JP2022144563A - Frozen vegetable and production method of processed vegetable - Google Patents

Frozen vegetable and production method of processed vegetable Download PDF

Info

Publication number
JP2022144563A
JP2022144563A JP2021045620A JP2021045620A JP2022144563A JP 2022144563 A JP2022144563 A JP 2022144563A JP 2021045620 A JP2021045620 A JP 2021045620A JP 2021045620 A JP2021045620 A JP 2021045620A JP 2022144563 A JP2022144563 A JP 2022144563A
Authority
JP
Japan
Prior art keywords
vegetables
frozen
gaba
temperature
enriched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021045620A
Other languages
Japanese (ja)
Other versions
JP2022144563A5 (en
Inventor
匡 高橋
Tadashi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aomori Prefectural Industrial Technology Research Center
Original Assignee
Aomori Prefectural Industrial Technology Research Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aomori Prefectural Industrial Technology Research Center filed Critical Aomori Prefectural Industrial Technology Research Center
Priority to JP2021045620A priority Critical patent/JP2022144563A/en
Publication of JP2022144563A publication Critical patent/JP2022144563A/en
Publication of JP2022144563A5 publication Critical patent/JP2022144563A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Fruits And Vegetables (AREA)

Abstract

【課題】 衛生的にγ-アミノ酪酸(GABA)を富化した冷凍野菜及び加工野菜を製造
することができる製造方法を提供すること。
【解決手段】 水分量を70質量%以上にした野菜に、-20℃以下の温度で冷凍処理を
施すことにより、野菜に含まれるGABAを富化させることを特徴とする冷凍野菜の製造
方法である。また、この製造方法によって得た冷凍野菜に解凍処理を施すことを特徴とす
る加工野菜の製造方法である。低温に速やかに冷却しながらGABAを富化することによ
り、衛生的にGABAを富化した冷凍野菜及び加工野菜を得ることができる。
【選択図】 なし
[PROBLEMS] To provide a method for producing frozen vegetables and processed vegetables sanitarily enriched with γ-aminobutyric acid (GABA).
SOLUTION: A method for producing frozen vegetables characterized by enriching GABA contained in the vegetables by subjecting the vegetables having a water content of 70% by mass or more to a freezing treatment at a temperature of -20°C or lower. be. Further, the method for producing processed vegetables is characterized by subjecting the frozen vegetables obtained by this production method to a thawing treatment. By enriching GABA while rapidly cooling to a low temperature, hygienically enriched GABA-enriched frozen vegetables and processed vegetables can be obtained.
[Selection figure] None

Description

本発明は、γ-アミノ酪酸を富化した冷凍野菜及び加工野菜の製造方法に関するもので
ある。
The present invention relates to a method for producing frozen vegetables and processed vegetables enriched with γ-aminobutyric acid.

γ-アミノ酪酸(GABA)は天然に存在するアミノ酸の一種であり、抑制性の神経伝
達物質として機能し、血圧上昇抑制、精神安定作用などの生体調節機能を有することが知
られている。GABAを効率よく摂取するために、野菜など日常的に食する食品中のGA
BA含有量を富化する試みがなされている(例えば非特許文献1~2)。
γ-Aminobutyric acid (GABA) is one of naturally occurring amino acids, and is known to function as an inhibitory neurotransmitter and have bioregulatory functions such as suppression of blood pressure elevation and tranquilizing action. In order to efficiently ingest GABA, GA in foods such as vegetables that are eaten on a daily basis
Attempts have been made to enrich the BA content (eg Non-Patent Documents 1-2).

堀江 秀樹 外2名「ナス果実中のγ-アミノ酪酸含量と加熱による増加」,日本食品科学工学会誌,2013年,60巻11号,p.661-664.Hideki Horie and two others, “γ-Aminobutyric acid content in eggplant fruit and its increase due to heating,” Journal of Japan Society for Food Science and Technology, 2013, Vol.60, No.11, p. 661-664. 高橋 匡 外2名「低温処理がナガイモの成分に及ぼす影響(第2報)」,2017年度日本冷凍空調学会年次大会講演論文集,日本冷凍空調学会,2017年,D112(in CD-ROM).Tadashi Takahashi and others, "Effect of low-temperature treatment on the components of Japanese yam (2nd report)", Proceedings of the 2017 Annual Conference of the Japan Society of Refrigerating and Air Conditioning Engineers, Japan Society of Refrigerating and Air Conditioning Engineers, 2017, D112 (in CD-ROM) .

非特許文献1および2に記載の技術は、野菜を-10~40℃程度の温度に長時間保持
し、野菜に含まれるグルタミン酸脱炭酸酵素(GAD)の酵素作用によって、野菜中のグ
ルタミン酸からGABAを生成することで、野菜中のGABAを富化するものである。こ
れにより、多くのGABAを摂取でき生体調節機能に優れた加工野菜を得ることができる
In the techniques described in Non-Patent Documents 1 and 2, vegetables are kept at a temperature of about -10 to 40°C for a long time, and glutamic acid in vegetables is converted to GABA by the enzymatic action of glutamic acid decarboxylase (GAD) contained in vegetables. to enrich GABA in vegetables. As a result, it is possible to obtain processed vegetables that allow ingestion of a large amount of GABA and have excellent bioregulatory functions.

しかし、従来技術では、微生物が繁殖する温度域に野菜を保持することでGABAを富
化するため、腐敗といった衛生上のリスクがあった。そこで、本発明は、衛生的にGAB
Aを富化した冷凍野菜及び加工野菜を製造することができる製造方法を提供することを目
的とする。
However, in the conventional technology, GABA is enriched by keeping vegetables in a temperature range where microorganisms propagate, so there is a sanitary risk such as putrefaction. Therefore, the present invention hygienically
An object of the present invention is to provide a production method capable of producing A-enriched frozen vegetables and processed vegetables.

本発明者は、上記課題を解決するため鋭意研究開発を行った結果、従来行われていたよ
り低い温度でGABAを富化する場合、GABAの生成量は原料となる野菜の水分量に大
きく影響を受けることを見いだし、更なる開発を進め本発明の完成に至った。
即ち上記の課題は、以下に示す構成からなる発明により解決される。
As a result of intensive research and development in order to solve the above problems, the present inventors found that when GABA is enriched at a temperature lower than conventionally practiced, the amount of GABA produced greatly affects the water content of vegetables as raw materials. The inventors have found that this is acceptable, and proceeded with further development, leading to the completion of the present invention.
That is, the above problems are solved by the invention having the following configuration.

[1] 水分量を70質量%以上にした野菜に、-20℃以下の温度で冷凍処理を施すこ
とにより、野菜に含まれるGABAを富化させることを特徴とする冷凍野菜の製造方法。
[2] 前記冷凍処理は、急速冷凍処理であることを特徴とする[1]に記載の冷凍野菜
の製造方法。
[3] 前記野菜は、果菜類、根菜類または葉茎菜類であることを特徴とする[1]また
は[2]のいずれかに記載の冷凍野菜の製造方法。
[4] [1]から[3]のいずれかに記載の製造方法によって得た冷凍野菜に解凍処理
を施すことを特徴とする加工野菜の製造方法。
[1] A method for producing frozen vegetables, which comprises enriching GABA contained in vegetables by subjecting vegetables having a water content of 70% by mass or more to freezing treatment at a temperature of −20° C. or lower.
[2] The method for producing frozen vegetables according to [1], wherein the freezing treatment is rapid freezing treatment.
[3] The method for producing frozen vegetables according to any one of [1] or [2], wherein the vegetables are fruit vegetables, root vegetables or leafy stem vegetables.
[4] A method for producing processed vegetables, characterized in that the frozen vegetables obtained by the production method according to any one of [1] to [3] are thawed.

本発明の製造方法は、原料となる野菜を、微生物増殖のリスクが無い-20℃以下の低
温にしながらGABAを富化するものである。この製造方法により、微生物増殖のリスク
が無く衛生的なGABAを富化した冷凍野菜及び加工野菜を得ることができる。
The production method of the present invention enriches GABA while keeping vegetables as raw materials at a low temperature of −20° C. or lower, where there is no risk of microbial growth. By this production method, hygienic GABA-enriched frozen vegetables and processed vegetables can be obtained without the risk of microbial growth.

本発明の冷凍野菜の製造方法は、水分量を70質量%以上にした野菜に、-20℃以下
の温度で冷凍処理を施すことにより、野菜に含まれるGABAを富化させた冷凍野菜を得
るものである。また、本発明の加工野菜の製造方法は、上記で得た冷凍野菜に解凍処理を
施して加工野菜を得るものである。
以下に、本発明の詳細を説明する。
In the method for producing frozen vegetables of the present invention, vegetables with a water content of 70% by mass or more are subjected to a freezing treatment at a temperature of -20°C or lower to obtain frozen vegetables enriched with GABA contained in the vegetables. It is. Further, in the method for producing processed vegetables of the present invention, the frozen vegetables obtained above are thawed to obtain processed vegetables.
The details of the present invention are described below.

まず、本発明で原料として用いる野菜は、水分量を70質量%以上にした野菜である。
果菜類、根菜類または葉茎菜類の野菜を好ましく用いることができる。根菜類としてはニ
ンジン、ゴボウ、ダイコン、ジャガイモ、カブなど、葉茎菜類としては、キャベツ、ハク
サイ、セロリ、アスパラガス、ネギ、ニンニク、ブロッコリーなどが、果菜類としては、
エダマメ、ソラマメ、グリーンピース、サヤエンドウ、サヤインゲン、カボチャ、トウモ
ロコシ、ナス、ピーマン、シシトウ、オクラなどが挙げられる。なお、野菜は食用になる
部分を指し、根菜類であれば主に塊根部や塊茎部を、葉茎菜類では主に葉部や茎部を、果
菜類では果実や種実である。
野菜は、酵素失活処理をしていないものを用いる。酵素失活処理とは、野菜に高温の湯
や蒸気で加熱処理を施す等し、野菜に含まれるグルタミン酸脱炭酸酵素を失活させる処理
である。このような処理を施された野菜は、GABAが生成しないので適さない。
First, vegetables used as raw materials in the present invention are vegetables with a water content of 70% by mass or more.
Vegetables such as fruit vegetables, root vegetables, and leafy stem vegetables can be preferably used. Root vegetables include carrots, burdock, Japanese radish, potatoes, and turnips; leafy and stem vegetables include cabbage, Chinese cabbage, celery, asparagus, green onions, garlic, and broccoli;
Green soybeans, fava beans, green peas, snow peas, green beans, pumpkins, corn, eggplants, green peppers, green peppers, okra, and the like. The term "vegetables" refers to the edible parts of the vegetable, mainly root and tuber root vegetables, leaf and stem vegetables, and fruits and seeds of fruit vegetables.
Use vegetables that have not undergone enzyme deactivation treatment. Enzyme deactivation treatment is a treatment to deactivate glutamic acid decarboxylase contained in vegetables by, for example, heat-treating vegetables with hot water or steam. Vegetables subjected to such treatment are not suitable as they do not produce GABA.

野菜の水分量は70質量%以上にする。野菜の水分量は、野菜を吸水させることで制御
すればよい。吸水方法については、水への浸漬、高湿度環境にさらすといった方法を用い
ることができる。なお、収穫時に70質量%以上の水分量を含む野菜はそのまま用いても
よいが、後述の実施例でも示すように、80質量%以上になるとGABA生成量がより増
えるため好ましく、目的とするGABA生成量に応じて水分量を調整してもよい。
The moisture content of vegetables should be 70% by mass or more. The water content of vegetables may be controlled by making the vegetables absorb water. As for the water absorption method, methods such as immersion in water and exposure to a high-humidity environment can be used. Vegetables containing a moisture content of 70% by mass or more at the time of harvest may be used as they are, but as shown in the examples below, 80% by mass or more is preferable because the amount of GABA produced increases, and the desired GABA The amount of water may be adjusted according to the production amount.

次に、水分量を70質量%以上にした野菜に、-20℃以下の温度で冷凍処理を施して
冷凍野菜を得る。冷却の開始から野菜の品温が冷却温度に到達して凍結するまでの間に、
野菜に含まれるグルタミン酸脱炭酸酵素の酵素作用によってグルタミン酸からGABAが
生成し、その結果、GABAが富化した冷凍野菜が得られる。
Next, the vegetables with a moisture content of 70% by mass or more are subjected to freezing treatment at a temperature of -20°C or lower to obtain frozen vegetables. From the start of cooling until the vegetable temperature reaches the cooling temperature and freezes,
GABA is produced from glutamic acid by the enzymatic action of glutamic acid decarboxylase contained in vegetables, and as a result, frozen vegetables enriched with GABA are obtained.

冷凍処理を施す温度は、-20℃以下であれば下限に特に制限はなく、用いる冷凍装置
などの能力に応じて適宜選べばよい。冷凍処理方法は、空気を冷媒として冷凍する通常の
フリーザー(エアーブラスト方式)のほか、液体凍結などの急速冷凍処理など、様々な方
法を採用することができる。特に、急速冷凍処理を用いると短時間で低温になるため、微
生物増殖による衛生上のリスクを一層低減することができる。また、冷凍時に野菜の細胞
破壊をより抑えることができるため食感の低下も抑制することができる。急速冷凍処理を
行う際は、野菜の品温が30分以内に-5℃以下に低下するよう冷凍処理を施すのがよく
、液体凍結などの急速冷凍処理を好ましく用いることができる。
The temperature for the freezing treatment is not particularly limited as long as it is −20° C. or lower, and may be appropriately selected according to the capacity of the refrigerating apparatus to be used. As the freezing treatment method, various methods such as a normal freezer (air blast method) that freezes using air as a refrigerant, and a quick freezing treatment such as liquid freezing can be adopted. In particular, when quick freezing is used, the temperature is lowered in a short period of time, so that the hygienic risk due to microbial growth can be further reduced. In addition, since cell destruction of vegetables can be further suppressed during freezing, deterioration of texture can be suppressed. When the quick freezing process is performed, it is preferable to perform the freezing process so that the temperature of the vegetables is lowered to -5°C or less within 30 minutes, and a quick freezing process such as liquid freezing can be preferably used.

なお、冷却処理を施す際の野菜は、嫌気的な条件下におくことが好ましい。これは、G
ADの酵素作用は嫌気的な条件下でより強く発揮されるためである。嫌気的条件下で野菜
に冷凍処理を施すには、冷却時に例えばフリーザー内を不活性ガスで置換したり、野菜を
脱気包装または不活性ガスでガス置換包装したりするなどの方法がある。
In addition, it is preferable to keep the vegetables under anaerobic conditions when performing the cooling treatment. This is G
This is because the enzymatic action of AD is exhibited more strongly under anaerobic conditions. In order to freeze vegetables under anaerobic conditions, for example, the inside of a freezer may be replaced with an inert gas during cooling, or the vegetables may be degassed or packaged with an inert gas.

得られた冷凍野菜は、微生物増殖のリスクが無い-20℃以下の低温に、冷凍しながら
GABAが富化されたものであり、衛生的である。したがって、この冷凍野菜は、そのま
ま低温に保持し、保存性が高い冷凍食品として流通させやすいものである。また、得られ
た冷凍野菜は、野菜の細胞破壊を抑えるよう速やかに冷凍しているため食感(硬さや形状
など)といった品質の低下が抑制され、解凍後も食感に優れるものである。
The obtained frozen vegetables are hygienic because they are enriched with GABA while being frozen at a low temperature of -20° C. or less without the risk of microbial growth. Therefore, the frozen vegetables can be easily kept at a low temperature and distributed as a frozen food with high preservability. In addition, since the obtained frozen vegetables are quickly frozen so as to suppress the cell destruction of the vegetables, deterioration in quality such as texture (hardness, shape, etc.) is suppressed, and the texture is excellent even after thawing.

また、得られた冷凍野菜は、解凍処理を施してGABAが富化された加工野菜として用
いてもよい。解凍方法は、調理方法などに合わせて任意の方法を用いることができる。例
えば、野菜本来に近い食感を楽しむには、低温で解凍するのがよく、冷蔵庫内での自然解
凍や冷蔵庫外での自然解凍、あるいは流水解凍や氷水解凍などを適用できる。また、加熱
調理をする場合は、ボイルや高温の蒸気などにより解凍してもよい。いずれの方法によっ
ても、衛生的にGABAが富化した加工野菜を賞味することができる。
The obtained frozen vegetables may be thawed and used as GABA-enriched processed vegetables. Any thawing method can be used according to the cooking method. For example, in order to enjoy a texture close to that of the original vegetables, it is preferable to defrost them at a low temperature. Also, when cooking with heat, it may be thawed by boiling or high-temperature steam. By either method, it is possible to sanitarily savor processed vegetables enriched with GABA.

以下に、実施例によって本発明を具体的に説明するが、本発明はかかる実施例に限定さ
れるものではない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

まず、野菜のうち、葉茎菜類としてキャベツを、根菜類としてダイコン及びニンジンを
、果菜類としてエダマメおよびトウモロコシを用いて、冷凍野菜を作成した。なお、実施
例において、特に断りのない限り、野菜は、収穫後に酵素失活処理などの加熱処理を施し
ていない市販品を用いた。
First, frozen vegetables were prepared using cabbage as leafy and stem vegetables, radish and carrots as root vegetables, and edamame and corn as fruit vegetables. In the examples, unless otherwise specified, the vegetables used were commercial products that had not been subjected to heat treatment such as enzyme deactivation treatment after harvesting.

<キャベツを用いた冷凍野菜>
(実施例1-1)
キャベツの表層3枚程度を取り除いた後、芯部を含まないように下半分を切除し、放射
状に16等分に切り出し、一部を分析用に採取し、残りを脱気包装(フィルム厚0.08
mm)し、冷凍冷蔵庫(ホシザキ電機、HRF-150ZF3)内で液温-20℃に保持
して静置したアルコール溶液に7日間浸漬する液体凍結処理を施し、実施例1-1の冷凍
野菜を得た。
なお、上記の条件でキャベツに液体凍結処理を施した場合、品温は10分程度で-5℃
以下になり、15分後には-10℃、20時間後に-20℃に到達した。以降のキャベツ
を用いた実施例についても同様の冷却速度である。
<Frozen vegetables using cabbage>
(Example 1-1)
After removing about 3 surface layers of the cabbage, cut out the lower half so as not to include the core part, cut it radially into 16 equal parts, collect a part for analysis, and degas packaging the rest (film thickness 0 .08
mm), and subjected to liquid freezing treatment by immersing it in an alcohol solution held at a liquid temperature of -20 ° C. for 7 days in a refrigerator (Hoshizaki Denki, HRF-150ZF3), and the frozen vegetables of Example 1-1. Obtained.
In addition, when cabbage is subjected to liquid freezing treatment under the above conditions, the product temperature drops to -5°C in about 10 minutes.
The temperature reached -10°C after 15 minutes and -20°C after 20 hours. The cooling rate is the same for the following examples using cabbage.

(実施例1-2)
実施例1-1と同様に切り出したキャベツを、低温乾燥機(クールドライマシナリー、
DV-5P)に入れ、乾燥機の温度及び保持時間を25℃で20時間、30℃で20時間
、35℃で1時間と連続して変えながら計41時間乾燥した。乾燥後、一部を分析用に採
取し、実施例1-1と同様に脱気包装して液体凍結処理を施し、実施例1-2の冷凍野菜
を得た。
(Example 1-2)
The cabbage cut out in the same manner as in Example 1-1 is dried in a low temperature dryer (cool dry machine,
DV-5P) and dried for a total of 41 hours while continuously changing the temperature and holding time of the dryer from 25° C. for 20 hours, 30° C. for 20 hours, and 35° C. for 1 hour. After drying, a portion was sampled for analysis, degassed and packaged in the same manner as in Example 1-1, and subjected to liquid freezing treatment to obtain frozen vegetables of Example 1-2.

(比較例1-1)
実施例1-2における35℃に保持した時間を32時間に変えて計72時間乾燥を行っ
た以外は実施例1-2と同様にし、比較例1-1の冷凍野菜を得た。
(Comparative Example 1-1)
Frozen vegetables of Comparative Example 1-1 were obtained in the same manner as in Example 1-2 except that the time of holding at 35 ° C. in Example 1-2 was changed to 32 hours and drying was performed for a total of 72 hours.

(比較例1-2)
実施例1-2における液体凍結処理を、リキッドフリーザー(テクニカン、S-220
W)を用いて-10℃に保持したアルコール溶液に浸漬して行った以外は実施例1-2と
同様にして、比較例1-2の冷凍野菜を得た。
(Comparative Example 1-2)
The liquid freezing treatment in Example 1-2 was performed using a liquid freezer (Technican, S-220
W) was used to obtain frozen vegetables of Comparative Example 1-2 in the same manner as in Example 1-2, except that the vegetables were immersed in an alcohol solution maintained at -10°C.

<ダイコンを用いた冷凍野菜>
(実施例2-1)
野菜としてダイコン(塊根部)を用い、直径2cm×長さ4cmの円柱状に切り出して
試料とした以外は実施例1-1と同様にして、実施例2-1の冷凍野菜を得た。この条件
でダイコンに液体凍結処理を施すと、品温は10分程度で-5℃以下になり、15分後に
は-10℃、17時間後に-20℃に到達した。以降のダイコンを用いた実施例について
も同様の冷却速度である。
<Frozen vegetables using radish>
(Example 2-1)
Frozen vegetables of Example 2-1 were obtained in the same manner as in Example 1-1, except that radish (tuberous root) was used as the vegetable and cut into a cylindrical shape with a diameter of 2 cm and a length of 4 cm as a sample. When the radish was liquid-frozen under these conditions, the product temperature dropped to -5°C or lower in about 10 minutes, reached -10°C in 15 minutes, and -20°C in 17 hours. The cooling rate is the same for the following examples using radish.

(実施例2-2)
実施例2-1と同様にしてダイコンを切り出した後、ダイコンを5℃に保持した蒸留水
に24時間浸漬した。浸漬後、表面に付着した水分をふき取り、一部を分析用に採取し、
実施例2-1と同様に脱気包装して液体凍結処理を施し、実施例2-2の冷凍野菜を得た
(Example 2-2)
After cutting the radish in the same manner as in Example 2-1, the radish was immersed in distilled water maintained at 5° C. for 24 hours. After immersion, wipe off the moisture adhering to the surface, take a part for analysis,
The frozen vegetables of Example 2-2 were obtained by carrying out deaeration packaging and liquid freezing treatment in the same manner as in Example 2-1.

(比較例2-1)
実施例2-1と同様に切り出したダイコンを、比較例1-1と同様に72時間乾燥させ
た後、実施例1-1と同様に脱気包装して液体凍結処理を施し、比較例2-1の冷凍野菜
を得た。
(Comparative Example 2-1)
After drying the radish cut out in the same manner as in Example 2-1 for 72 hours in the same manner as in Comparative Example 1-1, it was degassed and packaged in the same manner as in Example 1-1 and subjected to liquid freezing treatment. -1 frozen vegetables were obtained.

(比較例2-2)
実施例2-1と同様に切り出したダイコンを試料に用いた以外は、比較例1-2と同様
にして、比較例2-2の冷凍野菜を得た。
(Comparative Example 2-2)
Frozen vegetables of Comparative Example 2-2 were obtained in the same manner as in Comparative Example 1-2, except that the radish cut out in the same manner as in Example 2-1 was used as the sample.

<ニンジンを用いた冷凍野菜>
(実施例3-1)
野菜としてニンジンを用い、直径3cm×長さ5.5cmの円柱状に切り出して試料と
した以外は実施例1-1と同様に脱気包装、液体凍結処理を施して、実施例3-1の冷凍
野菜を得た。この条件でニンジンに液体凍結処理を施すと、品温は25分程度で-5℃以
下になり、30分後には-10℃、13時間後に-20℃に到達した。以降のニンジンを
用いた実施例についても同様の冷却速度である。
<Frozen vegetables using carrots>
(Example 3-1)
Degassed packaging and liquid freezing treatment were performed in the same manner as in Example 1-1 except that carrots were used as vegetables and were cut into cylinders with a diameter of 3 cm and a length of 5.5 cm to form samples. Got frozen vegetables. When carrots were subjected to liquid freezing under these conditions, the temperature of the carrots dropped to -5°C or lower in about 25 minutes, reached -10°C in 30 minutes, and -20°C in 13 hours. The cooling rate is the same for the following examples using carrots.

(実施例3-2)
実施例2-2において用いた野菜を、実施例3-1と同様に切り出したニンジンに変え
た以外は実施例2-2と同様にして、実施例3-2の冷凍野菜を得た。
(Example 3-2)
Frozen vegetables of Example 3-2 were obtained in the same manner as in Example 2-2, except that the vegetables used in Example 2-2 were changed to carrots cut out in the same manner as in Example 3-1.

(比較例3-1)
実施例3-1と同様に切り出したニンジンを、比較例1-1と同様に72時間乾燥し、
脱気包装した後に液体凍結処理を施し、比較例3-1の冷凍野菜を得た。
(Comparative Example 3-1)
Carrots cut out in the same manner as in Example 3-1 were dried for 72 hours in the same manner as in Comparative Example 1-1,
After deaeration packaging, liquid freezing treatment was performed to obtain frozen vegetables of Comparative Example 3-1.

(比較例3-2)
実施例3-1と同様に切り出したニンジンを試料に用いた以外は、比較例1-2と同様
にして、比較例3-2の冷凍野菜を得た。
(Comparative Example 3-2)
Frozen vegetables of Comparative Example 3-2 were obtained in the same manner as in Comparative Example 1-2, except that carrots cut out in the same manner as in Example 3-1 were used as samples.

<エダマメを用いた冷凍野菜>
(実施例4)
エダマメ(莢付き)を塩もみして水洗し、水切りした後、一部を分析用に採取し、残り
を脱気包装(フィルム厚0.08mm)し、実施例1-1と同様に液温を-20℃に保持
したアルコール溶液に10日間浸漬する液体凍結処理を施し、実施例4の冷凍野菜とした
<Frozen vegetables using edamame>
(Example 4)
Edamame (with pods) is rubbed with salt, washed with water, drained, and then partly collected for analysis, the rest is degassed and packaged (film thickness 0.08 mm), and the liquid temperature is measured in the same manner as in Example 1-1. The frozen vegetables of Example 4 were obtained by subjecting them to liquid freezing treatment by immersing them in an alcohol solution maintained at -20°C for 10 days.

(比較例4)
実施例4におけるエダマメ(莢付き)を、事前に1分間ボイル加熱して酵素失活処理を
施したものに変えた以外は実施例4と同様にして、比較例4の冷凍野菜を得た。
(Comparative Example 4)
Frozen vegetables of Comparative Example 4 were obtained in the same manner as in Example 4, except that the edamame soybeans (with pods) in Example 4 were preliminarily boiled for 1 minute to inactivate the enzyme.

<トウモロコシを用いた冷凍野菜>
(実施例5)
野菜としてトウモロコシを用い、果穂から包葉を除いて試料とし、アルコール溶液に浸
漬した期間を15日間にした以外は実施例1-1と同様に脱気包装、液体凍結処理を施し
て、実施例5の冷凍野菜を得た。
<Frozen vegetables using corn>
(Example 5)
Using corn as a vegetable, removing the bracts from the spikes to obtain a sample, degassing packaging and liquid freezing treatment in the same manner as in Example 1-1 except that the period of immersion in the alcohol solution was set to 15 days. 5 frozen vegetables were obtained.

<水分量とGABA含有量>
次に、得られた冷凍野菜を、脱気包装されたまま氷水に浸漬して解凍し、開封して一部
を採取し、水分量とGABA含有量を測定した。なお、エダマメ(実施例4,比較例4)
及びトウモロコシ(実施例5)の冷凍野菜の解凍は、包装したままそれぞれ6分及び5分
のボイル加熱により行った。凍結前の試料についても同条件でボイル加熱した後にGAB
A含有量の測定に供した。
水分量とGABA含有量は以下の方法で測定した。
<Water content and GABA content>
Next, the obtained frozen vegetables were thawed by immersing them in ice water while still in the degassed packaging, opened, and a part of the vegetables were collected to measure the water content and GABA content. In addition, edamame (Example 4, Comparative Example 4)
and corn (Example 5) were thawed by boiling for 6 minutes and 5 minutes, respectively, while still packaged. GAB after boiling under the same conditions for the sample before freezing
It used for the measurement of A content.
The water content and GABA content were measured by the following methods.

(水分量の測定)
水分量は乾燥法により測定した。採取した試料を7日間かけて凍結乾燥(アルバック、
DFM-10N-04)し、その前後の重量変化から水分量を算出した。なお、実施例4
、実施例5及び比較例4については、日本食品標準成分表2020年版(八訂)(文部科
学省)に記載の値を水分量として用いた。
(Measurement of moisture content)
Moisture content was measured by a dry method. Freeze-dry the collected sample for 7 days (ULVAC,
DFM-10N-04), and the water content was calculated from the weight change before and after that. In addition, Example 4
, For Example 5 and Comparative Example 4, the value described in the Standard Tables of Food Composition in Japan 2020 Edition (8th Edition) (Ministry of Education, Culture, Sports, Science and Technology) was used as the water content.

(GABA含有量の測定)
GABA含有量は、以下のように前処理を行った後、アミノ酸分析により測定した。
前処理(キャベツ、ダイコンまたはニンジンの場合):試料を粉砕した後、0.02N
塩酸を加えて5℃に保持したまま一晩振とう抽出を行った。その後、遠心分離により得た
上清を0.02N塩酸で定容し、フィルターろ過(0.2μm、PTFE)後に適宜希釈
して得た溶液をアミノ酸分析に供した。
前処理(エダマメまたはトウモロコシの場合):まず、エダマメは莢を取り除き、トウ
モロコシは子実を採取して試料とした。試料を凍結乾燥して粉砕した後、80%エタノー
ル溶液を加えて振とう抽出した。その後、遠心分離した上清を回収し、さらに、遠心残渣
に対し同様の抽出操作を2回行い、先に回収した上清と合わせて定容後、フィルターろ過
(0.2μm、PTFE)した。得られたろ液を分取して、減圧乾固によって溶媒を除去
した後、塩酸を加えて塩酸終濃度が0.02Nとなるように希釈して得た溶液をアミノ酸
分析に供した。
アミノ酸分析:上記の前処理によって得た分析用の溶液10μLを、さらにホウ酸緩衝
液70μLで希釈し、AccQ-TagTMUltra試薬(Waters)20μLを
添加して直ちに攪拌し、その後、55℃で10分間加温してGABAを蛍光誘導体化し、
液体クロマトグラフィー(Waters、ACQUITY UPLC H-Class(
検出器:PDA/QDa))を用いて分離定量を行った。
(Measurement of GABA content)
GABA content was measured by amino acid analysis after pretreatment as follows.
Pretreatment (for cabbage, radish or carrot): 0.02N after crushing the sample
Hydrochloric acid was added and extraction was performed with shaking overnight while the temperature was kept at 5°C. Thereafter, the supernatant obtained by centrifugation was adjusted to a constant volume with 0.02N hydrochloric acid, filtered through a filter (0.2 μm, PTFE), and diluted appropriately to obtain a solution which was subjected to amino acid analysis.
Pretreatment (for edamame or corn): First, pods were removed from edamame, and grains were collected from corn as samples. After the sample was freeze-dried and pulverized, an 80% ethanol solution was added and extracted with shaking. After that, the supernatant after centrifugation was collected, and the centrifugal residue was subjected to the same extraction operation twice, combined with the previously collected supernatant to a constant volume, and filtered through a filter (0.2 μm, PTFE). The obtained filtrate was fractionated, the solvent was removed by drying under reduced pressure, and hydrochloric acid was added to dilute the filtrate to a final concentration of 0.02 N. The obtained solution was subjected to amino acid analysis.
Amino acid analysis: 10 μL of the analytical solution obtained by the above pretreatment is further diluted with 70 μL of borate buffer, 20 μL of AccQ-Tag Ultra reagent (Waters) is added, immediately stirred, and then at 55°C. Fluorescence derivatization of GABA by warming for 10 minutes,
Liquid chromatography (Waters, ACQUITY UPLC H-Class (
Separate quantification was performed using a detector: PDA/QDa)).

実施例および比較例の冷凍野菜について、水分量と、凍結前(脱気包装の直前)及び解
凍後のGABA含有量を測定した結果を表1に示す。実施例4と5及び比較例4について
は、乾燥粉末の単位重量あたりの測定値である。
また、表1には、品目と凍結処理温度条件もまとめて記載した。表中のGABA増減比
は、解凍後のGABA含有量/凍結前のGABA含有量で表される値である。凍結前の各
試料のGABA含有量は直前の乾燥処理中にも増加するため、凍結処理によるGABA増
加の効果は、GABA増減比に基づいて比較したものである。
Table 1 shows the results of measuring the water content and the GABA content before freezing (immediately before degassing packaging) and after thawing the frozen vegetables of Examples and Comparative Examples. For Examples 4 and 5 and Comparative Example 4, the values are measured per unit weight of dry powder.
Table 1 also summarizes the items and freezing treatment temperature conditions. The GABA increase/decrease ratio in the table is a value represented by GABA content after thawing/GABA content before freezing. Since the GABA content of each sample before freezing also increases during the immediately preceding drying treatment, the effect of increasing GABA by freezing treatment was compared based on the GABA increase/decrease ratio.

Figure 2022144563000001
Figure 2022144563000001

表1中の-20℃凍結処理を行った試料について、水分量とGABA増減比の関連に着
目すると、いずれの品目においても、水分量が約70%以上になるとGABA増減比が1
を上回ることがわかる。例えば、比較例1-1は水分量が37.5質量%、GABA増減
比1.00と、凍結処理によってGABAは全く増加していないが、実施例1-2の水分
量が73.4%の試料では、GABA増減比が1.11と上昇した。このことから、野菜
の水分量をおよそ70%以上にすると、-20℃で凍結処理を施した際に効果的にGAB
Aが富化することがわかる。
また、実施例1-1、実施例2-1、実施例2-2、実施例3-1及び実施例3-2に
みられるように、野菜の水分量およそ80%以上になると、2.5~4.4程度の高いG
ABA増減比を示し、より一層GABAを富化できることがわかる。
なお、酵素失活処理を施した比較例4については、GABA含有量は富化しなかった。
Focusing on the relationship between the water content and the GABA increase/decrease ratio for the samples that were frozen at -20°C in Table 1, the GABA increase/decrease ratio was 1 when the water content was about 70% or more in any item.
It can be seen that the For example, Comparative Example 1-1 has a water content of 37.5% by mass and a GABA increase/decrease ratio of 1.00, so GABA does not increase at all due to the freezing treatment, but the water content of Example 1-2 is 73.4%. sample, the GABA increase/decrease ratio increased to 1.11. From this, if the water content of vegetables is about 70% or more, GAB will be effective when frozen at -20 ° C.
It can be seen that A is enriched.
Also, as seen in Examples 1-1, 2-1, 2-2, 3-1 and 3-2, when the water content of vegetables is about 80% or more, 2. High G of about 5 to 4.4
The ABA increase/decrease ratio is shown, and it can be seen that GABA can be further enriched.
In addition, the GABA content was not enriched in Comparative Example 4 in which the enzyme was deactivated.

このように水分量が70%以上の条件で効果的にGABA含有量が富化するメカニズム
は定かではないが、次のように推測される。野菜の温度を下げていき、水分の凍結が進行
すると、凍結濃縮によってグルタミン酸やグルタミン酸脱炭酸酵素が濃縮され、GABA
を生成する酵素反応が起こりやすくなる。冷却が進み、野菜は-20℃程度になると殆ど
の水分が凍り、ここで酵素反応はほぼ停止する。このとき水分量が少ない野菜は、すぐに
-20℃に低下してしまうため、ほとんど酵素反応が起きないまま凍り、水分が多い野菜
は-20℃に低下するまでにある程度の時間を要し十分に酵素反応が進むと考えられる。
このとき、酵素反応に要する時間と凍結までの時間のバランスが丁度よい野菜の水分量が
、およそ70%以上と考えられる。
Although the mechanism by which the GABA content is effectively enriched under the condition that the water content is 70% or more is not clear, it is speculated as follows. As the temperature of vegetables is lowered and the freezing of water progresses, glutamic acid and glutamic acid decarboxylase are concentrated by freeze concentration, and GABA
The enzymatic reaction that produces is more likely to occur. When the cooling progresses and the temperature of the vegetables reaches about -20°C, most of the moisture freezes, and the enzymatic reaction almost stops here. At this time, vegetables with a low moisture content will quickly drop to -20°C, so they will be frozen with almost no enzymatic reaction, and vegetables with a high moisture content will take a certain amount of time to drop to -20°C. It is thought that the enzymatic reaction proceeds in
At this time, it is considered that the water content of the vegetables is about 70% or more, in which the balance between the time required for the enzymatic reaction and the time until freezing is just right.

次に、得られた冷凍野菜を解凍した際の品質を確認した。その結果、-10℃で冷却処
理を施した試料(比較例1-2、比較例2-2及び比較例3-2)は、一部においてGA
BA含有量は増加したものの、明らかな軟化が認められ、いずれも品質に劣るものであっ
た。一方で、-20℃で冷凍処理を施した実施例(実施例1-1~実施例5)においては
、-10℃で冷凍した場合と比べ、軟化などの加工前からの変化は抑制され、硬さや形状
、色などにおいて、上記の比較例より優れるものであった。
なお、比較例3-1については、GABA含有量が富化することが認められたものの、
水分量が低いために極めて硬く、食用には全く適さないものであった。
Next, the quality of the obtained frozen vegetables when thawed was confirmed. As a result, the samples (Comparative Example 1-2, Comparative Example 2-2 and Comparative Example 3-2) subjected to cooling treatment at -10 ° C. were partially GA
Although the BA content increased, clear softening was observed, and all were inferior in quality. On the other hand, in the examples (Examples 1-1 to 5) in which the freezing treatment was performed at -20 ° C., compared with the case of freezing at -10 ° C., changes from before processing such as softening were suppressed. It was superior to the above comparative examples in terms of hardness, shape, color, and the like.
In addition, although it was confirmed that the GABA content was enriched in Comparative Example 3-1,
Due to its low water content, it was extremely hard and completely unsuitable for eating.

以上のように、本発明の冷凍野菜の製造方法及び加工野菜の製造方法によれば、-20
℃という微生物増殖のリスクが無い安全な環境でGABAを富化した冷凍野菜及び加工野
菜を得ることができる。この冷凍野菜は、野菜の組織破壊を抑えるような条件で製造され
ており、そのまま任意の方法で解凍することで食感などの品質に優れた加工野菜として賞
味できる。

As described above, according to the method for producing frozen vegetables and the method for producing processed vegetables of the present invention, -20
GABA-enriched frozen vegetables and processed vegetables can be obtained in a safe environment with no risk of microbial growth. These frozen vegetables are produced under conditions that suppress tissue destruction of the vegetables, and can be enjoyed as processed vegetables with excellent quality such as texture by defrosting them as they are by any method.

Claims (4)

水分量を70質量%以上にした野菜に、-20℃以下の温度で冷凍処理を施すことにより
、野菜に含まれるγ-アミノ酪酸を富化させることを特徴とする冷凍野菜の製造方法。
A method for producing frozen vegetables, characterized by enriching γ-aminobutyric acid contained in vegetables by subjecting vegetables having a water content of 70% by mass or more to freezing treatment at a temperature of -20°C or lower.
前記冷凍処理は、急速冷凍処理であることを特徴とする請求項1に記載の冷凍野菜の製造
方法。
2. The method for producing frozen vegetables according to claim 1, wherein the freezing process is quick freezing process.
前記野菜は、果菜類、根菜類または葉茎菜類であることを特徴とする請求項1または2の
いずれかに記載の冷凍野菜の製造方法。
3. The method for producing frozen vegetables according to claim 1, wherein the vegetables are fruit vegetables, root vegetables or leafy stem vegetables.
請求項1から3のいずれかに記載の製造方法によって得た冷凍野菜に解凍処理を施すこと
を特徴とする加工野菜の製造方法。

A method for producing processed vegetables, characterized in that the frozen vegetables obtained by the production method according to any one of claims 1 to 3 are thawed.

JP2021045620A 2021-03-19 2021-03-19 Frozen vegetable and production method of processed vegetable Pending JP2022144563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021045620A JP2022144563A (en) 2021-03-19 2021-03-19 Frozen vegetable and production method of processed vegetable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021045620A JP2022144563A (en) 2021-03-19 2021-03-19 Frozen vegetable and production method of processed vegetable

Publications (2)

Publication Number Publication Date
JP2022144563A true JP2022144563A (en) 2022-10-03
JP2022144563A5 JP2022144563A5 (en) 2024-01-24

Family

ID=83453946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021045620A Pending JP2022144563A (en) 2021-03-19 2021-03-19 Frozen vegetable and production method of processed vegetable

Country Status (1)

Country Link
JP (1) JP2022144563A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765173A (en) * 1980-10-11 1982-04-20 Kisai Food Kogyo Kk Method of freezing fresh food
JPS6394956A (en) * 1986-10-09 1988-04-26 Shiimetsukusu Japan:Kk Method of freezing biological tissue
JPH05137500A (en) * 1991-11-15 1993-06-01 Kagome Co Ltd Production of frozen cut vegetables
JP2000032907A (en) * 1998-07-22 2000-02-02 Osaka Marukita Shoji Kk Processing of onion
JP2002345428A (en) * 2001-05-29 2002-12-03 Matsushita Refrig Co Ltd Salad subjected to freezing and thawing treatment and method for producing the salad
JP2007053969A (en) * 2005-08-24 2007-03-08 Sugiyo:Kk Method for producing frozen food
WO2007040126A1 (en) * 2005-09-30 2007-04-12 The Nisshin Oillio Group, Ltd. Method of producing bean or pod product

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765173A (en) * 1980-10-11 1982-04-20 Kisai Food Kogyo Kk Method of freezing fresh food
JPS6394956A (en) * 1986-10-09 1988-04-26 Shiimetsukusu Japan:Kk Method of freezing biological tissue
JPH05137500A (en) * 1991-11-15 1993-06-01 Kagome Co Ltd Production of frozen cut vegetables
JP2000032907A (en) * 1998-07-22 2000-02-02 Osaka Marukita Shoji Kk Processing of onion
JP2002345428A (en) * 2001-05-29 2002-12-03 Matsushita Refrig Co Ltd Salad subjected to freezing and thawing treatment and method for producing the salad
JP2007053969A (en) * 2005-08-24 2007-03-08 Sugiyo:Kk Method for producing frozen food
WO2007040126A1 (en) * 2005-09-30 2007-04-12 The Nisshin Oillio Group, Ltd. Method of producing bean or pod product

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
野口 智紀 ほか: "各種処理によるジャガイモ塊茎のγ−アミノ酪酸(GABA)増加方法", 日本食品科学工学会誌, vol. 第54巻、第10号, JPN6024051473, 2007, pages 447 - 451, ISSN: 0005570349 *

Similar Documents

Publication Publication Date Title
CN103609663B (en) Method for drying fruits and vegetables by vacuum freezing combined with differential pressure puffing technology
Badwaik et al. Influence of blanching on antioxidant, nutritional and physical properties of bamboo shoot
CN106722456A (en) A kind of vacuum freeze drying Kiwi berry crisp chip preparation technology
CN104026214A (en) Preparing method of vacuum freeze-dried strawberry products
Xu et al. Effect of cooling rate and super-chilling temperature on ice crystal characteristic, cell structure, and physicochemical quality of super-chilled fresh-cut celery
Reshmi et al. Effect of pre-treatment of salt solution and drying methods on the quality of processed aonla (Emblica officinalis Gaertn)
Srinivas et al. A review on the preparation method of fruit leathers
Sanwiriya et al. The effects of drying method and temperature on the nutritional quality of watermelon rinds
WO2014185820A1 (en) Method for producing a food product from vegetables
Abano Assessments of drying characteristics and physio-organoleptic properties of dried pineapple slices under different pre-treatments
More et al. Effect of drying, blanching and rehydration behavior on the quality of green peas
CN108514091A (en) A kind of preparation method of VF fruit and vegetable crisp chips
JP2022144563A (en) Frozen vegetable and production method of processed vegetable
Kushwaha et al. Influence of osmotic agents on drying behavior and product quality of guava fruit
CN106259871A (en) A kind of light freezing fresh-keeping method of phyllostachys pracecox shoots
JP2022144563A5 (en)
Hariono et al. Improvement of sensory and chemistry quality of fried edamame by freezing
Siow et al. Canned, frozen and dried pineapple
Koretska et al. Thermophysical characteristics of frozen semifinished products for restaurant technology
Minh et al. Investigation of Asparagus officinalis shoot size and drying affecting to herbal tea production
RU2630702C2 (en) Method for manufacturing fruit product in form of plates from pears, apples and grape raw material
RU2693300C1 (en) Method for production of crispy fruit-and-berry snacks
RU2782321C1 (en) Method for manufacturing snacks from plant raw material
Jokanović et al. Suitability of some green pea (Pisum sativum L.) varieties for processing
RU2287298C2 (en) Method for obtaining of food product from vegetables

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20241211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20241219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20250107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20250411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20250423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20250723