータベースDB6ではなく、検証データデータベースDB8に記憶する。検証データデータベースDB8には、時間遅れした圧延実績データSi-1から抽出した変化前形状偏差とニューラルネット311に設定されているニューラルネット番号も併せて記憶していく。
ニューラルネット処理部310は、ニューラルネット311とニューラルネット学習制御部312とにより構成される。
ニューラルネット311は、入力データ作成部314からの入力データS12c、教師データ作成部315からの教師データS13c、及びニューラルネット選択部313が選択した制御ルール(ニューラルネット)を取り込む。
ニューラルネット学習制御部312は、入力データ作成部314、教師データ作成部315、及びニューラルネット選択部313に対して、適宜のタイミングでこれらを制御し、ニューラルネット311の入力を得る。また、ニューラルネット学習制御部312は、ニューラルネット選択部313を経由して、処理結果を状態変化ルールデータベースDB5に格納する。
ここで、図3に示す制御実行ユニット20のニューラルネット171及び後述する良否判定精度検証部34のニューラルネット341と、図5に示す状態変化ルール学習ユニット22におけるニューラルネット311は、いずれも同じ概念のニューラルネットであるが、以下の点で相違している。
制御実行ユニット20におけるニューラルネット171と良否判定精度検証部34におけるニューラルネット341は、予め定められた内容のニューラルネットである。すなわち、ニューラルネット171及びニューラルネット341は、圧延状態変数Siと選択制御操作量S8又は制御操作量S3又は検証用入力データS24を与えたときに対応する出力としての予測形状変化S20、S25を求めるものであり、いわば一方方向の処理に利用されるニューラルネットである。
これに対し、状態変化ルール学習ユニット22におけるニューラルネット311は、時間遅れ後の圧延実績データSiから制御操作量を抽出したデータS12c、教師データS13cを学習データとして設定したときに、この入出力関係を学習により求めるニューラルネットである。
図7は、良否判定誤差検証部34の具体的な構成を示す。
良否判定誤差検証部34は、検証用データ作成部343、ニューラルネット341、ニューラルネット選択部342、状態変化良否変換部344、良否評価値データベースDB9、良否判定誤差演算部345を備える。
検証用データ作成部343は、検証データデータベースDB8から誤差検証を実施したい状態変化ルール(ニューラルネットNo.)に対応する検証用データS22を順番に読み出し、ニューラルネット341に検証用入力データS24を出力するとともに、状態変化良否変換部344に良否変換用検証データS23を出力する。
ニューラルネット341は、検証用データ作成部343から検証用入力データS24を受け取り、過去の制御実績を元に予測した予測形状変化量S25を状態変化良否変換部344に出力する。
ニューラルネット選択部342は、状態変化ルールデータベースDB5に格納された状態変化ルールを参照し、制御対象となる材料性質の違いで分けられた複数のニューラルネットから、誤差検証を実施する状態変化ルールを選択する。
状態変化良否予測値変換部344は、検証用データ作成部343から良否変換用検証データS23を受け取り、ニューラルネット341から予測形状変化量S25を受け取り、それらを元に検証データ良否評価値と予測良否評価値を演算して、良否評価値S26を良否評価値データベースDB9に保存する。
良否判定誤差演算部345は、良否評価値データベースDB9より、ニューラルネットNo.単位で良否評価値データS27を読み出し、検証データ良否評価値と予測良否評価値の良否判定誤差を演算し、検証結果フラグとともに、良否判定誤差データS28として、良否判定誤差データベースDB7に書き出す。
次に、センヂミア圧延機における形状制御を対象に、プラント制御方法の具体例を説明する。なお形状制御に関しては、以下の仕様A,Bを採用するものとして説明する。
仕様Aは、優先度についての仕様であり、板幅方向の優先度の情報を持つものとする。例えば形状制御においては、板幅方向全域にわたって目標値に制御することが、機械特性上困難な場合が多い。そのため、操作員は過去の経験に基づき板幅方向で優先順位をつけて操作を実施する。そこで、板幅方向で下記の2つの優先度についての仕様A1,A2を設ける。このうち優先度についての仕様A1は「板端部を優先する」ものである。また、優先度についての仕様A2は「中央部を優先する」ものである。どちらの仕様を用いるかは、操作員の経験に基づき速度条件や加減速中等の圧延状態に応じて決定する。
この仕様A1,A2という2つの優先順位に従った制御を実行する。つまり、プラント制御システムが制御を実行する場合は、優先度についての仕様A1又はA2のいずれかを考慮する。
仕様Bは、予め判明している条件への対応についての仕様である。一例をあげると、形状パターンと制御方法の関係は、種々の条件で変化することから、例えば、仕様B1を板幅、仕様B2を鋼種とする区分で分ける必要がある。それぞれの仕様が変化することで、形状操作端の形状への影響度合が変化する。
本例での制御対象プラント1は、センヂミア圧延機であり、実績データは形状実績となる。センヂミア圧延機は、ステンレスなどの硬い材料を冷間圧延するためのクラスターロールを持つ圧延機である。ゼンジミア圧延機は、硬い材料に強圧下を与える目的で、小径のワークロールを使用する。このため、ゼンジミア圧延機は、平坦な鋼板を得るための制御が難しい。この対策として、ゼンジミア圧延機は、クラスターロールの構造やさまざまな形状制御部を採用している。
センヂミア圧延機は、一般には上下の第1中間ロールが片テーパを持ち、シフトできるようになっているほか、上下に6個の分割ロールと2個のAS-Uと呼ばれるロールを備えている。以下に説明する例では、形状の実績データSiは、形状検出器の検出データを用い、入力データS1は、目標形状との差である、形状偏差を用いる。また、制御操作量S3は、#1~#nのAS-U、上下の第1中間ロールのロールシフト量とする。
図8は、センヂミア圧延機の形状制御に用いる場合のニューラルネット構成を示す。ここでニューラルネットは、制御ルール実行部10用としては、ニューラルネット101を示す。また、制御ルール学習部802用としては、ニューラルネット111を示す。ニューラルネット101とニューラルネット111は、いずれも構造が同じである。
センヂミア圧延機の形状制御の事例では、制御対象プラント1からの実績データSiは形状検出器のデータ(ここでは、実績形状と目標形状との差である形状偏差が出力されるものとする)を含むセンヂミア圧延機の実績データである。制御入力データ作成部2は、入力データS1として規格化形状偏差201、形状偏差段階202を得る。これによりニューラルネット101、111の入力層は、規格化形状偏差201、形状偏差段階202により構成される。なお図8では、形状偏差段階202をニューラルネット入力層への入力としているが、段階に応じてニューラルネットを切替ても良い。
ニューラルネット101、111の出力層は、センヂミア圧延機の形状制御操作端である、AS-U、第1中間ロールに合わせて、AS-U操作度合301と第1中間操作度合302により構成される。それぞれの操作度合は、AS-Uについては、AS-U開方向(ロールギャップ(圧延機の上下作業ロール間の間隔)が開く方向)、AS-U閉方向(ロールギャップが閉じる方向)を各AS-Uについて持つ。
第1中間ロールについては、第1中間ロール開方向(第1中間ロールが圧延機中心より外側に向かって動作する方向)、第1中間ロール閉方向(第1中間ロールが圧延機中心側に向かって動作する方向)を、上下第1中間ロールについて持つ。
例えば、形状検出器が20ゾーンで、形状偏差段階202を3段階(大、中、小)とした場合、入力層は23個の入力となる。また、AS-Uのサドルが7本、上下第1中間ロールが板幅方向でシフト可能とすると、出力層はAS-U操作度合301が14個、1中間操作度合が4個の計18個となる。中間層の層数及び各層のニューロン数については、適時設定する。
なお、出力層であるセンヂミア圧延機の形状制御操作端は、個々の制御操作端に対して+方向、-方向の2種類の出力が出るようにニューラルネット出力を構成している。
図9は、本例での形状偏差と制御方法を示す。
図9(a)は、形状偏差が大きい場合の制御方法を示し、図9(b)は、形状偏差が小さい場合の制御方法を示す。図9(a),(b)の高さ方向(縦軸方向)は形状偏差の大きさ、横軸方向は板幅方向であり、板幅の両側が板端部、中央が板中央部を示す。
図9(a)に示すように、形状偏差が大きい場合は、板幅方向の局部的な形状偏差よりも全体的な形状を修正することを優先する。
一方、図9(b)に示すように、形状偏差が小さい場合は、局部的な形状偏差を小さくすることを優先する。
このように、形状偏差の大きさに応じて制御方法を変える必要があるため、図8に示すように形状偏差段階202を設けてニューラルネット101、111に与え、形状偏差の大きさを判定する。形状偏差については形状偏差の大小にかかわらず、例えば0~1に規格化したものを用いるのが良い。これは、一例であって、形状偏差を規格化せずにそのままニューラルネットの入力層へ入力してもよく、形状偏差の大小に応じて、ニューラルネット自体を変えても良い。例えば、2つのニューラルネットを準備し、形状偏差が大きい場合に使用するニューラルネットと、小さい場合に使用するニューラルネットを分けても良い。
本例のプラント制御では、以上説明した図8のような構成のニューラルネット101、111に対して、形状パターンに対する操作方法を学習させ、学習させたニューラルネットを用いて形状制御を実行する。同じ構成のニューラルネットでも、学習の条件により異なった特性となり、同じ形状パターンに対して異なった制御出力を出すことができる。
そのため、形状実績の他の条件に応じて、複数のニューラルネットを使い分けることで、多様な条件に対して最適な制御を構成することができる。これは仕様Bへの対応である。先に説明した図2の構成は、このような仕様を行う場合の具体例を示している。
すなわち、図2の構成例では、制御ルール実行部10において使用するニューラルネット101を、圧延実績や、圧延機オペレータ名、被圧延材の鋼種、板幅等により別個のニューラルネットを準備し、制御ルールデータベースDB1に登録しておく。ニューラルネット選択部102は、その時点の条件に合致するニューラルネットを選択し、制御ルール実行部10のニューラルネット101に設定する。
なお、ニューラルネット選択部102における、その時点の条件としては、制御対象プラント1における実績データSiの中から板幅のデータを取り込み、これに応じてニューラルネットを選択するのが良い。また、ここで使用する複数のニューラルネットは、図8に示すような入力層、出力層を持てば、中間層の層数、各層のユニット数は異なっても良い。
図10は、ニューラルネット101、111の入力層へ入力するためのデータS1(規格化形状偏差201、形状偏差段階202)を作成する、制御入力データ作成部2の構成を示す。
制御入力データ作成部2は、実績データSiとして、制御対象プラント1であるセンヂミア圧延機における圧延時の板形状を検出する、形状検出器の形状検出器データを入力とする。そして、制御入力データ作成部2は、形状偏差PP値演算部210にて各形状検出器ゾーンの検出結果の最大値と最小値の差である形状偏差PP値(Peak To Peak値)SPPを求める。
形状偏差段階演算部211は、形状偏差PP値SPPにより、形状偏差を大、中、小の3段階に分類する。形状は、被圧延材の伸び率の板幅方向分布であり、伸び率を10-5単位で表すI-UNITが単位として用いられる。例えば、以下の数式で示すように分類する。
ここでは[数1]式の成立により形状偏差段階が(大=1、中=0、小=0)とし、[数2]式の成立により形状偏差段階が(大=0、中=1、小=0)とし、[数3]式の成立により形状偏差段階が(大=0、中=0、小=1)とするように分類している。各ゾーンの形状偏差については、SPM=SPPとした、SPMを用いて規格化を実行する。
Figure 2022182538000002
Figure 2022182538000003
Figure 2022182538000004
以上のように、制御入力データ作成部2は、ニューラルネット101への入力データである規格化形状偏差201及び形状偏差段階202を作成する。規格化形状偏差201及び形状偏差段階202は、制御ルール実行部10の入力データS1である。
図11は、制御出力演算部3の構成を示す。
制御出力演算部3は、制御ルール実行部10内の、ニューラルネット101からの出力である制御操作端操作指令S2より、各形状制御操作端への操作指令である制御操作量S3を作成する。制御操作端操作指令S2は、センヂミア圧延機の形状制御の場合には、AS-U操作度合301、第1中間操作度合302に相当する。
図11では、複数個数が存在するAS-U操作度合301、第1中間操作度合302について、各1つのデータ例を示しており、各データは開方向度合と閉方向度合の一対のデータで構成されている。
制御出力演算部3内では、入力されたAS-U操作度合301は、各AS-U開方向、閉方向の出力をもつため、それらの差が減算器303で算出される。そして、乗算器304で減算器303の出力に変換ゲインGASUを乗算することで、各AS-Uへの操作指令が生成されて出力される。変換ゲインGASUは、各AS-Uへの制御出力がAS-U位置変更量(単位は長さ)となることから、度合から位置変更量への変換ゲインとなる。
同様に入力された第1中間操作度合302は、第1中間外側、内側の出力をもつため、それらの差が減算器305で算出される。そして、乗算器306で減算器305の出力に変換ゲインG1STを乗算することで、各第1中間ロールシフトへの操作指令が生成されて出力される。変換ゲインG1STは、各第1中間ロールへの制御出力が第1中間ロールシフト位置変更量(単位は長さ)となることから、度合から位置変更量への変換ゲインとなる。
以上により、制御出力演算部3は、制御操作量S3を演算することができる。制御操作量S3は、#1~#nAS-U位置変更量(nはAS-Uロールのサドル数による)と、上第1中間シフト位置変更量、下第1中間シフト位置変更量から構成されている。
図12は、制御出力良否判定実行部17、状態変化ルール学習部31及び良否判定誤差検証部34に用いるセンヂミア圧延機の状態変化予測に用いる場合のニューラルネット構成を示す。ここでのニューラルネットは、制御出力良否判定実行部17用ではニューラルネット171であり、状態変化ルール学習部31用ではニューラルネット311であり、良否判定誤差検証部34用ではニューラルネット341を示しているが、いずれも構造は同じである。
制御対象プラント1の制御実績データSiより、制御機器位置などの圧延状態変数と制御操作量S3あるいは後述する選択制御操作量S8、または圧延実績データSiを時間遅れさせたデータから制御操作量を抽出し、入力層への入力とする。この制御操作量S3、または圧延実績データSiから抽出した制御操作量または選択制御操作量S8は、各制御操作機器の操作量で構成される。圧延状態変数は、圧延速度や各制御機器の位置のデータなど、制御操作後の状態変化を予測するのに影響が大きい状態量を用いるのが良い。
また、出力層は、制御操作を制御対象プラント1に出力したときの、予測した形状変化量S20または形状変化の教師データS13cを出力する。中間層の層数及び各層のニューロン数については、適時設定される。
本例のプラント制御では、以上説明した図12のような構成のニューラルネット171、311、341に対して、制御機器位置変化に対する形状変化を学習させ、学習させたニューラルネットを用いて形状変化の予測を実行する。同じ構成のニューラルネットでも、学習に用いる実績データにより異なった特性となり、同じ制御機器位置変化に対して異なった形状変化を出すことができる。
そのため、圧延実績データの他の条件に応じて、複数のニューラルネットを使い分けることで、多様な条件に対して最適な形状変化予測を実行することができる。これは仕様Bへの対応である。先に説明した図3の構成は、このような仕様を行う場合の具体例を示している。
すなわち、図3の構成例では、制御出力良否判定実行部17において使用するニューラルネット171を、被圧延材の鋼種、板幅等により別個のニューラルネットを準備し、状態変化ルールデータベースDB5に登録しておく。ニューラルネット選択部172は、その時点の条件に合致するニューラルネットを選択し、制御出力良否判定実行部17のニューラルネット171に設定する。
なお、ニューラルネット選択部172における、その時点の条件としては、制御対象プラント1における実績データSiの中から板幅のデータを取り込み、これに応じてニューラルネットを選択するのが良い。また、ここで使用する複数のニューラルネットは、図12に示すような入力層、出力層を持てば、中間層の層数、各層のユニット数は異なっても良い。
図13は、制御結果良否判定部6の動作を示す。形状変化良否判定部602においては、[数4]式に示す良否判定評価関数Jcを用いる。
Figure 2022182538000005
この[数4]式において、εchg(i)はニューラルネット171が出力した予測形状変化量S21、εfb(i)は実績データSiに含まれる形状偏差実績データであり、εpred(i)は制御操作後の予測形状偏差であり、wC(i)は良否判定用の板幅方向重み係数である。ここで、良否判定用の重み係数wC(i)は、良否判定データベースDB4より、制御の優先度についての仕様A1、A2に応じて設定する。良否判定評価関数Jcにより、制御結果の良否を判定する。
閾値上限LCUと閾値加減LCLを、閾値条件(LCU≧0≧LCL)のもとで予め設定しておく。このときに、良否判定評価関数Jcとの比較の結果が、Jc>LCUであれば、良否判定推定値S9(S11)=0(形状が悪くなる)とし、Jc<LCLであれば、良否判定推定値S9(S11)=1(形状が良くなる)、LCU≧0≧LCLであれば、良否判定推定値S9(S11)=-1(良否判定の対象外)とする。
ここで、閾値上限LCUと閾値加減LCLの決定の為に、良否判定誤差データベースより制御ルール実行部に使用しているニューラルネット番号に応じた良否判定誤差データS28を読出し、ニューラルネットnの良否判定標準誤差εnと検証結果フラグfnを参照する。検証結果フラグfnは、検証が十分なデータ数で実施したかどうかを示し、検証が十分なデータ数に達していない場合は、良否判定の値は信頼性が低いため、使用しない方がよく、閾値上限LCUと閾値加減LCLを十分大きな値を設定してすべての場合で良否判定推定値S9(S11)=-1(良否判定の対象外)と判定されるようにする。検証が十分なデータ数に達していた場合は、良否判定標準誤差を基準として、閾値上限LCUと閾値加減LCLを設定することにより、判定精度にあった閾値設定ができる。
IF flagn=0, THEN LCU=-LCL=thbig
IF flagn=1, THEN LCU=-LCL=εn
この閾値設定において、thbigは十分に大きな値を設定する。閾値上限LCUと閾値加減LCLの絶対値を標準誤差にしているが、場合に応じて標準誤差の2倍や0.5倍など変更することにより、制御出力の信頼性を調節することができる。
このように、制御の優先度についての仕様A1、A2に応じて、板幅方向の重み係数wC(i)が変わるため、良否判定評価関数Jcは異なる。そのため、良否判定推定値S9(S11)の判定結果も異なることが考えられる。そのため、良否判定ルール学習ユニット22は、制御の優先度についての仕様A1、A2の2種類について、良否判定推定値S9(S11)の判定を実行する。
図14は、新規探索操作量演算部33における操作量演算方法を示す。
新規探索操作量演算部33は、制御出力良否判定実行部17で出力した制御出力良否判定推定値S9を用いて、以下のような方針で新規探索制御操作量S12を演算する。
すなわち、制御出力良否判定推定値S9=1のときは、制御操作の良否判定が良く推定されているので、新規探索操作量演算部33は、新規探索操作量としての微調整を行う。
制御出力良否判定推定値S9=0の時は、制御操作の良否判定が悪く推定されているので、新規探索操作量演算部33は、制御操作を大きく変更することで新たな適切な操作方法の探索を行う。
制御出力良否判定推定値S9=-1の時は、良否判定の対象外であるため、制御操作を変更する事は実施しない。
以上の方針により、新規探索操作量Crandを求める式を以下のように設定する。
IF(S9=1)THEN Crand=Cref(1+βth1)
IF(S9=0)THEN Crand=Cref+γth2
IF(S9=-1)THEN Crand=Cref
ここで、β及びγは-1~1の間で発生させるランダム値を示す。th1は微調整を行う度合いを示しており、例えば、元々の指令の±10%の範囲を微調整とする場合には、th1を0.1に設定する。
th2は操作方法を大きく変更する度合いの設定であり、例えばth2を0.1とした場合には、元の指令に10%のオフセットが加算されることになり、操作極性が変わる可能性や元々操作しなかった機器の指令を出力することが発生する。
β及びγの値は、各操作機器で異なる値が使用され、各機器の操作量はそれぞれ独立に変更が行われる。Gは各制御操作機器の最大操作位置制御指令を示しており、上述した指令%に掛け合わせることで、%の値を操作位置制御指令に変換される。
制御出力操作方法選択部18は、制御操作量S3か新規探索制御操作量S12を選択して、選択制御操作量S8として出力する。制御操作量S3か新規探索制御操作量S12のどちらを選択するかは、確率的に決定することとして、新規探索制御操作量S12を使用する確率Prandを0~1で、ユーザにて設定できるようにする。0から1の値をランダムにとる値δを用いて、次式により決定する。
IF(δ>Prand)THEN C″ref=Cref、α=1
ELSE C″ref=Crand、α=0
ここで、C″refは制御出力操作方法選択部18が以降の演算部に出力する選択制御操作量S8を示す。δは全機器操作量の演算に共通の値を使用し、全機器とも同じ側の操作量を使用する。αは、制御方法選択フラグS14であり、制御操作量S3を選択した場合に1、新規探索制御操作量S12を選択する場合0を取る。この制御方法選択フラグS14は、選択制御操作量S8とともに以降の演算部に出力する。Pradの設定の仕方として、実機での制御においてランダムな操作によってプラントへのリスクを与えたくない場合には0に設定しておき、制御ルールの改善の為に、新規探索用操作量を出力させたい場合に0以外の割合を設定する。
図15は、制御出力判定部5の構成を示す。
制御出力判定部5は、圧延現象モデル501と形状修正良否判定部502から構成される。そして、制御出力判定部5は、制御対象プラント1よりの実績データSi、制御出力演算部3からの制御操作量S3、及び出力判定データベースDB3の情報を得て、制御操作端への制御操作量出力可否データS4を与える。
このような構成の制御出力判定部5は、制御出力操作方法選択部18にて演算した選択制御操作量S8を制御対象プラント1である圧延機に出力した場合の形状の変化を、既知の制御対象プラント1のモデルに入力することで予測する。既知の制御対象プラント1のモデルは、ここでは圧延現象モデル501である。この予測で、形状が悪化すると予想される場合、制御出力判定部5は、制御操作量出力SOを抑制し、形状が大きく悪化することを防止する。
より詳細に述べると、制御出力判定部5は、選択制御操作量S8を圧延現象モデル501に入力し選択制御操作量S8による形状変化を予測し、形状偏差修正量予測データ503を演算する。
他方、制御出力判定部5は、制御対象プラント1からの形状検出器データSiに、形状偏差修正量予測データ503を加算することで形状偏差予測データ505を得、形状偏差予測データ505を評価する。これにより、制御出力判定部5は、制御操作量S3を制御対象プラント1に出力したときに、形状がどのように変化するかが予測できる。ここでの形状検出器データSiは、現時点での形状偏差実績データ504である。
制御出力判定部5は、現状の形状偏差実績データ504と形状偏差予測データ505とにより、形状修正良否判定部502は、形状が良くなる方向に変化するのか、悪くなる方向に変化するのかを判定し、制御操作量出力可否データS4を得る。
形状修正良否判定部502は、具体的には以下のようにして形状修正の良否判定を行う。まず形状制御の優先度についての仕様A,Bで示したように、板幅方向での制御優先度を考慮するため、出力判定データベースDB3には、板幅方向の重み係数w(i)を仕様A1、仕様A2の各仕様に対して設定しておく。それを用いて、例えば下記の[数4]式のような評価関数Jを用いて形状変化の良否を判定する。なお、[数4]式において、w(i)は重み係数、εfb(i)は形状偏差実績データ504、εest(i)は形状偏差予測データ505、iは形状検出器ゾーン、randは乱数項である。
Figure 2022182538000006
[数5]式の評価関数Jを用いた場合、形状が良くなるときは評価関数Jが正、悪くなるときは評価関数Jが負となる。また、randは乱数項であり、評価関数Jの評価結果を乱数的に変化させる。これにより、形状が悪化する場合であっても、評価関数Jとしては正になる場合が発生するため、圧延現象モデル501が正しくない場合についても形状パターンと制御方法の関係を学習していくことが可能である。
ここで乱数項randは、試運転当初のように、制御対象プラント1のモデルが不確実の場合は最大値を大きくし、ある程度制御方法を学習し安定した制御を実行したい場合は0とするように、適時変更する。
形状修正良否判定部502は、評価関数Jを演算し、J≧0のとき制御操作量出力可否データS4=1(可)とし、J<0のとき制御操作量出力可否データS4=0(否)として、制御操作量出力可否データS4を出力する。
既に説明した通り、制御出力良否判定実行部17には、制御対象プラント1の制御実績データSiより、制御機器位置などの圧延実績データ及び選択制御操作量S8が入力され、制御結果良否判定推定値S11が出力される。制御結果良否判定推定値S11は、制御した結果良くなると推定する場合が1、悪くなると推定する場合が0、良否判定対象外の場合が-1の値を取る。
制御出力抑制部4は、制御出力判定部5の判定結果である制御操作量出力可否データS4及び制御結果良否判定推定値S11に応じて、制御対象プラント1への制御操作量出力SOの出力有無を決定する。制御操作量出力可否データS4は、#1~#nAS-U位置変更量出力、上第1中間シフト位置変更量出力、下第1中間シフト位置変更量出力であり、以下の条件で決定される。
IF(制御方法選択フラグ=1)THEN
IF(制御操作量出力可否データS4=0 OR 制御結果良否判定推定値S11=0)THEN
#1~#nAS-U位置変更量出力=0
上第1中間シフト位置変更量出力=0
下第1中間シフト位置変更量出力=0
ELSE
#1~#nAS-U位置変更量出力=#1~#nAS-U位置変更量
上第1中間シフト位置変更量出力=上第1中間シフト位置変更量
下第1中間シフト位置変更量出力=下第1中間シフト位置変更量
ENDIF
ELSE
IF((制御操作量出力可否データS4=0 OR 制御結果良否判定推定値S11=0)AND(PTRIAL<η))THEN
#1~#nAS-U位置変更量出力=0
上第1中間シフト位置変更量出力=0
下第1中間シフト位置変更量出力=0
ELSE
#1~#nAS-U位置変更量出力=#1~#nAS-U位置変更量
上第1中間シフト位置変更量出力=上第1中間シフト位置変更量
下第1中間シフト位置変更量出力=下第1中間シフト位置変更量
ENDIF
ENDIF
また、ηは0~1でランダムな値を取る変数で、PTRIALは出力抑制を無効化して新規探索操作をプラントへ出力させる確率を示す。制御方法選択フラグS14が0のときは、未知の領域における制御方法の効果を検証する場合を含むため、一定の確率で、プラントへの出力抑制を無視してプラントへ出力を行うようにする。
上述した例では、制御出力判定部5の判定結果である制御操作量出力可否データS4及び制御結果良否判定推定値S11の両方を使用する形を示したが、制御対象によっては設備の情報が十分に得られず制御対象のシミュレーションを使用した制御出力判定部5の制御操作量出力可否データS4が構築できない場合も考えられる。その場合は、制御結果良否判定推定値S11のみを使用して以下にて処理を実施する。
IF(制御方法選択フラグ=1)THEN
IF(制御結果良否判定推定値S11=0)THEN
#1~#nAS-U位置変更量出力=0
上第1中間シフト位置変更量出力=0
下第1中間シフト位置変更量出力=0
ELSE
#1~#nAS-U位置変更量出力=#1~#nAS-U位置変更量
上第1中間シフト位置変更量出力=上第1中間シフト位置変更量
下第1中間シフト位置変更量出力=下第1中間シフト位置変更量
ENDIF
ELSE
IF((制御結果良否判定推定値S11=0)AND(PTRIAL<η))THEN
#1~#nAS-U位置変更量出力=0
上第1中間シフト位置変更量出力=0
下第1中間シフト位置変更量出力=0
ELSE
#1~#nAS-U位置変更量出力=#1~#nAS-U位置変更量
上第1中間シフト位置変更量出力=上第1中間シフト位置変更量
下第1中間シフト位置変更量出力=下第1中間シフト位置変更量
ENDIF
ENDIF
制御実行ユニット20においては、制御対象プラント1(圧延機)からの実績データSiより、上述した演算を実行し、制御操作量出力SOを制御対象プラント1(圧延機)に出力することにより形状制御を実行する。また、制御方法学習ユニット21は、制御実行ユニット20で用いたデータを使用する。
次に、学習データ作成部801が行う動作について説明する。
図1に示したように、学習データ作成部801は、制御出力良否判定ルール実行部17からの制御結果良否判定推定値S11を基にして、制御操作端操作指令S2、選択制御操作量S8、制御方法選択フラグS14、制御出力抑制部の判定結果(制御操作量出力可否データS4)より、制御ルール学習部802で使用するニューラルネット111に対する教師データS7aを作成する。
この場合の教師データS7aは、図8に示す、ニューラルネット111の出力層からの出力である、AS-U操作度合301、1中間操作度合302となる。学習データ作成部7は、ニューラルネット101の出力である制御操作端操作指令S2(AS-U操作度合301、1中間操作度合301)と、選択制御操作量S8である#1~#nAS-U位置変更量出力、上第1中間シフト位置変更量出力、下第1中間シフト位置変更量出力を用いて、制御ルール学習部802で使用するニューラルネット111に対する教師データS7aを作成する。
学習データ作成部801の動作を説明するにあたり、図11に示す制御出力演算部3における各部データや記号の関係を、図16に示す。ここでは、ニューラルネット101の出力である制御操作端操作指令S2についてAS-U操作度合301を代表的に示しており、操作度合正側のデータをOPref、操作度合負側のデータをOMref、変換ゲインをG、制御操作量出力S3をCrefとする。
操作度合正データOPref、操作度合負データOMrefは、減算器701で差が取られ、乗算器702で変換ゲインGが乗算されて、制御操作量出力Crefが得られる。この制御操作量出力Crefが、制御出力操作方法選択部18に供給され、選択された操作指令値C″refが得られる。
ここでは、簡単のため、制御ルール実行部10のニューラルネット101の出力層からの出力を操作度合正側及び操作度合負側としている。
図17は、学習データ作成部7における処理段階と処理内容を示している。
最初の処理段階71では、操作指令値C″refは、制御出力操作方法選択部18の出力値である選択制御操作量S8を参照する。
次の処理段階72では、制御結果良否判定推定値S11と制御操作量出力可否データS4と制御方法選択フラグ14に応じて操作指令値C″refを修正しC´refとする。具体的には(制御結果良否判定推定値S11=0又は制御操作量出力可否データ=0)かつ制御方法選択フラグS14=1のとき、以下の[数6]式、制御結果良否推定値S10=1かつ制御操作量出力可否データ=1のとき以下の[数7]式により、操作指令値C″refの修正値C´refとする。なお(制御結果良否判定推定値S11=0又は制御操作量出力可否データ=0)かつ制御方法選択フラグS14=0の時は、新規探索方法が選択されて、制御効果が低いと判定された場合なので、新たな教師データの生成は実施しない。
[数6]
IF C″ref>0THEN C’ref=C″ref-Δcref
IF C″ref<0THEN C’ref=C″ref+Δcref
[数7]
IF C″ref>0THEN C’ ref=C″ref+Δcref
IF C″ref<0THEN C’ ref=C″ref-Δcref
処理段階73では、修正された操作指令値C´refより、[数8]式により操作度合修正量ΔOrefを求める。
Figure 2022182538000007
処理段階74では、ニューラルネット111への教師データOP´ref、OM´refを[数9]式により求める。
Figure 2022182538000008
このように学習データ作成部7では、図16に示すように、実際に制御対象プラント1に対して出力した操作指令値C″refを、制御出力良否判定ルール実行部17の制御結果良否判定推定値S11と制御出力抑制部4の制御操作量出力可否データS4と制御方法選択フラグS14に応じて、操作指令値修正値C´refを演算する。
具体的には、制御結果良否推定値S11=1かつ制御操作量出力可否データS4=1の場合は、良い操作であると判断された場合で、操作指令値を同じ方向にΔCrefだけ増加するようにする。
逆に、制御結果良否推定値S11=0又は制御操作量出力可否データS4=0の場合は、良くない操作であると判断された場合で、制御方法選択フラグが0で制御ルール実行部10の出力に基づく操作量が選択されている場合には、操作指令値を逆方向にΔCrefだけ減少するよう新たな教師データを作成する。変換ゲインGは、予め設定したものであるから既知であることから、操作度合正側及び操作度合負側の値が判れば、修正量ΔOrefを求めることが可能である。ここでΔCrefは、予め適当な値をシミュレーション等で求めておき、設定する。以上の手順により、制御ルール学習部802にて使用する教師データOP´ref、OM´refは[数9]式により求めることができる。
なお、図16では簡単な例で説明を行っているが、実際には、#1~#nAS-Uに対するAS-U操作度合301及び、上第1中間ロールシフト、下第1中間ロールシフトに対する第1中間操作度合302についてその全てを実行し、制御ルール学習部802で用いるニューラルネット111の教師データ(AS-U操作度合教師データ、1中間操作度合教師データ)とする。
図18は、学習データデータベースDB2に保存されるデータの例を示す。
ニューラルネット111を学習するためには、多数の入力データS8aと教師データS7aの組合せが必要である。学習データ作成部7で作成した教師データS7aと制御実行ユニット20にて制御ルール実行部10に入力された入力データS1(S8a)とを組み合わせた一組の学習データを学習データデータベースDB2に蓄積していく。ここでの教師データS7aは、AS-U操作度合教師データ、第1中間操作度合である。また、入力データS1(S8a)は、規格化形状偏差201及び形状偏差段階である。
なお、図1のプラント制御システムは、各種のデータベースDB1、DB2、DB3、DB4を使用しているが、各データベースDB1、DB2、DB3、DB4は、ニューラルネット管理テーブルTBにより連系的に管理運用される。
図19は、ニューラルネット管理テーブルTBの構成を示す。
ニューラルネット管理テーブルTBは、仕様について(B1)板幅、(B2)鋼種、及び制御の優先度についての仕様A1、A2に応じて区分けされる。(B1)板幅としては、例えば、3フィート幅、メータ幅、4フィート幅、5フィート幅の4区分が、鋼種としては、鋼種(1)~鋼種(10)の10区分程度を用いる。また、制御の優先度についての仕様Aについては、A1及びA2の2種類とする。この場合、80区分となり、80個のニューラルネットを、圧延条件に応じて使い分けて使用することになる。
ニューラルネット学習制御部112は、図18に示すような、入力データ及び教師データの組合せである学習データを、図19に示すニューラルネット管理テーブルTBに従って、該当するニューラルネットNo.と紐付けて、図20に示すような学習データデータベースDB2に格納する。
制御実行ユニット20は、制御対象プラント1に対して、形状制御を実行するたびに、学習データが2組作成される。これは、同じ入力データ、制御出力に対して、制御結果良否判定が制御の優先度についての仕様A1及び仕様A2の2つの評価基準を用いて行われるため、教師データが2種類作成されるためである。教師データがある程度(例えば200組)蓄積されたら、又は新たに学習データデータベースDB2に蓄積されたら、ニューラルネット学習制御部112は、ニューラルネット111の学習を指示する。
制御ルールデータベースDB1には、図19に示すような管理テーブルTBに従って、複数のニューラルネットが格納されている。ニューラルネット学習制御部112は、学習が必要なニューラルネットNo.を指定して、ニューラルネット選択部113が制御ルールデータベースDB1より当該ニューラルネットを取り出し、ニューラルネット111に設定する。
ニューラルネット学習制御部112は、学習データデータベースDB2より、該当するニューラルネットに対応する、入力データ及び教師データの取り出しを、入力データ作成部114及び教師データ作成部115に指示し、それらを用いてニューラルネット111の学習を実行する。なお、ニューラルネットの学習方法は手法が種々提案されており、いずれの手法を用いても良い。
ニューラルネット111の学習が完了すると、ニューラルネット学習制御部112は、学習結果であるニューラルネット111を、制御ルールデータベースDB1の該当するニューラルネットNo.の位置に書き戻すことで、学習が完了する。
学習は、図19に示すように定義された全てのニューラルネットに対して定時間間隔(例えば1日毎)で一斉に実行しても良いし、新しい学習データがある程度(例えば100組)蓄積されたニューラルネットNo.のニューラルネットのみ、その時点で学習させても良い。
次に、状態変化ルール学習ユニット22の動作について説明する。
状態変化ルール学習ユニット22は、制御対象プラント1の圧延実績データSiの時間遅れデータを使用する。ここでの時間遅れZ-1は、e-TSを意味し、予め設定した時間Tだけ遅延させることを示す。
制御対象プラント1は、時間応答を持つため、制御機器位置の変化により、実績データが変化するまで時間遅れが存在する。そのため、学習は、制御機器位置変化後、遅延時間Tだけ経過した時点での実績データから制御機器位置変化前の実績データを引くことにより計算した形状変化量を用いる。
形状制御においては、AS-Uや第1中間ロールに対する操作指令出力後、形状計が形状変化を検出するまで数秒要するため、T=2秒から3秒程度に設定するのが良い。なお、形状検出器の種類や圧延速度によっても、遅れ時間は変化するため、制御操作端の変更が形状変化となるまでの最適な時間をTとして設定するのが良い。
制御操作後、遅延時間Tだけ経過した時点での実績データより抽出した形状偏差から、制御機器位置変化前の実績データより抽出した形状偏差を引くことにより計算した形状変化量をニューラルネット311に対する教師データS13aとして用いる。
図21は、学習データデータベースDB6に保存されるデータ例を示す。
ニューラルネット311を学習するためには、多数の入力データS12aと教師データS13aの組合せが必要である。したがって、教師データS13a(形状変化量データ)と時間遅れした圧延実績データSiから圧延状態変数と制御操作量を抽出した入力データS12aとを組み合わせた一組の学習データを学習データデータベースDB6に蓄積していく。
ここで、圧延状態変数は、制御操作によって形状変化する傾向に影響の大きい圧延状態変数を選択して、圧延実績データSiから抽出する。例えば、圧延速度や制御機器位置、圧延機前後の張力などは、制御操作による形状変化の傾向に与える影響が大きいため選択するのが良い。ただし、圧延状態変数を増やしすぎると学習する関係が複雑になり、必要な学習データ数が増えて結果的にニューラルネットの学習に必要な時間が増えたり、ニューラルネットの構造が複雑になることにより、計算負荷が大きくなって制御演算に遅れが生じることもあるので、使用条件に合わせて影響が多大である変数から優先的に選択するのが良い。
このとき、学習データは一定の比率で、学習データデータベースDB6ではなく、検証データデータベースDB7に保存しておき、良否判定ルール精度検証部34における良否判定ルール検証に使用できるようにする。図22に、検証データデータベースDB8に保存されるデータ例を示す。学習データと同様の入力データと教師データの組み合わせに加えて、追加データとして時間遅れした圧延実績データSiから抽出した変化前形状偏差とニューラルネットNo.を保存する。
なお、図1のプラント制御システムは、各種のデータベースDB5、DB6を使用しているが、図23に各データベースDB5、DB6を連系的に管理運用するためのニューラルネット管理テーブルTB2の構成を示す。
具体的には、図23に示すように、管理テーブルTB2は、仕様について(B1)板幅、(B2)鋼種に応じて区分けされる。(B1)板幅としては、例えば、3フィート幅、メータ幅、4フィート幅、5フィート幅の4区分が、鋼種としては、鋼種(1)~鋼種(10)の10区分程度を用いる。この場合、10区分となり、40個のニューラルネットを、圧延条件に応じて使い分けて使用することになる。
ニューラルネット学習制御部312は、図21に示すような、入力データ及び教師データの組合せである学習データを、図23のニューラルネット管理テーブルTB2に従って、該当するニューラルネットNo.と紐付けて、図24に示すような学習データデータベースDB6に格納する。
制御対象プラント1において、形状制御機器が一定以上動作するたびに、学習データが作成される。教師データがある程度(例えば200組)蓄積されたら、又は新たに学習データデータベースDB6に蓄積されたら、ニューラルネット学習制御部312は、ニューラルネット311の学習を指示する。
状態変化ルールデータベースDB5は、図21に示すような管理テーブルTB2に従って、複数のニューラルネットを格納している。そして、ニューラルネット学習制御部312は、学習が必要なニューラルネットNo.を指定して、ニューラルネット選択部313が状態変化ルールデータベースDB5より該当するニューラルネットを取り出し、ニューラルネット311に設定する。ニューラルネット学習制御部312は、学習データデータベースDB6より、該当するニューラルネットに対応する、入力データ及び教師データを取り出し、入力データ作成部314及び教師データ作成部315に指示し、それらを用いてニューラルネット311の学習を実行する。なお、ニューラルネットの学習方法は手法が種々提案されており、いずれの手法を用いても良い。
ニューラルネット311の学習が完了すると、ニューラルネット学習制御部312は、学習結果であるニューラルネット311を、制御ルールデータベースDB6の当該ニューラルネットNo.の位置に書き戻すことで、学習が完了する。
学習は、図23に示す管理テーブルTB2で定義された全てのニューラルネットに対して定時間間隔(例えば1日毎)で一斉に実行する。あるいは、新しい学習データがある程度(例えば100組)蓄積されたニューラルネットNo.のニューラルネットのみについて、その時点で学習しても良い。
また、状態変化ルールの入力データに鋼種や板幅といった圧延材の情報を含めることで、仕様Bによる形状変化傾向の違いも含めて1つのニューラルネットで学習させることも可能である。この場合、状態変化ルール実行時に圧延条件に応じて状態変化ルールを切り替えることが不要となる。
良否判定誤差検証部34は、制御出力良否判定実行部17と同様に一方向の演算のみを行うニューラルネット341を備えておく。検証用データ作成部343は、検証データデータベースDB8より、時間遅れした圧延実績データSiから抽出した圧延状態変数と制御操作量を検証用入力データS24として読出し、ニューラルネット341に出力する。そして、ニューラルネット341は予測形状変化S25を出力する。同時に、検証用データ作成部343は、検証データデータベースDB8より、形状変化と変化前形状偏差とを良否変換用検証データS23として読出し、状態変化良否変換部344に出力する。
状態変化良否変換部344は、検証用データ作成部343から形状変化と変化前形状偏差とを良否変換用検証データS23として受け取り、前述のニューラルネット341から検証データの入力データに基づく予測形状変化S25を受け取る。状態変化良否変換部344は、以下の式により、教師データに基づく制御機器位置変化後の形状偏差spda(i)と、ニューラルネットの出力に基づく制御機器位置変化後の予測形状偏差
Figure 2022182538000009
を、以下の[数10]式に示すように求める。ここで、spdは良否変換用検証データS23に含まれる変化前形状偏差、Δspは良否変換用検証データS23に含まれる形状変化であり、
Figure 2022182538000010
は予測形状変化S25、iは板幅方向の形状検出器番号を示す。
Figure 2022182538000011
さらに、状態変化良否変換部344は、以下の[数11]式により良否評価値evaとニューラルネットの出力に基づく良否評価値evpを演算する。ここで、wcは、良否判定データベースDB4に保存されている板幅方向の重みを示す。ここでは、仕様Aのそれぞれに対して、教師データに基づく良否評価値evaとニューラルネットの出力に基づく良否評価値evpを演算し、仕様Aの情報とともに、図25に示すような良否評価値データベースDB9に保管する。
Figure 2022182538000012
良否判定誤差演算部345は、良否評価値DB9に保管された検証データごとで演算した教師データに基づく良否評価値evaとニューラルネットの出力に基づく良否評価値evpをもとに以下の式によって、ニューラルネットNo.毎、仕様Aのそれぞれに対して、良否判定標準誤差εおよび検証結果フラグflagの演算を実施する。ここでnは検証データ数を表す。thは検証データ数が十分あるかの判定閾値であり、検証データ数が閾値に満たない場合はflag=0(検証不十分)として、状態変化ルールの検証がまだ完了していない事を制御実行ユニット20の制御出力判定実行部17が、良否判定誤差データベースDB7を利用する際にわかるようにしておく。こうして求めたニューラルネットNo.毎、仕様Aごとの良否判定標準誤差εおよび検証結果フラグflagを、図26に示すような良否判定誤差データベースDB7に保存する。
Figure 2022182538000013
以上説明したように、制御対象プラント1の制御ルールを改善させるには、制御結果の良い制御操作を学習できていない場合、制御操作を大きく変更する。また、制御結果が良かった場合、新たな制御操作方法として取り入れる。さらに、制御結果の良い制御操作を学習できている場合、制御操作を変更しないか小さな変更に留める。そして、これらに対する制御結果が良かった場合、新たな制御操作方法として取り入れるようにするのが効率的である。
そして、制御機器の位置変化と形状変化の組み合わせを、実機データを元に学習することにより、機械モデルを用いたシミュレータよりも、プラント状態に合わせて精度よく制御結果の良否が推定可能となり、定期的な自動学習によって常に最新のプラント状態に適合したモデルを構築できる。
また、制御結果の良否判定を推定することで、従来技術で簡易の機械モデルでのみ行っていたプラントへの制御出力抑制機能の信頼性を高めることができる。
また、従来は一回の制御結果の良否判定で行っていた制御ルール学習データの生成が、本例の場合、制御結果の良否判定を推定することで、プラントデータに含まれるノイズの影響を抑え、効果の小さな微調整も学習データの対象とすることが可能になる。さらに、本例によると、制御効果の誤判定を防止することによって、学習データの変動を抑え、制御性能を安定させることが実現できる。
なお、制御ルールデータベースDB1には、制御実行ユニット20で使用するニューラルネットが格納される。ここで、格納されるニューラルネットが、乱数でイニシャル処理を実行しただけの場合、ニューラルネットの学習が進行し、それなりの制御が可能となるまで時間がかかる。そのため、制御対象プラント1に対して、制御部を構築した時に、その時点で判明している制御対象プラント1の制御モデルに基づき、予めシミュレーションにて、制御ルールの学習を実行する。そして、シミュレータでの学習が完了したニューラルネットをデータベースに格納しておくことで、制御対象プラントの立上げ当初から、ある程度の性能の制御を実行できるようになる。
あるいは、実機での操業データの実績データを元に、状態変化ルール学習ユニット22にて状態変化ルールを学習させることにより、実機への制御を行わなくても、制御ルールの出力による良否判定の推定が可能となり、それに基づく制御ルールの学習が可能であり、制御対象プラントへの適用前に、ある程度の性能の制御を実行することが可能となる。
図27は、本例のプラント制御システムとして、制御ルールの評価処理を行う制御ルール評価ユニット23を備えた場合の構成を示す。
制御ルール評価ユニット23は、制御ルール良否判定データ収集部35、制御ルール評価データ演算部36、制御ルールデータベース更新部37、制御ルール評価データデータベースDB10、及び制御ルール評価値データベースDB11を備える。
制御ルール評価ユニット23は、制御実行ユニット20の制御ルール実行部に性能を評価したい制御ルールを設定した状態で、制御入力データS2に対する制御出力の演算を行わせ制御出力良否判定実行部17にて、推定した制御出力良否判定推定値S9を用いて、制御ルールの評価を実施する。
制御ルール評価ユニット23は、制御ルールの評価を行った結果として、現在制御に適用している制御ルールの評価と比較して、今回評価を行った新たな制御ルールの方が高い評価である場合には新たな制御ルールを制御に適用する為に、データベース管理テーブルTBにおけるニューラルネット番号を更新する。以下、制御ルール評価ユニット23における処理内容について示す。
制御ルール良否判定データ収集部35は、制御出力良否判定ルール実行部17から制御出力良否判定推定値S9を受け取る。そして、制御出力良否判定推定値S9が-1(判定対象外)で無かった場合、制御ルール良否判定データ収集部35は、制御実行ユニット20で使用している評価対象ニューラルネットNo.、制御ルール番号選択条件(仕様A,B)と判定回数と制御出力良否判定推定値S9を制御ルール良否判定データS16として、制御ルール評価データデータベースDB10に保存していく。評価対象ニューラルネットNo.として、今回評価対象とする制御ルールが、現状制御に適用されているデータベース管理テーブルTBに登録されていない制御ルールであった場合には、データベース管理テーブルTBに登録されているニューラルネットNo.の最後の番号から連番で取っていく。図28に制御ルール評価データデータベースDB10に保存するデータ例を示す。この例では、データベース管理テーブルTBに登録されているニューラルネットNo.の最後の番号が100であるとして、新たな制御ルールを101~として番号を取っている。
制御ルール良否判定データS16は、制御実行ユニット20にて制御ルールを用いた制御出力の演算が行われるたびに新たなデータが得られ、得られた制御ルール良否判定データS16が制御ルール評価データデータベースDB10に保存される。この場合、制御ルール毎に大量のデータが保管されることになるので、制御ルール評価データデータベースDB10は、各制御ルールで保管するデータの上限を定めておき、一定以上になった場合には古いデータを削除して、新たなデータを保管する。
制御ルール評価データ演算部36は、制御ルール評価データデータベースDB10より制御ルール毎、仕様条件(A,B)毎に蓄積された制御ルール良否判定データS17を一括で取り出し、制御出力良否判定推定値S9の平均値を演算する。求めた平均値は、制御ルールが出力した全体の回数における良い操作を出力した回数の割合となり、この値を制御ルールの性能を評価する指標として用いる。
制御ルール評価データ演算部36は上記により算出した制御ルール評価データS18を、制御ルール評価値データベースDB11に保存する。図29に制御ルール評価値データベースDB11に保存するデータ例を示す。B1、B2、Aの仕様で制御ルールを適用した場合の制御ルール評価データS18を保存する。同一の制御ルールでも異なる期間で再度評価を行う事で最新のプラントの操業状態に合った評価値を計算できる。この場合、再評価により算出した評価値は以前の評価値に上書きする形でデータベースを更新していく。
データベース管理テーブルTBには、条件に応じて使用するニューラルネットNo.(制御ルール)が1つずつ登録されている。これに対して、制御ルール評価値データベースDB9には、同一の条件に対して複数の制御ルールの評価値が管理されている。制御ルールデータベース更新部37は、制御ルール評価値データベースDB11を参照して、データベース管理テーブルTBに登録されているニューラルネットNo.(制御ルール)の制御ルール評価値と、その条件に適用した場合の他の制御ルールの制御ルール評価値とを比較し、その中で最も評価値の高い制御ルールを今後制御に適用を行っていく制御ルールと決定し、データベース管理テーブルTBのニューラルネットNo.(制御ルール)に更新する。
図27に示すプラント制御システムのその他の箇所は、図1に示すプラント制御システムと同様に構成する。但し、図27に示すプラント制御システムの場合は、図1に示すプラント制御システムがプラントの制御を実施している裏側でオフライン系として圧延実績データSiを用いて評価を行うことや、制御対象プラント1を過去実績データにして、制御ルール評価ユニット23がその過去実績に基づいて評価を行うことが可能である。この場合は、制御実行ユニット20が実際に制御対象プラント1を実行する必要がない。具体的には、制御出力抑制部4から制御出力量S0を制御対象プラント1に供給する必要がない。
この図27に示すプラント制御システムによると、制御ルール実行部10に評価を実行したい制御ルールを設定し、過去の実績データをSiとして与えることで、実際に制御対象プラント1に制御出力をしなくても、制御ルール評価値データベースDB11及びデータベース管理テーブルTBを更新することができる。
<変形例>
なお、本発明は、上述した各実施の形態例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態例は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
例えば、図1や図27に示すプラント制御システムは、データの作成や学習、制御などの処理を行う処理部を備える構成とした。この図1や図27に示す制御実行ユニット20、制御方法学習ユニット21、良否判定ルール学習ユニット22、制御ルール評価ユニット23は、プロセッサがそれぞれの機能を実現するプログラム(ソフトウェア)で構成して、プログラムをコンピュータに実行させても良い。図30はこの場合のコンピュータの構成例を示す。
すなわち、図30に示すように、各ユニット20~23を構成するコンピュータは、バスにそれぞれ接続されたCPU(Central Processing Unit:中央処理ユニット)aと、ROM(Read Only Memory)bと、RAM(Random Access Memory)cを備える。さらに、コンピュータは、不揮発性ストレージdと、ネットワークインタフェースeとを備える。
CPUaは、各ユニット20~23での処理を実行するソフトウェアのプログラムコードをROMbから読み出して実行する演算処理部である。RAMcには、演算処理の途中に発生した変数やパラメータ等が一時的に書き込まれる。不揮発性ストレージdには、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)などの大容量の情報記憶部が用いられ、各ユニット20~23が実行するプログラムや、各データベースのデータなどが格納される。
なお、各ユニット20~23は、それぞれ別のコンピュータで構成しても良いが、1つなどの少ない数のコンピュータに各プログラムを実装して、同時に実行しても良い。
ネットワークインタフェースeには、例えば、NIC(Network Interface Card)などが用いられ、他のユニットや制御対象プラント1とのデータの送受信が行われる。
この場合の各処理機能を実現するプログラムなどの情報は、HDDやSSDなどの不揮発性ストレージdの他に、メモリ、ICカード、SDカード、光ディスク等の記録媒体に置くことができる。
また、各ユニット20~23が行う機能の一部又は全部を、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)などのハードウェアによって実現しても良い。
また、図1や図27などに示すブロック図では、制御線や情報線は説明上必要と考えられるものだけを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えても良い。
また、上述した実施の形態例では、制御対象プラント1として、センヂミア圧延機に適用した例としたが、本発明は、その他の各種プラントの制御に適用が可能である。センヂミア圧延機に適用した場合の制御ルールについても、一例を示したものであり、本発明は、上述した実施の形態例に限定されない。
1…制御対象プラント、2…制御入力データ作成部、3…制御出力演算部、4…制御出力抑制部、5…制御出力判定部、6…制御結果良否判定部、7…学習データ作成部、10…制御ルール実行部、16…制御操作外乱発生部、17…制御出力良否判定実行部、18…制御出力操作方法選択部、20…制御実行ユニット、21…制御方法学習ユニット、22…良否判定ルール学習ユニット、23…制御ルール評価ユニット、31…状態変化ルール学習部、33…新規探索操作量演算部、34…良否判定誤差検証部、35…制御ルール良否判定データ収集部、36…制御ルール評価データ演算部、37…制御ルールデータベース更新部、50…センヂミア圧延機、51…パターン認識部、52…形状検出器、53…制御演算部、54…形状検出前処理部、101…ニューラルネット、102…ニューラルネット選択部、110…ニューラルネット処理部、111…ニューラルネット、112…ニューラルネット学習制御部、113…ニューラルネット選択部、114…入力データ作成部、115…教師データ作成部、171…ニューラルネット、172…ニューラルネット選択部、201…規格化形状偏差、202…形状偏差段階、210…形状偏差PP値演算部、211…形状偏差段階演算部、310…ニューラルネット処理部、311…ニューラルネット、312…ニューラルネット学習制御部、313…ニューラルネット選択部、314…入力データ作成部、315…教師データ作成部、341…ニューラルネット、342…ニューラルネット選択部、343…検証用データ作成部、344…状態変化良否変換部、345…良否判定誤差演算部、501…圧延現象モデル、502…形状修正良否判定部、503…形状偏差修正量予測データ、504…形状偏差実績データ、505…形状偏差予測データ、602…形状変化良否判定部、703…制御出力操作方法選択部、801…学習データ作成部、802…制御ルール学習部、DB1…制御ルールデータベース、DB2…学習データデータベース、DB3…出力判定データベース、DB4…良否判定データベース、DB5…状態変化ルールデータベース、DB6…学習データデータベース、DB7…良否判定誤差データベース、DB8…検証データデータベース、DB9…良否評価値データベース、DB10…制御ルール評価データデータベース、DB11…制御ルール評価値データベース

Claims (8)

  1. 制御対象プラントに対して、前記制御対象プラントの実績データの組合せのパターンを認識して、制御を実行するプラント制御システムであって、
    前記制御対象プラントの実績データと制御操作の組合せを学習する制御方法学習ユニットと、前記制御方法学習ユニットが学習した実績データと制御操作の組合せに応じて制御対象プラントの制御を実行する制御実行ユニットと、前記制御対象プラントの実績データと制御操作と制御対象の状態変化の組み合わせを学習する状態変化ルール学習ユニットとを備え、
    前記制御実行ユニットは、
    前記制御対象プラントの実績データと制御操作の定められた組合せに従って制御出力を与える制御ルール実行部と、
    前記制御対象プラントの実績データと制御操作と制御対象の状態変化の定められた組み合わせに従って、制御対象の状態変化を予測し前記制御出力の良否判定を推定する制御出力良否判定実行部と、
    前記制御出力良否判定実行部での良否判定を元に新規操作探索用操作量を演算する新規探索操作量演算部と、
    前記制御出力良否判定実行部での良否判定を用いて、制御出力を前記制御対象プラントに出力した場合に前記制御対象プラントの実績データが悪化すると判断した場合に、制御出力を前記制御対象プラントに出力することを阻止する制御出力抑制部とを備え、
    前記状態変化ルール学習ユニットは、
    前記制御対象プラントの実績データより、実績データと制御操作と、前記制御操作による制御効果が実績データに表れるまでの時間遅れの間の制御対象の状態変化量の組合せを抽出して学習データを作成し、前記学習データを用いて学習する状態変化ルール学習部を備え、
    前記制御方法学習ユニットは、
    前記制御出力良否判定実行部での前記制御出力の良否判定と、前記制御出力を用いて教師データを得る学習データ作成部と、
    前記実績データと前記教師データを学習データとして学習する制御ルール学習部とを備える
    プラント制御システム。
  2. 前記制御方法学習ユニットが学習することで、前記制御対象プラントの状態に応じて複数の制御目標に対して別個の実績データと制御操作の組合せを得、
    得られた実績データと制御操作の組合せを、前記制御ルール実行部における前記制御対象プラントの実績データと制御操作の定められた組合せとして使用する
    請求項1に記載のプラント制御システム。
  3. 前記制御出力良否判定実行部は、前記制御対象プラントの実績データと制御操作と制御対象の状態変化の定められた組合せを第1のニューラルネットとして保持し、
    前記状態変化ルール学習部は、実績データと制御操作と制御対象の状態変化の組合せを第2のニューラルネットとして保持し、
    前記状態変化ルール学習部における学習の結果得られた前記第2のニューラルネットを、前記制御出力良否判定実行部における前記第1のニューラルネットとして使用する
    請求項1に記載のプラント制御システム。
  4. 前記状態変化ルール学習ユニットは、過去の実績データの制御出力の良否判定と、前記制御対象プラントの実績データと制御操作と制御対象の状態変化の定められた組み合わせに従って、制御対象の状態変化を予測し制御出力の良否判定を比較する事により良否判定の誤差を演算する良否判定誤差検証部を備え、
    前記良否判定誤差検証部で生成した良否判定誤差を用いて、前記制御出力良否判定実行部における制御結果良否判定の基準を変更する
    請求項1に記載のプラント制御システム。
  5. さらに、物理モデルを用いたシミュレーションに基づき前記制御出力の可否を判定する制御出力判定部を備え、
    前記制御出力抑制部は、前記制御出力良否判定実行部での良否判定と前記制御出力判定部の制御出力可否判定の双方、あるいは前記制御出力良否判定実行部での良否判定を用いて、制御出力を前記制御対象プラントに出力した場合に前記制御対象プラントの実績データが悪化すると判断した場合に、制御出力を前記制御対象プラントに出力する
    請求項1に記載のプラント制御システム。
  6. さらに、制御ルール評価ユニットを備え、
    前記制御ルール評価ユニットは、
    前記制御実行ユニットの前記良否判定実行部の良否判定データをデータベースに蓄積する制御ルール良否判定データ収集部と、
    前記データベースに蓄積された良否判定データを元に制御ルール評価データを演算する制御ルール評価データ演算部を有し、
    前記制御実行ユニットに用いた制御ルールを前記制御対象プラントに出力せずに評価が可能な
    請求項1~5のいずれか1項に記載のプラント制御システム。
  7. 制御対象プラントに対して、前記制御対象プラントの実績データの組合せのパターンを認識して、前記制御対象プラントの制御をコンピュータにより実行するプラント制御方法であって、
    前記コンピュータが実行する処理として、
    前記制御対象プラントの実績データと制御操作の組合せを学習する制御方法学習処理と、前記制御方法学習処理により学習した実績データと制御操作の組合せに応じて制御対象プラントの制御を実行する制御実行処理と、前記制御対象プラントの実績データと制御操作と制御対象の状態変化の組合せと制御結果良否の組み合わせを学習する状態変化ルール学習処理と、を含み、
    前記制御実行処理は、
    前記制御対象プラントの実績データと制御操作の定められた組合せに従って制御出力を与える制御ルール実行処理と、
    前記制御対象プラントの実績データと制御操作と制御対象の状態変化の定められた組み合わせに従って、制御対象の状態変化を予測し前記制御出力の良否判定を推定する制御出力良否判定実行処理と、
    前記制御出力良否判定実行処理での良否判定を元に新規操作探索用操作量を演算する新規探索操作量演算処理と、
    前記制御出力良否判定実行処理での良否判定を用いて、制御出力を前記制御対象プラントに出力した場合に前記制御対象プラントの実績データが悪化すると判断した場合に、制御出力を前記制御対象プラントに出力することを阻止する制御出力抑制処理と、を含み、
    前記状態変化ルール学習処理は、
    前記制御対象プラントの実績データより、実績データと制御操作と、前記制御操作による制御効果が実績データに表れるまでの時間遅れの間の制御対象の状態変化量の組合せを抽出して学習データを作成し、前記学習データを用いて学習する状態変化ルール学習処理を含み、
    前記制御方法学習処理は、
    前記制御出力良否判定実行処理での前記制御出力の良否判定と、前記制御出力を用いて教師データを得る学習データ作成処理と、
    前記実績データと前記教師データを学習データとして学習する制御ルール学習処理と、を含む
    プラント制御方法。
  8. 制御対象プラントに対して、前記制御対象プラントの実績データの組合せのパターンを認識して、コンピュータにプラント制御を実行させるプログラムであり、
    当該プログラムは、前記制御対象プラントの実績データと制御操作の組合せを学習する制御方法学習手順と、前記制御方法学習手順により学習した実績データと制御操作の組合せに応じて制御対象プラントの制御を実行する制御実行手順と、前記制御対象プラントの実績データと制御操作と制御対象の状態変化の組合せと制御結果良否の組み合わせを学習する状態変化ルール学習手順と、を前記コンピュータに実行させるものであり、
    前記制御実行手順は、
    前記制御対象プラントの実績データと制御操作の定められた組合せに従って制御出力を与える制御ルール実行手順と、
    前記制御対象プラントの実績データと制御操作と制御対象の状態変化の定められた組み合わせに従って、制御対象の状態変化を予測し前記制御出力の良否判定を推定する制御出力良否判定実行手順と、
    前記制御出力良否判定実行手順での良否判定を元に新規操作探索用操作量を演算する新規探索操作量演算手順と、
    前記制御出力良否判定実行手順での良否判定を用いて、制御出力を前記制御対象プラントに出力した場合に前記制御対象プラントの実績データが悪化すると判断した場合に、制御出力を前記制御対象プラントに出力することを阻止する制御出力抑制手順と、を含み、
    前記状態変化ルール学習手順は、
    前記制御対象プラントの実績データより、実績データと制御操作と、前記制御操作による制御効果が実績データに表れるまでの時間遅れの間の制御対象の状態変化量の組合せを抽出して学習データを作成し、前記学習データを用いて学習する状態変化ルール学習手順を含み、
    前記制御方法学習手順は、
    前記制御出力良否判定実行手順での前記制御出力の良否判定と、前記制御出力を用いて教師データを得る学習データ作成手順と、
    前記実績データと前記教師データを学習データとして学習する制御ルール学習手順と、を含む
    プログラム。
JP2021090146A 2021-05-28 2021-05-28 プラント制御システム、プラント制御方法及びプログラム Active JP7535475B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021090146A JP7535475B2 (ja) 2021-05-28 2021-05-28 プラント制御システム、プラント制御方法及びプログラム
CN202210253569.3A CN115407726A (zh) 2021-05-28 2022-03-15 工厂设备控制系统及其控制方法、计算机可读记录介质
DE102022204937.3A DE102022204937A1 (de) 2021-05-28 2022-05-18 Anlagensteuersystem, steuerverfahren und programm für anlagen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021090146A JP7535475B2 (ja) 2021-05-28 2021-05-28 プラント制御システム、プラント制御方法及びプログラム

Publications (2)

Publication Number Publication Date
JP2022182538A true JP2022182538A (ja) 2022-12-08
JP7535475B2 JP7535475B2 (ja) 2024-08-16

Family

ID=83997165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021090146A Active JP7535475B2 (ja) 2021-05-28 2021-05-28 プラント制御システム、プラント制御方法及びプログラム

Country Status (3)

Country Link
JP (1) JP7535475B2 (ja)
CN (1) CN115407726A (ja)
DE (1) DE102022204937A1 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3465236B2 (ja) 2000-12-20 2003-11-10 科学技術振興事業団 ロバスト強化学習方式
JP4627553B2 (ja) 2008-03-28 2011-02-09 株式会社日立製作所 プラントの制御装置および火力発電プラントの制御装置
FR3005802B1 (fr) 2013-05-17 2016-09-23 Hager Security Coffret comprenant un socle, un boitier et un organe rotatif d'assemblage
JP6897759B2 (ja) 2017-03-28 2021-07-07 東亞合成株式会社 架橋重合体又はその塩の製造方法

Also Published As

Publication number Publication date
CN115407726A (zh) 2022-11-29
DE102022204937A1 (de) 2022-12-01
JP7535475B2 (ja) 2024-08-16

Similar Documents

Publication Publication Date Title
JP6899273B2 (ja) プラント制御装置およびその制御方法、圧延機制御装置およびその制御方法並びにプログラム
CN108687137B (zh) 整套设备控制装置、轧机控制装置、控制方法及存储介质
US9043254B2 (en) Method for computer-aided closed-loop and/or open-loop control of a technical system
CN111913803B (zh) 一种基于akx混合模型的服务负载细粒度预测方法
CN105046045B (zh) 一种基于贝叶斯组合的Web服务QoS预测方法
US11475712B2 (en) Method and device for automatic gesture recognition
CN113868953B (zh) 工业系统中多机组运行优化方法、装置、系统及存储介质
JP2018190127A (ja) 判定装置、分析システム、判定方法および判定プログラム
CN110276492A (zh) 一种节点数据预测方法及装置
JP7033639B2 (ja) プラント制御装置およびその制御方法、圧延機制御装置およびその制御方法並びにプログラム
CN114637620A (zh) 一种基于svm算法的数据库系统异常分类预测方法
JP2022182538A (ja) プラント制御システム、プラント制御方法及びプログラム
JP7495874B2 (ja) プラント制御システム、プラント制御方法及びプログラム
CN109829115B (zh) 搜索引擎关键词优化方法
JP6952018B2 (ja) 制御装置および制御方法
CN113626177A (zh) 基于lstm的cpu资源负载情况预测方法
JP2020071493A (ja) 結果予測装置、結果予測方法、及びプログラム
CN109768545A (zh) 一种基于Vague集的黑启动方案优选方法
JP7328142B2 (ja) プラント制御装置およびその制御方法、圧延機制御装置およびその制御方法並びにプログラム
JP2022183827A (ja) プラント制御システム、圧延機制御装置、プラント制御方法、及びプラント制御プログラム
JP7154468B2 (ja) 情報処理装置、情報処理方法及び情報処理プログラム
CN118204832B (zh) 基于贝叶斯深度学习的TCNCSA-BiGRU的刀具磨损预测方法
JP7475549B2 (ja) 学習装置、予測装置、予測システム、学習方法、予測方法、及び予測プログラム
JP2020166599A (ja) 運転計画支援装置、運転計画支援方法及び運転計画支援プログラム
WO2023243036A1 (ja) 情報処理装置、プログラム及び情報処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240805

R150 Certificate of patent or registration of utility model

Ref document number: 7535475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150