JP2022181267A - 計算システム、計算方法 - Google Patents

計算システム、計算方法 Download PDF

Info

Publication number
JP2022181267A
JP2022181267A JP2021088120A JP2021088120A JP2022181267A JP 2022181267 A JP2022181267 A JP 2022181267A JP 2021088120 A JP2021088120 A JP 2021088120A JP 2021088120 A JP2021088120 A JP 2021088120A JP 2022181267 A JP2022181267 A JP 2022181267A
Authority
JP
Japan
Prior art keywords
driver
vehicle
unit
operation tendency
progress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021088120A
Other languages
English (en)
Inventor
薫 渋谷
Kaoru Shibuya
亮仁 赤井
Akihito Akai
雄司 千葉
Yuji Chiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2021088120A priority Critical patent/JP2022181267A/ja
Priority to CN202210390736.9A priority patent/CN115402328A/zh
Priority to US17/734,607 priority patent/US11994404B2/en
Priority to DE102022204385.5A priority patent/DE102022204385A1/de
Publication of JP2022181267A publication Critical patent/JP2022181267A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3469Fuel consumption; Energy use; Emission aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3484Personalized, e.g. from learned user behaviour or user-defined profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Social Psychology (AREA)
  • Traffic Control Systems (AREA)

Abstract

【課題】業務の進捗とドライバの特性の関係を利用して、ドライバが運転する車両のエネルギー消費量を精度よく推定できる。【解決手段】計算システムは、ドライバが操作する車両のエネルギー消費量を推定する装置であって、シミュレーション上における、予定時間からの遅れ時間である業務進捗を算出する業務進捗算出部と、ドライバの識別子であるドライバID、業務進捗、および車両の操作傾向の対応付けである傾向情報を格納する操作傾向記憶部と、業務進捗算出部が算出する業務進捗、および演算対象であるドライバのドライバIDを用いて、傾向情報からドライバの操作傾向を読み出す操作傾向読出部と、演算対象であるドライバごとに、操作傾向読出部が読み出した操作傾向に基づき車両のエネルギー消費量を算出するシミュレータ演算部と、を備える。【選択図】図1

Description

本発明は、計算システム、および計算方法に関する。
車両のエネルギー消費量を正確に推定する技術は、燃料切れによる車両停止などの危険を防ぎながら、効率的な輸送を行うための運行計画の立案など、車両の運用に必要な技術である。特に近年普及しつつある電気自動車(Electric Vehicle, 以下EVと記す)にとっては、充電が輸送効率に与える影響が大きいため重要性が高い。EVは充電に要する時間が長いため、輸送業務の途中で充電が生じない運行計画が必要となっており、車両のエネルギー消費量を推定する技術の需要は更に高まっている。
エネルギー消費量を推定する既存の手段にはシミュレータがある。シミュレータは、走行の状況、例えば、車両の周囲の交通量を考慮して、エネルギー消費量を推定するものであるが、シミュレータによる推定の精度を向上するには、交通量に限らず、車両のエネルギー消費量に影響する要因を、より正確に反映する必要がある。ここで、正確に反映するべき要因の1つにドライバの個性がある。例えば、車両のブレーキによるエネルギー消費量は、ブレーキを急に踏むか計画的に踏むかで異なるが、ブレーキをどう踏むかはドライバの個性によるので、ドライバの個性を考慮すると車両のエネルギー消費量の推定精度を向上できる。
ドライバの個性を考慮して車両のエネルギー消費量を推定する技術の公知例として、特許文献1がある。特許文献1では、自動車の燃料消費量推定システムにおいて、車両から運転履歴に伴う燃料消費量及び走行距離を取得する他に、運転履歴に伴う車両状態情報及び走行した経路の状況情報の少なくとも一つを含む運転状況に関する情報を取得し、その情報に基づき運転状況パターン毎の燃費頻度分布を求め、この燃費頻度分布に基づき該車両の運転者個人の燃費傾向を運転状況パターン毎に更新可能に求め、この運転状況パターン毎の燃費傾向を基にして走行予定経路の燃料消費量を予測することを特徴とする自動車の燃料消費量推定システムが開示されている。
特開2009-031046号公報
特許文献1に記載されている発明では、ドライバの特性の利用に改善の余地がある。
本発明の第1の態様による計算システムは、ドライバが操作する車両のエネルギー消費量を推定する装置であって、シミュレーション上における、予定時間からの遅れ時間である業務進捗を算出する業務進捗算出部と、前記ドライバの識別子であるドライバID、前記業務進捗、および車両の操作傾向の対応付けである傾向情報を格納する操作傾向記憶部と、前記業務進捗算出部が算出する前記業務進捗、および演算対象である前記ドライバの前記ドライバIDを用いて、前記傾向情報から前記ドライバの前記操作傾向を読み出す操作傾向読出部と、演算対象である前記ドライバごとに、前記操作傾向読出部が読み出した前記操作傾向に基づき前記車両のエネルギー消費量を算出するシミュレータ演算部と、を備える。
本発明の第2の態様による計算方法は、ドライバが操作する車両のエネルギー消費量をコンピュータが推定する方法であって、シミュレーション上における、予定時間からの遅れ時間である業務進捗を算出する業務進捗算出ステップと、前記ドライバの識別子であるドライバID、前記業務進捗、および車両の操作傾向の対応付けである傾向情報を読み出す、傾向情報読み出しステップと、前記業務進捗算出ステップにおいて算出され前記業務進捗、および演算対象である前記ドライバの前記ドライバIDを用いて、前記傾向情報から前記ドライバの前記操作傾向を読み出す操作傾向読出ステップと、演算対象である前記ドライバごとに、前記操作傾向読出ステップにおいて読み出された前記操作傾向に基づき前記車両のエネルギー消費量を算出するシミュレータ演算ステップと、を含む。
本発明によれば、業務の進捗とドライバの特性の関係を利用して、ドライバが運転する車両のエネルギー消費量を精度よく推定できる。
第1の実施の形態における計算システムの構成図 計算システムのハードウエア構成を代表する演算装置の一例を示す図 輸送計画記憶部に格納される輸送計画の一例を示す図 業務進捗算出部が算出する業務進捗ログの一例を示す図 表示部に表示される車両のエネルギー消費量の計算結果の一例を示す図 地図の一例を示す図 操作傾向記憶部に格納される操作傾向の一例を示す図 比較例の処理である比較例処理を示すフローチャート 第1の実施の形態における計算システムの処理を示すフローチャート 第2の実施の形態における計算システムの構成図 天候、交通量、および車両モデルの一例を示す図 第3の実施の形態における計算システムの構成図 操作ログの一例を示す図 操作傾向ログの一例を示す図 操作傾向学習部が行う処理を示すフローチャート 第4の実施の形態における計算システムの構成図 生理特性の一例を示す図 生理特性算出部の処理を示すフローチャート 第4の実施の形態における操作傾向の一例を示す図 第4の実施の形態におけるエネルギー消費量予測の処理のフローチャート 第5の実施の形態における計算システムの構成図 輸送物の一例を示す図 第5の実施の形態における操作傾向の一例を示す図 対応付けを学習するフローチャート 第5の実施の形態におけるエネルギー消費量予測の処理のフローチャート
―第1の実施の形態―
以下、図1~図9を参照して、計算システムの第1の実施の形態を説明する。本実施の形態では、輸送業務におけるシミュレーションにおいて、各ドライバが従事する業務の進捗にあわせて、前述のドライバに固有な特性である車両操作の傾向を切り替えることで、車両のエネルギー消費量の推定精度を改善する。
本実施の形態が想定する応用先の1つは、車両が消費するエネルギー量を見積もるシミュレータである。本技術を適用することで、渋滞などにより計画通りの輸送業務が行えない事例において、業務の進捗ごとにドライバに固有な特性である車両操作の傾向を考慮することで、車両のエネルギー消費量の推定精度を改善する。
図1は、第1の実施の形態における計算システムS1の構成図である。計算システムS1はオペレーションセンタともに動作する。オペレーションセンタには、表示部101、オペレータ112、およびシステム管理者113、が含まれる。計算システムS1には、入出力部102、制御部103、シミュレータ演算部104、記憶部105、業務進捗算出部106、時間管理部107、エネルギー消費量推定部108、操作傾向読出部109、操作傾向記憶部110、結果記憶部111、および輸送計画記憶部114が含まれる。
図2は、計算システムS1のハードウエア構成を代表する演算装置80の一例を示す図である。演算装置80は、中央演算装置であるCPU21、読み出し専用の記憶装置であるROM22、および読み書き可能な記憶装置であるRAM23、入出力装置24、通信装置25、およびフラッシュメモリ26を備える。CPU21がROM22に格納されるプログラムをRAM23に展開して実行することで様々な演算を行う。入出力装置24は、たとえばマウスやキーボードである。通信装置25は、有線または無線によりオペレーションセンタと通信する通信モジュールである。フラッシュメモリ26は不揮発性の記憶装置であり、他の不揮発性の記憶装置、たとえばハードディスクドライブなどでもよい。
演算装置80は、CPU21、ROM22、およびRAM23の組み合わせの代わりに書き換え可能な論理回路であるFPGA(Field Programmable Gate Array)や特定用途向け集積回路であるASIC(Application Specific Integrated Circuit)により演算機能を実現してもよい。また演算装置80は、CPU、ROM、およびRAMの組み合わせの代わりに、異なる構成の組み合わせ、たとえばCPU、ROM、RAMとFPGAの組み合わせにより演算機能を実現してもよい。
制御部103、シミュレータ演算部104、業務進捗算出部106、時間管理部107、エネルギー消費量推定部108、および操作傾向読出部109は、CPU21、ROM22、およびRAM23の組み合わせにより実現される。記憶部105、操作傾向記憶部110、結果記憶部111、および輸送計画記憶部114は、演算装置80のフラッシュメモリ26により実現される。入出力部102は、入出力装置24と通信装置25との組合せにより実現される。
図3は、輸送計画記憶部114に格納される輸送計画の一例を示す図である。輸送計画は、業務の識別子である業務ID301a、出発地302a、到着地303a、到着期限304aからなる業務内容114Pと、業務の識別子である業務ID301b、ドライバの識別子であるドライバID302b、車両ID303bからなる業務割当114Qとを含む。輸送計画はオペレータ112により入出力部102を介して入力される。
業務内容114Pにおける業務ID301aと、業務割当114Qにおける業務ID301bとは同種の情報であり、いずれも業務を識別する識別子である。たとえば図3に示す例では、業務ID「T1」の業務は、出発地が「S1」、到着地が「G1」であり、到着期限が「10時0分0秒」であることが示されている。さらにこの業務ID「T1」の業務は、IDが「N1」であるドライバ、かつIDが「V1」である車両に割り当てられたことが示されている。
図4は、業務進捗算出部106が算出する業務進捗ログ400の一例を示す図である。業務進捗ログ400は、ドライバの識別子であるドライバID401、業務の識別子である業務ID402、現在時刻403、現在位置404、進捗率405、予定時刻との差406からなる。なお以下では、予定時刻との差406を「業務進捗」406とも呼ぶ。
図5は、表示部101に表示される車両のエネルギー消費量の計算結果の一例を示す図である。具体的には、地図501上の車両の経路を始点502と終点503とともに表示する。また、始点502から終点503までに各地点における車両の速度、加速度、エネルギー消費量、バッテリ残量の代表値をそれぞれ符号506~509に示すようにグラフ形式で表示する。また、他車両の位置や速度を異ならせたシミュレーションを複数回実行し、その結果得られた輸送時間、および消費電力量の頻度分布を符号504、505のように表示する。なお、交通量のばらつき具合が予め判っているのであれば、1回のシミュレーションで得られた結果に対して、ばらつき情報を付与して推定される頻度分布を作成しても構わない。
図6は、地図D11の一例を示す図である。本実施の形態では、交差点や終端を表す「ノード」と、交差点同士を接続する道路を表す「エッジ」とを用いて地図を表現する。なお「エッジ」は、「リンク」とも呼ばれる。以下では「エッジ」を「道路エッジ」と呼び、「ノード」を「道路ノード」と呼ぶ。地図D11は、道路エッジ表650aと道路ノード表651aとから構成される。
それぞれの道路ノードには、道路ノード表651aに示すように識別番号すなわち道路ノードID611a、座標612a、道路標高613a、および信号機の有無614aが記録される。それぞれの道路エッジには道路エッジ表850aに示すように、識別番号すなわち道路エッジID601a、始点と終点の道路ノードID602aおよびID603a、道路種別604a、路面抵抗605a、レーン数606a、道路勾配607a、地区ID608a、制限速度609a、および道路長610aが記録される。
図7は、操作傾向記憶部110に格納される操作傾向110Aの一例を示す図である。操作傾向110Aには、ドライバごとの業務進捗と操作傾向の対応が示されている。具体的には操作傾向110Aには、ドライバの識別子であるドライバID701aと、予定時刻との差、すなわち業務進捗702aと、操作傾向703aとの組合せが複数含まれ、操作傾向703aには急減速の頻度704aおよび急加速の頻度705aが含まれる。本実施の形態では、操作傾向110Aはあらかじめ作成されている。
図1に記載したブロック図の情報の流れの概要は以下の通りである。オペレーションセンタ側でオペレータ112が図3に示す輸送計画を入力する。輸送計画が入力されたら、計算システム側でシミュレーションを行い、車両のエネルギー消費量を推定する。シミュレーションの各ステップで、ドライバの業務の進捗に応じて、ドライバに固有である車両の操作傾向を切り替えて、車両のエネルギー消費量を推定する。
以下、図1に記載したブロック図の各構成要素について具体的に説明する。入出力部102は、まず、オペレータ112からの入力として、輸送計画を受け取る。あるドライバへ複数の業務ID301bが割り当てられると、シミュレータ演算部104が到着地303aと到着期限304aとに基づき業務の順番を決め、ドライバは各業務を順番に行っていくものとする。ドライバへ複数の業務が割り当てられた場合、業務進捗ログ400はドライバに割り当てられた最終業務までの経路と最終業務の到着期限304aをもとに算出する。業務進捗ログ400の算出方法は後述する。
表示部101は、計算システム側で推定した車両のエネルギー消費量の計算結果を表示する。表示部101の表示例は図5の通りである。入出力部102は、オペレータ112から入力される輸送計画を受け付けたら、ドライバID302bを後述する制御部103へ伝達し、輸送計画を後述するシミュレータ演算部104へ伝達する。その後に入出力部102は、シミュレータ演算部104が出力するシミュレーションの計算結果を受け付け、計算結果を表示部101へ伝達する。
制御部103は、時間管理部107から受け取った時間間隔ごとに、操作傾向読出部109から取得した操作傾向をシミュレータ演算部104へ伝達する。また、シミュレーションの経過として、シミュレータ演算部104から車両の位置と速度、エネルギー消費量推定部108からエネルギー消費量を受け取り、結果記憶部111へ書き込む。ドライバが出発地302aから到着地303aまで移動する際の、各地点における車両の速度、加速度、エネルギー消費量、エネルギー残量を計算結果として取得したら、制御部103は計算結果を結果記憶部111へ書き込む。このシミュレータ演算部104から計算結果を得るまでの一連の試行を、制御部103は時間管理部107から受け取った繰り返し回数の分、シミュレーション内の混雑等の不確実性を変えて実行する。そして、各地点における車両の速度、加速度、エネルギー消費量、エネルギー残量と、繰り返し回数の分、試行して取得したエネルギー消費量・輸送時間を計算結果として入出力部102へ伝達する。
シミュレータ演算部104は、入出力部102から輸送計画として、ドライバID302b、車両ID303b、出発地302a、到着地303a、到着期限304aを受け取った後、以下に示すシミュレーションの初期設定を行う。次に、入出力部102から受け取った出発地302aと到着地303aをもとに、記憶部105から地図D11を読み出し、経路を算出する。以上がシミュレーションの初期設定である。
シミュレーションの初期設定が終了したら、シミュレーションを開始し、シミュレーション内の時間の経過に合わせて、車両の位置と速度を更新していく。シミュレーションの過程でドライバの業務進捗に応じて、ドライバの車両の操作傾向を切り替えてエネルギー消費量を推定することが本発明の特徴である。シミュレーションについては、後ほど詳しく説明する。
シミュレータ演算部104は、業務進捗の算出に必要な、現在位置、出発地302aから到着地303aまでの経路、シミュレーション内の現在時刻403、到着期限304aを後述する業務進捗算出部106へ伝達する。また、制御部103から、一定の時間間隔ごとにドライバID701aに対応するドライバの操作傾向703aを受け取り、車両の位置と速度を制御部103へ伝達する。時間間隔は、システム管理者113が後述する時間管理部107へ入力し、制御部103へ伝達されている。
業務進捗算出部106は、シミュレーション内の各時刻におけるドライバごとの業務の進捗を算出する。業務進捗算出部106は、シミュレータ演算部104から受け取った現在位置と出発地302aから到着地303aまでの経路をもとに、出発地302aから現在位置までの距離、及び現在位置から到着地303aまでの距離を算出する。次に業務進捗算出部106は、現在位置から到着地303aまでの距離と到着期限304aをもとに、現在位置の通過予定時刻を算出し、通過予定時刻と現在時刻の差、すなわち業務進捗702aを操作傾向読出部109へ伝達する。
操作傾向読出部109は、業務進捗算出部106から受け取った業務進捗702aと、制御部103から受け取ったドライバID701aをもとに、操作傾向記憶部110から、ドライバの操作傾向703aを読み出し、制御部103へドライバID701aに対応する操作傾向703aを伝達する。これにより、業務進捗に応じたドライバごとの急減速および急加速の頻度を加味した演算が可能となる。
以下、従前の方法である比較例と比較しながら、本実施の形態における処理を説明する。輸送業務中に消費する車両のエネルギー量を見積る方法の1つに、シミュレーションを開始した後に業務終了まで、車両の移動とエネルギー消費量の推定を繰り返すことで、最終的な車両のエネルギー消費量見積もる方法がある。前述の見積もり方法において、従前の方法である比較例における処理を示すフローチャートを図8、本実施の形態における処理を示すフローチャートを図9に示す。本実施の形態の処理を比較例と比較すると、業務進捗算出処理706および、車両操作傾向変更処理707の2つが追加されている。本実施の形態における処理のうち、特に説明しない点は比較例と同様である。
図8に示す比較例処理を説明する。以下では、比較例の処理を実行する主体を「比較例CPU」と仮定して説明する。ステップS801で処理が開始されると比較例CPUは、続くステップS802では入力受付処理として輸送計画記憶部114から輸送計画を読み取る。たとえば比較例CPUは、業務割当114Qに記載された上から順番に業務ID301bを読み取り、業務内容114Pにおける対応業務ID301aにおける出発地302aと到着地303aの組合せを特定する。
続くステップS803では、シミュレーションの初期設定を行い、ステップS802において特定した出発地302aと到着地303aの組合せごとに、経路を算出する。そして比較例CPUは、全ての業務を対象とする複数回のステップS804~S808のループ処理を行う。このループ処理では、まずステップS805においてステップS803において算出した経路上の車両の位置を更新し、続くステップS806ではエネルギー消費量を推定する。車両の位置の更新は、シミュレーションにおける規定の時間間隔、たとえば1秒と、そのタイミングにおける車両の速度ベクトルにより算出される。
続くステップS807では全業務が終了したか否かを判断し、全業務が終了したと判断する場合はステップS808に進み、終了していない業務が存在すると判断する場合はステップS805に戻る。たとえば比較例CPUは、図3に示す例において業務ID301aが「T1」の業務において車両が「G1」に到着した場合には、次の業務である「T2」が存在するので比較例CPUはステップS807を否定判断してステップS805に戻り、業務「T2」における出発地302aである「S2」から車両の移動を開始させる。
ステップS805およびS806について説明する。車両の位置の更新は(式1)、エネルギー消費量の推定は(式2)を利用する。
L = L + V(t)*δt …(式1)
E = E + Ea + Eo …(式2)
ただし、式1および式2において、Lは車両の位置、V(t)はシミュレーション内の時刻tにおける車速を返す関数、δt はシミュレーション内で位置を更新する時間間隔、Eはエネルギー消費量、Eaは走行条件ごとの加減速によるエネルギー消費量、Eoは加減速以外の要因によるエネルギー消費量である。(式1)および(式2)を、(式3)で算出される進捗率Pが1になるまで繰り返すことで、車両のエネルギー消費量を算出し、ここまでを1つの試行とする。
P = D(S,L) / D(S,G) …(式3)
ただし式3において、Sは出発地、Gは到着地、Dは2点間の経路上の距離を計算する関数である。ここで、(式1)の車速V(t)は、道路の混雑状況など、確率的事象を考慮するもので、必ずしも一定の値を返すものでないとする。このとき、(式1)および(式2)の計算を業務終了まで繰り返してエネルギー消費量Eを求めることを1つの試行とすると、各試行におけるエネルギー消費量Eは一定ではなくなるため、前述の試行を繰り返し回数だけ実行することでエネルギー消費量Eの期待値を得る。
比較例における見積方法において、加減速あたりのエネルギー消費量Eaを定数としている点で改善の余地がある。本実施形態では、図9のステップS907に示すように、シミュレーションの過程で各ドライバに固有な特性である車両の操作傾向を切り替える。加減速あたりのエネルギー消費量Eaは様々な要因により変化しうるが、輸送業務の進捗がドライバの心理に影響を及ぼしうることに着目し、次の(式4)によって見積もりを行う。
E = E + Ea(I(Dt)) + Eo …(式4)
ただし式4において、Eはエネルギー消費量、Eaは走行条件ごとの加減速によるエネルギー消費量の関数、Iは予定時刻との差からドライバの操作傾向を出力する関数、Dtは現在時刻と予定時刻との差、すなわち業務進捗である。業務進捗Dtは(式5)のように、進捗率Pにおける予定所要時間P*(Te-Ts)と、シミュレーション内で実際に要した時間(t-Ts)との差で計算できる。
Dt = P * (Te - Ts) - (t - Ts) …(式5)
ただし式5は、Dtは業務進捗、Teは到着期限、Tsは出発時刻、tはシミュレーション内の時刻、Pは(式3)で計算される時刻tにおける進捗率である。また(式4)における、業務進捗Dtに対応するドライバの操作傾向を出力する関数Iでは、業務進捗Dtがドライバの心理や行動、そしてエネルギー消費に影響する要因を考慮する。その一例として、急減速や急加速の発生頻度を考慮するのであれば、業務進捗Dtに対応する急減速の頻度を出力する関数をIde、業務進捗Dtに対応する急加速の頻度を出力する関数をIacとすると、加減速あたりのエネルギー消費量の関数Eaは、次の(式6)から求められる。
Ea(I(Dt)) = { Eac1*(1 - Iac(Dt)) + Eac2 * Iac(Dt) }
+ { Ede1*(1 - Ide(Dt)) + Ede2 * Ide(Dt) } …(式6)
関数Ideは具体的には、業務進捗DtおよびドライバIDに基づき操作傾向110Aから急減速の頻度704aを取得する。関数Iacは具体的には、業務進捗DtおよびドライバIDに基づき操作傾向110Aから急加速の頻度705aを取得する。また(式6)において、Eac1は通常の加速のエネルギー消費量、Eac2は急加速のエネルギー消費量、Ede1は通常の減速のエネルギー消費量、Ede2は急減速のエネルギー消費量である。
上述した第1の実施の形態によれば、次の作用効果が得られる。
(1)計算システムS1は、ドライバが操作する車両のエネルギー消費量を推定する装置であって、シミュレーション上における、予定時間からの遅れ時間である業務進捗を算出する業務進捗算出部106と、ドライバの識別子であるドライバID、業務進捗、および車両の操作傾向の対応付けである傾向情報を格納する操作傾向記憶部110と、業務進捗算出部106が算出する業務進捗、および演算対象であるドライバのドライバIDを用いて、操作傾向110Aからドライバの操作傾向を読み出す操作傾向読出部109と、演算対象であるドライバごとに、操作傾向読出部109が読み出した操作傾向に基づき車両のエネルギー消費量を算出するシミュレータ演算部104と、を備える。そのため、業務の進捗とドライバの特性の関係を利用して、ドライバが運転する車両のエネルギー消費量を精度よく推定できる。具体的には、シミュレーション内の時間経過に着目して、業務進捗ごとにドライバの車両の操作傾向を切り替えて、エネルギー消費量を算出することで、業務進捗に応じたエネルギー消費量推定を行うことができる。
(2)ドライバごとに、出発地、目的地、および目的地への到着目標時刻を示す業務情報を格納する輸送計画記憶部114を備える。業務進捗算出部106は、シミュレーション上のある時刻におけるドライバの位置、および業務情報に基づき業務進捗を算出する。そのため、シミュレーションの状況に応じた業務進捗を算出できる。
(3)操作傾向とは、急発進の頻度、および急停止の頻度の少なくとも一方を含む。そのため、車両のエネルギー消費量に影響が大きい急発進や急停車の頻度を、予定時刻からの遅れである業務進捗ごと、ドライバごとに切り替えて、エネルギー消費量の推定精度を向上できる。
(変形例1)
上述した第1の実施の形態では、ドライバの個性として、急減速および急加速の頻度を例に挙げて説明したが、他にも速度など、業務進捗がドライバに影響する要因を用いて、エネルギー消費量の推定を行うことができる。また、(式3)で目的地までの距離をもとに進捗率Pを算出したが、交通量や平均車速をもとに区間ごとの距離を重み付けして進捗率Pを算出してもよい。
(変形例2)
上述した第1の実施の形態では、計算システムS1は演算装置80から構成されると説明したが、計算システムS1は複数のハードウエア装置により構成されてもよい。この場合は演算装置80と同一の複数の装置から構成されることは必須ではなく、複数のハードウエア装置が全体として演算装置80が備える構成を有していればよい。
―第2の実施の形態―
図10~図11を参照して、計算システムの第2の実施の形態を説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、主に、車両の操作傾向へ影響を与える道路勾配や風速等の走行時の詳細な状況を走行条件としてシミュレーション上へ反映して、エネルギー消費量を推定する点で、第1の実施の形態と異なる。
本実施の形態では、ドライバが車両操作を行う際に、車両の速度だけでなく、道路勾配や風速などの車両のエネルギー消費量に物理的に影響する状況を走行条件としてシミュレーション上へ反映し、車両のエネルギー消費量の推定精度を向上させる。
図10は、第2の実施の形態における計算システムS2の構成図である。第1の実施の形態における構成との相違点は、記憶部105に地図D11だけでなく、天候D12、交通量D13、および車両モデルD14がさらに格納される点である。
図11は、本実施の形態において記憶部105にさらに格納される、天候D12、交通量D13、および車両モデルD14の一例を示す図である。天候D12は、日時1101bと地区に固有な番号である地区ID1102bとの組合せで、参照すべきレコードが特定される。天候D12には、日時1101b、地区ID1102b、天気1103b、湿度1104b、気温1105b、風速1106b、および風向1107bが含まれる。なお、地図D11の地区ID608aが、ドライバが操作する車両の位置に対応する天候D12を読み出すために使用される。
交通量D13は、日時1101cと道路エッジに固有な番号である道路エッジID1102cとの組合せで、参照すべきレコードが特定される。交通量D13には、日時1101c、道路エッジID1102c、道路エッジを通過する単位時間あたりの普通車の通過台数である普通車交通量1103c、道路エッジを通過する単位時間あたりの大型車の通過台数である大型車交通量1104cと、道路を通過する車両の平均速度1105cとが含まれる。
車両モデルD14には、車両に固有な番号である車両ID1101d、車両種別1102d、車両幅1103d、車両長1104d、車両高1105d、フロント面積1106d、車両重量1107d、最高速度1108d、加速性能1109d、減速性能1110d、最高出力1111d、バッテリ容量1112d、および回生効率1113dが含まれる。
図11に記載の天候D12、交通量D13、および車両モデルD14には、天気1103bによる路面抵抗605aや運転席からの視界の変化、風速806cや風向807cによる車両に加わる風力の変化、車両種別1102dの違いによる操作性の変化、フロント面積1106dの違いによる風力の受け方の違いなど、ドライバの運転のしやすさへ影響する要因が含まれている。また、第1の実施の形態において図6に示した地図D11には、道路勾配607aの情報が含まれ、これも同様にドライバの運転のしやすさへ影響する。
本実施の形態におけるシミュレータ演算部104は、第1の実施の形態における情報に加えてドライバの走行条件、具体的には道路勾配607a、天気1103b、路面抵抗605a、風速806c、風向807c、車両種別1102d、フロント面積1106d、および道路勾配607aの少なくとも1つをさらに考慮して、車両のエネルギー消費量の推定を行う。たとえばシミュレータ演算部104は、シミュレーションの初期設定において、入出力部102から受け取った車両ID303bに対応する車両モデルD14を記憶部105から読み出す。またシミュレータ演算部104は、シミュレーション内の各時刻において、車両の位置に対応する道路勾配や天候D12、交通量D13を記憶部105から読み出し、車両の走行条件として、エネルギー消費量推定部108へ伝達する。エネルギー消費量推定部108は、伝達された情報を用いてシミュレーションにおけるエネルギー消費量の推定精度を向上させることができる。
上述した第2の実施の形態によれば、次の作用効果が得られる。
(4)シミュレータ演算部104は、路面の傾斜角、天候、交通量、および車両モデルの少なくとも1つを用いて車両のエネルギー消費量を算出する。そのためシミュレータ演算部104は、路面の傾斜角、天候、交通量、および車両モデルなどを用いてエネルギー消費量の推定精度を向上させることができる。
(第2の実施の形態の変形例)
ドライバによっては路面の傾斜角、天候、交通量、および車両モデルごとに車両の操作傾向が異なることも想定される。そのため、操作傾向110Aに路面の傾斜角、天候、交通量、および車両モデルの少なくとも1つがさらに組み合わされてもよい。この場合は、操作傾向読出部109は、業務進捗およびドライバIDに加えて、路面の傾斜角、天候、交通量、および車両モデルの少なくとも1つを用いて、操作傾向110Aからドライバの操作傾向を読み出し、シミュレータ演算部104に操作傾向を伝達する。
―第3の実施の形態―
図12~図15を参照して、計算システムの第3の実施の形態を説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、主に、業務進捗と操作傾向を対応付ける関数を、ドライバの車両の操作ログデータから学習する点で、第1の実施の形態と異なる。
図12は、第3の実施の形態における計算システムS3の構成図である。第1の実施の形態と比べて、計算システムS3は、車両情報取得部1201、操作ログ記憶部1202、および操作傾向学習部1203をさらに備える。車両情報取得部1201は、輸送業務に従事する各ドライバの車両操作を時刻ごとに記録したデータである操作ログ1250を取得し、操作ログ記憶部1202へ書き込む。
図13は、操作ログ1250の一例を示す図である。操作ログ1250には、ドライバID1301、車両ID1302、業務ID1303と、日時1304、位置1305、速度1306、加速度1307、エネルギー消費量1308、道路勾配1309、および天気1310が含まれる。
操作傾向学習部1203は、操作ログ記憶部1202から操作ログ1250を読み出して、操作ログ1250に記載のドライバID1301に対応するドライバの操作傾向を取得し、さらに業務進捗算出部106を通して前述のドライバの業務進捗ログ400を算出する。操作傾向学習部1203は、前述のドライバの操作傾向と業務進捗ログ400から、操作傾向ログ1202Aを作成し、ドライバごとに業務進捗と操作傾向の対応付けを学習し、学習結果を操作傾向記憶部110へ書き込む。
図14は、操作傾向ログ1202Aの一例を示す図である。操作傾向ログ1202Aには、ドライバID1401、業務ID1402、日時1403、進捗率1404、予定時刻との差1405、および操作傾向1406を含む。操作傾向1406には、加速度1407および速度1408が含まれる。
図15は、操作傾向学習部1203が行う処理を示すフローチャートである。図15に示す処理は、特定のドライバについて行われる。たとえば10人のドライバの操作傾向を学習するためには、図15に示す処理を対象とするドライバを変更して10回処理する。ステップS1501において処理を開始すると、まずステップS1502において操作傾向学習部1203は、操作ログ記憶部1202から操作ログ1250を読み出して、処理対象のドライバの特定の情報を取得する。特定の情報とは、たとえば加速度および速度である。
次にステップS1503において操作傾向学習部1203は、業務進捗算出部106へ業務進捗ログ400の算出指令を出す。業務進捗算出部106は、操作傾向学習部1203からこの算出指令を受けると、操作ログ記憶部1202から、処理対象であるドライバの操作ログを読み出し、操作ログ1250の業務ID1303と車両の位置1305をもとに、業務進捗を算出する。業務進捗の算出には、車両の位置に加えて、到着地までの経路や業務の到着時刻の情報が必要となる。そのため、業務進捗算出部106は、操作ログ1250から受け取った業務ID1303をシミュレータ演算部104へ伝達してシミュレータ演算部104から前述の情報の伝達を待つ。
シミュレータ演算部104は、業務進捗算出部106から、業務ID1303を受け取ると、輸送計画記憶部114から業務ID1303に対応する輸送計画を読み出し、経路を算出して、到着地までの経路および業務の到着時刻の情報を業務進捗算出部106へ伝達する。業務進捗算出部106はシミュレータ演算部104からこれらの情報を受け取ると、第1の実施の形態と同様の手順で業務進捗を算出し、業務進捗ログ400として前述の業務進捗を操作傾向学習部1203へ伝達する。
ステップS1504では操作傾向学習部1203は、業務進捗算出部106から業務進捗ログ400を受け取り、続くステップS1505では操作傾向学習部1203は、日時1304をもとに、業務進捗ログ400に対応する操作傾向ログ1202Aを記録する。続くステップS1506では操作傾向学習部1203は、業務進捗ごとの車両の操作傾向ログ(図14)から、業務進捗ごとの操作傾向を学習する。業務進捗ごとの操作傾向を学習する方法の1例としては、以下のように、閾値を用いて業務進捗ごとに急加減速の頻度を集計する方法が挙げられる。
Iac(Dt) = n(A(Dt,a)) / n(A(Dt,0)) …(式7)
Mac(Dt) = max(A(Dt,0)) …(式8)
Ide(Dt) = n(B(Dt,b)) / n(B(Dt,0)) …(式9)
Mde(Dt) = min(B(Dt,0)) …(式10)
ただし式7~式10において、急加速の閾値をa、急減速の閾値をb、業務進捗をDt、対象ドライバの加速度の中で業務進捗がdtであってかつ加速度値がaより大きい値の集合をすべて取得する関数をA(Dt,a)、対象ドライバの加速度の中で業務進捗がDtであり加速度値がbより小さい値をすべて取得する関数をB(Dt,b)とする。また、入力の最大値を取得する関数をmax、入力の最小値を取得する関数をmin、業務進捗Dtに対応する急加速の頻度を出力する関数をIac、業務進捗Dtに対応する急減速の頻度を出力する関数をIdeとする。さらに、業務進捗Dtに対応する対象ドライバの最大加速度をMac(Dt)、業務進捗Dtに対応する対象ドライバの最大減速度をMde(Dt)、入力の要素の個数を取得する関数をnとする。最後にステップS1507では操作傾向学習部1203は、学習結果を記録して処理を終了する。
このようにして、第1の実施形態で前提とした、予定時刻からの差と急加減速の頻度を対応付ける表(図7)を作成することができる。また、急加減速の頻度に加えて、対象ドライバの予定時刻からの差ごとに最大加速度と最大減速度を集計することで、停止回数及びエネルギー消費量の再現性に寄与する。操作傾向の学習1206の処理の例として、業務進捗ごとに車両の操作傾向を対応表で対応付ける例を挙げたが、ランダムフォレストやニューラルネットワークのような機械学習手法により、業務進捗に加えて走行条件ごとに、車両の操作傾向を学習してもよい。
上述した第3の実施の形態によれば、次の作用効果が得られる。
(5)計算システムS3は、ドライバごとの車両の操作ログ1250を収集する車両情報取得部1201と、ドライバごとの業務情報を格納する輸送計画記憶部114と、操作ログ1250および業務情報に基づき業務進捗を算出することで、傾向情報を作成する操作傾向学習部1203を備える。そのため、ドライバが輸送計画を実施した際の車両操作ログデータから、業務進捗と車両の操作傾向をドライバごとに対応付けることが可能となる。
―第4の実施の形態―
図16~図20を参照して、計算システムの第4の実施の形態を説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、主に、ドライバの生理特性が車両の操作傾向へ与える影響を考慮する点で、第1の実施の形態と異なる。
本実施の形態において、生理特性が操作傾向へ影響することに着目した理由は、たとえば次の3点である。1点目は、継続運転時間が長いと集中継続時間や疲労の個性が影響して急加減速の頻度が上昇するからである。2点目は、継続運転時間の上昇を防ぐために休憩を指示すると輸送時間や業務進捗に影響が生じるからである。3点目は、食事や排泄の頻度の個性が影響して休憩する頻度が異なることで業務進捗に差が生じるからである。
また本実施の形態では、ドライバに休憩と運転の2つの状態を考慮する。ドライバの「運転」の状態は、第1の実施形態と同様に、ドライバは車両を運転して到着地に向かう。ドライバの「休憩」の状態では、ドライバは車両を停止させて休憩させているので、各ドライバに固有の時間だけ車速が0にする。
図16は、第4の実施の形態における計算システムS4の構成図である。計算システムS4は、第1の実施の形態における計算システムS1の構成に加えて生理特性算出部1601をさらに備える。生理特性算出部1601は、ドライバの生理的な特性である生理特性D131を算出して記憶部105に生理特性D131として格納する。
図17は、生理特性D131の一例を示す図である。生理特性D131は、ドライバの識別子であるドライバID1701、休憩の頻度1702、および休憩の長さ1703を含む。
生理特性算出部1601は、学習時に操作ログ記憶部1202から生理特性D131を算出して記憶部105へ記録し、また前述の算出結果を操作傾向学習部1203へ伝達する機能と、推定時にシミュレータ演算部104からシミュレーション上の時系列の位置と速度を受け取って生理特性D131を算出し、前述の算出結果を操作傾向読出部1602へ伝達する機能を持つ。まず、前述の学習時の処理を説明し、前述の推定時の機能は後ほど説明する。
図18は、生理特性算出部1601の処理を示すフローチャートである。生理特性算出部1601は、ステップS1801において処理を開始すると、まずステップS1802において操作ログ記憶部1202から操作ログを読み出す。続くステップS1803では生理特性算出部1601は、次のように生理特性D131を算出する。生理特性D131の例としては、休憩時間と継続運転時間が挙げられる。生理特性算出部1601は、時系列の位置データから車両が閾値時間以上の停止をし続けた場合に休憩と判定する。
また生理特性算出部1601は、休憩開始から休憩終了までの時間で休憩の長さ、および休憩終了から次の休憩開始までの時間に基づき休憩の頻度を算出し、休憩の長さおよび休憩の頻度を生理特性D131として記録する。続くステップS1804では生理特性算出部1601は、休憩終了からの経過時間として、継続運転時間を算出し、この算出結果を操作傾向学習部1203へ伝達する。なお操作傾向学習部1203は、継続運転時間を受け取ったら、ドライバごとに業務進捗および継続運転時間と操作傾向を対応付ける。以上が図18に示す処理の説明である。
図19は、本実施の形態において操作傾向記憶部110に格納される操作傾向110A2の一例を示す図である。操作傾向110A2では、ドライバID1901、継続運転時間1903、業務進捗1902、および操作傾向1904が対応付けられている。この対応付けは、たとえば以下のように閾値を用いて、業務進捗および継続運転時間ごとに急加減速の頻度を集計する方法が挙げられる。
Iac(Dt,Wt) = n(A(Dt,Wt,a)) / n(A(Dt,Wt,0)) …(式11)
Ide(Dt,Wt) = n(B(Dt,Wt,b)) / n(B(Dt,Wt,0)) …(式12)
ただし式11および式12では、急加速の閾値をa、急減速の閾値をb、業務進捗をDt、継続運転時間をWt、対象ドライバの加速度の中で業務進捗がDtでかつ継続運転時間がWtでありかつ加速度値がaより大きい値の集合をすべて取得する関数をA(Dt,Wt,a)、としている。また、対象ドライバの加速度の中で業務進捗がDtでかつ継続運転時間がWtでありかつ加速度値がbより小さい値をすべて取得する関数をB(Dt,Wt,b)、業務進捗Dtと継続運転時間Wtに対応する急加速の頻度を出力する関数をIac(Dt,Wt)、としている。さらに、業務進捗Dtと継続運転時間Wtに対応する急減速の頻度を出力する関数をIde(Dt,Wt)、入力の要素の個数を取得する関数をnとしている。
このように、ドライバごとに業務進捗および継続運転時間と操作傾向を対応付けたら、前述の対応付けを操作傾向記憶部110へ記録する。次にシミュレーションによるエネルギー消費量予測の処理を説明する。
図20は、本実施の形態におけるエネルギー消費量予測の処理を示すフローチャートである。図20では、第1の実施の形態と同様の処理には同一のステップ番号を付して説明を省略する。なお図20では、作図の都合によりステップS902およびステップS911の記載を省略している。エネルギー消費量予測の処理は、第1の実施形態では図9のステップS903~S910に示したとおりであったが、第4の実施形態では、第1の実施形態とは異なるステップS2004~S2006を有する。またエネルギー消費量予測のために必要なステップS2002~S2003の処理が追加されている。以下、具体的に説明する。
ループの最初に実行されるステップS2002では、処理対象のドライバの継続運転時間を算出する。具体的には、生理特性算出部1601が、輸送業務を行っているドライバが最後に休憩した時刻からの経過時間を算出し、操作傾向読出部1602へ継続運転時間を伝達する。続くステップS2003では生理特性D131から、輸送業務を行っているドライバのドライバID1701に対応するドライバの休憩の頻度1702と休憩の長さ1703を読みとる。そして、継続運転時間の算出処理S2002で算出した継続運転時間が休憩の頻度1702を超えていた場合は、ドライバを休憩状態にする。また、ドライバがすでに休憩状態だった場合は、休憩の長さ1703と休憩を始めてからの経過時間を比較し、ドライバの休憩の長さ1703を超えていたらドライバを運転状態にする。
続くステップS905では車両の位置を更新し、ステップS2004に進んで休憩状態か否かを判断する。ドライバが休憩状態である場合は、業務の進捗はないがエアコンによるエネルギー消費などが考えられるため、ステップS1708に進む。ドライバが休憩状態ではない場合は、ステップS906に進み、第1の実施の形態と同様に処理してステップS2005に進む。
ステップS2005では、第1の実施形態と異なり、業務進捗に加えて継続運転時間をもとに、車両の操作傾向を切り替える。具体的には以下の通りである。操作傾向読出部1602は、業務進捗算出部106から受け取った業務進捗と、生理特性算出部1601から受け取った継続運転時間、制御部103から受け取ったドライバID1901をもとに、操作傾向記憶部110から図19に示す対応表をもとに、ドライバID1901に対応するドライバの操作傾向を読み出し制御部103へ伝達する。これにより操作傾向読出部1602は、制御部103を介して、ドライバの継続運転時間による急加減速頻度の変化をシミュレータ演算部104へ伝達する。以上がステップS2005の処理内容である。ステップS2006では、ステップS2005の処理により切り替えられた操作傾向を用いてエネルギー消費量を推定する。
上述した第4の実施の形態によれば、次の作用効果が得られる。
(6)傾向情報には、連続して車両を運転する時間である継続運転時間が組み合わされる。操作傾向読出部1602は、業務進捗、ドライバID、および継続運転時間を用いて、傾向情報からドライバの操作傾向を読み出す。そのため、ドライバに固有な特性として生理条件を考慮し、生理条件が車両の操作傾向へ与える影響を考慮することで、車両のエネルギー消費量の推定精度を向上できる。
―第5の実施の形態―
図21~図25を参照して、計算システムの第5の実施の形態を説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、主に、車両へ積載されている輸送物もさらに加味して操作傾向を切り替える点で、第1の実施の形態と異なる。
車両の積載状態が操作傾向へ影響する理由は、たとえば以下の2点が挙げられる。1点目に、輸送物の種別によってドライバが気を配って運転する要因になるからである。2点目に、輸送物による車両総重量の違いによりドライバが同じアクセル・ブレーキの踏み方をした時の車両への加減速のかかり方が異なるからである。本実施の形態では、積載状態として、車両総重量と、輸送物の種別を用いる。
図21は、第5の実施の形態における計算システムS5の構成図である。計算システムS5では、記憶部105に車両から輸送する輸送物の情報が輸送物D181として格納される。なお輸送物D181は、輸送物に関する情報なので「輸送情報」とも呼べる。また計算システムS5は、輸送物D181を更新する積載状態更新部2101をさらに備え、操作傾向読出部2102の動作が第1の実施の形態と異なる。
図22は、輸送物D181の一例を示す図である。輸送物D181には、輸送物の識別子である輸送物ID2201、輸送物が輸送される業務の識別子である業務ID2202、輸送物が積載される場所を表す積載場所2203、輸送物が下ろされる場所を表す荷下場所2204、輸送物の重量を表す重量2205、および輸送物の種類を表す種別2206が含まれる。
積載状態更新部2101は、まず、ドライバが行っている業務の業務ID2202に対応する輸送物の情報を輸送物D181から読み出す。そして積載状態更新部2101は、ドライバが積載場所2203または荷下場所2204へ到着したら、積載状態、すなわち車両の総積載重量と車両に積載されている輸送物の種別とを更新する。
積載状態更新部2101がこの更新処理を実施するのは、ドライバごとに業務進捗および積載状態と操作傾向の対応付けを学習する時と、シミュレーションにより車両のエネルギー消費量を推定する時の双方である。ただし、ドライバが複数の業務を割り当てられている場合には、業務進捗の算出は輸送計画を参照して行い、積載状態の更新は輸送物D181を参照して行う。この理由は、ドライバが行っている業務の出発地302aが、業務の前に実施する業務の輸送物の荷下場所2204であるが、業務の輸送物の積載場所2203ではない場合があるためである。
図23は、本実施の形態において操作傾向記憶部110に格納される操作傾向110A3の一例を示す図である。操作傾向110A3では、ドライバID2301、業務進捗2302、積載状態2303、および操作傾向2306が対応付けられている。
図24は、本実施の形態において、業務進捗および積載状態と操作傾向の対応付けを学習する処理を示すフローチャートである。この処理は、積載状態更新部2101が行う操作ログへ積載状態を付与するステップS2401~S2409までの処理と、操作傾向学習部1203が行う業務進捗および積載状態と操作傾向を対応付けて結果を記録するステップS2411~S2413までの処理とに分けられる。
まず、操作ログへ積載状態を付与するステップS2401~S2409の処理を順番に説明する。ステップS2401から開始される本処理は、操作傾向学習部1203が積載状態更新部2101へ積載状態を算出する指示を行うことで開始される。まずステップS2402において積載状態更新部2101は、操作ログ記憶部1202から、操作ログを読み出す。続くステップS2403では、車両総重量の初期設定を行う。この初期設定では、操作ログの車両ID1302に対応する車両重量1107dを車両モデルD14から読み出して、前述の車両重量1107dを車両総重量として設定する。
続くステップS2404~S2410では、操作ログを時刻ごとに読出して、車両総重量と輸送種別の更新と記録を繰り返す。具体的には、ステップS2405において、操作ログの位置1305および速度1306から車両が停止しているか否かを判定し、停止していないと判断する場合は、車両総重量および輸送物の種別を記録するステップS2409へ進む。ステップS2405において車両が停止していたと判断する場合は、ステップS2406へ進む。ステップS2406では、輸送物D181から業務ID1303に対応する輸送物の積載場所2203と荷下場所2204を読み出してステップS2407に進む。
ステップS2407では、積載場所2203または荷下場所2204へ到着したか否かを判定する。積載場所2203または荷下場所2204へ到着していないと判断する場合は、車両総重量および輸送物の種別を記憶するステップS2409へ進む。積載場所2203または荷下場所2204へ到着したと判断する場合は、ステップS2408へ進んで、輸送物D181から輸送物の重量2205と種別2206を読み出し、車両の積載状態を更新する。
この更新処理は具体的には、積載場所2203へ到着した場合は重量2205の数値を車両総重量の数値へ足し、種別2206を積載物の種別の集合へ加える。また、荷下場所2204へ到着した場合には重量2205の数値を車両総重量の数値から引き、積載物の種別の集合をの残りの輸送物に応じて更新する。ステップS2409では、車両の積載状態として、車両総重量および積載物の種別を、操作ログへドライバID1301、日時1304とともに記録する。このステップS2402~S2409までの処理を操作ログの終了まで繰り返すことで、操作ログに積載状態を付与する。
積載状態更新部2101が操作ログへ車両の積載状態を記録したら、ステップS2411へ進み、操作傾向学習部1203が業務進捗および積載状態と操作傾向の対応付けを学習する。この対応付けを行う方法の例として、以下のように閾値を用いて、車両の積載状態および業務進捗ごとに急加減速の頻度を集計する方法が挙げられる。
Iac(Dt,S) = n(A(Dt,S,a)) / n(A(Dt,S,0)) …(式13)
Ide(Dt,S) = n(B(Dt,S,b)) / n(B(Dt,S,0)) …(式14)
ただし式13および式14では、急加速の閾値をa、急減速の閾値をb、業務進捗をDt、車両の積載状態をS、対象ドライバの加速度の中で業務進捗がDtでかつ車両の積載状態がSでありかつ加速度値がaより大きい値をすべて取得する関数をA(Dt,S,a)としている。また、対象ドライバの加速度の中で業務進捗がDtでかつ車両の積載状態がSでありかつ加速度値がbより小さい値をすべて取得する関数をB(Dt,S,b)、業務進捗Dtと車両の積載状態Sに対応する急加速の頻度を出力する関数をIac(Dt,S)としている。さらに、業務進捗Dtと車両の積載状態Sに対応する急減速の頻度を出力する関数をIde(Dt,S)、入力の要素の個数を取得する関数をnとしている。
最後にステップS2412において、前述の対応付けを操作傾向記憶部110へ記録する。この記録の結果が図23に示した操作傾向110A3である。ここまでで、図24のフローチャートを用いて、図23に示す車両の業務進捗および積載状態と操作傾向の対応表を作成する手順を説明した。
図25は、第5の実施の形態におけるエネルギー消費量予測処理を示すフローチャートである。本実施の形態では、第1の実施形態と異なり、業務進捗に加え、車両の積載状態をもとにドライバの操作傾向を切り替える。図25では、第1の実施の形態と同様の処理には同一のステップ番号を付して説明を省略する。なお図25では、作図の都合によりステップS902およびステップS911の記載を省略している。
第1の実施形態と異なり、業務進捗を算出するステップS906の後に、積載状態更新部2101が、図24に示したステップS2405~S2408の処理を行う。すなわち積載状態更新部2101は、輸送物D181を読み出して、車両の積載状態を更新し、積載状態更新部2101が操作傾向読出部2102へ積載状態を伝達する。ステップS2408の次、またはステップS2405において否定判断されたら、ステップS2503が実行される。ステップS2503では、操作傾向読出部2102が操作傾向記憶部110から、積載状態および業務進捗に対応する操作傾向を読み出し、制御部103を介して、シミュレータ演算部104へ操作傾向を伝達する。続くステップS2504で、車両の積載状態による急加減速頻度の変化を利用することで、エネルギー消費量の推定精度を改善する。
上述した第5の実施の形態によれば、次の作用効果が得られる。
(7)傾向情報には、車両が輸送する輸送物の情報である輸送情報がさらに組み合わされる。操作傾向読出部2102は、業務進捗、ドライバID、および輸送情報を用いて、傾向情報からドライバの操作傾向を読み出す。そのため、ドライバに固有な特性として車両の積載状態を考慮し、前述の積載状態が車両の操作傾向へ与える影響を考慮することで、車両のエネルギー消費量の推定精度を向上できる。
(8)輸送情報とは、輸送物を含めた車両の総重量、および輸送物の種別の少なくとも一方である。
(第5の実施の形態の変形例)
第5の実施の形態における構成を、第4の実施の形態における構成と組み合わせてもよい。すなわち、第5の実施の形態の記憶部105に生理特性D131をさらに格納し、計算システムが生理特性算出部1601をさらに備えてもよい。
上述した各実施の形態および変形例において、機能ブロックの構成は一例に過ぎない。別々の機能ブロックとして示したいくつかの機能構成を一体に構成してもよいし、1つの機能ブロック図で表した構成を2以上の機能に分割してもよい。また各機能ブロックが有する機能の一部を他の機能ブロックが備える構成としてもよい。
上述した各実施の形態および変形例において、プログラムは演算装置80のROM22に格納されるとしたが、プログラムはフラッシュメモリ26に格納されていてもよい。また、演算装置80が不図示の入出力インタフェースを備え、必要なときに入出力インタフェースが利用可能な媒体を介して、他の装置からプログラムが読み込まれてもよい。ここで媒体とは、例えば入出力インタフェースに着脱可能な記憶媒体、または通信媒体、すなわち有線、無線、光などのネットワーク、または当該ネットワークを伝搬する搬送波やディジタル信号、を指す。また、プログラムにより実現される機能の一部または全部がハードウエア回路やFPGAにより実現されてもよい。
上述した各実施の形態および変形例は、それぞれ組み合わせてもよい。上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
S1~S4 …計算システム
104…シミュレータ演算部
105…記憶部
106…業務進捗算出部
107…時間管理部
108…エネルギー消費量推定部
106…業務進捗算出部
107…時間管理部
108…エネルギー消費量推定部
109、1602、2102…操作傾向読出部
110…操作傾向記憶部
114…輸送計画記憶部
1201…車両情報取得部
1202…操作ログ記憶部

Claims (9)

  1. ドライバが操作する車両のエネルギー消費量を推定する装置であって、
    シミュレーション上における、予定時間からの遅れ時間である業務進捗を算出する業務進捗算出部と、
    前記ドライバの識別子であるドライバID、前記業務進捗、および車両の操作傾向の対応付けである傾向情報を格納する操作傾向記憶部と、
    前記業務進捗算出部が算出する前記業務進捗、および演算対象である前記ドライバの前記ドライバIDを用いて、前記傾向情報から前記ドライバの前記操作傾向を読み出す操作傾向読出部と、
    演算対象である前記ドライバごとに、前記操作傾向読出部が読み出した前記操作傾向に基づき前記車両のエネルギー消費量を算出するシミュレータ演算部と、を備える計算システム。
  2. 請求項1に記載の計算システムにおいて、
    ドライバごとの車両の操作ログを収集する収集部と、
    ドライバごとの業務情報を格納する輸送計画記憶部と、
    前記操作ログおよび前記業務情報に基づき前記業務進捗を算出することで、前記傾向情報を作成する傾向情報作成部をさらに備え、
    前記操作ログには、時刻ごとの前記車両の位置、速度、および加速度が含まれ、
    前記業務情報には、出発地、到着地、および到着期限が含まれる、計算システム。
  3. 請求項1に記載の計算システムにおいて、
    ドライバごとに、出発地、目的地、および目的地への到着目標時刻を示す業務情報を格納する輸送計画記憶部をさらに備え、
    前記業務進捗算出部は、シミュレーション上のある時刻における前記ドライバの位置、および前記業務情報に基づき前記業務進捗を算出する、計算システム。
  4. 請求項1に記載の計算システムにおいて、
    前記操作傾向とは、急発進の頻度、および急停止の頻度の少なくとも一方を含む、計算システム。
  5. 請求項1に記載の計算システムにおいて、
    前記傾向情報には、連続して車両を運転する時間である継続運転時間がさらに組み合わされ、
    前記操作傾向読出部は、前記業務進捗、前記ドライバID、および前記継続運転時間を用いて、前記傾向情報から前記ドライバの前記操作傾向を読み出す、計算システム。
  6. 請求項1に記載の計算システムにおいて、
    前記傾向情報には、前記車両が輸送する輸送物の情報である輸送情報さらに組み合わされ、
    前記操作傾向読出部は、前記業務進捗、前記ドライバID、および前記輸送情報を用いて、前記傾向情報から前記ドライバの前記操作傾向を読み出す、計算システム。
  7. 請求項6に記載の計算システムにおいて、
    前記輸送情報とは、前記輸送物を含めた前記車両の総重量、および前記輸送物の種別の少なくとも一方である、計算システム。
  8. 請求項1に記載の計算システムにおいて、
    前記シミュレータ演算部は、路面の傾斜角、天候、交通量、および車両モデルの少なくとも1つをさらに用いて前記車両のエネルギー消費量を算出する、計算システム。
  9. ドライバが操作する車両のエネルギー消費量をコンピュータが推定する方法であって、
    シミュレーション上における、予定時間からの遅れ時間である業務進捗を算出する業務進捗算出ステップと、
    前記ドライバの識別子であるドライバID、前記業務進捗、および車両の操作傾向の対応付けである傾向情報を読み出す、傾向情報読出ステップと、
    前記業務進捗算出ステップにおいて算出され前記業務進捗、および演算対象である前記ドライバの前記ドライバIDを用いて、前記傾向情報から前記ドライバの前記操作傾向を読み出す操作傾向読出ステップと、
    演算対象である前記ドライバごとに、前記操作傾向読出ステップにおいて読み出された前記操作傾向に基づき前記車両のエネルギー消費量を算出するシミュレータ演算ステップと、を含む計算方法。
JP2021088120A 2021-05-26 2021-05-26 計算システム、計算方法 Pending JP2022181267A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021088120A JP2022181267A (ja) 2021-05-26 2021-05-26 計算システム、計算方法
CN202210390736.9A CN115402328A (zh) 2021-05-26 2022-04-14 计算系统、计算方法
US17/734,607 US11994404B2 (en) 2021-05-26 2022-05-02 Computational system and computational method
DE102022204385.5A DE102022204385A1 (de) 2021-05-26 2022-05-04 Rechensystem und rechenverfahren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021088120A JP2022181267A (ja) 2021-05-26 2021-05-26 計算システム、計算方法

Publications (1)

Publication Number Publication Date
JP2022181267A true JP2022181267A (ja) 2022-12-08

Family

ID=83997682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021088120A Pending JP2022181267A (ja) 2021-05-26 2021-05-26 計算システム、計算方法

Country Status (4)

Country Link
US (1) US11994404B2 (ja)
JP (1) JP2022181267A (ja)
CN (1) CN115402328A (ja)
DE (1) DE102022204385A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12060067B2 (en) * 2022-07-07 2024-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Systems, methods, and vehicles for correcting driving behavior of a driver of a vehicle

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5913917A (en) * 1997-08-04 1999-06-22 Trimble Navigation Limited Fuel consumption estimation
JP3044025B1 (ja) * 1998-12-09 2000-05-22 株式会社データ・テック 運転傾向性の分析が可能な運行管理システム及びその構成装置
JP2005035349A (ja) * 2003-07-17 2005-02-10 Toyota Motor Corp 移動体エネルギー管理装置および移動体エネルギー管理方法
JP4631761B2 (ja) * 2005-08-08 2011-02-16 トヨタ自動車株式会社 パワートレイン用の電池寿命予知装置及び電池寿命警告装置
US20080249667A1 (en) * 2007-04-09 2008-10-09 Microsoft Corporation Learning and reasoning to enhance energy efficiency in transportation systems
US20100228405A1 (en) * 2007-06-13 2010-09-09 Intrago Corporation Shared vehicle management system
JP4997011B2 (ja) 2007-07-25 2012-08-08 日立オートモティブシステムズ株式会社 自動車の燃料消費量推定システム、経路探索システム、及び運転指導システム
US8214122B2 (en) * 2008-04-10 2012-07-03 GM Global Technology Operations LLC Energy economy mode using preview information
EP2504663A1 (en) * 2009-11-24 2012-10-03 Telogis, Inc. Vehicle route selection based on energy usage
WO2011156776A2 (en) * 2010-06-10 2011-12-15 The Regents Of The University Of California Smart electric vehicle (ev) charging and grid integration apparatus and methods
JP5182336B2 (ja) * 2010-08-02 2013-04-17 株式会社デンソー 運転特性特定装置および経路探索装置
JP5299494B2 (ja) * 2011-02-09 2013-09-25 株式会社デンソー 情報通信システム、車載装置、及びセンタ装置
US9180783B1 (en) * 2011-04-22 2015-11-10 Penilla Angel A Methods and systems for electric vehicle (EV) charge location color-coded charge state indicators, cloud applications and user notifications
US8543135B2 (en) * 2011-05-12 2013-09-24 Amit Goyal Contextually aware mobile device
JP5656736B2 (ja) * 2011-05-16 2015-01-21 トヨタ自動車株式会社 車両および車両の制御方法
US10330491B2 (en) * 2011-10-10 2019-06-25 Texas Instruments Incorporated Robust step detection using low cost MEMS accelerometer in mobile applications, and processing methods, apparatus and systems
KR20130136781A (ko) * 2012-06-05 2013-12-13 현대자동차주식회사 전비맵을 기반으로 하는 에코루트 산출방법
US20150168174A1 (en) * 2012-06-21 2015-06-18 Cellepathy Ltd. Navigation instructions
US20150177010A1 (en) * 2013-08-23 2015-06-25 Cellepathy Ltd. Suppressed navigation instructions
JP5631367B2 (ja) * 2012-08-09 2014-11-26 本田技研工業株式会社 経路探索装置
JP5840090B2 (ja) * 2012-08-17 2016-01-06 株式会社東芝 消費電力量推定装置
JP5655831B2 (ja) * 2012-09-13 2015-01-21 トヨタ自動車株式会社 走行環境推定装置およびその方法
US9702349B2 (en) * 2013-03-15 2017-07-11 ClearMotion, Inc. Active vehicle suspension system
JP6179191B2 (ja) * 2013-05-27 2017-08-16 富士通株式会社 運転診断装置,運転診断方法及びプログラム
JP2015002588A (ja) * 2013-06-14 2015-01-05 株式会社日立製作所 電力消費管理システムおよび方法
TWI605415B (zh) * 2013-12-24 2017-11-11 元智大學 交通工具節能裝置及其方法
US9600541B2 (en) * 2014-05-02 2017-03-21 Kookmin University Industry Academy Corporation Foundation Method of processing and analysing vehicle driving big data and system thereof
US10197592B2 (en) * 2016-02-05 2019-02-05 Logitech Europe S.A. Method and system for calibrating a pedometer
US20180211349A1 (en) * 2017-01-25 2018-07-26 Lenovo (Singapore) Pte. Ltd. Mobile device identification system and method
CN111164660B (zh) * 2017-10-06 2023-03-10 索尼公司 信息处理装置、信息处理方法和程序
JP6970924B2 (ja) * 2018-03-27 2021-11-24 トヨタ自動車株式会社 車両検索システム、車両検索方法、及び車両検索プログラム
JP7283077B2 (ja) * 2018-12-27 2023-05-30 トヨタ自動車株式会社 情報処理装置、情報処理方法、プログラム
WO2020205655A1 (en) * 2019-03-29 2020-10-08 Intel Corporation Autonomous vehicle system
JP2022018827A (ja) * 2020-07-16 2022-01-27 株式会社スリーダム 二次電池の運搬により実現される移動充電システム
US11614335B2 (en) * 2020-12-22 2023-03-28 Nissan North America, Inc. Route planner optimization for hybrid-electric vehicles
US11946760B2 (en) * 2020-12-22 2024-04-02 Nissan North America, Inc. Navigation map learning for intelligent hybrid-electric vehicle planning
JP7186254B2 (ja) * 2021-03-15 2022-12-08 本田技研工業株式会社 電費予測装置

Also Published As

Publication number Publication date
DE102022204385A1 (de) 2022-12-01
US11994404B2 (en) 2024-05-28
US20220381571A1 (en) 2022-12-01
CN115402328A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
Kullman et al. Dynamic ride-hailing with electric vehicles
Nishi et al. Merging in congested freeway traffic using multipolicy decision making and passive actor-critic learning
Wang et al. A recovery model for combinational disruptions in logistics delivery: Considering the real-world participators
US20120095740A1 (en) Simulation device, simulation method, and recording medium storing simulation program
Hoogendoorn et al. Modeling driver, driver support, and cooperative systems with dynamic optimal control
CN113219933B (zh) 基于数字孪生预测的露天矿无人驾驶卡车调度系统及方法
WO2019141220A1 (zh) 移动机器人的路径规划方法及系统
JP6981539B2 (ja) モデル推定システム、モデル推定方法およびモデル推定プログラム
CN103366564B (zh) 交通数据预测装置以及交通数据预测方法
US20230230475A1 (en) Method and apparatus for coordinating multiple cooperative vehicle trajectories on shared road networks
US10678740B1 (en) Coordinated component interface control framework
Cortés et al. Hybrid adaptive predictive control for a dynamic pickup and delivery problem
JP2022181267A (ja) 計算システム、計算方法
US20230222267A1 (en) Uncertainty Based Scenario Simulation Prioritization and Selection
US20200159570A1 (en) Executable Component Interface and Controller
Swaszek et al. Receding horizon control for station inventory management in a bike-sharing system
Zhou et al. Interaction-aware motion planning for autonomous vehicles with multi-modal obstacle uncertainty predictions
CN113747364A (zh) 一种基于5g网络的智能交通导航方法、设备及介质
Sun et al. CROTPN based collision-free and deadlock-free path planning of AGVs in logistic center
Kavuk et al. Order dispatching for an ultra-fast delivery service via deep reinforcement learning
US20230222268A1 (en) Automated Generation and Refinement of Variation Parameters for Simulation Scenarios
van der Heijden et al. Using simulation to design an automated underground system for transporting freight around Schiphol Airport
Li et al. Multi-AGVs conflict-free routing and dynamic dispatching strategies for automated warehouses
Hyeon et al. Forecasting short to mid-length speed trajectories of preceding vehicle using V2X connectivity for eco-driving of electric vehicles
Lee et al. Learning to schedule joint radar-communication requests for optimal information freshness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240207