JP2022103302A - Zoom optical system and optical device - Google Patents

Zoom optical system and optical device Download PDF

Info

Publication number
JP2022103302A
JP2022103302A JP2022080811A JP2022080811A JP2022103302A JP 2022103302 A JP2022103302 A JP 2022103302A JP 2022080811 A JP2022080811 A JP 2022080811A JP 2022080811 A JP2022080811 A JP 2022080811A JP 2022103302 A JP2022103302 A JP 2022103302A
Authority
JP
Japan
Prior art keywords
lens group
lens
conditional expression
optical system
magnification optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022080811A
Other languages
Japanese (ja)
Other versions
JP7260036B2 (en
Inventor
健 上原
Takeshi Uehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2018/042762 external-priority patent/WO2020105103A1/en
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2022080811A priority Critical patent/JP7260036B2/en
Publication of JP2022103302A publication Critical patent/JP2022103302A/en
Priority to JP2023041869A priority patent/JP7464165B2/en
Application granted granted Critical
Publication of JP7260036B2 publication Critical patent/JP7260036B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a zoom optical system which is well corrected for various aberrations including spherical aberration.
SOLUTION: A zoom optical system ZL provided herein comprises a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, a third lens group G3 having positive refractive power, and a succeeding lens group GR arranged in order form the object side, and is configured such that a distance between each pair of adjacent lens groups change while the first lens group G1 is stationary relative to the image plane when zooming, and the third lens group G3 moves when zooming from the wide-angle end to the telephoto end. The succeeding lens group GR comprises a fourth lens group G4, fifth lens group G5, and a final lens group located on the most image side. The zoom optical system satisfies the following conditional expressions: -10.00<f3/(-fE)<3.50, 1.20<f1/f4<2.30, where f3 represents a focal length of the third lens group G3, fE represents a focal length of the final lens group, f1 represents a focal length of the first lens group G1, and f4 represents a focal length of the fourth lens group G4.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、変倍光学系およびこれを用いた光学機器に関する。 The present invention relates to a variable magnification optical system and an optical device using the same.

従来から、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1を参照)。変倍光学系においては、収差を良好に補正することが求められている。 Conventionally, variable magnification optical systems suitable for photographic cameras, electronic still cameras, video cameras and the like have been proposed (see, for example, Patent Document 1). In the variable magnification optical system, it is required to satisfactorily correct the aberration.

特開2016-139125号公報Japanese Unexamined Patent Publication No. 2016-139125

第1の態様に係る変倍光学系は、物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、後続レンズ群とを有し、変倍の際に、隣り合う各レンズ群の間隔が変化し、前記第1レンズ群が像面に対して固定され、広角端状態から望遠端状態への変倍の際に、前記第3レンズ群が移動し、前記後続レンズ群は、第4レンズ群と、前記第4レンズ群の像側に並んで配置された第5レンズ群と、最も像側に配置された最終レンズ群とを有し、以下の条件式を満足する。
-10.00<f3/(-fE)<3.50
1.20<f1/f4<2.30
但し、f3:前記第3レンズ群の焦点距離
fE:前記最終レンズ群の焦点距離
f1:前記第1レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
The variable magnification optical system according to the first aspect has a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a first lens group having a positive refractive power arranged in order from the object side. It has three lens groups and a succeeding lens group, and the distance between adjacent lens groups changes during scaling, the first lens group is fixed to the image plane, and the wide-angle end state to the telephoto end. When the magnification is changed to the state, the third lens group moves, and the succeeding lens group includes the fourth lens group and the fifth lens group arranged side by side on the image side of the fourth lens group. It has a final lens group arranged on the image side most, and satisfies the following conditional expression.
-10.00 <f3 / (-fE) <3.50
1.20 <f1 / f4 <2.30
However, f3: the focal length of the third lens group fE: the focal length of the final lens group f1: the focal length of the first lens group f4: the focal length of the fourth lens group

第2の態様に係る変倍光学系は、物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、後続レンズ群とを有し、変倍の際に、隣り合う各レンズ群の間隔が変化し、前記第1レンズ群が像面に対して固定され、広角端状態から望遠端状態への変倍の際に、前記第3レンズ群が移動し、前記後続レンズ群は、第4レンズ群と、前記第4レンズ群の像側に並んで配置された第5レンズ群と、最も像側に配置された最終レンズ群とを有し、以下の条件式を満足する。
-0.50<f3/(-fE)<3.50
-2.00<f1/f4<2.30
但し、f3:前記第3レンズ群の焦点距離
fE:前記最終レンズ群の焦点距離
f1:前記第1レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
The variable magnification optical system according to the second aspect includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a second lens group having a positive refractive power, which are arranged in order from the object side. It has three lens groups and a succeeding lens group, and the distance between adjacent lens groups changes during scaling, the first lens group is fixed to the image plane, and the wide-angle end state to the telephoto end. When the magnification is changed to the state, the third lens group moves, and the succeeding lens group includes the fourth lens group and the fifth lens group arranged side by side on the image side of the fourth lens group. It has a final lens group arranged on the image side most, and satisfies the following conditional expression.
-0.50 <f3 / (-fE) <3.50
-2.00 <f1 / f4 <2.30
However, f3: the focal length of the third lens group fE: the focal length of the final lens group f1: the focal length of the first lens group f4: the focal length of the fourth lens group

第3の態様に係る光学機器は、上記変倍光学系を搭載して構成される。 The optical device according to the third aspect is configured by mounting the above-mentioned variable magnification optical system.

第1実施例に係る変倍光学系が広角端状態から望遠端状態に変化する際のレンズの動きを示す図である。It is a figure which shows the movement of the lens when the variable magnification optical system which concerns on 1st Embodiment changes from a wide-angle end state to a telephoto end state. 図2(A)、図2(B)、および図2(C)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における諸収差図である。2 (A), 2 (B), and 2 (C) are aberration diagrams in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first embodiment, respectively. .. 第2実施例に係る変倍光学系が広角端状態から望遠端状態に変化する際のレンズの動きを示す図である。It is a figure which shows the movement of the lens when the variable magnification optical system which concerns on 2nd Example changes from a wide-angle end state to a telephoto end state. 図4(A)、図4(B)、および図4(C)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における諸収差図である。4 (A), 4 (B), and 4 (C) are aberration diagrams in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second embodiment, respectively. .. 第3実施例に係る変倍光学系が広角端状態から望遠端状態に変化する際のレンズの動きを示す図である。It is a figure which shows the movement of the lens when the variable magnification optical system which concerns on 3rd Example changes from a wide-angle end state to a telephoto end state. 図6(A)、図6(B)、および図6(C)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における諸収差図である。6 (A), 6 (B), and 6 (C) are aberration diagrams in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third embodiment, respectively. .. 第4実施例に係る変倍光学系が広角端状態から望遠端状態に変化する際のレンズの動きを示す図である。It is a figure which shows the movement of the lens when the variable magnification optical system which concerns on 4th Embodiment changes from a wide-angle end state to a telephoto end state. 図8(A)、図8(B)、および図8(C)はそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における諸収差図である。8 (A), 8 (B), and 8 (C) are aberration diagrams in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fourth embodiment, respectively. .. 第5実施例に係る変倍光学系が広角端状態から望遠端状態に変化する際のレンズの動きを示す図である。It is a figure which shows the movement of the lens when the variable magnification optical system which concerns on 5th Embodiment changes from a wide-angle end state to a telephoto end state. 図10(A)、図10(B)、および図10(C)はそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における諸収差図である。10 (A), 10 (B), and 10 (C) are aberration diagrams in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth embodiment, respectively. .. 第6実施例に係る変倍光学系が広角端状態から望遠端状態に変化する際のレンズの動きを示す図である。It is a figure which shows the movement of the lens when the variable magnification optical system which concerns on 6th Embodiment changes from a wide-angle end state to a telephoto end state. 図12(A)、図12(B)、および図12(C)はそれぞれ、第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における諸収差図である。12 (A), 12 (B), and 12 (C) are aberration diagrams in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the sixth embodiment, respectively. .. 第7実施例に係る変倍光学系が広角端状態から望遠端状態に変化する際のレンズの動きを示す図である。It is a figure which shows the movement of the lens when the variable magnification optical system which concerns on 7th Embodiment changes from a wide-angle end state to a telephoto end state. 図14(A)、図14(B)、および図14(C)はそれぞれ、第7実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における諸収差図である。14 (A), 14 (B), and 14 (C) are aberration diagrams in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the seventh embodiment, respectively. .. 本実施形態に係る変倍光学系を備えたカメラの構成を示す図である。It is a figure which shows the structure of the camera provided with the variable magnification optical system which concerns on this embodiment. 本実施形態に係る変倍光学系の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the variable magnification optical system which concerns on this embodiment.

以下、本実施形態に係る変倍光学系および光学機器について図を参照して説明する。まず、本実施形態に係る変倍光学系を備えたカメラ(光学機器)を図15に基づいて説明する。このカメラ1は、図15に示すように撮影レンズ2として本実施形態に係る変倍光学系を備えたデジタルカメラである。カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、撮像素子3へ到達する。これにより被写体からの光は、当該撮像素子3によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。なお、このカメラは、ミラーレスカメラでも、クイックリターンミラーを有した一眼レフタイプのカメラであっても良い。 Hereinafter, the variable magnification optical system and the optical device according to this embodiment will be described with reference to the drawings. First, a camera (optical device) provided with a variable magnification optical system according to this embodiment will be described with reference to FIG. As shown in FIG. 15, the camera 1 is a digital camera provided with a variable magnification optical system according to the present embodiment as a photographing lens 2. In the camera 1, the light from an object (subject) (not shown) is collected by the photographing lens 2 and reaches the image pickup element 3. As a result, the light from the subject is captured by the image sensor 3 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1. This camera may be a mirrorless camera or a single-lens reflex type camera having a quick return mirror.

次に、本実施形態に係る変倍光学系(撮影レンズ)について説明する。本実施形態に係る変倍光学系(ズームレンズ)ZLの一例としての変倍光学系ZL(1)は、図1に示すように、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、後続レンズ群GRとを有している。変倍の際に、隣り合う各レンズ群の間隔が変化する。なお、変倍の際に、第1レンズ群G1は像面に対して固定される。広角端状態から望遠端状態への変倍の際に、第3レンズ群G3は光軸に沿って像側へ移動する。後続レンズ群GRは、最も像側に配置された最終レンズ群を有している。 Next, the variable magnification optical system (shooting lens) according to this embodiment will be described. As shown in FIG. 1, the variable magnification optical system ZL (1) as an example of the variable magnification optical system (zoom lens) ZL according to the present embodiment is the first having a positive refractive power arranged in order from the object side. It has a lens group G1, a second lens group G2 having a negative refractive power, a third lens group G3 having a positive refractive power, and a succeeding lens group GR. At the time of scaling, the distance between adjacent lens groups changes. At the time of scaling, the first lens group G1 is fixed to the image plane. When scaling from the wide-angle end state to the telephoto end state, the third lens group G3 moves toward the image side along the optical axis. The succeeding lens group GR has a final lens group arranged on the image side most.

上記構成の下、本実施形態に係る変倍光学系ZLは、以下の条件式(1)を満足する。 Under the above configuration, the variable magnification optical system ZL according to the present embodiment satisfies the following conditional expression (1).

-10.00<f3/(-fE)<3.50 ・・・(1)
但し、f3:第3レンズ群G3の焦点距離
fE:最終レンズ群の焦点距離
-10.00 <f3 / (-fE) <3.50 ... (1)
However, f3: focal length of the third lens group G3 fE: focal length of the final lens group

本実施形態によれば、球面収差等の諸収差が良好に補正された変倍光学系、およびこの変倍光学系を備えた光学機器を得ることが可能になる。本実施形態に係る変倍光学系ZLは、図3に示す変倍光学系ZL(2)でもよく、図5に示す変倍光学系ZL(3)でもよく、図7に示す変倍光学系ZL(4)でもよい。また、本実施形態に係る変倍光学系ZLは、図9に示す変倍光学系ZL(5)でもよく、図11に示す変倍光学系ZL(6)でもよく、図13に示す変倍光学系ZL(7)でもよい。 According to the present embodiment, it is possible to obtain a variable magnification optical system in which various aberrations such as spherical aberration are satisfactorily corrected, and an optical device provided with the variable magnification optical system. The variable-magnification optical system ZL according to the present embodiment may be the variable-magnification optical system ZL (2) shown in FIG. 3, the variable-magnification optical system ZL (3) shown in FIG. 5, or the variable-magnification optical system shown in FIG. 7. It may be ZL (4). Further, the variable magnification optical system ZL according to the present embodiment may be the variable magnification optical system ZL (5) shown in FIG. 9, the variable magnification optical system ZL (6) shown in FIG. 11, or the variable magnification optical system ZL (6) shown in FIG. The optical system ZL (7) may be used.

条件式(1)は、第3レンズ群G3の焦点距離と最終レンズ群の焦点距離との比を規定するものである。条件式(1)を満足することで、球面収差、コマ収差、および像面湾曲を良好に補正することができる。 The conditional expression (1) defines the ratio between the focal length of the third lens group G3 and the focal length of the final lens group. By satisfying the conditional equation (1), spherical aberration, coma aberration, and curvature of field can be satisfactorily corrected.

条件式(1)の対応値が上限値を上回ると、第3レンズ群G3の屈折力が弱くなるため、球面収差とコマ収差を良好に補正することが困難になる。また、最終レンズ群の負の屈折力が強くなるため、コマ収差と像面湾曲を良好に補正することが困難になる。条件式(1)の上限値を3.40に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(1)の上限値を、3.30、3.20、3.10、3.00、2.90、2.85、2.75、2.70、さらに2.65に設定してもよい。 When the corresponding value of the conditional expression (1) exceeds the upper limit value, the refractive power of the third lens group G3 becomes weak, and it becomes difficult to satisfactorily correct the spherical aberration and the coma aberration. Further, since the negative refractive power of the final lens group becomes strong, it becomes difficult to satisfactorily correct coma aberration and curvature of field. By setting the upper limit value of the conditional expression (1) to 3.40, the effect of the present embodiment can be further ensured. In order to further ensure the effect of this embodiment, the upper limit of the conditional expression (1) is set to 3.30, 3.20, 3.10, 3.00, 2.90, 2.85, 2. It may be set to .75, 2.70, and further 2.65.

条件式(1)の対応値が下限値を下回ると、第3レンズ群G3の屈折力が強くなるため、球面収差とコマ収差を良好に補正することが困難になる。また、最終レンズ群の屈折力が弱くなるため、コマ収差と像面湾曲を良好に補正することが困難になる。条件式(1)の下限値を-8.00に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(1)の下限値を、-5.00、-3.00、-1.00、-0.50、0.30、0.40、さらに0.45に設定してもよい。 When the corresponding value of the conditional expression (1) is less than the lower limit value, the refractive power of the third lens group G3 becomes strong, so that it becomes difficult to satisfactorily correct the spherical aberration and the coma aberration. Further, since the refractive power of the final lens group is weakened, it becomes difficult to satisfactorily correct coma aberration and curvature of field. By setting the lower limit of the conditional expression (1) to −8.00, the effect of the present embodiment can be further ensured. In order to further ensure the effect of this embodiment, the lower limit of the conditional expression (1) is set to -5.00, -3.00, -1.00, -0.50, 0.30, 0. It may be set to .40 and further 0.45.

本実施形態に係る変倍光学系ZLは、以下の条件式(2)を満足することが望ましい。 It is desirable that the variable magnification optical system ZL according to the present embodiment satisfies the following conditional expression (2).

-10.00<f1/(-fE)<3.50 ・・・(2)
但し、f1:第1レンズ群G1の焦点距離
-10.00 <f1 / (-fE) <3.50 ... (2)
However, f1: focal length of the first lens group G1

条件式(2)は、第1レンズ群G1の焦点距離と最終レンズ群の焦点距離との比を規定するものである。条件式(2)を満足することで、球面収差、像面湾曲、およびコマ収差を良好に補正することができる。 The conditional expression (2) defines the ratio between the focal length of the first lens group G1 and the focal length of the final lens group. By satisfying the conditional expression (2), spherical aberration, curvature of field, and coma can be satisfactorily corrected.

条件式(2)の対応値が上限値を上回ると、第1レンズ群G1の屈折力が弱くなるため、望遠端状態に近い側における球面収差と広角端状態に近い側における像面湾曲を良好に補正することが困難になる。また、最終レンズ群の負の屈折力が強くなるため、コマ収差と像面湾曲を良好に補正することが困難になる。条件式(2)の上限値を3.40に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(2)の上限値を、3.30、3.20、3.10、3.00、2.95、2.90、2.85、2.80、さらに2.75に設定して
もよい。
When the corresponding value of the conditional expression (2) exceeds the upper limit value, the refractive power of the first lens group G1 becomes weak, so that the spherical aberration near the telephoto end state and the curvature of field near the wide-angle end state are good. It becomes difficult to correct to. Further, since the negative refractive power of the final lens group becomes strong, it becomes difficult to satisfactorily correct coma aberration and curvature of field. By setting the upper limit value of the conditional expression (2) to 3.40, the effect of this embodiment can be further ensured. In order to further ensure the effect of this embodiment, the upper limit of the conditional expression (2) is set to 3.30, 3.20, 3.10, 3.00, 2.95, 2.90, 2. It may be set to .85, 2.80, and further 2.75.

条件式(2)の対応値が下限値を下回ると、第1レンズ群G1の屈折力が強くなるため、望遠端状態に近い側における球面収差と広角端状態に近い側における像面湾曲を良好に補正することが困難になる。また、最終レンズ群の屈折力が弱くなるため、コマ収差と像面湾曲を良好に補正することが困難になる。なお、条件式(2)の下限値を-8.00に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(2)の下限値を、-5.00、-3.00、-1.00、-0.50、0.30、0.50、0.75、0.90、さらに1.00に設定してもよい。 When the corresponding value of the conditional expression (2) is less than the lower limit value, the refractive power of the first lens group G1 becomes stronger, so that the spherical aberration on the side near the telephoto end state and the curvature of field near the wide-angle end state are good. It becomes difficult to correct to. Further, since the refractive power of the final lens group is weakened, it becomes difficult to satisfactorily correct coma aberration and curvature of field. By setting the lower limit of the conditional expression (2) to −8.00, the effect of the present embodiment can be further ensured. In order to further ensure the effect of this embodiment, the lower limit of the conditional expression (2) is set to -5.00, -3.00, -1.00, -0.50, 0.30, 0. It may be set to .50, 0.75, 0.90, and further 1.00.

本実施形態に係る変倍光学系ZLは、以下の条件式(3)を満足することが望ましい。 It is desirable that the variable magnification optical system ZL according to the present embodiment satisfies the following conditional expression (3).

-10.00<f2/fE<1.50 ・・・(3)
但し、f2:第2レンズ群G2の焦点距離
-10.00 <f2 / fE <1.50 ... (3)
However, f2: focal length of the second lens group G2

条件式(3)は、第2レンズ群G2の焦点距離と最終レンズ群の焦点距離との比を規定するものである。条件式(3)を満足することで、球面収差、およびコマ収差を良好に補正することができる。 The conditional expression (3) defines the ratio between the focal length of the second lens group G2 and the focal length of the final lens group. By satisfying the conditional expression (3), spherical aberration and coma can be satisfactorily corrected.

条件式(3)の対応値が上限値を上回ると、第2レンズ群G2の屈折力が弱くなるため、球面収差とコマ収差を良好に補正することが困難になる。また、最終レンズ群の負の屈折力が強くなるため、コマ収差と像面湾曲を良好に補正することが困難になる。条件式(3)の上限値を1.40に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(3)の上限値を、1.30、1.20、1.10、1.00、0.90、さらに0.80に設定してもよい。 When the corresponding value of the conditional expression (3) exceeds the upper limit value, the refractive power of the second lens group G2 becomes weak, and it becomes difficult to satisfactorily correct the spherical aberration and the coma aberration. Further, since the negative refractive power of the final lens group becomes strong, it becomes difficult to satisfactorily correct coma aberration and curvature of field. By setting the upper limit value of the conditional expression (3) to 1.40, the effect of the present embodiment can be further ensured. In order to further ensure the effect of this embodiment, the upper limit of the conditional expression (3) is set to 1.30, 1.20, 1.10, 1.00, 0.90, and further 0.80. It may be set.

条件式(3)の対応値が下限値を下回ると、第2レンズ群G2の屈折力が強くなるため、球面収差とコマ収差を良好に補正することが困難になる。また、最終レンズ群の屈折力が弱くなるため、コマ収差と像面湾曲を良好に補正することが困難になる。条件式(3)の下限値を-8.00に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(3)の下限値を、-5.00、-3.00、-1.00、-0.50、0.10、0.20、0.30、さらに0.35に設定してもよい。 When the corresponding value of the conditional expression (3) is less than the lower limit value, the refractive power of the second lens group G2 becomes strong, so that it becomes difficult to satisfactorily correct the spherical aberration and the coma aberration. Further, since the refractive power of the final lens group is weakened, it becomes difficult to satisfactorily correct coma aberration and curvature of field. By setting the lower limit of the conditional expression (3) to −8.00, the effect of the present embodiment can be further ensured. In order to further ensure the effect of this embodiment, the lower limit of the conditional expression (3) is set to -5.00, -3.00, -1.00, -0.50, 0.10, 0. It may be set to .20, 0.30, and further 0.35.

本実施形態に係る変倍光学系ZLは、以下の条件式(4)を満足することが望ましい。 It is desirable that the variable magnification optical system ZL according to the present embodiment satisfies the following conditional expression (4).

1.50<f1/(-f2)<5.00 ・・・(4)
但し、f1:第1レンズ群G1の焦点距離
f2:第2レンズ群G2の焦点距離
1.50 <f1 / (-f2) <5.00 ... (4)
However, f1: focal length of the first lens group G1 f2: focal length of the second lens group G2

条件式(4)は、第1レンズ群G1の焦点距離と第2レンズ群G2の焦点距離との比を規定するものである。条件式(4)を満足することで、コマ収差および球面収差を良好に補正し、本実施形態を満足する変倍比を確保することができる。 The conditional expression (4) defines the ratio between the focal length of the first lens group G1 and the focal length of the second lens group G2. By satisfying the conditional expression (4), coma aberration and spherical aberration can be satisfactorily corrected, and a scaling ratio satisfying the present embodiment can be secured.

条件式(4)の対応値が上限値を上回ると、第2レンズ群G2の屈折力が強くなるため、コマ収差および球面収差を補正することが困難になる。条件式(4)の上限値を4.80に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(4)の上限値を、4.50、4.3
0、4.00、3.90、3.80、さらに3.75に設定してもよい。
When the corresponding value of the conditional equation (4) exceeds the upper limit value, the refractive power of the second lens group G2 becomes strong, and it becomes difficult to correct coma aberration and spherical aberration. By setting the upper limit value of the conditional expression (4) to 4.80, the effect of the present embodiment can be further ensured. In order to further ensure the effect of this embodiment, the upper limit of the conditional expression (4) is set to 4.50, 4.3.
It may be set to 0, 4.00, 3.90, 3.80, and further 3.75.

条件式(4)の対応値が下限値を下回ると、第1レンズ群G1の屈折力が強くなるため、コマ収差および球面収差を補正することが困難になる。条件式(4)の下限値を1.75に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(4)の下限値を、1.90、2.00、2.25、2.40、2.50、2.70、2.80、2.90、さらに3.00に設定してもよい。 When the corresponding value of the conditional equation (4) is less than the lower limit value, the refractive power of the first lens group G1 becomes strong, and it becomes difficult to correct coma aberration and spherical aberration. By setting the lower limit of the conditional expression (4) to 1.75, the effect of the present embodiment can be further ensured. In order to further ensure the effect of this embodiment, the lower limit of the conditional expression (4) is set to 1.90, 2.00, 2.25, 2.40, 2.50, 2.70, 2 It may be set to .80, 2.90, and further 3.00.

本実施形態に係る変倍光学系ZLは、以下の条件式(5)を満足することが望ましい。 It is desirable that the variable magnification optical system ZL according to the present embodiment satisfies the following conditional expression (5).

0.80<f1/f3<2.50 ・・・(5)
但し、f1:第1レンズ群G1の焦点距離
0.80 <f1 / f3 <2.50 ... (5)
However, f1: focal length of the first lens group G1

条件式(5)は、第1レンズ群G1の焦点距離と第3レンズ群G3の焦点距離との比を規定するものである。条件式(5)を満足することで、球面収差およびコマ収差を良好に補正することができる。 The conditional expression (5) defines the ratio between the focal length of the first lens group G1 and the focal length of the third lens group G3. By satisfying the conditional expression (5), spherical aberration and coma can be satisfactorily corrected.

条件式(5)の対応値が上限値を上回ると、第3レンズ群G3の屈折力が強くなるため、球面収差およびコマ収差を補正することが困難になる。条件式(5)の上限値を2.45に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(5)の上限値を、2.40、2.20、2.00、1.90、1.80、1.70、1.60、さらに1.50に設定してもよい。 When the corresponding value of the conditional expression (5) exceeds the upper limit value, the refractive power of the third lens group G3 becomes strong, so that it becomes difficult to correct spherical aberration and coma. By setting the upper limit value of the conditional expression (5) to 2.45, the effect of the present embodiment can be further ensured. In order to further ensure the effect of this embodiment, the upper limit of the conditional expression (5) is set to 2.40, 2.20, 2.00, 1.90, 1.80, 1.70, 1 It may be set to .60 and further 1.50.

条件式(5)の対応値が下限値を下回ると、第1レンズ群G1の屈折力が強くなるため、球面収差およびコマ収差を補正することが困難になる。条件式(5)の下限値を0.82に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(5)の下限値を、0.85、0.87、0.90、0.92、0.95、0.98、さらに1.00に設定してもよい。 When the corresponding value of the conditional expression (5) is less than the lower limit value, the refractive power of the first lens group G1 becomes strong, so that it becomes difficult to correct spherical aberration and coma. By setting the lower limit of the conditional expression (5) to 0.82, the effect of the present embodiment can be further ensured. In order to further ensure the effect of this embodiment, the lower limit of the conditional expression (5) is set to 0.85, 0.87, 0.90, 0.92, 0.95, 0.98, and further. It may be set to 1.00.

本実施形態に係る変倍光学系ZLにおいて、後続レンズ群GRは、第4レンズ群G4を有し、以下の条件式(6)を満足することが望ましい。 In the variable magnification optical system ZL according to the present embodiment, the succeeding lens group GR has a fourth lens group G4, and it is desirable that the following conditional expression (6) is satisfied.

-2.00<f1/f4<4.00 ・・・(6)
但し、f1:第1レンズ群G1の焦点距離
f4:第4レンズ群G4の焦点距離
-2.00 <f1 / f4 <4.00 ... (6)
However, f1: focal length of the first lens group G1 f4: focal length of the fourth lens group G4

条件式(6)は、第1レンズ群G1の焦点距離と第4レンズ群G4の焦点距離との比を規定するものである。条件式(6)を満足することで、球面収差およびコマ収差を良好に補正することができる。 The conditional expression (6) defines the ratio between the focal length of the first lens group G1 and the focal length of the fourth lens group G4. By satisfying the conditional expression (6), spherical aberration and coma can be satisfactorily corrected.

条件式(6)の対応値が上限値を上回ると、第4レンズ群G4の屈折力が強くなるため、球面収差およびコマ収差を補正することが困難になる。条件式(6)の上限値を3.80に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(6)の上限値を、3.60、3.50、3.20、3.00、2.80、2.60、2.50、2.40、さらに2.30に設定してもよい。 When the corresponding value of the conditional expression (6) exceeds the upper limit value, the refractive power of the fourth lens group G4 becomes strong, so that it becomes difficult to correct spherical aberration and coma. By setting the upper limit value of the conditional expression (6) to 3.80, the effect of the present embodiment can be further ensured. In order to further ensure the effect of this embodiment, the upper limit of the conditional expression (6) is set to 3.60, 3.50, 3.20, 3.00, 2.80, 2.60, 2 It may be set to .50, 2.40, and further 2.30.

条件式(6)の対応値が下限値を下回ると、第1レンズ群G1の屈折力が強くなるため
、球面収差およびコマ収差を補正することが困難になる。条件式(6)の下限値を-1.50に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(6)の下限値を、0.50、0.80、1.00、1.20、1.40、1.50、さらに1.55に設定してもよい。
When the corresponding value of the conditional equation (6) is less than the lower limit value, the refractive power of the first lens group G1 becomes strong, so that it becomes difficult to correct spherical aberration and coma aberration. By setting the lower limit of the conditional expression (6) to -1.50, the effect of the present embodiment can be further ensured. In order to further ensure the effect of this embodiment, the lower limit of the conditional expression (6) is set to 0.50, 0.80, 1.00, 1.20, 1.40, 1.50, and further. It may be set to 1.55.

本実施形態に係る変倍光学系ZLにおいて、変倍の際に、最終レンズ群が像面に対して固定されることが望ましい。これにより、本実施形態のレンズ群の駆動機構を簡素化し、鏡筒を小型化することができる。 In the variable magnification optical system ZL according to the present embodiment, it is desirable that the final lens group is fixed to the image plane at the time of magnification change. As a result, the drive mechanism of the lens group of the present embodiment can be simplified and the lens barrel can be miniaturized.

本実施形態に係る変倍光学系ZLにおいて、変倍の際に、第3レンズ群G3よりも像側に配置されたレンズ群のうち少なくとも1つのレンズ群が像面に対して固定されることが望ましい。これにより、本実施形態のレンズ群の駆動機構を簡素化し、鏡筒を小型化することができ、また変倍時の収差変動を少なくすることができるので好ましい。 In the variable magnification optical system ZL according to the present embodiment, at least one lens group among the lens groups arranged on the image side of the third lens group G3 is fixed to the image plane at the time of magnification change. Is desirable. This is preferable because the drive mechanism of the lens group of the present embodiment can be simplified, the lens barrel can be miniaturized, and the aberration fluctuation at the time of scaling can be reduced.

本実施形態に係る変倍光学系ZLにおいて、後続レンズ群GRは、物体側から順に並んだ、合焦の際に移動する負の屈折力を有する第1合焦レンズ群と、合焦の際に移動する正の屈折力を有する第2合焦レンズ群とを有し、以下の条件式(7)を満足することが望ましい。 In the variable magnification optical system ZL according to the present embodiment, the succeeding lens group GR is the first focusing lens group having a negative refractive power that moves in focusing, which is arranged in order from the object side, and in focusing. It is desirable to have a second focusing lens group having a positive refractive power that moves to, and satisfy the following conditional equation (7).

0.80<(-fF1)/fF2<5.00 ・・・(7)
但し、fF1:第1合焦レンズ群の焦点距離
fF2:第2合焦レンズ群の焦点距離
0.80 <(-fF1) /fF2 <5.00 ... (7)
However, fF1: focal length of the first focusing lens group fF2: focal length of the second focusing lens group

条件式(7)は、第1合焦レンズ群の焦点距離と第2合焦レンズ群の焦点距離との比を規定するものである。条件式(7)を満足することで、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることができる。 The conditional expression (7) defines the ratio between the focal length of the first focusing lens group and the focal length of the second focusing lens group. By satisfying the conditional equation (7), it is possible to suppress fluctuations in various aberrations such as spherical aberration when focusing from an infinity object to a short-distance object.

条件式(7)の対応値が上限値を上回ると、第2合焦レンズ群の屈折力が強くなるため、合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(7)の上限値を4.75に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(7)の上限値を、4.50、4.25、4.00、3.75、3.50、3.25、3.00、2.75、2.50、2.25、さらに2.00に設定してもよい。 When the corresponding value of the conditional expression (7) exceeds the upper limit value, the refractive power of the second focusing lens group becomes strong, so that it becomes difficult to suppress fluctuations of various aberrations such as spherical aberration during focusing. Become. By setting the upper limit value of the conditional expression (7) to 4.75, the effect of the present embodiment can be further ensured. In order to further ensure the effect of this embodiment, the upper limit of the conditional expression (7) is set to 4.50, 4.25, 4.00, 3.75, 3.50, 3.25, 3 It may be set to 0.00, 2.75, 2.50, 2.25, and further 2.00.

条件式(7)の対応値が下限値を下回ると、第1合焦レンズ群の負の屈折力が強くなるため、合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(7)の下限値を0.85に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(7)の下限値を、0.90、1.00、1.10、1.20、1.25、1.28、さらに1.30に設定してもよい。 When the corresponding value of the conditional expression (7) is less than the lower limit value, the negative refractive power of the first focusing lens group becomes stronger, so that it is possible to suppress fluctuations in various aberrations such as spherical aberration during focusing. It will be difficult. By setting the lower limit value of the conditional expression (7) to 0.85, the effect of the present embodiment can be further ensured. In order to further ensure the effect of this embodiment, the lower limit of the conditional expression (7) is set to 0.90, 1.00, 1.10, 1.20, 1.25, 1.28, and further. It may be set to 1.30.

本実施形態に係る変倍光学系ZLにおいて、第2レンズ群G2は、以下の条件式(8)~(10)を満足する正レンズを有することが望ましい。 In the variable magnification optical system ZL according to the present embodiment, it is desirable that the second lens group G2 has a positive lens satisfying the following conditional expressions (8) to (10).

18.0<νdP<35.0 ・・・(8)
1.83<ndP+(0.01425×νdP)<2.12 ・・・(9)
0.702<θgFP+(0.00316×νdP) ・・・(10)
但し、νdP:正レンズのd線を基準とするアッベ数
ndP:正レンズのd線に対する屈折率
θgFP:正レンズの部分分散比であり、正レンズのg線に対する屈折率をng
Pとし、正レンズのF線に対する屈折率をnFPとし、正レンズのC線に対する屈折率をnCPとしたとき、次式で定義される
θgFP=(ngP-nFP)/(nFP-nCP)
なお、正レンズのd線を基準とするアッベ数νdPは、次式で定義される
νdP=(ndP-1)/(nFP-nCP)
18.0 <νdP <35.0 ... (8)
1.83 <ndP + (0.01425 × νdP) <2.12 ・ ・ ・ (9)
0.702 <θgFP + (0.00316 × νdP) ・ ・ ・ (10)
However, νdP: Abbe number based on the d-line of the positive lens ndP: Refractive index of the positive lens with respect to the d-line θgFP: Partial dispersion ratio of the positive lens, and the refractive index of the positive lens with respect to the g-line is ng.
When P is defined, the refractive index of the positive lens with respect to the F line is nFP, and the refractive index of the positive lens with respect to the C line is nCP, θgFP = (ngP-nFP) / (nFP-nCP) defined by the following equation.
The Abbe number νdP with respect to the d-line of the positive lens is νdP = (ndP-1) / (nFP-nCP) defined by the following equation.

条件式(8)は、第2レンズ群G2における正レンズのd線を基準とするアッベ数の適切な範囲を規定するものである。条件式(8)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。 The conditional expression (8) defines an appropriate range of Abbe numbers with respect to the d-line of the positive lens in the second lens group G2. By satisfying the conditional equation (8), it is possible to satisfactorily correct reference aberrations such as spherical aberration and coma, and correct primary chromatic aberration (achromaticization).

条件式(8)の対応値が上限値を上回ると、軸上色収差の補正が困難になるため、好ましくない。条件式(8)の上限値を32.5に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(8)の上限値を31.5とすることが好ましい。 If the corresponding value of the conditional expression (8) exceeds the upper limit value, it becomes difficult to correct the axial chromatic aberration, which is not preferable. By setting the upper limit value of the conditional expression (8) to 32.5, the effect of the present embodiment can be further ensured. In order to further ensure the effect of this embodiment, it is preferable to set the upper limit value of the conditional expression (8) to 31.5.

条件式(8)の対応値が下限値を下回ると、軸上色収差の補正が困難になるため、好ましくない。条件式(8)の下限値を20.00に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(8)の下限値を、22.00、23.00、23.50、24.00、25.00、さらに26.00とすることが好ましい。 If the corresponding value of the conditional expression (8) is less than the lower limit value, it becomes difficult to correct the axial chromatic aberration, which is not preferable. By setting the lower limit of the conditional expression (8) to 20.00, the effect of the present embodiment can be further ensured. In order to further ensure the effect of this embodiment, the lower limit of the conditional expression (8) is set to 22.00, 23.00, 23.50, 24.00, 25.00, and further 26.00. It is preferable to do so.

条件式(9)は、第2レンズ群G2における正レンズのd線に対する屈折率とd線を基準とするアッベ数の適切な関係を規定するものである。条件式(9)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。 The conditional expression (9) defines an appropriate relationship between the refractive index of the positive lens in the second lens group G2 with respect to the d-line and the Abbe number with respect to the d-line. By satisfying the conditional equation (9), it is possible to satisfactorily correct reference aberrations such as spherical aberration and coma, and correct primary chromatic aberration (achromaticization).

条件式(9)の対応値が上記の範囲から外れると、例えばペッツバール和が小さくなることで、像面湾曲の補正が困難になるため、好ましくない。条件式(9)の上限値を2.10に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(9)の上限値を2.08、さらに2.06とすることが好ましい。また、条件式(9)の下限値を1.84に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(9)の下限値を1.85とすることが好ましい。 If the corresponding value of the conditional expression (9) deviates from the above range, for example, the Petzval sum becomes small, which makes it difficult to correct the curvature of field, which is not preferable. By setting the upper limit value of the conditional expression (9) to 2.10, the effect of the present embodiment can be further ensured. In order to further ensure the effect of this embodiment, it is preferable that the upper limit of the conditional expression (9) is 2.08 and further 2.06. Further, by setting the lower limit value of the conditional expression (9) to 1.84, the effect of the present embodiment can be further ensured. In order to further ensure the effect of this embodiment, it is preferable to set the lower limit value of the conditional expression (9) to 1.85.

条件式(10)は、第2レンズ群G2における正レンズの異常分散性を適切に規定するものである。条件式(10)を満足することで、色収差の補正において、1次の色消しに加え、2次スペクトルを良好に補正することができる。 The conditional expression (10) appropriately defines the anomalous dispersibility of the positive lens in the second lens group G2. By satisfying the conditional expression (10), in the correction of chromatic aberration, the secondary spectrum can be satisfactorily corrected in addition to the primary achromaticity.

条件式(10)の対応値が下限値を下回ると、正レンズの異常分散性が小さくなるため、色収差の補正が困難となる。条件式(10)の下限値を0.704に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(10)の下限値を、0.708、0.710、さらに0.715とすることが好ましい。 When the corresponding value of the conditional expression (10) is less than the lower limit value, the anomalous dispersibility of the positive lens becomes small, and it becomes difficult to correct the chromatic aberration. By setting the lower limit value of the conditional expression (10) to 0.704, the effect of the present embodiment can be further ensured. In order to further ensure the effect of the present embodiment, it is preferable that the lower limit values of the conditional expression (10) are 0.708, 0.710, and further 0.715.

本実施形態に係る変倍光学系ZLは、以下の条件式(11)を満足することが望ましい。 It is desirable that the variable magnification optical system ZL according to the present embodiment satisfies the following conditional expression (11).

25.00°<2ωw<50.00° ・・・(11)
但し、2ωw:広角端状態における変倍光学系ZLの全画角
25.00 ° <2ωw <50.00 ° ... (11)
However, 2ωw: the total angle of view of the variable magnification optical system ZL in the wide-angle end state.

条件式(11)は、広角端状態における変倍光学系ZLの全画角を規定するものである。条件式(11)を満足することで、本実施形態を満足する広い画角を有しつつ、コマ収差、歪曲収差、および像面湾曲等の諸収差を良好に補正することができる。条件式(11)の下限値を27.00°に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(11)の下限値を、29.00°、30.00°、32.00°、さらに33.00°に設定してもよい。また、条件式(11)の上限値を48.00°に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(11)の上限値を、45.00°、42.00°、40.00°、38.00°、36.00°、さらに35.00°に設定してもよい。 The conditional expression (11) defines the total angle of view of the variable magnification optical system ZL in the wide-angle end state. By satisfying the conditional equation (11), various aberrations such as coma aberration, distortion, and curvature of field can be satisfactorily corrected while having a wide angle of view satisfying the present embodiment. By setting the lower limit value of the conditional expression (11) to 27.00 °, the effect of the present embodiment can be further ensured. In order to further ensure the effect of this embodiment, the lower limit of the conditional expression (11) may be set to 29.00 °, 30.00 °, 32.00 °, and further 33.00 °. good. Further, by setting the upper limit value of the conditional expression (11) to 48.00 °, the effect of the present embodiment can be further ensured. In order to further ensure the effect of this embodiment, the upper limit of the conditional expression (11) is set to 45.00 °, 42.00 °, 40.00 °, 38.00 °, 36.00 °, Further, it may be set to 35.00 °.

本実施形態に係る変倍光学系ZLは、以下の条件式(12)を満足することが望ましい。 It is desirable that the variable magnification optical system ZL according to the present embodiment satisfies the following conditional expression (12).

5.00°<2ωt<20.00° ・・・(12)
但し、2ωt:望遠端状態における変倍光学系ZLの全画角
5.00 ° <2ωt <20.00 ° ・ ・ ・ (12)
However, 2ωt: the total angle of view of the variable magnification optical system ZL in the telephoto end state.

条件式(12)は、望遠端状態における変倍光学系ZLの全画角を規定するものである。条件式(12)を満足することで、コマ収差、歪曲収差、および像面湾曲等の諸収差を良好に補正することができる。条件式(12)の上限値を18.00°に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(12)の上限値を、16.00°、15.00°、14.00°、さらに13.00°に設定してもよい。一方、条件式(12)の下限値を7.00°に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(12)の下限値を、8.00°、10.00°、11.00°、さらに12.00°に設定してもよい。 The conditional expression (12) defines the total angle of view of the variable magnification optical system ZL in the telephoto end state. By satisfying the conditional equation (12), various aberrations such as coma aberration, distortion, and curvature of field can be satisfactorily corrected. By setting the upper limit value of the conditional expression (12) to 18.00 °, the effect of this embodiment can be further ensured. In order to further ensure the effect of the present embodiment, the upper limit of the conditional expression (12) may be set to 16.00 °, 15.00 °, 14.00 °, and further 13.00 °. good. On the other hand, by setting the lower limit value of the conditional expression (12) to 7.00 °, the effect of the present embodiment can be further ensured. In order to further ensure the effect of the present embodiment, the lower limit of the conditional expression (12) may be set to 8.00 °, 10.00 °, 11.00 °, and further 12.00 °. good.

本実施形態に係る変倍光学系ZLは、以下の条件式(13)を満足することが望ましい。 It is desirable that the variable magnification optical system ZL according to the present embodiment satisfies the following conditional expression (13).

0.20<BFw/fw<0.85 ・・・(13)
但し、BFw:広角端状態における変倍光学系ZLのバックフォーカス
fw:広角端状態における変倍光学系ZLの焦点距離
0.20 <BFw / fw <0.85 ... (13)
However, BFw: the back focus of the variable magnification optical system ZL in the wide-angle end state fw: the focal length of the variable magnification optical system ZL in the wide-angle end state.

条件式(13)は、広角端状態における変倍光学系ZLのバックフォーカスと、広角端状態における変倍光学系ZLの焦点距離との比を規定するものである。条件式(13)を満足することで、広角端状態におけるコマ収差をはじめとする諸収差を良好に補正することができる。 The conditional equation (13) defines the ratio between the back focus of the variable magnification optical system ZL in the wide-angle end state and the focal length of the variable magnification optical system ZL in the wide-angle end state. By satisfying the conditional expression (13), various aberrations such as coma aberration in the wide-angle end state can be satisfactorily corrected.

条件式(13)の対応値が上限値を上回ると、広角端状態における変倍光学系ZLの焦点距離に対してバックフォーカスが大きくなりすぎるため、広角端状態におけるコマ収差をはじめとする諸収差を補正することが困難になる。条件式(13)の上限値を0.80に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(13)の上限値を、0.75、0.70、0.65、0.60、さらに0.55に設定してもよい。 When the corresponding value of the conditional equation (13) exceeds the upper limit value, the back focus becomes too large with respect to the focal length of the variable magnification optical system ZL in the wide-angle end state, so that various aberrations including coma aberration in the wide-angle end state Becomes difficult to correct. By setting the upper limit value of the conditional expression (13) to 0.80, the effect of the present embodiment can be further ensured. In order to further ensure the effect of this embodiment, the upper limit of the conditional expression (13) may be set to 0.75, 0.70, 0.65, 0.60, and further 0.55. good.

条件式(13)の対応値が下限値を下回ると、広角端状態における変倍光学系ZLの焦点距離に対してバックフォーカスが小さくなりすぎるため、広角端状態におけるコマ収差をはじめとする諸収差を補正することが困難になる。また、鏡筒のメカ部材を配置することが困難になる。条件式(13)の下限値を0.25に設定することで、本実施形態の効
果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(13)の下限値を、0.30、0.35、0.40、さらに0.42に設定してもよい。
When the corresponding value of the conditional equation (13) is less than the lower limit, the back focus becomes too small with respect to the focal length of the variable magnification optical system ZL in the wide-angle end state, so that various aberrations including coma aberration in the wide-angle end state Becomes difficult to correct. In addition, it becomes difficult to arrange the mechanical member of the lens barrel. By setting the lower limit value of the conditional expression (13) to 0.25, the effect of the present embodiment can be further ensured. In order to further ensure the effect of the present embodiment, the lower limit of the conditional expression (13) may be set to 0.30, 0.35, 0.40, and further 0.42.

続いて、図16を参照しながら、本実施形態に係る変倍光学系ZLの製造方法について概説する。まず、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、後続レンズ群GRとを配置する(ステップST1)。そして、変倍の際に、隣り合う各レンズ群の間隔が変化するように構成する(ステップST2)。変倍の際に、第1レンズ群G1は像面に対して固定される。広角端状態から望遠端状態への変倍の際に、第3レンズ群G3は光軸に沿って像側へ移動する。また、後続レンズ群GRの最も像側に、最終レンズ群を配置する(ステップST3)。さらに、少なくとも上記条件式(1)を満足するように、レンズ鏡筒内に各レンズを配置する(ステップST4)。このような製造方法によれば、球面収差等の諸収差が良好に補正された変倍光学系を製造することが可能になる。 Subsequently, with reference to FIG. 16, the manufacturing method of the variable magnification optical system ZL according to the present embodiment will be outlined. First, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, a third lens group G3 having a positive refractive power, and a subsequent lens group GR. And are arranged (step ST1). Then, it is configured so that the distance between adjacent lens groups changes at the time of scaling (step ST2). At the time of scaling, the first lens group G1 is fixed with respect to the image plane. When scaling from the wide-angle end state to the telephoto end state, the third lens group G3 moves toward the image side along the optical axis. Further, the final lens group is arranged on the most image side of the succeeding lens group GR (step ST3). Further, each lens is arranged in the lens barrel so as to satisfy at least the above conditional expression (1) (step ST4). According to such a manufacturing method, it becomes possible to manufacture a variable magnification optical system in which various aberrations such as spherical aberration are satisfactorily corrected.

以下、本実施形態の実施例に係る変倍光学系ZLを図面に基づいて説明する。図1、図3、図5、図7、図9、図11、図13は、第1~第7実施例に係る変倍光学系ZL{ZL(1)~ZL(7)}が広角端状態から望遠端状態に変化する際のレンズの動きを示す図である。各図には、広角端状態から望遠端状態への変倍の際に移動するレンズ群の光軸に沿った移動方向を矢印で示している。さらに、合焦レンズ群が無限遠から近距離物体に合焦する際の移動方向を、「合焦」という文字とともに矢印で示している。 Hereinafter, the variable magnification optical system ZL according to the embodiment of the present embodiment will be described with reference to the drawings. In FIGS. 1, 3, 5, 7, 7, 9, 11, and 13, the variable magnification optical system ZL {ZL (1) to ZL (7)} according to the first to seventh embodiments has a wide-angle end. It is a figure which shows the movement of a lens at the time of changing from a state to a telephoto end state. In each figure, the moving direction along the optical axis of the lens group that moves when the magnification is changed from the wide-angle end state to the telephoto end state is indicated by an arrow. Furthermore, the direction of movement when the focusing lens group focuses on a short-distance object from infinity is indicated by an arrow together with the letters "focusing".

これらの図(図1、図3、図5、図7、図9、図11、図13)において、各レンズ群を符号Gと数字の組み合わせにより、各レンズを符号Lと数字の組み合わせにより、それぞれ表している。この場合において、符号、数字の種類および数が大きくなって煩雑化するのを防止するため、実施例毎にそれぞれ独立して符号と数字の組み合わせを用いてレンズ群等を表している。このため、実施例間で同一の符号と数字の組み合わせが用いられていても、同一の構成であることを意味するものでは無い。 In these figures (FIG. 1, FIG. 3, FIG. 5, FIG. 7, FIG. 9, FIG. 11, FIG. 13), each lens group is represented by a combination of reference numerals G and numbers, and each lens is designated by a combination of reference numerals L and numbers. Each is represented. In this case, in order to prevent the types and numbers of codes and numbers from becoming large and complicated, the lens group and the like are represented by independently using combinations of codes and numbers for each embodiment. Therefore, even if the same combination of reference numerals and numbers is used between the examples, it does not mean that they have the same configuration.

以下に表1~表7を示すが、この内、表1は第1実施例、表2は第2実施例、表3は第3実施例、表4は第4実施例、表5は第5実施例、表6は第6実施例、表7は第7実施例における各諸元データを示す表である。各実施例では収差特性の算出対象として、d線(波長λ=587.6nm)、g線(波長λ=435.8nm)を選んでいる。 Tables 1 to 7 are shown below, of which Table 1 is the first embodiment, Table 2 is the second embodiment, Table 3 is the third embodiment, Table 4 is the fourth embodiment, and Table 5 is the first embodiment. 5 Examples, Table 6 is a table showing each specification data in the 6th Example, and Table 7 is a table showing each specification data in the 7th Example. In each embodiment, the d-line (wavelength λ = 587.6 nm) and the g-line (wavelength λ = 435.8 nm) are selected as the calculation targets of the aberration characteristics.

[全体諸元]の表において、FNОはFナンバー、2ωは画角(単位は°(度)で、ωが半画角である)、Yは像高を示す。TLは無限遠合焦時の光軸上でのレンズ最前面からレンズ最終面までの距離にBFを加えた距離を示し、BFは無限遠合焦時の光軸上でのレンズ最終面から像面Iまでの空気換算距離(バックフォーカス)を示す。なお、これらの値は、広角端(W)、中間焦点距離(M)、望遠端(T)の各変倍状態におけるそれぞれについて示している。また、[全体諸元]の表において、θgFPは、第2レンズ群における正レンズの部分分散比を示す。 In the [Overall specifications] table, FNO is the F number, 2ω is the angle of view (unit is ° (degrees), and ω is the half angle of view), and Y is the image height. TL indicates the distance from the frontmost surface of the lens to the final surface of the lens on the optical axis at infinity, plus BF, and BF is the image from the final surface of the lens on the optical axis at infinity. The air conversion distance (back focus) to the surface I is shown. These values are shown for each of the wide-angle end (W), intermediate focal length (M), and telephoto end (T) in each variable magnification state. Further, in the table of [Overall specifications], θgFP indicates the partial dispersion ratio of the positive lens in the second lens group.

[レンズ諸元]の表において、面番号は光線の進行する方向に沿った物体側からの光学面の順序を示し、Rは各光学面の曲率半径(曲率中心が像側に位置する面を正の値としている)、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材質のd線に対する屈折率、νdは光学部材の材質のd線を基準とするアッベ数、θgFは光学部材の材料の部分分散比をそれぞれ示す。曲率半径の「∞」は平面又は開口を、(絞りS)は開口絞りを、それぞれ示す。空気の屈折率nd=1.00000の記
載は省略している。レンズ面が非球面である場合には面番号に*印を付して曲率半径Rの
欄には近軸曲率半径を示している。
In the [Lens Specifications] table, the plane numbers indicate the order of the optical planes from the object side along the traveling direction of the light beam, and R is the radius of curvature of each optical plane (the plane whose center of curvature is located on the image side). (Positive value), D is the distance on the optical axis from each optical surface to the next optical surface (or image surface), nd is the refractive index of the material of the optical member with respect to the d line, and νd is optical. The Abbe number and θgF based on the d-line of the material of the member indicate the partial dispersion ratio of the material of the optical member. “∞” of the radius of curvature indicates a plane or an aperture, and (aperture S) indicates an aperture stop. The description of the refractive index nd of air = 1.00000 is omitted. When the lens surface is an aspherical surface, the surface number is marked with * and the radius of curvature R indicates the near-axis radius of curvature.

光学部材の材料のg線(波長λ=435.8nm)に対する屈折率をngとし、光学部材の材料のF線(波長λ=486.1nm)に対する屈折率をnFとし、光学部材の材料のC線(波長λ=656.3nm)に対する屈折率をnCとする。このとき、光学部材の材料の部分分散比θgFは次式(A)で定義される。 The refractive index of the material of the optical member with respect to the g line (wavelength λ = 435.8 nm) is ng, the refractive index of the material of the optical member with respect to the F line (wavelength λ = 486.1 nm) is nF, and the refractive index of the material of the optical member is C. Let nC be the refractive index for the line (wavelength λ = 656.3 nm). At this time, the partial dispersion ratio θgF of the material of the optical member is defined by the following equation (A).

θgF=(ng-nF)/(nF-nC) …(A) θgF = (ng-nF) / (nF-nC) ... (A)

[非球面データ]の表には、[レンズ諸元]に示した非球面について、その形状を次式(B)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離(ザグ量)を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。なお、2次の非球面係数A2は0であり、その記載を省略している。 In the table of [Aspherical surface data], the shape of the aspherical surface shown in [Lens specifications] is shown by the following equation (B). X (y) is the distance (zag amount) along the optical axis direction from the tangent plane at the apex of the aspherical surface to the position on the aspherical surface at the height y, and R is the radius of curvature (near axis radius of curvature) of the reference spherical surface. , Kappa is the conical constant, and Ai is the i-th order aspherical coefficient. "E-n" indicates " x10 -n ". For example, 1.234E-05 = 1.234 × 10 -5 . The second-order aspherical coefficient A2 is 0, and the description thereof is omitted.

X(y)=(y2/R)/{1+(1-κ×y2/R21/2}+A4×y4+A6×y6+A8×y8+A10×y10+A12×y12 ・・・(B) X (y) = (y 2 / R) / {1 + (1-κ × y 2 / R 2 ) 1/2 } + A4 × y 4 + A6 × y 6 + A8 × y 8 + A10 × y 10 + A12 × y 12・・ ・ (B)

[レンズ群データ]の表には、各レンズ群のそれぞれの始面(最も物体側の面)と焦点距離を示す。 The table of [lens group data] shows the start surface (the surface closest to the object) and the focal length of each lens group.

[可変間隔データ]の表には、[レンズ諸元]を示す表において面間隔が「可変」となっている面番号での面間隔を示す。ここでは無限遠および近距離に合焦させたときのそれぞれについて、広角端(W)、中間焦点距離(M)、望遠端(T)の各変倍状態における面間隔を示す。[可変間隔データ]において、fはレンズ全系の焦点距離、βは撮影倍率を示す。 The table of [Variable Interval Data] shows the surface spacing with the surface number in which the surface spacing is "variable" in the table showing [lens specifications]. Here, the plane spacings at the wide-angle end (W), the intermediate focal length (M), and the telephoto end (T) are shown for each of the focused states at infinity and short distance. In [variable interval data], f indicates the focal length of the entire lens system, and β indicates the shooting magnification.

[条件式対応値]の表には、各条件式に対応する値を示す。 The table of [Conditional expression corresponding values] shows the values corresponding to each conditional expression.

以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。 Hereinafter, in all the specification values, "mm" is generally used for the focal length f, the radius of curvature R, the plane spacing D, other lengths, etc., unless otherwise specified, but the optical system is expanded proportionally. Alternatively, it is not limited to this because the same optical performance can be obtained even if the proportional reduction is performed.

ここまでの表の説明は全ての実施例において共通であり、以下での重複する説明は省略する。 The description of the table so far is common to all the examples, and the duplicate description below is omitted.

(第1実施例)
第1実施例について、図1~図2および表1を用いて説明する。図1は、第1実施例に係る変倍光学系が広角端状態から望遠端状態に変化する際のレンズの動きを示す図である。第1実施例に係る変倍光学系ZL(1)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、負の屈折力を有する第7レンズ群G7と、正の屈折力を有する第8レンズ群G8と、負の屈折力を有する第9レンズ群G9とから構成される。広角端状態から望遠端状態への変倍の際、第2レンズ群G2、第3レンズ群G3、第5レンズ群G5、第7レンズ群G7、および第8レンズ群G8は、別個に図1の矢印で示す方向に移動し、隣り合う各レンズ群の間隔が変化する。なお、変倍の際、第1レンズ群G1、第4レンズ群G4、第6レンズ群G6、および第9レンズ群G9は、像面Iに対して固定される。第4レンズ群G4と、第5レンズ群G5と、第6レンズ
群G6と、第7レンズ群G7と、第8レンズ群G8と、第9レンズ群G9とからなるレンズ群は、後続レンズ群GRに該当する。各レンズ群記号に付けている符号(+)もしくは(-)は各レンズ群の屈折力を示し、このことは以下の全ての実施例でも同様である。
(First Example)
The first embodiment will be described with reference to FIGS. 1 to 2 and Table 1. FIG. 1 is a diagram showing the movement of a lens when the variable magnification optical system according to the first embodiment changes from a wide-angle end state to a telephoto end state. The variable magnification optical system ZL (1) according to the first embodiment has a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive lens group G2 arranged in order from the object side. A third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a sixth lens group G6 having a positive refractive power. It is composed of a seventh lens group G7 having a negative refractive power, an eighth lens group G8 having a positive refractive power, and a ninth lens group G9 having a negative refractive power. When scaling from the wide-angle end state to the telephoto end state, the second lens group G2, the third lens group G3, the fifth lens group G5, the seventh lens group G7, and the eighth lens group G8 are separately shown in FIG. It moves in the direction indicated by the arrow, and the distance between adjacent lens groups changes. At the time of scaling, the first lens group G1, the fourth lens group G4, the sixth lens group G6, and the ninth lens group G9 are fixed with respect to the image plane I. The lens group consisting of the 4th lens group G4, the 5th lens group G5, the 6th lens group G6, the 7th lens group G7, the 8th lens group G8, and the 9th lens group G9 is the subsequent lens group. Corresponds to GR. The symbol (+) or (−) attached to each lens group symbol indicates the refractive power of each lens group, and this also applies to all the following examples.

第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた平凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。 The first lens group G1 is a junction lens of a negative meniscus lens L11 having a convex surface facing the object side and a plano-convex positive lens L12 having a convex surface facing the object side, which are arranged in order from the object side, and a convex surface toward the object side. It is composed of a positive meniscus lens L13 facing the lens.

第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、物体側に凸面を向けた正メニスカスレンズL23と、両凹形状の負レンズL24とから構成される。 The second lens group G2 includes a negative meniscus lens L21 having a convex surface facing the object side, a biconcave negative lens L22, and a positive meniscus lens L23 having a convex surface facing the object side, which are arranged in order from the object side. It is composed of a concave negative lens L24.

第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズL31から構成される。 The third lens group G3 is composed of a positive meniscus lens L31 having a convex surface facing the object side.

第4レンズ群G4は、物体側から順に並んだ、両凸形状の正レンズL41と、物体側に凸面を向けた負メニスカスレンズL42とから構成される。 The fourth lens group G4 is composed of a biconvex positive lens L41 arranged in order from the object side and a negative meniscus lens L42 with a convex surface facing the object side.

第5レンズ群G5は、両凹形状の負レンズL51と両凸形状の正レンズL52との接合レンズから構成される。第5レンズ群G5の最も物体側に、開口絞りSが配設され、変倍の際、第5レンズ群G5とともに移動する。 The fifth lens group G5 is composed of a junction lens of a biconcave negative lens L51 and a biconvex positive lens L52. The aperture stop S is arranged on the most object side of the fifth lens group G5, and moves together with the fifth lens group G5 at the time of scaling.

第6レンズ群G6は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL61と、両凸形状の正レンズL62と物体側に凹面を向けた負メニスカスレンズL63との接合レンズと、物体側に凸面を向けた正メニスカスレンズL64とから構成される。正レンズL62は、物体側のレンズ面が非球面である。 The sixth lens group G6 is a junction lens of a negative meniscus lens L61 having a convex surface facing the object side, a biconvex positive lens L62, and a negative meniscus lens L63 having a concave surface facing the object side, arranged in order from the object side. And a positive meniscus lens L64 with a convex surface facing the object side. The positive lens L62 has an aspherical lens surface on the object side.

第7レンズ群G7は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL71と、物体側に凸面を向けた負メニスカスレンズL72とから構成される。 The seventh lens group G7 is composed of a positive meniscus lens L71 having a concave surface facing the object side and a negative meniscus lens L72 having a convex surface facing the object side, which are arranged in order from the object side.

第8レンズ群G8は、両凸形状の正レンズL81から構成される。 The eighth lens group G8 is composed of a biconvex positive lens L81.

第9レンズ群G9は、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL91と、物体側に凹面を向けた負メニスカスレンズL92とから構成される。負メニスカスレンズL91は、物体側のレンズ面が非球面である。第9レンズ群G9の像側に、像面Iが配置される。すなわち、第9レンズ群G9は、最終レンズ群に該当する。 The ninth lens group G9 is composed of a negative meniscus lens L91 having a concave surface facing the object side and a negative meniscus lens L92 having a concave surface facing the object side, which are arranged in order from the object side. The negative meniscus lens L91 has an aspherical lens surface on the object side. The image plane I is arranged on the image side of the ninth lens group G9. That is, the ninth lens group G9 corresponds to the final lens group.

本実施例では、第7レンズ群G7を像面I側へ移動させ、第8レンズ群G8を物体側へ移動させることにより、遠距離物体から近距離物体(無限遠物体から有限距離物体)への合焦が行われる。すなわち、第7レンズ群G7は、第1合焦レンズ群に該当し、第8レンズ群G8は、第2合焦レンズ群に該当する。 In this embodiment, the 7th lens group G7 is moved to the image plane I side, and the 8th lens group G8 is moved to the object side, thereby moving from a long-distance object to a short-distance object (from an infinite distance object to a finite-distance object). Is focused. That is, the 7th lens group G7 corresponds to the 1st in-focus lens group, and the 8th lens group G8 corresponds to the 2nd in-focus lens group.

以下の表1に、第1実施例に係る変倍光学系の諸元の値を掲げる。 Table 1 below lists the values of the specifications of the variable magnification optical system according to the first embodiment.

(表1)
[全体諸元]
変倍比 2.74
θgFP=0.6319
W M T
FNO 2.88277 2.8637 2.87906
2ω 33.79332 17.81742 12.27158
Y 21.70 21.70 21.70
TL 199.88619 199.88619 199.88619
BF 32.5469 32.5469 32.5469
[レンズ諸元]
面番号 R D nd νd θgF
1 116.34563 2.80 2.00100 29.12
2 85.133 9.70 1.49782 82.57
3 ∞ 0.10
4 92.01324 7.70 1.43385 95.25
5 696.98757 D5(可変)
6 58.77 1.90 1.60300 65.44
7 31.87745 10.30
8 -186.53352 1.60 1.49782 82.57
9 105.34866 0.80
10 41.08366 3.70 1.66382 27.35 0.6319
11 64.00891 5.50
12 -71.62319 1.90 1.49782 82.57
13 88.67881 D13(可変)
14 69.46271 3.20 1.94595 17.98
15 201.8299 D15(可変)
16 126.26563 4.70 1.49782 82.57
17 -126.26563 0.10
18 47.66354 3.85 1.49782 82.57
19 122.86616 D19(可変)
20 ∞ 3.50 (絞りS)
21 -84.82141 1.80 1.92286 20.88
22 52.171 5.00 1.49782 82.57
23 -170.93248 D23(可変)
24 111.64091 1.70 1.85026 32.35
25 60.55636 2.00
26* 58.68256 7.70 1.59306 66.97
27 -55.839 1.70 1.62004 36.4
28 -95.85894 1.30
29 58.0393 2.70 1.80100 34.92
30 135.30037 D30(可変)
31 -369.28597 2.00 1.94595 17.98
32 -98.65201 0.80
33 1344.92022 1.25 1.71300 53.96
34 37.13115 D34(可変)
35 119.39985 3.85 1.90265 35.77
36 -119.39985 D36(可変)
37* -83.23047 1.90 1.51696 64.14
38 -335.27926 4.10
39 -54.71091 1.90 1.56384 60.71
40 -276.64763 BF
[非球面データ]
第26面
κ=0.00,A4=-2.00E-06,A6=8.31E-10
A8=-6.83E-12,A10=2.63E-14,A12=-3.55E-17
第37面
κ=0.00,A4=1.18E-06,A6=1.63E-09
A8=-7.32E-12,A10=2.41E-14,A12=-2.65E-17
[レンズ群データ]
群 始面 焦点距離
G1 1 147.97696
G2 6 -40.5909
G3 14 110.66613
G4 16 69.76371
G5 20 -62.56946
G6 24 56.88582
G7 31 -87.28124
G8 35 66.64828
G9 37 -76.28082
[可変間隔データ]
W M T W M T
無限遠 無限遠 無限遠 近距離 近距離 近距離
f 71.50119 135 196 ― ― ―
β ― ― ― -0.08318 -0.14416 -0.19832
D5 1.59716 33.49859 49.53103 1.59716 33.49859 49.53103
D13 37.80333 11.65214 1.60516 37.80333 11.65214 1.60516
D15 14.09965 8.34942 2.36395 14.09965 8.34942 2.36395
D19 4.24982 7.0795 8.12305 4.24982 7.0795 8.12305
D23 5.35666 2.52698 1.48342 5.35666 2.52698 1.48342
D30 3.81632 6.22894 4.10722 5.10137 11.89468 15.63265
D34 28.12371 22.59291 27.70989 24.58984 10.97816 4.65903
D36 3.7896 6.90778 3.91252 6.03843 12.8568 15.43795
[条件式対応値]
条件式(1) f3/(-fE)=1.45
条件式(2) f1/(-fE)=1.94
条件式(3) f2/fE=0.53
条件式(4) f1/(-f2)=3.65
条件式(5) f1/f3=1.34
条件式(6) f1/f4=2.12
条件式(7) (-fF1)/fF2=1.31
条件式(8) νdP=27.35
条件式(9) ndP+(0.01425×νdP)=2.0536
条件式(10) θgFP+(0.00316×νdP)=0.7183
条件式(11) 2ωw=33.79°
条件式(12) 2ωt=12.27°
条件式(13) BFw/fw=0.46
(Table 1)
[Overall specifications]
Magnification ratio 2.74
θgFP = 0.6319
WMT
FNO 2.88277 2.8637 2.87906
2ω 33.79332 17.81742 12.27158
Y 21.70 21.70 21.70
TL 199.88619 199.88619 199.88619
BF 32.5469 32.5469 32.5469
[Lens specifications]
Surface number RD nd νd θgF
1 116.34563 2.80 2.00100 29.12
2 85.133 9.70 1.49782 82.57
3 ∞ 0.10
4 92.01324 7.70 1.43385 95.25
5 696.98757 D5 (variable)
6 58.77 1.90 1.60300 65.44
7 31.87745 10.30
8-186.53352 1.60 1.49782 82.57
9 105.34866 0.80
10 41.08366 3.70 1.66382 27.35 0.6319
11 64.00891 5.50
12 -71.62319 1.90 1.49782 82.57
13 88.67881 D13 (variable)
14 69.46271 3.20 1.94595 17.98
15 201.8299 D15 (variable)
16 126.26563 4.70 1.49782 82.57
17 -126.26563 0.10
18 47.66354 3.85 1.49782 82.57
19 122.86616 D19 (variable)
20 ∞ 3.50 (Aperture S)
21 -84.82141 1.80 1.92286 20.88
22 52.171 5.00 1.49782 82.57
23 -170.93248 D23 (variable)
24 111.64091 1.70 1.85026 32.35
25 60.55636 2.00
26 * 58.68256 7.70 1.59306 66.97
27 -55.839 1.70 1.62004 36.4
28 -95.85894 1.30
29 58.0393 2.70 1.80100 34.92
30 135.30037 D30 (variable)
31 -369.28597 2.00 1.94595 17.98
32 -98.65201 0.80
33 1344.92022 1.25 1.71300 53.96
34 37.13115 D34 (variable)
35 119.39985 3.85 1.90265 35.77
36 -119.39985 D36 (variable)
37 * -83.23047 1.90 1.51696 64.14
38 -335.27926 4.10
39 -54.71091 1.90 1.56384 60.71
40 -276.64763 BF
[Aspherical data]
Side 26 κ = 0.00, A4 = -2.00E-06, A6 = 8.31E-10
A8 = -6.83E-12, A10 = 2.63E-14, A12 = -3.55E-17
Surface 37 κ = 0.00, A4 = 1.18E-06, A6 = 1.63E-09
A8 = -7.32E-12, A10 = 2.41E-14, A12 = -2.65E-17
[Lens group data]
Focal length of group origin
G1 1 147.97696
G2 6 -40.5909
G3 14 110.66613
G4 16 69.76371
G5 20 -62.56946
G6 24 56.88582
G7 31 -87.28124
G8 35 66.64828
G9 37 -76.28082
[Variable interval data]
W M T W M T
Point at infinity Point at infinity Point at infinity Short distance Short distance Short distance f 71.50119 135 196 ― ― ―
β ― ― ― -0.08318 -0.14416 -0.19832
D5 1.59716 33.49859 49.53103 1.59716 33.49859 49.53103
D13 37.80333 11.65214 1.60516 37.80333 11.65214 1.60516
D15 14.09965 8.34942 2.36395 14.09965 8.34942 2.36395
D19 4.24982 7.0795 8.12305 4.24982 7.0795 8.12305
D23 5.35666 2.52698 1.48342 5.35666 2.52698 1.48342
D30 3.81632 6.22894 4.10722 5.10137 11.89468 15.63265
D34 28.12371 22.59291 27.70989 24.58984 10.97816 4.65903
D36 3.7896 6.90778 3.91252 6.03843 12.8568 15.43795
[Conditional expression correspondence value]
Conditional expression (1) f3 / (-fE) = 1.45
Conditional expression (2) f1 / (-fE) = 1.94
Conditional expression (3) f2 / fE = 0.53
Conditional expression (4) f1 / (-f2) = 3.65
Conditional expression (5) f1 / f3 = 1.34
Conditional expression (6) f1 / f4 = 2.12
Conditional expression (7) (-fF1) /fF2=1.31
Conditional expression (8) νdP = 27.35
Conditional expression (9) ndP + (0.01425 × νdP) = 2.0536
Conditional expression (10) θgFP + (0.00316 × νdP) = 0.7183
Conditional expression (11) 2ωw = 33.79 °
Conditional expression (12) 2ωt = 12.27 °
Conditional expression (13) BFw / fw = 0.46

図2(A)、図2(B)、および図2(C)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における諸収差図である。各収差図において、FNOはFナンバー、Yは像高をそれぞれ示す。球面収差図では最大口径に対応するFナンバーの値を示し、非点収差図および歪曲収差図では像高の最大値をそれぞれ示し、横収差図では各像高の値を示す。dはd線(波長λ=587.6nm)、gはg線(波長λ=435.8nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用い、重複する説明は省略する。 2 (A), 2 (B), and 2 (C) are aberration diagrams in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first embodiment, respectively. .. In each aberration diagram, FNO indicates an F number and Y indicates an image height. The spherical aberration diagram shows the value of the F number corresponding to the maximum aperture, the astigmatism diagram and the distortion diagram show the maximum image height, and the transverse aberration diagram shows the value of each image height. d indicates the d line (wavelength λ = 587.6 nm), and g indicates the g line (wavelength λ = 435.8 nm). In the astigmatism diagram, the solid line shows the sagittal image plane and the broken line shows the meridional image plane. In the aberration diagrams of each embodiment shown below, the same reference numerals as those of the present embodiment are used, and duplicate description is omitted.

各諸収差図より、第1実施例に係る変倍光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 From each aberration diagram, it can be seen that the variable magnification optical system according to the first embodiment has various aberrations corrected well and has excellent imaging performance.

(第2実施例)
第2実施例について、図3~図4および表2を用いて説明する。図3は、第2実施例に係る変倍光学系が広角端状態から望遠端状態に変化する際のレンズの動きを示す図である。第2実施例に係る変倍光学系ZL(2)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、負の屈折力を有する第7レンズ群G7とから構成される。広角端状態から望遠端状態への変倍の際、第2レンズ群G2、第3レンズ群G3、第5レンズ群G5、および第6レンズ群G6は、別個に図3の矢印で示す方向に移動し、隣り合う各レンズ群の間隔が変化する。なお、変倍の際、第1レンズ群G1、第4レンズ群G4、および第7レンズ群G7は、像面Iに対して固定される。第4レンズ群G4と、第5レンズ群G5と、第6レンズ群G6と、第7レンズ群G7とからなるレンズ群は、後続レンズ群GRに該当する。
(Second Example)
The second embodiment will be described with reference to FIGS. 3 to 4 and Table 2. FIG. 3 is a diagram showing the movement of the lens when the variable magnification optical system according to the second embodiment changes from the wide-angle end state to the telephoto end state. The variable magnification optical system ZL (2) according to the second embodiment has a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive lens group G2 arranged in order from the object side. A third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a sixth lens group G6 having a positive refractive power. , A seventh lens group G7 having a negative refractive power. When scaling from the wide-angle end state to the telephoto end state, the second lens group G2, the third lens group G3, the fifth lens group G5, and the sixth lens group G6 are separately oriented in the directions indicated by the arrows in FIG. It moves and the distance between adjacent lens groups changes. At the time of scaling, the first lens group G1, the fourth lens group G4, and the seventh lens group G7 are fixed with respect to the image plane I. The lens group including the fourth lens group G4, the fifth lens group G5, the sixth lens group G6, and the seventh lens group G7 corresponds to the succeeding lens group GR.

第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。 The first lens group G1 is a junction lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12 arranged in order from the object side, and a positive meniscus lens L13 having a convex surface facing the object side. It is composed of and.

第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、物体側に凸面を向けた正メニスカスレンズL23と、物体側に凹面を向けた負メニスカスレンズL24とから構成される。 The second lens group G2 includes a negative meniscus lens L21 having a convex surface facing the object side, a biconcave negative lens L22, a positive meniscus lens L23 having a convex surface facing the object side, and an object arranged in order from the object side. It is composed of a negative meniscus lens L24 with a concave surface facing to the side.

第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズL31から構成される。 The third lens group G3 is composed of a positive meniscus lens L31 having a convex surface facing the object side.

第4レンズ群G4は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL41と、物体側に凸面を向けた正メニスカスレンズL42と、両凹形状の負レンズL43と両凸形状の正レンズL44との接合レンズと、物体側に凸面を向けた負メニスカスレンズL45と、両凸形状の正レンズL46と物体側に凹面を向けた負メニスカスレンズL47との接合レンズと、物体側に凸面を向けた正メニスカスレンズL48とから構成される。第4レンズ群G4における正メニスカスレンズL42と負レンズL43との間に、開口絞りSが配設され、変倍の際、第4レンズ群G4とともに移動する。正レンズL46は、物体側のレンズ面が非球面である。 The fourth lens group G4 includes a positive meniscus lens L41 having a convex surface facing the object side, a positive meniscus lens L42 having a convex surface facing the object side, and a biconcave negative lens L43 and biconvex lenses arranged in order from the object side. A junction lens with a positive lens L44 having a shape, a negative meniscus lens L45 with a convex surface facing the object side, a junction lens between a biconvex positive lens L46 and a negative meniscus lens L47 with a concave surface facing the object side, and an object. It is composed of a positive meniscus lens L48 with a convex surface facing to the side. An aperture diaphragm S is arranged between the positive meniscus lens L42 and the negative lens L43 in the fourth lens group G4, and moves together with the fourth lens group G4 at the time of scaling. The positive lens L46 has an aspherical lens surface on the object side.

第5レンズ群G5は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL51と、両凹形状の負レンズL52とから構成される。 The fifth lens group G5 is composed of a positive meniscus lens L51 having a concave surface facing the object side and a negative lens L52 having both concave shapes arranged in order from the object side.

第6レンズ群G6は、両凸形状の正レンズL61から構成される。 The sixth lens group G6 is composed of a biconvex positive lens L61.

第7レンズ群G7は、両凹形状の負レンズL71から構成される。負レンズL71は、物体側のレンズ面が非球面である。第7レンズ群G7の像側に、像面Iが配置される。すなわち、第7レンズ群G7は、最終レンズ群に該当する。 The seventh lens group G7 is composed of a negative lens L71 having a biconcave shape. The negative lens L71 has an aspherical lens surface on the object side. The image plane I is arranged on the image side of the seventh lens group G7. That is, the seventh lens group G7 corresponds to the final lens group.

本実施例では、第5レンズ群G5を像面I側へ移動させ、第6レンズ群G6を物体側へ移動させることにより、遠距離物体から近距離物体(無限遠物体から有限距離物体)への合焦が行われる。すなわち、第5レンズ群G5は、第1合焦レンズ群に該当し、第6レン
ズ群G6は、第2合焦レンズ群に該当する。
In this embodiment, the fifth lens group G5 is moved to the image plane I side, and the sixth lens group G6 is moved to the object side, thereby moving from a long-distance object to a short-distance object (from an infinite distance object to a finite-distance object). Is focused. That is, the fifth lens group G5 corresponds to the first in-focus lens group, and the sixth lens group G6 corresponds to the second in-focus lens group.

以下の表2に、第2実施例に係る変倍光学系の諸元の値を掲げる。 Table 2 below lists the values of the specifications of the variable magnification optical system according to the second embodiment.

(表2)
[全体諸元]
変倍比 2.74
θgFP=0.6319
W M T
FNO 2.87938 2.83556 2.81768
2ω 33.81302 17.80714 12.26884
Y 21.70 21.70 21.70
TL 196.12284 196.12284 196.12284
BF 36.61267 36.61267 36.61267
[レンズ諸元]
面番号 R D nd νd θgF
1 108.74314 2.8 1.95000 31.13
2 80.29769 9.7 1.49782 82.57
3 -691.77549 0.1
4 93.78423 7.7 1.43385 95.23
5 338.64045 D5(可変)
6 71.48912 1.9 1.59349 67.89
7 30.17301 9.4
8 -137.03151 1.6 1.49782 82.57
9 93.66474 0.8
10 44.41047 3.94815 1.66382 27.35 0.6319
11 87.61105 5.59008
12 -54.89519 1.9 1.49782 82.57
13 -689.02421 D13(可変)
14 75.42635 4.5 1.94595 30.42
15 490.04562 D15(可変)
16 94.04866 4 1.49782 59.34
17 1181.8169 0.1
18 56.70631 4 1.49782 69.79
19 243.15543 4.5
20 ∞ 3.5 (絞りS)
21 -180.79776 1.8 1.92286 29.82
22 38.61345 4.2 1.49782 67.44
23 -792.77195 4.35979
24 479.73489 1.7 1.80518 22.51
25 75.80342 2
26* 58.49695 7.7 1.59306 67
27 -63.34766 1.7 1.60342 46.96
28 -90.09789 1.3
29 66.31481 2.5 1.80400 44.63
30 153.3585 D30(可変)
31 -130.80634 2.2 1.94594 17.98
32 -67.89935 0.8
33 -163.52036 1.25 1.56883 31.71
34 37.07534 D34(可変)
35 66.52215 4.75 1.80100 48.75
36 -175.782 D36(可変)
37* -73.66538 1.9 1.71999 82.57
38 282.5465 BF
[非球面データ]
第26面
κ=0.00,A4=-2.17E-06,A6=1.23E-09
A8=-8.20E-12,A10=2.53E-14,A12=-2.96E-17
第37面
κ=0.00,A4=9.91E-08,A6=2.50E-09
A8=-1.38E-11,A10=4.59E-14,A12=-5.72E-17
[レンズ群データ]
群 始面 焦点距離
G1 1 139.63445
G2 6 -43.68068
G3 14 93.7469
G4 16 86.63044
G5 31 -83.20858
G6 35 60.77856
G7 37 -80.9748
[可変間隔データ]
W M T W M T
無限遠 無限遠 無限遠 近距離 近距離 近距離
f 71.49616 135 196.00002 ― ― ―
β ― ― ― -0.08386 -0.14611 -0.20261
D5 1.98083 33.88478 49.73838 1.98083 33.88478 49.73838
D13 47.67943 16.00066 1.60866 47.67943 16.00066 1.60866
D15 2.53884 2.31366 0.85206 2.53884 2.31366 0.85206
D30 6.84927 7.75031 3.99572 8.37353 13.43196 15.53626
D34 26.8749 21.64199 27.84545 23.36912 9.9946 4.76438
D36 6.00155 10.33343 7.88455 7.98308 16.29916 19.42509
[条件式対応値]
条件式(1) f3/(-fE)=1.16
条件式(2) f1/(-fE)=1.72
条件式(3) f2/fE=0.54
条件式(4) f1/(-f2)=3.20
条件式(5) f1/f3=1.49
条件式(6) f1/f4=1.61
条件式(7) (-fF1)/fF2=1.37
条件式(8) νdP=27.35
条件式(9) ndP+(0.01425×νdP)=2.0536
条件式(10) θgFP+(0.00316×νdP)=0.7183
条件式(11) 2ωw=33.81°
条件式(12) 2ωt=12.27°
条件式(13) BFw/fw=0.51
(Table 2)
[Overall specifications]
Magnification ratio 2.74
θgFP = 0.6319
WMT
FNO 2.87938 2.83556 2.81768
2ω 33.81302 17.80714 12.26884
Y 21.70 21.70 21.70
TL 196.12284 196.12284 196.12284
BF 36.61267 36.61267 36.61267
[Lens specifications]
Surface number RD nd νd θgF
1 108.74314 2.8 1.95000 31.13
2 80.29769 9.7 1.49782 82.57
3 -691.77549 0.1
4 93.78423 7.7 1.43385 95.23
5 338.64045 D5 (variable)
6 71.48912 1.9 1.59349 67.89
7 30.17301 9.4
8-137.03151 1.6 1.49782 82.57
9 93.66474 0.8
10 44.41047 3.94815 1.66382 27.35 0.6319
11 87.61105 5.59008
12 -54.89519 1.9 1.49782 82.57
13 -689.02421 D13 (variable)
14 75.42635 4.5 1.94595 30.42
15 490.04562 D15 (variable)
16 94.04866 4 1.49782 59.34
17 1181.8169 0.1
18 56.70631 4 1.49782 69.79
19 243.15543 4.5
20 ∞ 3.5 (Aperture S)
21 -180.79776 1.8 1.92286 29.82
22 38.61345 4.2 1.49782 67.44
23 -792.77195 4.35979
24 479.73489 1.7 1.80518 22.51
25 75.80342 2
26 * 58.49695 7.7 1.59306 67
27 -63.34766 1.7 1.60342 46.96
28 -90.09789 1.3
29 66.31481 2.5 1.80400 44.63
30 153.3585 D30 (variable)
31 -130.80634 2.2 1.94594 17.98
32 -67.89935 0.8
33 -163.52036 1.25 1.56883 31.71
34 37.07534 D34 (variable)
35 66.52215 4.75 1.80100 48.75
36 -175.782 D36 (variable)
37 * -73.66538 1.9 1.71999 82.57
38 282.5465 BF
[Aspherical data]
Surface 26 κ = 0.00, A4 = -2.17E-06, A6 = 1.23E-09
A8 = -8.20E-12, A10 = 2.53E-14, A12 = -2.96E-17
Side 37 κ = 0.00, A4 = 9.91E-08, A6 = 2.50E-09
A8 = -1.38E-11, A10 = 4.59E-14, A12 = -5.72E-17
[Lens group data]
Focal length of group origin
G1 1 139.63445
G2 6 -43.68068
G3 14 93.7469
G4 16 86.63044
G5 31 -83.20858
G6 35 60.77856
G7 37 -80.9748
[Variable interval data]
W M T W M T
Point at infinity Point at infinity Point at infinity Short distance Short distance Short distance f 71.49616 135 196.00002 ― ― ―
β ― ― ― -0.08386 -0.14611 -0.20261
D5 1.98083 33.88478 49.73838 1.98083 33.88478 49.73838
D13 47.67943 16.00066 1.60866 47.67943 16.00066 1.60866
D15 2.53884 2.31366 0.85206 2.53884 2.31366 0.85206
D30 6.84927 7.75031 3.99572 8.37353 13.43196 15.53626
D34 26.8749 21.64199 27.84545 23.36912 9.9946 4.76438
D36 6.00155 10.33343 7.88455 7.98308 16.29916 19.42509
[Conditional expression correspondence value]
Conditional expression (1) f3 / (-fE) = 1.16
Conditional expression (2) f1 / (-fE) = 1.72
Conditional expression (3) f2 / fE = 0.54
Conditional expression (4) f1 / (-f2) = 3.20
Conditional expression (5) f1 / f3 = 1.49
Conditional expression (6) f1 / f4 = 1.61
Conditional expression (7) (-fF1) /fF2=1.37
Conditional expression (8) νdP = 27.35
Conditional expression (9) ndP + (0.01425 × νdP) = 2.0536
Conditional expression (10) θgFP + (0.00316 × νdP) = 0.7183
Conditional expression (11) 2ωw = 33.81 °
Conditional expression (12) 2ωt = 12.27 °
Conditional expression (13) BFw / fw = 0.51

図4(A)、図4(B)、および図4(C)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における諸収差図である。各諸収差図より、第2実施例に係る変倍光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 4 (A), 4 (B), and 4 (C) are aberration diagrams in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second embodiment, respectively. .. From each aberration diagram, it can be seen that the variable magnification optical system according to the second embodiment has various aberrations corrected well and has excellent imaging performance.

(第3実施例)
第3実施例について、図5~図6および表3を用いて説明する。図5は、第3実施例に係る変倍光学系が広角端状態から望遠端状態に変化する際のレンズの動きを示す図である。第3実施例に係る変倍光学系ZL(3)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、負の屈折力を有する第7レンズ群G7と、正の屈折力を有する第8レンズ群G8と、正の屈折力を有する第9レンズ群G9と、負の屈折力を有する第10レンズ群G10とから構成される。広角端状態から望遠端状態への変倍の際、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4、第5レンズ群G5、第7レンズ群G7、第8レンズ群G8、および第9レンズ群G9は、別個に図5の矢印で示す方向に移動し、隣り合う各レンズ群の間隔が変化する。なお、変倍の際、第1レンズ群G1、第6レンズ群G6、および第10レンズ群G10は、像面Iに対して固定される。第4レンズ群G4と、第5レンズ群G5と、第6レンズ群G6と、第7レンズ群G7と、第8レンズ群G8と、第9レンズ群G9と、第10レンズ群G10とからなるレンズ群は、後続レンズ群GRに該当する。
(Third Example)
The third embodiment will be described with reference to FIGS. 5 to 6 and Table 3. FIG. 5 is a diagram showing the movement of the lens when the variable magnification optical system according to the third embodiment changes from the wide-angle end state to the telephoto end state. The variable magnification optical system ZL (3) according to the third embodiment has a first lens group G1 having a positive refractive force, a second lens group G2 having a negative refractive force, and a positive lens group G2 arranged in order from the object side. A third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a sixth lens group G6 having a positive refractive power. , The 7th lens group G7 having a negative refractive force, the 8th lens group G8 having a positive refractive force, the 9th lens group G9 having a positive refractive force, and the 10th lens group having a negative refractive force. It is composed of G10. When scaling from the wide-angle end state to the telephoto end state, the second lens group G2, the third lens group G3, the fourth lens group G4, the fifth lens group G5, the seventh lens group G7, the eighth lens group G8, And the ninth lens group G9 moves separately in the direction indicated by the arrow in FIG. 5, and the distance between the adjacent lens groups changes. At the time of scaling, the first lens group G1, the sixth lens group G6, and the tenth lens group G10 are fixed with respect to the image plane I. It consists of a 4th lens group G4, a 5th lens group G5, a 6th lens group G6, a 7th lens group G7, an 8th lens group G8, a 9th lens group G9, and a 10th lens group G10. The lens group corresponds to the subsequent lens group GR.

第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。 The first lens group G1 is a junction lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12 arranged in order from the object side, and a positive meniscus lens L13 having a convex surface facing the object side. It is composed of and.

第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、物体側に凸面を向けた正メニスカスレンズL23と、両凹形状の負レンズL24とから構成される。 The second lens group G2 includes a negative meniscus lens L21 having a convex surface facing the object side, a biconcave negative lens L22, and a positive meniscus lens L23 having a convex surface facing the object side, which are arranged in order from the object side. It is composed of a concave negative lens L24.

第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズL31から構成される。 The third lens group G3 is composed of a positive meniscus lens L31 having a convex surface facing the object side.

第4レンズ群G4は、物体側から順に並んだ、両凸形状の正レンズL41と、物体側に凸面を向けた正メニスカスレンズL42とから構成される。 The fourth lens group G4 is composed of a biconvex positive lens L41 arranged in order from the object side and a positive meniscus lens L42 with a convex surface facing the object side.

第5レンズ群G5は、両凹形状の負レンズL51と両凸形状の正レンズL52との接合レンズから構成される。第5レンズ群G5の最も物体側に、開口絞りSが配設され、変倍の際、第5レンズ群G5とともに移動する。 The fifth lens group G5 is composed of a junction lens of a biconcave negative lens L51 and a biconvex positive lens L52. The aperture stop S is arranged on the most object side of the fifth lens group G5, and moves together with the fifth lens group G5 at the time of scaling.

第6レンズ群G6は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL61と、両凸形状の正レンズL62と物体側に凹面を向けた負メニスカスレンズL63との接合レンズと、物体側に凸面を向けた正メニスカスレンズL64とから構成される。正レンズL62は、物体側のレンズ面が非球面である。 The sixth lens group G6 is a junction lens of a negative meniscus lens L61 having a convex surface facing the object side, a biconvex positive lens L62, and a negative meniscus lens L63 having a concave surface facing the object side, arranged in order from the object side. And a positive meniscus lens L64 with a convex surface facing the object side. The positive lens L62 has an aspherical lens surface on the object side.

第7レンズ群G7は、物体側から順に並んだ、両凸形状の正レンズL71と、物体側に凸面を向けた負メニスカスレンズL72とから構成される。 The seventh lens group G7 is composed of a biconvex positive lens L71 arranged in order from the object side and a negative meniscus lens L72 with a convex surface facing the object side.

第8レンズ群G8は、物体側に凸面を向けた正メニスカスレンズL81から構成される。 The eighth lens group G8 is composed of a positive meniscus lens L81 with a convex surface facing the object side.

第9レンズ群G9は、物体側に凹面を向けた正メニスカスレンズL91から構成される。正メニスカスレンズL91は、物体側のレンズ面が非球面である。 The ninth lens group G9 is composed of a positive meniscus lens L91 with a concave surface facing the object side. The positive meniscus lens L91 has an aspherical lens surface on the object side.

第10レンズ群G10は、両凹形状の負レンズL101から構成される。第10レンズ群G10の像側に、像面Iが配置される。すなわち、第10レンズ群G10は、最終レンズ群に該当する。 The tenth lens group G10 is composed of a negative lens L101 having a biconcave shape. The image plane I is arranged on the image side of the tenth lens group G10. That is, the tenth lens group G10 corresponds to the final lens group.

本実施例では、第7レンズ群G7を像面I側へ移動させ、第8レンズ群G8を物体側へ移動させることにより、遠距離物体から近距離物体(無限遠物体から有限距離物体)への合焦が行われる。すなわち、第7レンズ群G7は、第1合焦レンズ群に該当し、第8レンズ群G8は、第2合焦レンズ群に該当する。 In this embodiment, the 7th lens group G7 is moved to the image plane I side, and the 8th lens group G8 is moved to the object side, thereby moving from a long-distance object to a short-distance object (from an infinite distance object to a finite-distance object). Is focused. That is, the 7th lens group G7 corresponds to the 1st in-focus lens group, and the 8th lens group G8 corresponds to the 2nd in-focus lens group.

以下の表3に、第3実施例に係る変倍光学系の諸元の値を掲げる。 Table 3 below lists the specifications of the variable magnification optical system according to the third embodiment.

(表3)
[全体諸元]
変倍比 2.74
θgFP=0.6319
W M T
FNO 2.8471 2.86934 2.91965
2ω 33.70556 17.86124 12.26972
Y 21.70 21.70 21.70
TL 207.00792 207.00792 207.00792
Bf 32.57205 32.57205 32.57205
[レンズ諸元]
面番号 R D nd νd θgF
1 101.99194 2.80 2.00100 29.12
2 78.37407 9.70 1.49782 82.57
3 -1022.4124 0.10
4 75.80458 7.70 1.43385 95.23
5 278.09823 D5(可変)
6 67.03073 1.90 1.60300 65.44
7 29.65154 7.20
8 -4189.1769 1.60 1.49782 82.57
9 72.21235 2.92
10 41.05723 3.70 1.66382 27.35 0.6319
11 51.79281 6.99
12 -47.57525 1.90 1.49782 82.57
13 876.17776 D13(可変)
14 75.45331 3.20 1.94594 17.98
15 263.87074 D15(可変)
16 99.38463 4.70 1.49782 82.57
17 -385.66566 0.10
18 69.30883 3.85 1.49782 82.57
19 1544.1877 D19(可変)
20 ∞ 3.50 (絞りS)
21 -84.39308 1.80 1.92286 20.88
22 76.70869 5.00 1.49782 82.57
23 -157.06149 D23(可変)
24 168.47838 1.70 1.85026 32.35
25 77.42169 2.00
26* 59.12213 7.70 1.59349 67
27 -51.6115 1.70 1.62004 36.4
28 -89.79626 1.30
29 87.29534 2.70 1.80100 34.92
30 136.2385 D30(可変)
31 627.77024 2.00 1.94594 17.98
32 -206.69697 0.80
33 386.92798 1.25 1.71300 53.96
34 42.23229 D34(可変)
35 66.92449 4.00 1.90265 35.77
36 418.69787 D36(可変)
37* -553.02647 3.00 1.55518 71.49
38 -77.65664 D38(可変)
39 -70.45081 1.90 1.56384 60.71
40 88.47517 BF
[非球面データ]
第26面
κ=0.00,A4=-2.06E-06,A6=3.72E-10
A8=-2.74E-12,A10=1.30E-14,A12=-1.97E-17
第37面
κ=0.00,A4=-5.43E-07,A6=5.65E-10
A8=-1.54E-12,A10=4.63E-15,A12=-5.42E-18
[レンズ群データ]
群 始面 焦点距離
G1 1 124.35572
G2 6 -34.94136
G3 14 110.79292
G4 16 76.69466
G5 20 -76.01113
G6 24 72.09875
G7 31 -114.02434
G8 35 87.7742
G9 37 162.36222
G10 39 -69.26098
[可変間隔データ]
W M T W M T
無限遠 無限遠 無限遠 近距離 近距離 近距離
f 71.48828 135 196 ― ― ―
β ― ― ― -0.08481 -0.15088 -0.20696
D5 3.14675 27.96403 40.90704 3.14675 27.96403 40.90704
D13 29.53764 8.15958 1.60832 29.53764 8.15958 1.60832
D15 19.15996 9.78302 1.19195 19.15996 9.78302 1.19195
D19 4.5 8.45422 8.9974 4.5 8.45422 8.9974
D23 1.47462 3.45814 5.11428 1.47462 3.45814 5.11428
D30 3.7091 6.11122 3.97416 5.8438 13.08039 18.03258
D34 35.19368 27.95231 37.56575 29.85694 10.52937 3.82554
D36 3.33819 8.98173 3.81873 6.54023 19.4355 23.50052
D38 8.23679 7.4325 5.11912 8.23679 7.4325 5.11912
[条件式対応値]
条件式(1) f3/(-fE)=1.60
条件式(2) f1/(-fE)=1.80
条件式(3) f2/fE=0.50
条件式(4) f1/(-f2)=3.56
条件式(5) f1/f3=1.12
条件式(6) f1/f4=1.62
条件式(7) (-fF1)/fF2=1.30
条件式(8) νdP=27.35
条件式(9) ndP+(0.01425×νdP)=2.0536
条件式(10) θgFP+(0.00316×νdP)=0.7183
条件式(11) 2ωw=33.71°
条件式(12) 2ωt=12.27°
条件式(13) BFw/fw=0.46
(Table 3)
[Overall specifications]
Magnification ratio 2.74
θgFP = 0.6319
WMT
FNO 2.8471 2.86934 2.91965
2ω 33.70556 17.86124 12.26972
Y 21.70 21.70 21.70
TL 207.00792 207.00792 207.00792
Bf 32.57205 32.57205 32.57205
[Lens specifications]
Surface number RD nd νd θgF
1 101.99194 2.80 2.00100 29.12
2 78.37407 9.70 1.49782 82.57
3 -1022.4124 0.10
4 75.80458 7.70 1.43385 95.23
5 278.09823 D5 (variable)
6 67.03073 1.90 1.60300 65.44
7 29.65154 7.20
8-4189.1769 1.60 1.49782 82.57
9 72.21235 2.92
10 41.05723 3.70 1.66382 27.35 0.6319
11 51.79281 6.99
12 -47.57525 1.90 1.49782 82.57
13 876.17776 D13 (variable)
14 75.45331 3.20 1.94594 17.98
15 263.87074 D15 (variable)
16 99.38463 4.70 1.49782 82.57
17 -385.66566 0.10
18 69.30883 3.85 1.49782 82.57
19 1544.1877 D19 (variable)
20 ∞ 3.50 (Aperture S)
21 -84.39308 1.80 1.92286 20.88
22 76.70869 5.00 1.49782 82.57
23 -157.06149 D23 (variable)
24 168.47838 1.70 1.85026 32.35
25 77.42169 2.00
26 * 59.12213 7.70 1.59349 67
27 -51.6115 1.70 1.62004 36.4
28 -89.79626 1.30
29 87.29534 2.70 1.80100 34.92
30 136.2385 D30 (variable)
31 627.77024 2.00 1.94594 17.98
32 -206.69697 0.80
33 386.92798 1.25 1.71300 53.96
34 42.23229 D34 (variable)
35 66.92449 4.00 1.90265 35.77
36 418.69787 D36 (variable)
37 * -553.02647 3.00 1.55518 71.49
38 -77.65664 D38 (variable)
39 -70.45081 1.90 1.56384 60.71
40 88.47517 BF
[Aspherical data]
Side 26 κ = 0.00, A4 = -2.06E-06, A6 = 3.72E-10
A8 = -2.74E-12, A10 = 1.30E-14, A12 = -1.97E-17
Side 37 κ = 0.00, A4 = -5.43E-07, A6 = 5.65E-10
A8 = -1.54E-12, A10 = 4.63E-15, A12 = -5.42E-18
[Lens group data]
Focal length of group origin
G1 1 124.35572
G2 6 -34.94136
G3 14 110.79292
G4 16 76.69466
G5 20 -76.01113
G6 24 72.09875
G7 31 -114.02434
G8 35 87.7742
G9 37 162.36222
G10 39 -69.26098
[Variable interval data]
W M T W M T
Point at infinity Point at infinity Point at infinity Short distance Short distance Short distance f 71.48828 135 196 ― ― ―
β ― ― ― -0.08481 -0.15088 -0.20696
D5 3.14675 27.96403 40.90704 3.14675 27.96403 40.90704
D13 29.53764 8.15958 1.60832 29.53764 8.15958 1.60832
D15 19.15996 9.78302 1.19195 19.15996 9.78302 1.19195
D19 4.5 8.45422 8.9974 4.5 8.45422 8.9974
D23 1.47462 3.45814 5.11428 1.47462 3.45814 5.11428
D30 3.7091 6.11122 3.97416 5.8438 13.08039 18.03258
D34 35.19368 27.95231 37.56575 29.85694 10.52937 3.82554
D36 3.33819 8.98173 3.81873 6.54023 19.4355 23.50052
D38 8.23679 7.4325 5.11912 8.23679 7.4325 5.11912
[Conditional expression correspondence value]
Conditional expression (1) f3 / (-fE) = 1.60
Conditional expression (2) f1 / (-fE) = 1.80
Conditional expression (3) f2 / fE = 0.50
Conditional expression (4) f1 / (-f2) = 3.56
Conditional expression (5) f1 / f3 = 1.12
Conditional expression (6) f1 / f4 = 1.62
Conditional expression (7) (-fF1) /fF2=1.30
Conditional expression (8) νdP = 27.35
Conditional expression (9) ndP + (0.01425 × νdP) = 2.0536
Conditional expression (10) θgFP + (0.00316 × νdP) = 0.7183
Conditional expression (11) 2ωw = 33.71 °
Conditional expression (12) 2ωt = 12.27 °
Conditional expression (13) BFw / fw = 0.46

図6(A)、図6(A)、および図6(C)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における諸収差図である。各諸収差図より、第3実施例に係る変倍光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 6 (A), 6 (A), and 6 (C) are aberration diagrams in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third embodiment, respectively. .. From each aberration diagram, it can be seen that the variable magnification optical system according to the third embodiment has various aberrations corrected well and has excellent imaging performance.

(第4実施例)
第4実施例について、図7~図8および表4を用いて説明する。図7は、第4実施例に係る変倍光学系が広角端状態から望遠端状態に変化する際のレンズの動きを示す図である。第4実施例に係る変倍光学系ZL(4)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6と、正の屈折力を有する第7レンズ群G7と、負の屈折力を有する第8レンズ群G8とから構成される。広角端状態から望遠端状態への変倍の際、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4、第6レンズ群G6、および第7レンズ群G7は、別個に図7の矢印で示す方向に移動し、隣り合う各レンズ群の間隔が変化する。なお、変倍の際、第1レンズ群G1、第5レンズ群G5、および第8レンズ群G8は、像面Iに対して固定される。第4レンズ群G4と、第5レンズ群G5と、第6レンズ群G6と、第7レンズ群G7と、第8レンズ群G8とからなるレンズ群は、後続レンズ群GRに該当する。
(Fourth Example)
The fourth embodiment will be described with reference to FIGS. 7 to 8 and Table 4. FIG. 7 is a diagram showing the movement of the lens when the variable magnification optical system according to the fourth embodiment changes from the wide-angle end state to the telephoto end state. The variable magnification optical system ZL (4) according to the fourth embodiment has a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive lens group G2 arranged in order from the object side. A third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a positive refractive power, and a sixth lens group G6 having a negative refractive power. , A seventh lens group G7 having a positive refractive power and an eighth lens group G8 having a negative refractive power. When scaling from the wide-angle end state to the telephoto end state, the second lens group G2, the third lens group G3, the fourth lens group G4, the sixth lens group G6, and the seventh lens group G7 are separately shown in FIG. 7. It moves in the direction indicated by the arrow, and the distance between adjacent lens groups changes. At the time of scaling, the first lens group G1, the fifth lens group G5, and the eighth lens group G8 are fixed with respect to the image plane I. The lens group including the fourth lens group G4, the fifth lens group G5, the sixth lens group G6, the seventh lens group G7, and the eighth lens group G8 corresponds to the succeeding lens group GR.

第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。 The first lens group G1 is a junction lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12 arranged in order from the object side, and a positive meniscus lens L13 having a convex surface facing the object side. It is composed of and.

第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、物体側に凸面を向けた正メニスカスレンズL23と、両凹形状の負レンズL24とから構成される。 The second lens group G2 includes a negative meniscus lens L21 having a convex surface facing the object side, a biconcave negative lens L22, and a positive meniscus lens L23 having a convex surface facing the object side, which are arranged in order from the object side. It is composed of a concave negative lens L24.

第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズL31から構成される。 The third lens group G3 is composed of a positive meniscus lens L31 having a convex surface facing the object side.

第4レンズ群G4は、物体側から順に並んだ、両凸形状の正レンズL41と、物体側に凸面を向けた正メニスカスレンズL42とから構成される。 The fourth lens group G4 is composed of a biconvex positive lens L41 arranged in order from the object side and a positive meniscus lens L42 with a convex surface facing the object side.

第5レンズ群G5は、物体側から順に並んだ、両凹形状の負レンズL51と両凸形状の正レンズL52との接合レンズと、物体側に凸面を向けた負メニスカスレンズL53と、両凸形状の正レンズL54と物体側に凹面を向けた負メニスカスレンズL55との接合レンズと、物体側に凸面を向けた正メニスカスレンズL56とから構成される。第5レンズ群G5の最も物体側に、開口絞りSが配設され、変倍の際、第5レンズ群G5とともに像
面Iに対して固定される。正レンズL54は、物体側のレンズ面が非球面である。
The fifth lens group G5 includes a junction lens of a biconcave negative lens L51 and a biconvex positive lens L52 arranged in order from the object side, a negative meniscus lens L53 with a convex surface facing the object side, and a biconvex lens. It is composed of a junction lens of a positive lens L54 having a shape and a negative meniscus lens L55 having a concave surface facing the object side, and a positive meniscus lens L56 having a convex surface facing the object side. The aperture diaphragm S is arranged on the most object side of the fifth lens group G5, and is fixed to the image plane I together with the fifth lens group G5 at the time of scaling. The positive lens L54 has an aspherical lens surface on the object side.

第6レンズ群G6は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL61と、物体側に凸面を向けた負メニスカスレンズL62とから構成される。 The sixth lens group G6 is composed of a positive meniscus lens L61 having a concave surface facing the object side and a negative meniscus lens L62 having a convex surface facing the object side, which are arranged in order from the object side.

第7レンズ群G7は、両凸形状の正レンズL71から構成される。 The seventh lens group G7 is composed of a biconvex positive lens L71.

第8レンズ群G8は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL81と、物体側に凹面を向けた負メニスカスレンズL82とから構成される。負メニスカスレンズL81は、物体側のレンズ面が非球面である。第8レンズ群G8の像側に、像面Iが配置される。すなわち、第8レンズ群G8は、最終レンズ群に該当する。 The eighth lens group G8 is composed of a negative meniscus lens L81 having a convex surface facing the object side and a negative meniscus lens L82 having a concave surface facing the object side, which are arranged in order from the object side. The negative meniscus lens L81 has an aspherical lens surface on the object side. The image plane I is arranged on the image side of the eighth lens group G8. That is, the eighth lens group G8 corresponds to the final lens group.

本実施例では、第6レンズ群G6を像面I側へ移動させ、第7レンズ群G7を物体側へ移動させることにより、遠距離物体から近距離物体(無限遠物体から有限距離物体)への合焦が行われる。すなわち、第6レンズ群G6は、第1合焦レンズ群に該当し、第7レンズ群G7は、第2合焦レンズ群に該当する。 In this embodiment, the sixth lens group G6 is moved to the image plane I side, and the seventh lens group G7 is moved to the object side, thereby moving from a long-distance object to a short-distance object (from an infinite distance object to a finite-distance object). Is focused. That is, the sixth lens group G6 corresponds to the first in-focus lens group, and the seventh lens group G7 corresponds to the second in-focus lens group.

以下の表4に、第4実施例に係る変倍光学系の諸元の値を掲げる。 Table 4 below lists the values of the specifications of the variable magnification optical system according to the fourth embodiment.

(表4)
[全体諸元]
変倍比 2.74
θgFP=0.6319
W M T
FNO 2.88923 2.87811 2.87676
2ω 33.62692 17.8017 12.26826
Y 21.70 21.70 21.70
TL 207.00795 207.00795 207.00795
BF 32.57205 32.57205 32.57205
[レンズ諸元]
面番号 R D nd νd θgF
1 104.96946 2.80 2.00100 29.12
2 81.23029 9.70 1.49782 82.57
3 -5013.309 0.10
4 98.76892 7.70 1.43385 95.23
5 349.12389 D5(可変)
6 62.87568 1.90 1.60300 65.44
7 32.61551 8.00
8 -1223.4377 1.60 1.49782 82.57
9 88.74378 2.77
10 43.50207 3.70 1.66382 27.35 0.6319
11 56.12991 7.85
12 -59.98159 1.90 1.49782 82.57
13 180.55889 D13(可変)
14 72.53962 3.20 1.94594 17.98
15 224.56923 D15(可変)
16 107.03817 4.70 1.49782 82.57
17 -183.81713 0.10
18 54.21049 3.85 1.49782 82.57
19 173.7794 D19(可変)
20 ∞ 3.50 (絞りS)
21 -89.65067 1.80 1.92286 20.88
22 53.92556 5.00 1.49782 82.57
23 -180.67725 1.50
24 151.38095 1.70 1.85026 32.35
25 72.515 2.00
26* 60.75581 7.70 1.59349 67
27 -54.39087 1.70 1.62004 36.4
28 -94.7071 1.30
29 58.34653 2.70 1.80100 34.92
30 116.10532 D30(可変)
31 -642.22297 2.00 1.94594 17.98
32 -108.81859 0.80
33 1100.6245 1.25 1.71300 53.96
34 36.03135 D34(可変)
35 70.63159 3.85 1.90265 35.77
36 -359.66973 D36(可変)
37* 1093.756 1.90 1.53793 55.01
38 73.85081 8.76
39 -68.15582 1.90 1.56384 60.71
40 -183.66574 BF
[非球面データ]
第26面
κ=0.00,A4=-1.87E-06,A6=-4.52E-10
A8=3.30E-12,A10=-9.39E-15,A12=1.05E-17
第37面
κ=0.00,A4=-5.10E-07,A6=2.18E-09
A8=-1.11E-11,A10=3.84E-14,A12=-5.02E-17
[レンズ群データ]
群 始面 焦点距離
G1 1 151.31596
G2 6 -40.77182
G3 14 112.1271
G4 16 73.19762
G5 20 204.39955
G6 31 -85.38342
G7 35 65.68378
G8 37 -81.7079
[可変間隔データ]
W M T W M T
無限遠 無限遠 無限遠 近距離 近距離 近距離
f 71.48789 135 196.00001 ― ― ―
β ― ― ― -0.08409 -0.14666 -0.20387
D5 1.85197 33.16708 49.31235 1.85197 33.16708 49.31235
D13 39.7348 11.81928 1.60349 39.7348 11.81928 1.60349
D15 16.28719 9.45385 1.9819 16.28719 9.45385 1.9819
D19 4.5 7.93374 9.47621 4.5 7.93374 9.47621
D30 3.7 5.7618 4.22253 4.95966 10.39125 14.39741
D34 29.10973 22.62707 26.97381 25.70866 11.51639 4.5890
D36 2.5956 7.01646 4.209 4.73702 13.49769 16.41886
[条件式対応値]
条件式(1) f3/(-fE)=1.37
条件式(2) f1/(-fE)=1.85
条件式(3) f2/fE=0.50
条件式(4) f1/(-f2)=3.71
条件式(5) f1/f3=1.35
条件式(6) f1/f4=2.07
条件式(7) (-fF1)/fF2=1.30
条件式(8) νdP=27.35
条件式(9) ndP+(0.01425×νdP)=2.0536
条件式(10) θgFP+(0.00316×νdP)=0.7183
条件式(11) 2ωw=33.63°
条件式(12) 2ωt=12.27°
条件式(13) BFw/fw=0.456
(Table 4)
[Overall specifications]
Magnification ratio 2.74
θgFP = 0.6319
WMT
FNO 2.88923 2.87811 2.87676
2ω 33.62692 17.8017 12.26826
Y 21.70 21.70 21.70
TL 207.00795 207.00795 207.00795
BF 32.57205 32.57205 32.57205
[Lens specifications]
Surface number RD nd νd θgF
1 104.96946 2.80 2.00100 29.12
2 81.23029 9.70 1.49782 82.57
3 -5013.309 0.10
4 98.76892 7.70 1.43385 95.23
5 349.12389 D5 (variable)
6 62.87568 1.90 1.60300 65.44
7 32.61551 8.00
8-1223.4377 1.60 1.49782 82.57
9 88.74378 2.77
10 43.50207 3.70 1.66382 27.35 0.6319
11 56.12991 7.85
12 -59.98159 1.90 1.49782 82.57
13 180.55889 D13 (variable)
14 72.53962 3.20 1.94594 17.98
15 224.56923 D15 (variable)
16 107.03817 4.70 1.49782 82.57
17 -183.81713 0.10
18 54.21049 3.85 1.49782 82.57
19 173.7794 D19 (variable)
20 ∞ 3.50 (Aperture S)
21 -89.65067 1.80 1.92286 20.88
22 53.92556 5.00 1.49782 82.57
23 -180.67725 1.50
24 151.38095 1.70 1.85026 32.35
25 72.515 2.00
26 * 60.75581 7.70 1.59349 67
27 -54.39087 1.70 1.62004 36.4
28 -94.7071 1.30
29 58.34653 2.70 1.80100 34.92
30 116.10532 D30 (variable)
31 -642.22297 2.00 1.94594 17.98
32 -108.81859 0.80
33 1100.6245 1.25 1.71300 53.96
34 36.03135 D34 (variable)
35 70.63159 3.85 1.90265 35.77
36 -359.66973 D36 (variable)
37 * 1093.756 1.90 1.53793 55.01
38 73.85081 8.76
39 -68.15582 1.90 1.56384 60.71
40 -183.66574 BF
[Aspherical data]
Surface 26 κ = 0.00, A4 = -1.87E-06, A6 = -4.52E-10
A8 = 3.30E-12, A10 = -9.39E-15, A12 = 1.05E-17
Side 37 κ = 0.00, A4 = -5.10E-07, A6 = 2.18E-09
A8 = -1.11E-11, A10 = 3.84E-14, A12 = -5.02E-17
[Lens group data]
Focal length of group origin
G1 1 151.31596
G2 6 -40.77182
G3 14 112.1271
G4 16 73.19762
G5 20 204.39955
G6 31 -85.38342
G7 35 65.68378
G8 37 -81.7079
[Variable interval data]
W M T W M T
Point at infinity Point at infinity Point at infinity Short distance Short distance Short distance f 71.48789 135 196.00001 ― ― ―
β ― ― ― -0.08409 -0.14666 -0.20387
D5 1.85197 33.16708 49.31235 1.85197 33.16708 49.31235
D13 39.7348 11.81928 1.60349 39.7348 11.81928 1.60349
D15 16.28719 9.45385 1.9819 16.28719 9.45385 1.9819
D19 4.5 7.93374 9.47621 4.5 7.93374 9.47621
D30 3.7 5.7618 4.22253 4.95966 10.39125 14.39741
D34 29.10973 22.62707 26.97381 25.70866 11.51639 4.5890
D36 2.5956 7.01646 4.209 4.73702 13.49769 16.41886
[Conditional expression correspondence value]
Conditional expression (1) f3 / (-fE) = 1.37
Conditional expression (2) f1 / (-fE) = 1.85
Conditional expression (3) f2 / fE = 0.50
Conditional expression (4) f1 / (-f2) = 3.71
Conditional expression (5) f1 / f3 = 1.35
Conditional expression (6) f1 / f4 = 2.07
Conditional expression (7) (-fF1) /fF2=1.30
Conditional expression (8) νdP = 27.35
Conditional expression (9) ndP + (0.01425 × νdP) = 2.0536
Conditional expression (10) θgFP + (0.00316 × νdP) = 0.7183
Conditional expression (11) 2ωw = 33.63 °
Conditional expression (12) 2ωt = 12.27 °
Conditional expression (13) BFw / fw = 0.456

図8(A)、図8(B)、および図8(C)はそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における諸収差図である。各諸収差図より、第4実施例に係る変倍光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 8 (A), 8 (B), and 8 (C) are aberration diagrams in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fourth embodiment, respectively. .. From each aberration diagram, it can be seen that the variable magnification optical system according to the fourth embodiment has various aberrations corrected well and has excellent imaging performance.

(第5実施例)
第5実施例について、図9~図10および表5を用いて説明する。図9は、第5実施例に係る変倍光学系が広角端状態から望遠端状態に変化する際のレンズの動きを示す図である。第5実施例に係る変倍光学系ZL(5)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、負の屈折力を有する第7レンズ群G7と、正の屈折力を有する第8レンズ群G8と、負の屈折力を有する第9レンズ群G9とから構成される。広角端状態から望遠端状態への変倍の際、第2レンズ群G2、第3レンズ群G3、第5レンズ群G5、第7レンズ群G7、および第8レンズ群G8は、別個に図9の矢印で示す方向に移動し、隣り合う各レンズ群の間隔が変化する。なお、変倍の際、第1レンズ群G1、第4レンズ群G4、第6レンズ群G6、および第9レンズ群G9は、像面Iに対して固定される。第4レンズ群G4と、第5レンズ群G5と、第6レンズ群G6と、第7レンズ群G7と、第8レンズ群G8と、第9レンズ群G9とからなるレンズ群は、後続レンズ群GRに該当する。
(Fifth Example)
The fifth embodiment will be described with reference to FIGS. 9 to 10 and Table 5. FIG. 9 is a diagram showing the movement of the lens when the variable magnification optical system according to the fifth embodiment changes from the wide-angle end state to the telephoto end state. The variable magnification optical system ZL (5) according to the fifth embodiment has a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive lens group G2 arranged in order from the object side. A third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a sixth lens group G6 having a positive refractive power. It is composed of a seventh lens group G7 having a negative refractive power, an eighth lens group G8 having a positive refractive power, and a ninth lens group G9 having a negative refractive power. When scaling from the wide-angle end state to the telephoto end state, the second lens group G2, the third lens group G3, the fifth lens group G5, the seventh lens group G7, and the eighth lens group G8 are separately shown in FIG. It moves in the direction indicated by the arrow, and the distance between adjacent lens groups changes. At the time of scaling, the first lens group G1, the fourth lens group G4, the sixth lens group G6, and the ninth lens group G9 are fixed with respect to the image plane I. The lens group consisting of the 4th lens group G4, the 5th lens group G5, the 6th lens group G6, the 7th lens group G7, the 8th lens group G8, and the 9th lens group G9 is the subsequent lens group. Corresponds to GR.

第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。 The first lens group G1 is a junction lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12 arranged in order from the object side, and a positive meniscus lens L13 having a convex surface facing the object side. It is composed of and.

第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凸形状の正レンズL22と、両凹形状の負レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とから構成される。 The second lens group G2 has a negative meniscus lens L21 having a convex surface facing the object side, a biconvex positive lens L22, a biconcave negative lens L23, and a concave surface on the object side, which are arranged in order from the object side. It is composed of a negative meniscus lens L24 that is directed.

第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズL31から構成される。 The third lens group G3 is composed of a positive meniscus lens L31 having a convex surface facing the object side.

第4レンズ群G4は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL41と、両凸形状の正レンズL42とから構成される。 The fourth lens group G4 is composed of a positive meniscus lens L41 having a convex surface facing the object side and a biconvex positive lens L42 arranged in order from the object side.

第5レンズ群G5は、両凹形状の負レンズL51と物体側に凸面を向けた正メニスカスレンズL52との接合レンズから構成される。第5レンズ群G5の最も物体側に、開口絞りSが配設され、変倍の際、第5レンズ群G5とともに移動する。 The fifth lens group G5 is composed of a junction lens of a negative lens L51 having a biconcave shape and a positive meniscus lens L52 having a convex surface facing the object side. The aperture stop S is arranged on the most object side of the fifth lens group G5, and moves together with the fifth lens group G5 at the time of scaling.

第6レンズ群G6は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL61と、両凸形状の正レンズL62と、物体側に凸面を向けた正メニスカスレンズL63とから構成される。正レンズL62は、像側のレンズ面が非球面である。 The sixth lens group G6 is composed of a negative meniscus lens L61 having a convex surface facing the object side, a biconvex positive lens L62, and a positive meniscus lens L63 having a convex surface facing the object side, which are arranged in order from the object side. Will be done. The positive lens L62 has an aspherical lens surface on the image side.

第7レンズ群G7は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL71と、両凹形状の負レンズL72とから構成される。 The seventh lens group G7 is composed of a positive meniscus lens L71 having a concave surface facing the object side and a negative lens L72 having both concave shapes arranged in order from the object side.

第8レンズ群G8は、両凸形状の正レンズL81から構成される。 The eighth lens group G8 is composed of a biconvex positive lens L81.

第9レンズ群G9は、両凹形状の負レンズL91から構成される。第9レンズ群G9の像側に、像面Iが配置される。すなわち、第9レンズ群G9は、最終レンズ群に該当する。 The ninth lens group G9 is composed of a negative lens L91 having a biconcave shape. The image plane I is arranged on the image side of the ninth lens group G9. That is, the ninth lens group G9 corresponds to the final lens group.

本実施例では、第7レンズ群G7を像面I側へ移動させ、第8レンズ群G8を物体側へ移動させることにより、遠距離物体から近距離物体(無限遠物体から有限距離物体)への合焦が行われる。すなわち、第7レンズ群G7は、第1合焦レンズ群に該当し、第8レンズ群G8は、第2合焦レンズ群に該当する。 In this embodiment, the 7th lens group G7 is moved to the image plane I side, and the 8th lens group G8 is moved to the object side, thereby moving from a long-distance object to a short-distance object (from an infinite distance object to a finite-distance object). Is focused. That is, the 7th lens group G7 corresponds to the 1st in-focus lens group, and the 8th lens group G8 corresponds to the 2nd in-focus lens group.

以下の表5に、第5実施例に係る変倍光学系の諸元の値を掲げる。 Table 5 below lists the values of the specifications of the variable magnification optical system according to the fifth embodiment.

(表5)
[全体諸元]
変倍比 2.74
θgFP=0.625146
W M T
FNO 2.79867 2.84973 2.88046
2ω 33.269 17.64798 12.20244
Y 21.70 21.70 21.70
TL 194.00000 194.00000 194.00000
BF 32.56419 32.56419 32.56419
[レンズ諸元]
面番号 R D nd νd θgF
1 142.398 2.80 1.85000 27.03
2 89.22539 11.50 1.49782 82.57
3 -475.12414 0.20
4 78.29293 7.00 1.43385 95.23
5 169.60505 D5(可変)
6 2649.01093 2.00 1.55705 45.85
7 40.96873 5.00
8 91.52844 7.00 1.80809 22.74
9 -108.37528 0.10
10 -300.55351 1.60 1.49782 82.57
11 49.61316 9.00
12 -50.05975 2.00 1.66046 27.57 0.625146
13 -282.49474 D13(可変)
14 62.00807 3.50 1.92286 20.88
15 104.61485 D15(可変)
16 71.46374 5.00 1.49782 82.57
17 705.70649 0.10
18 54.57663 6.50 1.60300 65.44
19 -278.60199 D19(可変)
20 ∞ 3.00 (絞りS)
21 -104.70389 1.80 1.90499 26.68
22 30.2441 5.00 1.51188 68.34
23 130.63306 D23(可変)
24 39.55621 1.80 1.79124 28.25
25 31.45913 1.00
26 35.35387 7.00 1.55332 71.68
27* -111.74355 1.00
28 58.49751 2.50 1.81057 40.15
29 105.99178 D29(可変)
30 -286.5457 2.00 1.94594 17.98
31 -84.48026 0.80
32 -270.24499 1.25 1.59349 67
33 32.39702 D33(可変)
34 77.85755 4.80 1.80100 34.92
35 -88.13641 D35(可変)
36 -75.46523 2.00 1.72200 34.56
37 104.96677 BF
[非球面データ]
第27面
κ=0.00,A4=2.11E-06,A6=-1.20E-09
A8=-2.82E-13,A10=-3.58E-15,A12=0.00E+00
[レンズ群データ]
群 始面 焦点距離
G1 1 164.12723
G2 6 -47.62588
G3 14 158.7209
G4 16 52.56296
G5 20 -38.49179
G6 24 46.69749
G7 30 -80.39666
G8 34 52.28209
G9 36 -60.52463
[可変間隔データ]
W M T W M T
無限遠 無限遠 無限遠 近距離 近距離 近距離
f 71.5 135 196 ― ― ―
β ― ― ― -0.0839 -0.14665 -0.20273
D5 3.50002 37.12414 54.5663 3.50002 37.12414 54.5663
D13 37.00636 10.01061 2 37.00636 10.01061 2
D15 18.05993 11.43157 2 18.05993 11.43157 2
D19 3.82591 6.93485 8.82776 3.82591 6.93485 8.82776
D23 7.16459 4.05564 2.16276 7.16459 4.05564 2.16276
D29 4.89453 5.25712 2.03164 6.68467 11.36918 13.66092
D33 16.59265 15.71825 22.606 13.60117 5.68565 3
D35 5.706 6.21782 2.55555 6.90733 10.13836 10.53228
[条件式対応値]
条件式(1) f3/(-fE)=2.62
条件式(2) f1/(-fE)=2.71
条件式(3) f2/fE=0.79
条件式(4) f1/(-f2)=3.45
条件式(5) f1/f3=1.03
条件式(6) f1/f4=3.12
条件式(7) (-fF1)/fF2=1.54
条件式(8) νdP=27.57
条件式(9) ndP+(0.01425×νdP)=2.0533
条件式(10) θgFP+(0.00316×νdP)=0.7123
条件式(11) 2ωw=33.27°
条件式(12) 2ωt=12.20°
条件式(13) BFw/fw=0.46
(Table 5)
[Overall specifications]
Magnification ratio 2.74
θgFP = 0.625146
WMT
FNO 2.79867 2.84973 2.88046
2ω 33.269 17.64798 12.20244
Y 21.70 21.70 21.70
TL 194.00000 194.00000 194.00000
BF 32.56419 32.56419 32.56419
[Lens specifications]
Surface number RD nd νd θgF
1 142.398 2.80 1.85000 27.03
2 89.22539 11.50 1.49782 82.57
3 -475.12414 0.20
4 78.29293 7.00 1.43385 95.23
5 169.60505 D5 (variable)
6 2649.01093 2.00 1.55705 45.85
7 40.96873 5.00
8 91.52844 7.00 1.80809 22.74
9 -108.37528 0.10
10 -300.55351 1.60 1.49782 82.57
11 49.61316 9.00
12 -50.05975 2.00 1.66046 27.57 0.625146
13 -282.49474 D13 (variable)
14 62.00807 3.50 1.92286 20.88
15 104.61485 D15 (variable)
16 71.46374 5.00 1.49782 82.57
17 705.70649 0.10
18 54.57663 6.50 1.60300 65.44
19 -278.60199 D19 (variable)
20 ∞ 3.00 (Aperture S)
21 -104.70389 1.80 1.90499 26.68
22 30.2441 5.00 1.51188 68.34
23 130.63306 D23 (variable)
24 39.55621 1.80 1.79124 28.25
25 31.45913 1.00
26 35.35387 7.00 1.55332 71.68
27 * -111.74355 1.00
28 58.49751 2.50 1.81057 40.15
29 105.99178 D29 (variable)
30 -286.5457 2.00 1.94594 17.98
31 -84.48026 0.80
32 -270.24499 1.25 1.59349 67
33 32.39702 D33 (variable)
34 77.85755 4.80 1.80100 34.92
35 -88.13641 D35 (variable)
36 -75.46523 2.00 1.72200 34.56
37 104.96677 BF
[Aspherical data]
Surface 27 κ = 0.00, A4 = 2.11E-06, A6 = -1.20E-09
A8 = -2.82E-13, A10 = -3.58E-15, A12 = 0.00E + 00
[Lens group data]
Focal length of group origin
G1 1 164.12723
G2 6 -47.62588
G3 14 158.7209
G4 16 52.56296
G5 20 -38.49179
G6 24 46.69749
G7 30-80.39666
G8 34 52.28209
G9 36 -60.52463
[Variable interval data]
W M T W M T
Point at infinity Point at infinity Point at infinity Short distance Short distance Short distance f 71.5 135 196 ― ― ―
β ― ― ― -0.0839 -0.14665 -0.20273
D5 3.50002 37.12414 54.5663 3.50002 37.12414 54.5663
D13 37.00636 10.01061 2 37.00636 10.01061 2
D15 18.05993 11.43157 2 18.05993 11.43157 2
D19 3.82591 6.93485 8.82776 3.82591 6.93485 8.82776
D23 7.16459 4.05564 2.16276 7.16459 4.05564 2.16276
D29 4.89453 5.25712 2.03164 6.68467 11.36918 13.66092
D33 16.59265 15.71825 22.606 13.60117 5.68565 3
D35 5.706 6.21782 2.55555 6.90733 10.13836 10.53228
[Conditional expression correspondence value]
Conditional expression (1) f3 / (-fE) = 2.62
Conditional expression (2) f1 / (-fE) = 2.71
Conditional expression (3) f2 / fE = 0.79
Conditional expression (4) f1 / (-f2) = 3.45
Conditional expression (5) f1 / f3 = 1.03
Conditional expression (6) f1 / f4 = 3.12
Conditional expression (7) (-fF1) /fF2=1.54
Conditional expression (8) νdP = 27.57
Conditional expression (9) ndP + (0.01425 × νdP) = 2.0533
Conditional expression (10) θgFP + (0.00316 × νdP) = 0.7123
Conditional expression (11) 2ωw = 33.27 °
Conditional expression (12) 2ωt = 12.20 °
Conditional expression (13) BFw / fw = 0.46

図10(A)、図10(B)、および図10(C)はそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における諸収差図である。各諸収差図より、第5実施例に係る変倍光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 10 (A), 10 (B), and 10 (C) are aberration diagrams in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth embodiment, respectively. .. From each aberration diagram, it can be seen that the variable magnification optical system according to the fifth embodiment has various aberrations corrected well and has excellent imaging performance.

(第6実施例)
第6実施例について、図11~図12および表6を用いて説明する。図11は、第6実施例に係る変倍光学系が広角端状態から望遠端状態に変化する際のレンズの動きを示す図である。第6実施例に係る変倍光学系ZL(6)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、負の屈折力を有する第7レンズ群G7と、正の屈折力を有する第8レンズ群G8と、負の屈折力を有する第9レンズ群G9とから構成される。広角端状態から望遠端状態への変倍の際、第2レンズ群G2、第3レンズ群G3、第5レンズ群G5、第7レンズ群G7、および第8レンズ群G8は、別個に図11の矢印で示す方向に移動し、隣り合う各レンズ群の間隔が変化する。なお、変倍の際、第1レンズ群G1、第4レンズ群G4、第6レンズ群G6、および第9レンズ群G9は、像面Iに対して固定される。第4レンズ群G4と、第5レンズ群G5と、第6レンズ群G6と、第7レンズ群G7と、第8レンズ群G8と、第9レンズ群G9とからなるレンズ群は、後続レンズ群GRに該当する。
(6th Example)
The sixth embodiment will be described with reference to FIGS. 11 to 12 and Table 6. FIG. 11 is a diagram showing the movement of the lens when the variable magnification optical system according to the sixth embodiment changes from the wide-angle end state to the telephoto end state. The variable magnification optical system ZL (6) according to the sixth embodiment has a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive lens group G2 arranged in order from the object side. A third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a sixth lens group G6 having a positive refractive power. It is composed of a seventh lens group G7 having a negative refractive power, an eighth lens group G8 having a positive refractive power, and a ninth lens group G9 having a negative refractive power. When scaling from the wide-angle end state to the telephoto end state, the second lens group G2, the third lens group G3, the fifth lens group G5, the seventh lens group G7, and the eighth lens group G8 are separately shown in FIG. It moves in the direction indicated by the arrow, and the distance between adjacent lens groups changes. At the time of scaling, the first lens group G1, the fourth lens group G4, the sixth lens group G6, and the ninth lens group G9 are fixed with respect to the image plane I. The lens group consisting of the 4th lens group G4, the 5th lens group G5, the 6th lens group G6, the 7th lens group G7, the 8th lens group G8, and the 9th lens group G9 is the subsequent lens group. Corresponds to GR.

第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。 The first lens group G1 is a junction lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12 arranged in order from the object side, and a positive meniscus lens L13 having a convex surface facing the object side. It is composed of and.

第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、物体側に凸面を向けた正メニスカスレンズL23と、両凹形状の負レンズL24とから構成される。 The second lens group G2 includes a negative meniscus lens L21 having a convex surface facing the object side, a biconcave negative lens L22, and a positive meniscus lens L23 having a convex surface facing the object side, which are arranged in order from the object side. It is composed of a concave negative lens L24.

第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズL31から構成される。 The third lens group G3 is composed of a positive meniscus lens L31 having a convex surface facing the object side.

第4レンズ群G4は、両凸形状の正レンズL41から構成される。正レンズL41は、物体側のレンズ面が非球面である。 The fourth lens group G4 is composed of a biconvex positive lens L41. The positive lens L41 has an aspherical lens surface on the object side.

第5レンズ群G5は、両凹形状の負レンズL51と両凸形状の正レンズL52との接合レンズから構成される。第5レンズ群G5の最も物体側に、開口絞りSが配設され、変倍の際、第5レンズ群G5とともに移動する。 The fifth lens group G5 is composed of a junction lens of a biconcave negative lens L51 and a biconvex positive lens L52. The aperture stop S is arranged on the most object side of the fifth lens group G5, and moves together with the fifth lens group G5 at the time of scaling.

第6レンズ群G6は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL61と、両凸形状の正レンズL62と物体側に凹面を向けた負メニスカスレンズL63との接合レンズと、物体側に凸面を向けた正メニスカスレンズL64とから構成される。正レンズL62は、物体側のレンズ面が非球面である。 The sixth lens group G6 is a junction lens of a negative meniscus lens L61 having a convex surface facing the object side, a biconvex positive lens L62, and a negative meniscus lens L63 having a concave surface facing the object side, arranged in order from the object side. And a positive meniscus lens L64 with a convex surface facing the object side. The positive lens L62 has an aspherical lens surface on the object side.

第7レンズ群G7は、物体側から順に並んだ、両凸形状の正レンズL71と、両凹形状の負レンズL72とから構成される。 The seventh lens group G7 is composed of a biconvex positive lens L71 and a biconcave negative lens L72 arranged in order from the object side.

第8レンズ群G8は、両凸形状の正レンズL81から構成される。 The eighth lens group G8 is composed of a biconvex positive lens L81.

第9レンズ群G9は、物体側から順に並んだ、両凹形状の負レンズL91と、物体側に凹面を向けた負メニスカスレンズL92とから構成される。負レンズL91は、物体側のレンズ面が非球面である。第9レンズ群G9の像側に、像面Iが配置される。すなわち、第9レンズ群G9は、最終レンズ群に該当する。 The ninth lens group G9 is composed of a biconcave negative lens L91 arranged in order from the object side and a negative meniscus lens L92 with a concave surface facing the object side. The negative lens L91 has an aspherical lens surface on the object side. The image plane I is arranged on the image side of the ninth lens group G9. That is, the ninth lens group G9 corresponds to the final lens group.

本実施例では、第7レンズ群G7を像面I側へ移動させ、第8レンズ群G8を物体側へ移動させることにより、遠距離物体から近距離物体(無限遠物体から有限距離物体)への合焦が行われる。すなわち、第7レンズ群G7は、第1合焦レンズ群に該当し、第8レンズ群G8は、第2合焦レンズ群に該当する。 In this embodiment, the 7th lens group G7 is moved to the image plane I side, and the 8th lens group G8 is moved to the object side, thereby moving from a long-distance object to a short-distance object (from an infinite distance object to a finite-distance object). Is focused. That is, the 7th lens group G7 corresponds to the 1st in-focus lens group, and the 8th lens group G8 corresponds to the 2nd in-focus lens group.

以下の表6に、第6実施例に係る変倍光学系の諸元の値を掲げる。 Table 6 below lists the values of the specifications of the variable magnification optical system according to the sixth embodiment.

(表6)
[全体諸元]
変倍比 2.74
θgFP=0.6319
W M T
FNO 2.83129 2.85335 2.87996
2ω 33.76242 17.81528 12.26938
Y 21.70 21.70 21.70
TL 191.79997 191.79997 191.79997
BF 32.65404 32.65404 32.65404
[レンズ諸元]
面番号 R D nd νd θgF
1 113.29192 2.8 2.001 29.12
2 81.40925 10.5 1.49782 82.57
3 -795.64249 0.1
4 74.88525 8.2 1.433848 95.23
5 376.798 D5(可変)
6 82.73428 1.9 1.59349 67
7 31.04017 9.35
8 -168.77759 1.6 1.49782 82.57
9 115.02437 0.8
10 41.14809 3.8 1.663819 27.35 0.6319
11 73.00001 5.6
12 -61.06953 1.9 1.49782 82.57
13 98.51376 D13(可変)
14 86.14679 3.4 1.94595 17.98
15 694.90071 D15(可変)
16* 52.81421 8 1.553319 71.68
17 -117.98245 D17(可変)
18 ∞ 3.7 (絞りS)
19 -65.12937 1.8 1.92286 20.88
20 57.80344 5.30 1.49782 82.57
21 -111.65652 D21(可変)
22 92.32113 1.7 1.935421 18.16
23 60.00966 2
24* 58.92406 7.60 1.59201 66.89
25 -55 1.7 1.62004 36.4
26 -91.54022 1.3
27 59.23711 2.8 1.746869 23.4
28 126.70086 D28(可変)
29 448.34721 2.4 1.94595 17.98
30 -94.32707 0.8
31 -205.67313 1.25 1.794772 36.19
32 38.13601 D32(可変)
33 112.2489 3.85 1.90265 35.72
34 -112.24891 D34(可変)
35* -72.74439 1.9 1.49782 82.57
36 498.35011 4.9
37 -37.82283 1.90 1.716676 52.08
38 -51.98812 BF
[非球面データ]
第16面
κ=0.00,A4=2.07E-07,A6=1.58E-10
A8=-2.50E-13,A10=2.86E-16,A12=0.00E+00
第24面
κ=0.00,A4=-1.36E-06,A6=6.98E-10
A8=-4.57E-12,A10=1.66E-14,A12=-2.22E-17
第35面
κ=0.00,A4=1.84E-07,A6=3.48E-09
A8=-1.61E-11,A10=6.41E-14,A12=-9.19E-17
[レンズ群データ]
群 始面 焦点距離
G1 1 126.73821
G2 6 -35.76434
G3 14 103.67509
G4 16 67.05334
G5 18 -59.65998
G6 22 57.09316
G7 29 -82.17953
G8 33 62.68745
G9 35 -77.91319
[可変間隔データ]
W M T W M T
無限遠 無限遠 無限遠 近距離 近距離 近距離
f 71.49323 135 196 ― ― ―
β ― ― ― -0.08339 -0.14602 -0.1994
D5 1.6 28.92133 42.60181 1.6 28.92133 42.60181
D13 30.28784 9.66169 1.59632 30.28784 9.66169 1.59632
D15 13.82513 7.12995 1.51484 13.82513 7.12995 1.51484
D17 4.5 6.8522 7.51331 4.50 6.85 7.51
D21 4.51511 2.16291 1.5018 4.51511 2.16291 1.5018
D28 4.04215 6.41537 4.00083 5.37286 11.89757 14.49678
D32 22.88318 19.60826 26.72334 19.55641 8.36976 4.68183
D34 7.29656 8.19826 3.49773 9.29262 13.95456 15.04328
[条件式対応値]
条件式(1) f3/(-fE)=1.33
条件式(2) f1/(-fE)=1.63
条件式(3) f2/fE=0.46
条件式(4) f1/(-f2)=3.54
条件式(5) f1/f3=1.22
条件式(6) f1/f4=1.89
条件式(7) (-fF1)/fF2=1.31
条件式(8) νdP=27.35
条件式(9) ndP+(0.01425×νdP)=2.0536
条件式(10) θgFP+(0.00316×νdP)=0.7183
条件式(11) 2ωw=33.76°
条件式(12) 2ωt=12.27°
条件式(13) BFw/fw=0.46
(Table 6)
[Overall specifications]
Magnification ratio 2.74
θgFP = 0.6319
WMT
FNO 2.83129 2.85335 2.87996
2ω 33.76242 17.81528 12.26938
Y 21.70 21.70 21.70
TL 191.79997 191.79997 191.79997
BF 32.65404 32.65404 32.65404
[Lens specifications]
Surface number RD nd νd θgF
1 113.29192 2.8 2.001 29.12
2 81.40925 10.5 1.49782 82.57
3 -795.64249 0.1
4 74.88525 8.2 1.433848 95.23
5 376.798 D5 (variable)
6 82.73428 1.9 1.59349 67
7 31.04017 9.35
8-168.77759 1.6 1.49782 82.57
9 115.02437 0.8
10 41.14809 3.8 1.663819 27.35 0.6319
11 73.00001 5.6
12 -61.06953 1.9 1.49782 82.57
13 98.51376 D13 (variable)
14 86.14679 3.4 1.94595 17.98
15 694.90071 D15 (variable)
16 * 52.81421 8 1.553319 71.68
17 -117.98245 D17 (variable)
18 ∞ 3.7 (Aperture S)
19 -65.12937 1.8 1.92286 20.88
20 57.80344 5.30 1.49782 82.57
21 -111.65652 D21 (variable)
22 92.32113 1.7 1.935421 18.16
23 60.00966 2
24 * 58.92406 7.60 1.59201 66.89
25 -55 1.7 1.62004 36.4
26 -91.54022 1.3
27 59.23711 2.8 1.746869 23.4
28 126.70086 D28 (variable)
29 448.34721 2.4 1.94595 17.98
30 -94.32707 0.8
31 -205.67313 1.25 1.794772 36.19
32 38.13601 D32 (variable)
33 112.2489 3.85 1.90265 35.72
34 -112.24891 D34 (variable)
35 * -72.74439 1.9 1.49782 82.57
36 498.35011 4.9
37 -37.82283 1.90 1.716676 52.08
38 -51.98812 BF
[Aspherical data]
16th surface κ = 0.00, A4 = 2.07E-07, A6 = 1.58E-10
A8 = -2.50E-13, A10 = 2.86E-16, A12 = 0.00E + 00
Surface 24 κ = 0.00, A4 = -1.36E-06, A6 = 6.98E-10
A8 = -4.57E-12, A10 = 1.66E-14, A12 = -2.22E-17
Side 35 κ = 0.00, A4 = 1.84E-07, A6 = 3.48E-09
A8 = -1.61E-11, A10 = 6.41E-14, A12 = -9.19E-17
[Lens group data]
Focal length of group origin
G1 1 126.73821
G2 6 -35.76434
G3 14 103.67509
G4 16 67.05334
G5 18 -59.65998
G6 22 57.09316
G7 29 -82.17953
G8 33 62.68745
G9 35 -77.91319
[Variable interval data]
W M T W M T
Point at infinity Point at infinity Point at infinity Short distance Short distance Short distance f 71.49323 135 196 ― ― ―
β ― ― ― -0.08339 -0.14602 -0.1994
D5 1.6 28.92133 42.60181 1.6 28.92133 42.60181
D13 30.28784 9.66169 1.59632 30.28784 9.66169 1.59632
D15 13.82513 7.12995 1.51484 13.82513 7.12995 1.51484
D17 4.5 6.8522 7.51331 4.50 6.85 7.51
D21 4.51511 2.16291 1.5018 4.51511 2.16291 1.5018
D28 4.04215 6.41537 4.00083 5.37286 11.89757 14.49678
D32 22.88318 19.60826 26.72334 19.55641 8.36976 4.68183
D34 7.29656 8.19826 3.49773 9.29262 13.95456 15.04328
[Conditional expression correspondence value]
Conditional expression (1) f3 / (-fE) = 1.33
Conditional expression (2) f1 / (-fE) = 1.63
Conditional expression (3) f2 / fE = 0.46
Conditional expression (4) f1 / (-f2) = 3.54
Conditional expression (5) f1 / f3 = 1.22
Conditional expression (6) f1 / f4 = 1.89
Conditional expression (7) (-fF1) /fF2=1.31
Conditional expression (8) νdP = 27.35
Conditional expression (9) ndP + (0.01425 × νdP) = 2.0536
Conditional expression (10) θgFP + (0.00316 × νdP) = 0.7183
Conditional expression (11) 2ωw = 33.76 °
Conditional expression (12) 2ωt = 12.27 °
Conditional expression (13) BFw / fw = 0.46

図12(A)、図12(B)、および図12(C)はそれぞれ、第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における諸収差図である。各諸収差図より、第6実施例に係る変倍光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 12 (A), 12 (B), and 12 (C) are aberration diagrams in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the sixth embodiment, respectively. .. From each aberration diagram, it can be seen that the variable magnification optical system according to the sixth embodiment has various aberrations corrected well and has excellent imaging performance.

(第7実施例)
第7実施例について、図13~図14および表7を用いて説明する。図13は、第7実施例に係る変倍光学系が広角端状態から望遠端状態に変化する際のレンズの動きを示す図である。第7実施例に係る変倍光学系ZL(7)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とから構成される。広角端状態から望遠端状態への変倍の際、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4、および第5レンズ群G5は、別個に図13の矢印で示す方向に移動し、隣り合う各レンズ群の間隔が変化する。なお、変倍の際、第1レンズ群G1および第6レンズ群G6は、像面Iに対して固定される。第4レンズ群G4と、第5レンズ群G5と、第6レンズ群G6とからなるレンズ群は、後続レンズ群GRに該当する。
(7th Example)
The seventh embodiment will be described with reference to FIGS. 13 to 14 and Table 7. FIG. 13 is a diagram showing the movement of the lens when the variable magnification optical system according to the seventh embodiment changes from the wide-angle end state to the telephoto end state. The variable magnification optical system ZL (7) according to the seventh embodiment has a first lens group G1 having a positive refractive power, a second lens group G2 having a negative power, and a positive lens group G2 arranged in order from the object side. A third lens group G3 having a negative power, a fourth lens group G4 having a negative power, a fifth lens group G5 having a positive power, and a sixth lens group G6 having a negative power. Consists of. When scaling from the wide-angle end state to the telephoto end state, the second lens group G2, the third lens group G3, the fourth lens group G4, and the fifth lens group G5 are separately oriented in the directions indicated by the arrows in FIG. It moves and the distance between adjacent lens groups changes. At the time of scaling, the first lens group G1 and the sixth lens group G6 are fixed with respect to the image plane I. The lens group including the fourth lens group G4, the fifth lens group G5, and the sixth lens group G6 corresponds to the succeeding lens group GR.

第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。 The first lens group G1 is a junction lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12 arranged in order from the object side, and a positive meniscus lens L13 having a convex surface facing the object side. It is composed of and.

第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、物体側に凸面を向けた正メニスカスレンズL
23と、物体側に凹面を向けた負メニスカスレンズL24とから構成される。
The second lens group G2 includes a negative meniscus lens L21 having a convex surface facing the object side, a biconcave negative lens L22, and a positive meniscus lens L having a convex surface facing the object side, which are arranged in order from the object side.
It is composed of 23 and a negative meniscus lens L24 with a concave surface facing the object side.

第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL31と、物体側に凸面を向けた正メニスカスレンズL32と、両凸形状の正レンズL33と、両凹形状の負レンズL34と物体側に凸面を向けた正メニスカスレンズL35との接合レンズと、物体側に凸面を向けた負メニスカスレンズL36と、両凸形状の正レンズL37と物体側に凹面を向けた負メニスカスレンズL38との接合レンズと、物体側に凸面を向けた正メニスカスレンズL39とから構成される。第3レンズ群G3における正レンズL33と負レンズL34との間に、開口絞りSが配設され、変倍の際、第3レンズ群G3とともに移動する。正レンズL37は、物体側のレンズ面が非球面である。 The third lens group G3 includes a positive meniscus lens L31 having a convex surface facing the object side, a positive meniscus lens L32 having a convex surface facing the object side, and a biconvex positive lens L33 arranged in order from the object side. A junction lens of a concave negative lens L34 and a positive meniscus lens L35 with a convex surface facing the object side, a negative meniscus lens L36 with a convex surface facing the object side, a biconvex positive lens L37 and a concave surface on the object side. It is composed of a junction lens with a negative meniscus lens L38 directed toward the object and a positive meniscus lens L39 with a convex surface facing the object side. An aperture diaphragm S is arranged between the positive lens L33 and the negative lens L34 in the third lens group G3, and moves together with the third lens group G3 at the time of scaling. The positive lens L37 has an aspherical lens surface on the object side.

第4レンズ群G4は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL41と、両凹形状の負レンズL42とから構成される。 The fourth lens group G4 is composed of a positive meniscus lens L41 having a concave surface facing the object side and a negative lens L42 having both concave shapes arranged in order from the object side.

第5レンズ群G5は、両凸形状の正レンズL51から構成される。 The fifth lens group G5 is composed of a biconvex positive lens L51.

第6レンズ群G6は、物体側に凹面を向けた負メニスカスレンズL61から構成される。負メニスカスレンズL61は、物体側のレンズ面が非球面である。第6レンズ群G6の像側に、像面Iが配置される。すなわち、第6レンズ群G6は、最終レンズ群に該当する。 The sixth lens group G6 is composed of a negative meniscus lens L61 with a concave surface facing the object side. The negative meniscus lens L61 has an aspherical lens surface on the object side. The image plane I is arranged on the image side of the sixth lens group G6. That is, the sixth lens group G6 corresponds to the final lens group.

本実施例では、第4レンズ群G4を像面I側へ移動させ、第5レンズ群G5を物体側へ移動させることにより、遠距離物体から近距離物体(無限遠物体から有限距離物体)への合焦が行われる。すなわち、第4レンズ群G4は、第1合焦レンズ群に該当し、第5レンズ群G5は、第2合焦レンズ群に該当する。 In this embodiment, the fourth lens group G4 is moved to the image plane I side, and the fifth lens group G5 is moved to the object side, thereby moving from a long-distance object to a short-distance object (from an infinite distance object to a finite-distance object). Is focused. That is, the fourth lens group G4 corresponds to the first in-focus lens group, and the fifth lens group G5 corresponds to the second in-focus lens group.

以下の表7に、第7実施例に係る変倍光学系の諸元の値を掲げる。 Table 7 below lists the values of the specifications of the variable magnification optical system according to the seventh embodiment.

(表7)
[全体諸元]
変倍比 2.74
θgFP=0.6319
W M T
FNO 2.91966 2.90716 2.86166
2ω 34.08866 17.93464 12.307
Y 21.70 21.70 21.70
TL 208.41341 208.41341 208.41341
BF 31.14475 31.14475 31.14475
[レンズ諸元]
面番号 R D nd νd θgF
1 135.3501 2.8 1.911144 31.13
2 88.2984 9.7 1.49782 82.57
3 -2014.0365 0.1
4 87.0008 7.7 1.433848 95.23
5 1270.4367 D5(可変)
6 96.7322 1.9 1.580538 67.89
7 32.0715 9.4
8 -149.5985 1.6 1.49782 82.57
9 84.947 0.8
10 47.7033 4.1051 1.663819 27.35 0.6319
11 132.9068 4.917
12 -59.1191 1.9 1.49782 82.57
13 -410.9838 D13(可変)
14 75.2493 4.0117 1.919756 30.42
15 406.1688 3
16 110.8456 3 1.643929 59.34
17 221.1361 0.1
18 55.6433 5 1.510139 69.79
19 -452.609 4.5
20 ∞ 3.5 (絞りS)
21 -128.1374 1.8 1.924139 29.82
22 38.7647 4.2 1.513006 67.44
23 324.5195 4.1
24 111.4412 1.7 1.77151 22.51
25 58.0313 1.7
26* 61.5731 8.5 1.593493 67
27 -26.7185 1.7 1.627041 46.96
28 -76.4024 1.3
29 47.8194 2.5 1.772125 44.63
30 60.849 D30(可変)
31 -289.2655 2.2 1.945944 17.98
32 -56.7163 0.8
33 -62.5979 1.25 1.631431 31.71
34 46.593 D34(可変)
35 84.1615 4.75 1.764819 48.75
36 -185.6155 D36(可変)
37* -52.3045 1.9 1.49782 82.57
38 -319.0332 BF
[非球面データ]
第26面
κ=0.00,A4=-1.61284E-06,A6=4.35900E-10
A8=-1.44229E-12,A10=4.99341E-15,A12=-5.72670E-18
第37面
κ=0.00,A4=7.70231E-07,A6=2.20982E-09
A8=-9.92801E-12,A10=2.79429E-14,A12=-2.96640E-17
[レンズ群データ]
群 始面 焦点距離
G1 1 145.20607
G2 6 -47.94048
G3 14 59.76284
G4 31 -100.34191
G5 35 76.29409
G6 37 -125.96848
[可変間隔データ]
W M T W M T
無限遠 無限遠 無限遠 近距離 近距離 近距離
f 71.47903 135 196.00001 ― ― ―
β ― ― ― -0.07596 -0.13523 -0.18897
D5 1.6 36.65047 53.37203 1.6 36.65047 53.37203
D13 50.34136 17.30611 1.5894 50.34136 17.30611 1.5894
D30 4.89104 5.69832 3.75297 5.82603 9.72514 12.39738
D34 30.18447 22.82939 30.17853 25.97701 9.1382 2.51645
D36 14.96274 19.49533 13.08668 18.23522 29.1597 32.10436
[条件式対応値]
条件式(1) f3/(-fE)=0.47
条件式(2) f1/(-fE)=1.15
条件式(3) f2/fE=0.38
条件式(4) f1/(-f2)=3.03
条件式(5) f1/f3=2.43
条件式(6) f1/f4=-1.45
条件式(7) (-fF1)/fF2=1.32
条件式(8) νdP=27.35
条件式(9) ndP+(0.01425×νdP)=2.0536
条件式(10) θgFP+(0.00316×νdP)=0.7183
条件式(11) 2ωw=34.09°
条件式(12) 2ωt=12.31°
条件式(13) BFw/fw=0.44
(Table 7)
[Overall specifications]
Magnification ratio 2.74
θgFP = 0.6319
WMT
FNO 2.91966 2.90716 2.86166
2ω 34.08866 17.93464 12.307
Y 21.70 21.70 21.70
TL 208.41341 208.41341 208.41341
BF 31.14475 31.14475 31.14475
[Lens specifications]
Surface number RD nd νd θgF
1 135.3501 2.8 1.911144 31.13
2 88.2984 9.7 1.49782 82.57
3 -2014.0365 0.1
4 87.0008 7.7 1.433848 95.23
5 1270.4367 D5 (variable)
6 96.7322 1.9 1.580538 67.89
7 32.0715 9.4
8 -149.5985 1.6 1.49782 82.57
9 84.947 0.8
10 47.7033 4.1051 1.663819 27.35 0.6319
11 132.9068 4.917
12 -59.1191 1.9 1.49782 82.57
13 -410.9838 D13 (variable)
14 75.2493 4.0117 1.919756 30.42
15 406.1688 3
16 110.8456 3 1.643929 59.34
17 221.1361 0.1
18 55.6433 5 1.510139 69.79
19 -452.609 4.5
20 ∞ 3.5 (Aperture S)
21 -128.1374 1.8 1.924139 29.82
22 38.7647 4.2 1.513006 67.44
23 324.5195 4.1
24 111.4412 1.7 1.77151 22.51
25 58.0313 1.7
26 * 61.5731 8.5 1.593493 67
27 -26.7185 1.7 1.627041 46.96
28 -76.4024 1.3
29 47.8194 2.5 1.772125 44.63
30 60.849 D30 (variable)
31 -289.2655 2.2 1.945944 17.98
32 -56.7163 0.8
33 -62.5979 1.25 1.631431 31.71
34 46.593 D34 (variable)
35 84.1615 4.75 1.764819 48.75
36 -185.6155 D36 (variable)
37 * -52.3045 1.9 1.49782 82.57
38 -319.0332 BF
[Aspherical data]
Side 26 κ = 0.00, A4 = -1.61284E-06, A6 = 4.35900E-10
A8 = -1.44229E-12, A10 = 4.93431E-15, A12 = -5.72670E-18
Side 37 κ = 0.00, A4 = 7.70231E-07, A6 = 2.20982E-09
A8 = -9.92801E-12, A10 = 2.79429E-14, A12 = -2.96640E-17
[Lens group data]
Focal length of group origin
G1 1 145.20607
G2 6 -47.94048
G3 14 59.76284
G4 31 -100.34191
G5 35 76.29409
G6 37 -125.96848
[Variable interval data]
W M T W M T
Point at infinity Point at infinity Point at infinity Short distance Short distance Short distance f 71.47903 135 196.00001 ― ― ―
β ― ― ― -0.07596 -0.13523 -0.18897
D5 1.6 36.65047 53.37203 1.6 36.65047 53.37203
D13 50.34136 17.30611 1.5894 50.34136 17.30611 1.5894
D30 4.89104 5.69832 3.75297 5.82603 9.72514 12.39738
D34 30.18447 22.82939 30.17853 25.97701 9.1382 2.51645
D36 14.96274 19.49533 13.08668 18.23522 29.1597 32.10436
[Conditional expression correspondence value]
Conditional expression (1) f3 / (-fE) = 0.47
Conditional expression (2) f1 / (-fE) = 1.15
Conditional expression (3) f2 / fE = 0.38
Conditional expression (4) f1 / (-f2) = 3.03
Conditional expression (5) f1 / f3 = 2.43
Conditional expression (6) f1 / f4 = -1.45
Conditional expression (7) (-fF1) /fF2=1.32
Conditional expression (8) νdP = 27.35
Conditional expression (9) ndP + (0.01425 × νdP) = 2.0536
Conditional expression (10) θgFP + (0.00316 × νdP) = 0.7183
Conditional expression (11) 2ωw = 34.09 °
Conditional expression (12) 2ωt = 12.31 °
Conditional expression (13) BFw / fw = 0.44

図14(A)、図14(B)、および図14(C)はそれぞれ、第7実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における諸収差図である。各諸収差図より、第7実施例に係る変倍光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 14 (A), 14 (B), and 14 (C) are aberration diagrams in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the seventh embodiment, respectively. .. From each aberration diagram, it can be seen that the variable magnification optical system according to the seventh embodiment has various aberrations corrected well and has excellent imaging performance.

各実施例によれば、球面収差等の諸収差が良好に補正された変倍光学系を実現することができる。 According to each embodiment, it is possible to realize a variable magnification optical system in which various aberrations such as spherical aberration are satisfactorily corrected.

ここで、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。 Here, each of the above examples shows a specific example of the present invention, and the present invention is not limited thereto.

なお、以下の内容は、本実施形態に係る変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。 The following contents can be appropriately adopted as long as the optical performance of the variable magnification optical system according to the present embodiment is not impaired.

変倍光学系の数値実施例として、6群、7群、8群、9群、および10群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、5群や11群等)の変倍光学系を構成することもできる。具体的には、変倍光学系の最も物体側や最も像面側に、レンズまたはレンズ群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。 As numerical examples of the variable magnification optical system, those having a 6-group, 7-group, 8-group, 9-group, and 10-group configuration are shown, but the present application is not limited to this, and other group configurations (for example, 5 groups and 5 groups) are shown. It is also possible to configure a variable magnification optical system (11 groups, etc.). Specifically, a lens or a lens group may be added to the most object side or the most image plane side of the variable magnification optical system. The lens group refers to a portion having at least one lens separated by an air interval that changes at the time of scaling.

レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。 The lens surface may be formed on a spherical surface or a flat surface, or may be formed on an aspherical surface. When the lens surface is spherical or flat, lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to processing and assembly adjustment errors can be prevented, which is preferable. Further, even if the image plane is displaced, the deterioration of the depiction performance is small, which is preferable.

レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれでも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。 When the lens surface is an aspherical surface, the aspherical surface is an aspherical surface formed by grinding, a glass mold aspherical surface formed by forming glass into an aspherical surface shape, or a composite aspherical surface formed by forming resin on the glass surface into an aspherical surface shape. It doesn't matter which one. Further, the lens surface may be a diffraction surface, and the lens may be a refractive index distribution type lens (GRIN lens) or a plastic lens.

各レンズ面には、フレアやゴーストを軽減し、コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。これにより、フレ
アやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
An antireflection film having a high transmittance in a wide wavelength range may be provided on each lens surface in order to reduce flare and ghosting and achieve high-contrast optical performance. As a result, flare and ghost can be reduced, and high-contrast and high optical performance can be achieved.

G1 第1レンズ群 G2 第2レンズ群
G3 第3レンズ群 GR 後続レンズ群
I 像面 S 開口絞り
G1 1st lens group G2 2nd lens group G3 3rd lens group GR Subsequent lens group I Image plane S Aperture aperture

Claims (14)

物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、後続レンズ群とを有し、
変倍の際に、隣り合う各レンズ群の間隔が変化し、前記第1レンズ群が像面に対して固定され、
広角端状態から望遠端状態への変倍の際に、前記第3レンズ群が移動し、
前記後続レンズ群は、第4レンズ群と、前記第4レンズ群の像側に並んで配置された第5レンズ群と、最も像側に配置された最終レンズ群とを有し、
以下の条件式を満足する変倍光学系。
-10.00<f3/(-fE)<3.50
1.20<f1/f4<2.30
但し、f3:前記第3レンズ群の焦点距離
fE:前記最終レンズ群の焦点距離
f1:前記第1レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
It has a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a succeeding lens group arranged in order from the object side. ,
At the time of scaling, the distance between adjacent lens groups changes, and the first lens group is fixed to the image plane.
The third lens group moves when the magnification is changed from the wide-angle end state to the telephoto end state.
The subsequent lens group includes a fourth lens group, a fifth lens group arranged side by side on the image side of the fourth lens group, and a final lens group arranged on the image side most.
A variable magnification optical system that satisfies the following conditional expression.
-10.00 <f3 / (-fE) <3.50
1.20 <f1 / f4 <2.30
However, f3: the focal length of the third lens group fE: the focal length of the final lens group f1: the focal length of the first lens group f4: the focal length of the fourth lens group
物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、後続レンズ群とを有し、
変倍の際に、隣り合う各レンズ群の間隔が変化し、前記第1レンズ群が像面に対して固定され、
広角端状態から望遠端状態への変倍の際に、前記第3レンズ群が移動し、
前記後続レンズ群は、第4レンズ群と、前記第4レンズ群の像側に並んで配置された第5レンズ群と、最も像側に配置された最終レンズ群とを有し、
以下の条件式を満足する変倍光学系。
-0.50<f3/(-fE)<3.50
-2.00<f1/f4<2.30
但し、f3:前記第3レンズ群の焦点距離
fE:前記最終レンズ群の焦点距離
f1:前記第1レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
It has a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a succeeding lens group arranged in order from the object side. ,
At the time of scaling, the distance between adjacent lens groups changes, and the first lens group is fixed to the image plane.
The third lens group moves when the magnification is changed from the wide-angle end state to the telephoto end state.
The subsequent lens group includes a fourth lens group, a fifth lens group arranged side by side on the image side of the fourth lens group, and a final lens group arranged on the image side most.
A variable magnification optical system that satisfies the following conditional expression.
-0.50 <f3 / (-fE) <3.50
-2.00 <f1 / f4 <2.30
However, f3: the focal length of the third lens group fE: the focal length of the final lens group f1: the focal length of the first lens group f4: the focal length of the fourth lens group
以下の条件式を満足する請求項1または2に記載の変倍光学系。
-10.00<f1/(-fE)<3.50
The variable magnification optical system according to claim 1 or 2, which satisfies the following conditional expression.
-10.00 <f1 / (-fE) <3.50
以下の条件式を満足する請求項1~3のいずれか一項に記載の変倍光学系。
-10.00<f2/fE<1.50
但し、f2:前記第2レンズ群の焦点距離
The variable magnification optical system according to any one of claims 1 to 3, which satisfies the following conditional expression.
-10.00 <f2 / fE <1.50
However, f2: the focal length of the second lens group.
以下の条件式を満足する請求項1~4のいずれか一項に記載の変倍光学系。
1.50<f1/(-f2)<5.00
但し、f2:前記第2レンズ群の焦点距離
The variable magnification optical system according to any one of claims 1 to 4, which satisfies the following conditional expression.
1.50 <f1 / (-f2) <5.00
However, f2: the focal length of the second lens group.
以下の条件式を満足する請求項1~5のいずれか一項に記載の変倍光学系。
0.80<f1/f3<2.50
The variable magnification optical system according to any one of claims 1 to 5, which satisfies the following conditional expression.
0.80 <f1 / f3 <2.50
変倍の際に、前記最終レンズ群が像面に対して固定される請求項1~6のいずれか一項に記載の変倍光学系。 The variable magnification optical system according to any one of claims 1 to 6, wherein the final lens group is fixed to the image plane at the time of scaling. 変倍の際に、前記第3レンズ群よりも像側に配置されたレンズ群のうち少なくとも1つ
のレンズ群が像面に対して固定される請求項1~7のいずれか一項に記載の変倍光学系。
The invention according to any one of claims 1 to 7, wherein at least one lens group among the lens groups arranged on the image side of the third lens group is fixed to the image plane at the time of scaling. Variable magnification optical system.
前記後続レンズ群は、物体側から順に並んだ、合焦の際に移動する負の屈折力を有する第1合焦レンズ群と、合焦の際に移動する正の屈折力を有する第2合焦レンズ群とを有し、
以下の条件式を満足する請求項1~8のいずれか一項に記載の変倍光学系。
0.80<(-fF1)/fF2<5.00
但し、fF1:前記第1合焦レンズ群の焦点距離
fF2:前記第2合焦レンズ群の焦点距離
The following lens groups are a first focusing lens group having a negative refractive power that moves during focusing and a second focusing lens group having a positive refractive power that moves during focusing, which are arranged in order from the object side. It has a refraction lens group and
The variable magnification optical system according to any one of claims 1 to 8, which satisfies the following conditional expression.
0.80 <(-fF1) /fF2 <5.00
However, fF1: the focal length of the first focusing lens group fF2: the focal length of the second focusing lens group.
前記第2レンズ群は、以下の条件式を満足する正レンズを有する請求項1~9のいずれか一項に記載の変倍光学系。
18.0<νdP<35.0
1.83<ndP+(0.01425×νdP)<2.12
0.702<θgFP+(0.00316×νdP)
但し、νdP:前記正レンズのd線を基準とするアッベ数
ndP:前記正レンズのd線に対する屈折率
θgFP:前記正レンズの部分分散比であり、前記正レンズのg線に対する屈折率をngPとし、前記正レンズのF線に対する屈折率をnFPとし、前記正レンズのC線に対する屈折率をnCPとしたとき、次式で定義される
θgFP=(ngP-nFP)/(nFP-nCP)
The variable magnification optical system according to any one of claims 1 to 9, wherein the second lens group has a positive lens satisfying the following conditional expression.
18.0 <νdP <35.0
1.83 <ndP + (0.01425 × νdP) <2.12
0.702 <θgFP + (0.00316 × νdP)
However, νdP: Abbe number ndP based on the d-line of the positive lens: Refractive index θgFP with respect to the d-line of the positive lens: Partial dispersion ratio of the positive lens, and the refractive index of the positive lens with respect to the g-line is ngP. When the refractive index of the positive lens with respect to the F line is nFP and the refractive index of the positive lens with respect to the C line is nCP, θgFP = (ngP-nFP) / (nFP-nCP) defined by the following equation.
以下の条件式を満足する請求項1~10のいずれか一項に記載の変倍光学系。
25.00°<2ωw<50.00°
但し、2ωw:広角端状態における前記変倍光学系の全画角
The variable magnification optical system according to any one of claims 1 to 10, which satisfies the following conditional expression.
25.00 ° <2ωw <50.00 °
However, 2ωw: the total angle of view of the variable magnification optical system in the wide-angle end state.
以下の条件式を満足する請求項1~11のいずれか一項に記載の変倍光学系。
5.00°<2ωt<20.00°
但し、2ωt:望遠端状態における前記変倍光学系の全画角
The variable magnification optical system according to any one of claims 1 to 11, which satisfies the following conditional expression.
5.00 ° <2ωt <20.00 °
However, 2ωt: the total angle of view of the variable magnification optical system in the telephoto end state.
以下の条件式を満足する請求項1~12のいずれか一項に記載の変倍光学系。
0.20<BFw/fw<0.85
但し、BFw:広角端状態における前記変倍光学系のバックフォーカス
fw:広角端状態における前記変倍光学系の焦点距離
The variable magnification optical system according to any one of claims 1 to 12, which satisfies the following conditional expression.
0.20 <BFw / fw <0.85
However, BFw: the back focus of the variable magnification optical system in the wide-angle end state fw: the focal length of the variable magnification optical system in the wide-angle end state.
請求項1~13のいずれかに記載の変倍光学系を搭載して構成される光学機器。 An optical device including the variable magnification optical system according to any one of claims 1 to 13.
JP2022080811A 2018-11-20 2022-05-17 Variable Magnification Optical System and Optical Equipment Active JP7260036B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022080811A JP7260036B2 (en) 2018-11-20 2022-05-17 Variable Magnification Optical System and Optical Equipment
JP2023041869A JP7464165B2 (en) 2022-05-17 2023-03-16 Variable magnification optical system and optical equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/042762 WO2020105103A1 (en) 2018-11-20 2018-11-20 Variable magnification optical system, optical device, and production method for variable magnification optical system
JP2020557052A JP7078135B2 (en) 2018-11-20 2018-11-20 Variable magnification optics and optical equipment
JP2022080811A JP7260036B2 (en) 2018-11-20 2022-05-17 Variable Magnification Optical System and Optical Equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020557052A Division JP7078135B2 (en) 2018-11-20 2018-11-20 Variable magnification optics and optical equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023041869A Division JP7464165B2 (en) 2022-05-17 2023-03-16 Variable magnification optical system and optical equipment

Publications (2)

Publication Number Publication Date
JP2022103302A true JP2022103302A (en) 2022-07-07
JP7260036B2 JP7260036B2 (en) 2023-04-18

Family

ID=87888544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022080811A Active JP7260036B2 (en) 2018-11-20 2022-05-17 Variable Magnification Optical System and Optical Equipment

Country Status (1)

Country Link
JP (1) JP7260036B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034309A1 (en) * 2022-08-10 2024-02-15 株式会社ニコン Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009282214A (en) * 2008-05-21 2009-12-03 Nikon Corp Variable power optical system, optical equipment having it, and variable power method
JP2012141330A (en) * 2010-12-15 2012-07-26 Nikon Corp Variable power optical system, optical device having the variable power optical system, and manufacturing method of the variable power optical system
JP2013057738A (en) * 2011-09-07 2013-03-28 Olympus Corp Imaging apparatus
JP2013190827A (en) * 2007-11-12 2013-09-26 Ricoh Co Ltd Zoom lens and image capturing device
JP2015014678A (en) * 2013-07-04 2015-01-22 キヤノン株式会社 Zoom lens and image capturing device having the same
JP2015152665A (en) * 2014-02-12 2015-08-24 ソニー株式会社 zoom lens and optical equipment
JP2016126278A (en) * 2015-01-08 2016-07-11 株式会社タムロン Zoom lens and imaging apparatus
JP2016139125A (en) * 2015-01-21 2016-08-04 パナソニックIpマネジメント株式会社 Zoom lens system, interchangeable lens device, and camera system
WO2017134929A1 (en) * 2016-02-01 2017-08-10 ソニー株式会社 Zoom lens and optical instrument
JP2017219660A (en) * 2016-06-07 2017-12-14 キヤノン株式会社 Zoom lens and imaging device including the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013190827A (en) * 2007-11-12 2013-09-26 Ricoh Co Ltd Zoom lens and image capturing device
JP2009282214A (en) * 2008-05-21 2009-12-03 Nikon Corp Variable power optical system, optical equipment having it, and variable power method
JP2012141330A (en) * 2010-12-15 2012-07-26 Nikon Corp Variable power optical system, optical device having the variable power optical system, and manufacturing method of the variable power optical system
JP2013057738A (en) * 2011-09-07 2013-03-28 Olympus Corp Imaging apparatus
JP2015014678A (en) * 2013-07-04 2015-01-22 キヤノン株式会社 Zoom lens and image capturing device having the same
JP2015152665A (en) * 2014-02-12 2015-08-24 ソニー株式会社 zoom lens and optical equipment
JP2016126278A (en) * 2015-01-08 2016-07-11 株式会社タムロン Zoom lens and imaging apparatus
JP2016139125A (en) * 2015-01-21 2016-08-04 パナソニックIpマネジメント株式会社 Zoom lens system, interchangeable lens device, and camera system
WO2017134929A1 (en) * 2016-02-01 2017-08-10 ソニー株式会社 Zoom lens and optical instrument
JP2017219660A (en) * 2016-06-07 2017-12-14 キヤノン株式会社 Zoom lens and imaging device including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034309A1 (en) * 2022-08-10 2024-02-15 株式会社ニコン Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method

Also Published As

Publication number Publication date
JP7260036B2 (en) 2023-04-18

Similar Documents

Publication Publication Date Title
KR101834094B1 (en) Variable magnification optical system, optical device and method for manufacturing variable magnification optical system
JP7371742B2 (en) Variable magnification optics and optical equipment
JP6946774B2 (en) Variable magnification optics and optics
JP6857305B2 (en) Variable magnification optics and optical equipment
JP2021105744A (en) Optical system and optical apparatus
WO2018074413A1 (en) Variable-magnification optical system, optical device, and method for manufacturing variable-magnification optical system
JP2023083601A (en) Zoom optical system, optical device, and method of manufacturing zoom optical system
JP6938841B2 (en) Zoom lens and optical equipment
JP7078135B2 (en) Variable magnification optics and optical equipment
JP2021105747A (en) Optical system and optical apparatus
JP6583420B2 (en) Zoom lens and optical equipment
JP7260036B2 (en) Variable Magnification Optical System and Optical Equipment
US20210191112A1 (en) Optical system, optical apparatus, and method of manufacturing optical system
JP5212813B2 (en) Zoom lens, optical device including the same, and manufacturing method
JPWO2019116567A1 (en) Optical systems, optical instruments, and methods of manufacturing optical systems
JP7464165B2 (en) Variable magnification optical system and optical equipment
CN107615130B (en) Variable magnification optical system and optical apparatus
JP6337565B2 (en) Variable magnification optical system and imaging apparatus
JP6446821B2 (en) Magnification optical system and optical equipment
JPWO2019116564A1 (en) Optical systems, optical instruments, and methods of manufacturing optical systems
JP6119953B2 (en) Variable magnification optical system, optical apparatus having the variable magnification optical system, and method of manufacturing the variable magnification optical system
JPWO2019116568A1 (en) Optical systems, optical instruments, and methods of manufacturing optical systems
CN114341696B (en) Optical system and optical apparatus
JP6260074B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP6256732B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230320

R150 Certificate of patent or registration of utility model

Ref document number: 7260036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150