JP2022069814A - Damping suspension building - Google Patents

Damping suspension building Download PDF

Info

Publication number
JP2022069814A
JP2022069814A JP2020178699A JP2020178699A JP2022069814A JP 2022069814 A JP2022069814 A JP 2022069814A JP 2020178699 A JP2020178699 A JP 2020178699A JP 2020178699 A JP2020178699 A JP 2020178699A JP 2022069814 A JP2022069814 A JP 2022069814A
Authority
JP
Japan
Prior art keywords
building
foundation
support unit
contact body
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020178699A
Other languages
Japanese (ja)
Other versions
JP6889506B1 (en
Inventor
昭彦 矢野
Akihiko Yano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shelter Japan Corp
Original Assignee
Shelter Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shelter Japan Corp filed Critical Shelter Japan Corp
Priority to JP2020178699A priority Critical patent/JP6889506B1/en
Application granted granted Critical
Publication of JP6889506B1 publication Critical patent/JP6889506B1/en
Publication of JP2022069814A publication Critical patent/JP2022069814A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

To provide a damping suspension building that uses frictional force, which can be easily restored when the building is displaced, easy to manage frictional force, and easy to replace friction members.SOLUTION: A building 30 is a building supported by both a frame 20 and a support unit 50. Further, the frame 20 is fixed to a foundation 10. The support unit 50 is fixed to four corners of the lower end of the building 30 and has a contact body, a slide cylinder, a spring, and a jack. The jack and the slide cylinder are fixed to the building 30. At the time of an earthquake, when a horizontal force caused by the earthquake acts on the building 30, the support unit 50 slides along the foundation 10. At this time, a dynamic frictional force is generated between the support unit 50 and the foundation 10. Due to the energy absorption effect of the dynamic friction force, the displacement of the building 30 is suppressed and the damage to the building is reduced.SELECTED DRAWING: Figure 1

Description

本発明は、吊構造の建物である制振吊建物に関する。 The present invention relates to a vibration-damping suspended building, which is a building with a suspended structure.

阪神淡路大震災では、高力ボルト摩擦接合継手が滑る現象によって、鋼構造物が変形するなど、様々な被害が生じた。しかし、高力ボルト摩擦接合継手が滑ることによって変形した鋼構造物は、亀裂が入る、座屈するなどの被害が、他の鋼構造物に比べて小さかったことが知られている。摩擦力が、地震のエネルギーを吸収して、制振し、鋼構造物が受けるダメージを低減したためであると考えられている。 In the Great Hanshin-Awaji Earthquake, various damages such as deformation of steel structures occurred due to the phenomenon that high-strength bolt friction joints slipped. However, it is known that the steel structure deformed by the slip of the high-strength bolt friction joint has less damage such as cracking and buckling than other steel structures. It is believed that the frictional force absorbs the energy of the earthquake, damps it, and reduces the damage to the steel structure.

このように、摩擦力を利用した制振構造は、大きな制振効果、ダメージ低減効果があるにもかかわらず、普及していないのが現状である。原因として、以下の要因が考えられる。
1)摩擦力を利用してエネルギーを吸収する場合、滑ることによって接合する部材同士がずれることになり、必ずしも元の位置に戻らないことから、変形は復元されない。
2)滑る部材同士の摩擦力を長期にわたり維持することが難しい。
3)部材同士が滑って損耗したとき、取り換える必要があるが、取り換えに多大な労力を要する。
As described above, the vibration damping structure using the frictional force is not widely used even though it has a large vibration damping effect and a damage reducing effect. The following factors can be considered as the cause.
1) When energy is absorbed by using frictional force, the members to be joined are displaced by sliding and do not necessarily return to their original positions, so that the deformation is not restored.
2) It is difficult to maintain the frictional force between sliding members for a long period of time.
3) When the members slip and wear out, it is necessary to replace them, but it takes a lot of labor to replace them.

摩擦力を利用した制振構造を建物に適用する場合、建物自体が傾くなど、もとの位置からずれることによる居住性の悪化が懸念される。また、復元は、比較的大掛かりな施工を伴い、一般的に、建物に居住した状態での復元は困難である。最悪の場合、復元は不可能となり、建物自体を取り壊す必要が生じる。 When applying a vibration damping structure that utilizes frictional force to a building, there is a concern that the building itself may tilt and the habitability may deteriorate due to deviation from the original position. In addition, restoration involves relatively large-scale construction, and it is generally difficult to restore while living in a building. In the worst case, restoration will be impossible and the building itself will have to be demolished.

特開2014-169567号公報Japanese Unexamined Patent Publication No. 2014-169567

本発明の目的は、建物がずれたときに容易に復元できて、摩擦力の管理が容易で、さらに摩擦部材の取り換えが容易な摩擦力を利用した制振吊建物を提供することである。 An object of the present invention is to provide a vibration-damping suspension building using frictional force, which can be easily restored when the building is displaced, the frictional force can be easily managed, and the frictional member can be easily replaced.

上記課題を解決するための発明は、制振吊建物であって、基礎に固定されるフレームと、フレームに吊下げられる建物と、建物に固定される状態で基礎に接触して、建物の自重の一部を支持する支持ユニットを備え、支持ユニットは、地震時において、基礎との間に生じる摩擦力で、建物を制振することを特徴とする。 The invention for solving the above-mentioned problems is a vibration-damping suspension building, in which a frame fixed to the foundation, a building suspended from the frame, and the building contacting the foundation while being fixed to the building, and the weight of the building itself. It is provided with a support unit that supports a part of the building, and the support unit is characterized in that the building is damped by the frictional force generated between the support unit and the foundation in the event of an earthquake.

この構成によれば、通常時は、支持ユニットと基礎との間に生じる静止摩擦力によって、風などによる建物の横移動を抑止出来る。地震時は、支持ユニットと基礎との間に生じる動摩擦力によって地震エネルギーを吸収できるので建物の横揺れを抑制できるとともに、地震に起因する建物のダメージを軽減できる。また、建物はフレームに吊下げられるので、基礎を単純な形状にできる。 According to this configuration, in normal times, the static friction force generated between the support unit and the foundation can prevent lateral movement of the building due to wind or the like. In the event of an earthquake, the dynamic friction force generated between the support unit and the foundation can absorb the seismic energy, so it is possible to suppress the rolling of the building and reduce the damage to the building caused by the earthquake. Also, since the building is hung on the frame, the foundation can be made into a simple shape.

好ましくは、支持ユニットは、基礎に接触する接触体を有し、接触体は、建物に着脱可能に固定されることを特徴とする。 Preferably, the support unit has a contact body in contact with the foundation, which is detachably fixed to the building.

この構成によれば、基礎に接触する接触体は、建物に着脱可能に固定されるので、仮に何らかの要因(例えば、損耗、破損。)で、接触体を交換する必要が生じたとしても、接触体を、新しいものに簡単に取り換えることができる。 According to this configuration, the contact body in contact with the foundation is detachably fixed to the building, so that even if the contact body needs to be replaced due to some factor (for example, wear or breakage), the contact body is contacted. You can easily replace your body with a new one.

好ましくは、基礎と、接触体は、コンクリート同士が接触することを特徴とする。 Preferably, the foundation and the contact are characterized in that the concrete is in contact with each other.

この構成によれば、基礎と、接触体は、コンクリート同士が接触するので、大きな摩擦力を得ることができる。また、コンクリートという安価な材料を用いることができるので、コストダウンを図れる。 According to this configuration, since the concrete of the foundation and the contact body are in contact with each other, a large frictional force can be obtained. In addition, since an inexpensive material such as concrete can be used, the cost can be reduced.

好ましくは、接触体は、建物に対して上下方向にスライド可能であり、バネで付勢された状態で基礎と接触していることを特徴とする。 Preferably, the contacts are slidable up and down with respect to the building and are in contact with the foundation in a spring-loaded state.

この構成によれば、接触体は、建物に対して上下方向にスライド可能であり、バネで付勢された状態で基礎と接触しているので、建物の水平方向の移動に伴って、建物と基礎との間に存する隙間が増大したとしても、接触体は、増大する変化に追従して基礎に接した状態を保ち得る。 According to this configuration, the contact body is slidable up and down with respect to the building and is in contact with the foundation in a spring-forced state, so that as the building moves horizontally, the contact body with the building Even if the gap between the contact and the foundation increases, the contact body can keep in contact with the foundation by following the increasing change.

好ましくは、フレームは、上面に太陽光パネルが配設されることを特徴とする。 Preferably, the frame is characterized in that a solar panel is disposed on the upper surface.

この構成によれば、フレームの上面に太陽光パネルが配設されるので、建物の屋根に太陽光が直接当たることを大幅に回避できる。また、太陽光パネルと屋根の間の通風が確保できる。これにより、建物の室内の温度を抑制できる。 According to this configuration, since the solar panel is arranged on the upper surface of the frame, it is possible to greatly avoid direct sunlight from shining on the roof of the building. In addition, ventilation between the solar panel and the roof can be secured. As a result, the temperature inside the building can be suppressed.

本実施形態における制振吊建物の正面図である。It is a front view of the vibration damping suspension building in this embodiment. 同、平面断面図である。The same is a plan sectional view. (a)は支持ユニットを説明する正面図である。(b)は、同、平面断面図である。(A) is a front view explaining the support unit. (B) is a plan sectional view of the same. (a)は地震時における支持ユニットの挙動を説明する部分図であり、(b)は通常時における支持ユニットの建物の支持状態を説明する部分図である。(A) is a partial diagram for explaining the behavior of the support unit at the time of an earthquake, and (b) is a partial diagram for explaining the support state of the building of the support unit at the normal time.

本発明の実施形態について、図1~4を参照して説明する。 Embodiments of the present invention will be described with reference to FIGS. 1 to 4.

図1に示す通り、制振吊建物1(以後吊建物1という。)は、建物30が、フレーム20と、支持ユニット50の双方に支持される建築物である。また、フレーム20は、基礎10に固定されている。 As shown in FIG. 1, the vibration damping suspended building 1 (hereinafter referred to as a suspended building 1) is a building in which the building 30 is supported by both the frame 20 and the support unit 50. Further, the frame 20 is fixed to the foundation 10.

基礎10は、地面100の上方に突出して設けられ、平面視で矩形の連結部10aと、連結部10aの外周を帯状に取り囲む基礎部10bを有している。基礎部10bの隅部にフレーム20の支柱22が固定されている。基礎部10bは鉄筋コンクリート製であることが好ましい。 The foundation 10 is provided so as to project above the ground 100, and has a rectangular connecting portion 10a in a plan view and a foundation portion 10b that surrounds the outer periphery of the connecting portion 10a in a band shape. The column 22 of the frame 20 is fixed to the corner of the foundation portion 10b. The foundation portion 10b is preferably made of reinforced concrete.

図2に示す通り、連結部10aは、平面視が矩形の平板であり、基礎部10bの内部領域を全領域に渡って覆っている。これにより、地面100からの湿気の上昇を抑制するとともに、建物30の下方の雑草等の生育を抑制することができる。連結部10aは、基礎部10bと構造的に連結するものであってもよいし、単に基礎部10bと接続するものであってもよい。基礎部10bと構造的に連結する場合は、鉄筋コンクリート製、単に接続する場合は無筋コンクリート製であることが好ましい。接続形式は、地盤の状況、建物30の規模や重量を勘案して適宜定めればよい。 As shown in FIG. 2, the connecting portion 10a is a flat plate having a rectangular plan view, and covers the internal region of the foundation portion 10b over the entire region. As a result, it is possible to suppress the rise of moisture from the ground 100 and the growth of weeds and the like below the building 30. The connecting portion 10a may be structurally connected to the foundation portion 10b, or may be simply connected to the foundation portion 10b. When structurally connected to the foundation portion 10b, it is preferably made of reinforced concrete, and when simply connected, it is preferably made of unreinforced concrete. The connection type may be appropriately determined in consideration of the ground condition, the scale and weight of the building 30.

フレーム20は、立体ラーメン構造である。具体的には、基礎部10bに固定された支柱22に、格子状に組まれた梁23が固定されている構造である。梁23の上面は、太陽光パネル21が配設されている。太陽光パネル21によって、太陽光が遮蔽されて、屋根31への太陽光の照射は、極わずかとなる。また、太陽光パネル21で降雨も遮られ、さらに、屋根31との間の通風が確保される。このように太陽光パネル21を屋根31の上方に配設することで、建物30自体の建設コストを低減できる他、居住環境の改善を図り得る。 The frame 20 has a three-dimensional rigid frame structure. Specifically, the structure is such that the beams 23 assembled in a grid pattern are fixed to the columns 22 fixed to the foundation portion 10b. A solar panel 21 is arranged on the upper surface of the beam 23. The solar panel 21 shields the sunlight, and the irradiation of the sunlight to the roof 31 is very small. In addition, rainfall is blocked by the solar panel 21, and ventilation between the roof 31 and the roof 31 is ensured. By arranging the solar panel 21 above the roof 31 in this way, the construction cost of the building 30 itself can be reduced and the living environment can be improved.

建物30は、人が居住できる住居であり、通常時においては、フレーム20と支持ユニット50の双方に支持された状態で、基礎10の上方に配設されている。 The building 30 is a dwelling in which a person can live, and is normally arranged above the foundation 10 in a state of being supported by both the frame 20 and the support unit 50.

建物30の上端部は四隅で、ハンガー24を介し梁23と接続している。本実施計形態では、ハンガー24と建物30の接続部は、屋根31の近傍に設けられているが、屋根31と床32の中間部に設けてもよい。さらに、床32の近傍に設けてもよい。ハンガー24と建物30の接続部は、可能な限り建物の下端部に設けることが好ましい。ハンガー24の長さを長く設定することで、ハンガー24の傾きに伴う、建物30の鉛直方向の移動を低減できるからである。また、本実施形態ではハンガー24の本数は4本であるが、これより多くしてもよい。 The upper ends of the building 30 are at four corners and are connected to the beam 23 via hangers 24. In the present embodiment, the connection portion between the hanger 24 and the building 30 is provided in the vicinity of the roof 31, but may be provided in the intermediate portion between the roof 31 and the floor 32. Further, it may be provided in the vicinity of the floor 32. It is preferable that the connection portion between the hanger 24 and the building 30 is provided at the lower end portion of the building as much as possible. This is because by setting the length of the hanger 24 to be long, it is possible to reduce the vertical movement of the building 30 due to the inclination of the hanger 24. Further, in the present embodiment, the number of hangers 24 is 4, but it may be larger than this.

支持ユニット50は、建物30の下端部の四隅に固定されており、図3(a)に示す通り、接触体51、スライド筒52、バネ53、ジャッキ54を有している。ジャッキ54と、スライド筒52は建物30に固定されている。 The support unit 50 is fixed to the four corners of the lower end of the building 30, and has a contact body 51, a slide cylinder 52, a spring 53, and a jack 54 as shown in FIG. 3A. The jack 54 and the slide cylinder 52 are fixed to the building 30.

ジャッキ54は、バネ53を上下方向に移動させるためのものであり、バネ53に接続する移動部54aを有する。ジャッキ54を動作して移動部54aを上下方向に移動させることで、接触体51は、バネ53を介して、建物30の自重の一部を支持する。ジャッキ54は手動式、電動式のいずれであってもよい。 The jack 54 is for moving the spring 53 in the vertical direction, and has a moving portion 54a connected to the spring 53. By operating the jack 54 to move the moving portion 54a in the vertical direction, the contact body 51 supports a part of the weight of the building 30 via the spring 53. The jack 54 may be either a manual type or an electric type.

バネ53は、接触体51を下方に付勢するためのものであり、自然長に比べて短い状態で移動部54aと、接触体51に接続している。すなわち、圧縮された状態となっている。これにより、ハンガー24の傾斜に伴って建物30が上方に移動した場合でも、バネ53が伸びることで接触体51は、基礎10に接触した状態を保ち得る。本実施形態のバネ53は、圧縮コイルバネであるが、板バネとしてもよい。 The spring 53 is for urging the contact body 51 downward, and is connected to the moving portion 54a and the contact body 51 in a state shorter than the natural length. That is, it is in a compressed state. As a result, even when the building 30 moves upward due to the inclination of the hanger 24, the contact body 51 can be kept in contact with the foundation 10 by the extension of the spring 53. The spring 53 of the present embodiment is a compression coil spring, but may be a leaf spring.

接触体51は、円筒形の無筋コンクリート製であり、建物30に対して上下方向にスライドできる状態で、スライド筒52に内挿されている。上端部は、バネ53に接続し、下端部は、基礎10と接触している。 The contact body 51 is made of cylindrical unreinforced concrete and is inserted into the slide cylinder 52 in a state where it can slide vertically with respect to the building 30. The upper end is connected to the spring 53 and the lower end is in contact with the foundation 10.

スライド筒52は、固定部52bと、開閉部52aを有しており、固定部52bと開閉部52aは協働して接触体51がスライドできる円筒空間を画定している。固定部52bは建物30に固定されており、開閉部52aは、ボルト55によって、固定部52bと固定・分離できる構造である。開閉部52aを固定部52bから分離することで、接触体51を簡単に取り外すことができる。 The slide cylinder 52 has a fixing portion 52b and an opening / closing portion 52a, and the fixing portion 52b and the opening / closing portion 52a cooperate with each other to define a cylindrical space in which the contact body 51 can slide. The fixing portion 52b is fixed to the building 30, and the opening / closing portion 52a has a structure that can be fixed / separated from the fixing portion 52b by the bolt 55. By separating the opening / closing portion 52a from the fixing portion 52b, the contact body 51 can be easily removed.

通常時、および地震時における建物30の挙動について説明する。 The behavior of the building 30 during normal times and during an earthquake will be described.

通常時においては、建物30は、フレーム20と支持ユニット50の双方に支持されている。建物30に水平方向の力が作用した場合、例えば風が吹いた場合、支持ユニット50と、基礎10との間で発生する静止摩擦力で建物30は水平方向に変位することなく静止状態を保つ。想定される風速の風が吹いたとしても、建物30が水平変位しない静止摩擦力となるように、フレーム20と支持ユニット50の建物30の支持の負担割合を定めることが好ましい。 In normal times, the building 30 is supported by both the frame 20 and the support unit 50. When a horizontal force acts on the building 30, for example, when a wind blows, the static friction force generated between the support unit 50 and the foundation 10 keeps the building 30 stationary without being displaced in the horizontal direction. .. It is preferable to determine the load ratio of the support of the building 30 of the frame 20 and the support unit 50 so that the building 30 has a static friction force that does not cause horizontal displacement even if a wind of an assumed wind speed blows.

支持ユニット50が支持する鉛直力が小さくて、風による建物30の水平変位を抑制するために必要な最大静止摩擦力を得られない場合は、支持ユニット50に作用する鉛直力を増加させることが好ましい。建物30に錘を載せて建物の自重を増加させる、建物30の四隅にステー35を設けるなどである。 If the vertical force supported by the support unit 50 is too small to obtain the maximum static friction force required to suppress the horizontal displacement of the building 30 due to wind, the vertical force acting on the support unit 50 can be increased. preferable. A weight is placed on the building 30 to increase the weight of the building, and stays 35 are provided at the four corners of the building 30.

ステー35は、弾力性に富む紐状の部材が好ましく、図3に示す通り、引張力が付与された状態で、一方の端部が基礎10に、他方の端部が建物30の四隅の下端部に接続する。これにより、強制的に建物30を下方に押下げ得る。 The stay 35 is preferably a string-shaped member having abundant elasticity, and as shown in FIG. 3, one end is attached to the foundation 10 and the other end is the lower ends of the four corners of the building 30 in a state where a tensile force is applied. Connect to the unit. As a result, the building 30 can be forcibly pushed down.

建物30の居住環境を向上させるために、凸部12を設けてもよい(図1、2参照)。凸部12は、通常時においては、原則として建物30の下面に接触するのみであって、建物30の荷重を負担することはない。これにより、主に建物30の内部での人の移動等に起因する建物30の傾き、微振動を抑制できる。 In order to improve the living environment of the building 30, the convex portion 12 may be provided (see FIGS. 1 and 2). In the normal state, the convex portion 12 only contacts the lower surface of the building 30 in principle, and does not bear the load of the building 30. As a result, it is possible to suppress tilting and slight vibration of the building 30 mainly due to the movement of people inside the building 30.

地震時において、建物30に地震に起因する水平力が作用した場合、水平力が最大静止摩擦力よりも小さいときは、支持ユニット50は、位置ずれを起こすことなく基礎10の上に静止している(図4(b)参照)。水平力が最大静止摩擦力よりも大きくなったときは、支持ユニット50は、基礎10に沿って滑る。このとき、支持ユニット50と、基礎10との間に、動摩擦力が生じる。 At the time of an earthquake, when a horizontal force caused by the earthquake acts on the building 30, and the horizontal force is smaller than the maximum static friction force, the support unit 50 stands still on the foundation 10 without causing misalignment. (See Fig. 4 (b)). When the horizontal force becomes greater than the maximum static friction force, the support unit 50 slides along the foundation 10. At this time, a dynamic friction force is generated between the support unit 50 and the foundation 10.

フレーム20と、建物30の間に相対変位が生じ、ハンガー24は斜めに傾いた状態となる。このとき、図4(a)に示す通り、建物30と基礎10の間に生じる隙間hは、通常時と比べ大きくなる。隙間hが大きくなった場合でも、バネ53が伸びることで、基礎10と支持ユニット50は接触状態を保ち、所定の動摩擦力を生じた状態で、支持ユニット50は、基礎10に沿って滑る。このときの接触体51と基礎10との間に生じる動摩擦力によるエネルギー吸収効果によって、建物30の変位は抑制されるとともに、建物30のダメージは低減される。 A relative displacement occurs between the frame 20 and the building 30, and the hanger 24 is tilted diagonally. At this time, as shown in FIG. 4A, the gap h generated between the building 30 and the foundation 10 is larger than in the normal case. Even when the gap h becomes large, the spring 53 extends to keep the foundation 10 and the support unit 50 in contact with each other, and the support unit 50 slides along the foundation 10 in a state where a predetermined dynamic friction force is generated. Due to the energy absorption effect due to the dynamic friction force generated between the contact body 51 and the foundation 10 at this time, the displacement of the building 30 is suppressed and the damage of the building 30 is reduced.

地震が終息したとき、建物30が元の位置からずれて静止した場合は、ジャッキ54を動作して基礎10と支持ユニット50の接触状態を解き、斜めに傾いたハンガー24を元の状態に戻すことで、建物30を元の位置に復元できる。その後、再度、ジャッキ54を動作して支持ユニット50に建物30の自重を支持させればよい。 When the building 30 deviates from its original position and stands still when the earthquake ends, the jack 54 is operated to release the contact state between the foundation 10 and the support unit 50, and the slanted hanger 24 is returned to the original state. As a result, the building 30 can be restored to its original position. After that, the jack 54 may be operated again to cause the support unit 50 to support the weight of the building 30.

接触体51の摩耗等により、所定の摩擦力が得られないと判断したときは、既存の接触体51を、新しいものに交換すればよい。 When it is determined that the predetermined frictional force cannot be obtained due to wear of the contact body 51 or the like, the existing contact body 51 may be replaced with a new one.

交換は、バネ53が自然長の長さとなるようにジャッキ54を動作した後、ボルト55を緩めて開閉部52aと固定部52bを分離する。このとき、建物30は、フレーム20のみで支持される状態となっており、接触体51は建物30の自重を支持していない。そのため、接触体51を簡単に取り外すことができる。新しい接触体51は、取外しと逆の手順を踏むことで、簡単に取り付けることができる。 For replacement, the jack 54 is operated so that the spring 53 has a natural length, and then the bolt 55 is loosened to separate the opening / closing portion 52a and the fixing portion 52b. At this time, the building 30 is in a state of being supported only by the frame 20, and the contact body 51 does not support the own weight of the building 30. Therefore, the contact body 51 can be easily removed. The new contact body 51 can be easily attached by following the reverse procedure of removal.

ハンガー24については、ジャッキ54を動作して建物30の全ての自重を支持ユニット50に負担させて、ハンガー24に建物30の自重を支持させない状態とすることで、取り換えを簡単に行うことができる。 The hanger 24 can be easily replaced by operating the jack 54 to make the support unit 50 bear all the weight of the building 30 so that the hanger 24 does not support the weight of the building 30. ..

本実施形態は、例示であり、本発明の技術思想を逸脱しない範囲で改変できることは勿論である。例えば、本実施形態では、支持ユニットは四隅に設けられているが、さらに四隅の中間部に設けてもよい。 This embodiment is an example, and it is needless to say that the present embodiment can be modified without departing from the technical idea of the present invention. For example, in the present embodiment, the support units are provided at the four corners, but may be further provided at the intermediate portions of the four corners.

本発明に係る免振吊建物は、支持ユニットと基礎との間に生じる摩擦力によって建物の横移動を抑止できると共に建物がずれたときに容易に復元でき、また、摩擦部材である接触体の取り換えが容易である。さらに、屋根と分離して、フレームに太陽光パネルを取り付けることで、建物を軽量化できるので、建物の耐震性能を向上できる。また、災害時の電力を自給できる。特に巨大地震が予想される地域における活用が期待できることから、産業上の利用可能性は大である。 The seismic isolated suspended building according to the present invention can suppress lateral movement of the building due to the frictional force generated between the support unit and the foundation, can be easily restored when the building is displaced, and is a contact body which is a friction member. Easy to replace. Furthermore, by attaching a solar panel to the frame separately from the roof, the weight of the building can be reduced, and the seismic performance of the building can be improved. In addition, it can be self-sufficient in power in the event of a disaster. In particular, it can be expected to be used in areas where large earthquakes are expected, so its industrial applicability is great.

1:吊建物
10:基礎
20:フレーム
21:太陽光パネル
30:建物
50:支持ユニット
51:接触体
1: Suspended building 10: Foundation 20: Frame 21: Solar panel 30: Building 50: Support unit 51: Contact body

上記課題を解決するための発明は、制振吊建物であって、基礎に固定されるフレームと
、フレームに吊下げられる建物と、建物に固定される状態で基礎に接触して、建物の自重
の一部を支持する支持ユニットを備え、支持ユニットは、建物に着脱可能な状態で上下方向にスライド可能に固定されて基礎に接触する接触体と、建物に固定されるジャッキと、ジャッキの操作によって接触体を基礎の方向に付勢するバネを有し、地震時において、接触体と基礎との間に生じる摩擦力で、建物を制振することを特徴とする。
The invention for solving the above-mentioned problems is a vibration-damping suspension building, in which a frame fixed to the foundation, a building suspended from the frame, and the building contacting the foundation while being fixed to the building, and the weight of the building itself. The support unit is provided with a support unit that supports a part of the building, and the support unit is slidably fixed to the building in the vertical direction and is fixed to the foundation, and the jack fixed to the building and the operation of the jack. It has a spring that urges the contact body toward the foundation, and is characterized in that the building is damped by the frictional force generated between the contact body and the foundation during an earthquake.

この構成によれば、通常時は、支持ユニットと基礎との間に生じる静止摩擦力によって
、風などによる建物の横移動を抑止出来る。地震時は、支持ユニットと基礎との間に生じる動摩擦力によって地震エネルギーを吸収できるので建物の横揺れを抑制できるとともに、地震に起因する建物のダメージを軽減できる。また、建物はフレームに吊下げられるので、基礎を単純な形状にできる。
また、この構成によれば、基礎に接触する接触体は、建物に着脱可能に固定されるので、仮に何らかの要因(例えば、損耗、破損。)で、接触体を交換する必要が生じたとしても、接触体を、新しいものに簡単に取り換えることができる。
また、この構成によれば、建物の水平方向の移動に伴って、建物と基礎との間に存する隙間が増大したとしても、接触体は、増大する変化に追従して基礎に接した状態を保ち得る。
According to this configuration, in normal times, the static friction force generated between the support unit and the foundation can prevent lateral movement of the building due to wind or the like. In the event of an earthquake, the dynamic friction force generated between the support unit and the foundation can absorb the seismic energy, so it is possible to suppress the rolling of the building and reduce the damage to the building caused by the earthquake. Also, since the building is hung on the frame, the foundation can be made into a simple shape.
Further, according to this configuration, the contact body in contact with the foundation is detachably fixed to the building, so even if the contact body needs to be replaced due to some factor (for example, wear or damage). , The contact body can be easily replaced with a new one.
Further, according to this configuration, even if the gap existing between the building and the foundation increases due to the horizontal movement of the building, the contact body follows the increasing change and is in contact with the foundation. Can be kept.

Claims (5)

基礎に固定されるフレームと、
前記フレームに吊下げられる建物と、
前記建物に固定される状態で前記基礎に接触して、前記建物の自重の一部を支持する支持ユニットと、を備え
前記支持ユニットは、地震時において、前記基礎との間に生じる摩擦力で、前記建物を制振することを特徴とする制振吊建物。
The frame fixed to the foundation and
The building suspended from the frame and
A support unit that comes into contact with the foundation in a state of being fixed to the building and supports a part of the weight of the building, and the support unit is provided with a frictional force generated between the foundation and the support unit during an earthquake. , A vibration-damping suspension building characterized by damping the building.
前記支持ユニットは、前記基礎に接触する接触体を有し、
前記接触体は、前記建物に着脱可能に固定されることを特徴とする請求項1に記載の制振吊建物。
The support unit has a contact body that comes into contact with the foundation.
The vibration-damping suspension building according to claim 1, wherein the contact body is detachably fixed to the building.
前記基礎と、前記接触体は、コンクリート同士が接触することを特徴とする請求項2に記載の制振吊建物。 The vibration-damping suspension building according to claim 2, wherein the foundation and the contact body are in contact with each other. 前記接触体は、前記建物に対して上下方向にスライド可能であり、バネで付勢された状態で前記基礎と接触していることを特徴とする請求項2または3に記載の制振吊建物。 The vibration-damping suspension building according to claim 2 or 3, wherein the contact body is slidable in the vertical direction with respect to the building and is in contact with the foundation in a state of being urged by a spring. .. 前記フレームは上面に太陽光パネルが配設されることを特徴とする請求項1~4のいずれか1項に記載の制振吊建物。 The vibration-damping suspension building according to any one of claims 1 to 4, wherein the frame is provided with a solar panel on the upper surface.
JP2020178699A 2020-10-26 2020-10-26 Vibration control suspension building Active JP6889506B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020178699A JP6889506B1 (en) 2020-10-26 2020-10-26 Vibration control suspension building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020178699A JP6889506B1 (en) 2020-10-26 2020-10-26 Vibration control suspension building

Publications (2)

Publication Number Publication Date
JP6889506B1 JP6889506B1 (en) 2021-06-18
JP2022069814A true JP2022069814A (en) 2022-05-12

Family

ID=76429545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020178699A Active JP6889506B1 (en) 2020-10-26 2020-10-26 Vibration control suspension building

Country Status (1)

Country Link
JP (1) JP6889506B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325175A (en) * 1998-05-20 1999-11-26 East Japan Railway Co Suspending and sliding combined type base isolation/ vibration control structure
JPWO2011158823A1 (en) * 2010-06-14 2013-08-19 国立大学法人 熊本大学 Vibration damping device
JP2014118768A (en) * 2012-12-18 2014-06-30 Nippon Steel & Sumikin Metal Products Co Ltd Solar panel installation structure of flood disaster evacuation tower and solar panel installation method
JP2018062823A (en) * 2016-10-14 2018-04-19 株式会社竹中工務店 Base-isolation construction
JP2020122381A (en) * 2019-01-29 2020-08-13 吾郎 奥村 Seismic isolator for wooden building

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5598006B2 (en) * 2010-02-03 2014-10-01 ソニー株式会社 Liquid crystal display device and projection display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325175A (en) * 1998-05-20 1999-11-26 East Japan Railway Co Suspending and sliding combined type base isolation/ vibration control structure
JPWO2011158823A1 (en) * 2010-06-14 2013-08-19 国立大学法人 熊本大学 Vibration damping device
JP2014118768A (en) * 2012-12-18 2014-06-30 Nippon Steel & Sumikin Metal Products Co Ltd Solar panel installation structure of flood disaster evacuation tower and solar panel installation method
JP2018062823A (en) * 2016-10-14 2018-04-19 株式会社竹中工務店 Base-isolation construction
JP2020122381A (en) * 2019-01-29 2020-08-13 吾郎 奥村 Seismic isolator for wooden building

Also Published As

Publication number Publication date
JP6889506B1 (en) 2021-06-18

Similar Documents

Publication Publication Date Title
JP6640459B2 (en) Seismic isolation method for seismic isolation structure, steel frame support structure and existing steel frame support structure
KR101000206B1 (en) Windows system having earthquake-proof performance
CN103628565B (en) Frame-brace waves across structural system
CN212715645U (en) Anti-seismic steel beam structure
CN113202186B (en) Steel construction antidetonation frame construction and steel construction assembled earthquake-resistant building
JP3421732B2 (en) Vertical seismic isolation device and three-dimensional seismic isolation device
JP6991422B2 (en) Vibration damping device for structures
CN113123454B (en) Column-connected double-energy-consumption assembled concrete frame system and construction method
JP6889506B1 (en) Vibration control suspension building
KR20010074179A (en) Multi-directional Seismic Isolation Devices
CN108678481B (en) Anti-seismic steel structure residential building
KR101011162B1 (en) The structure aseismic reinforcement structure and the method of construction for which aseismic reinforcement equipment and this were used
KR102305534B1 (en) Arcade with shock-absorb structure for seismic motion
JP4990729B2 (en) Seismic isolation building
CN211114952U (en) Ancient building antidetonation strengthening equipment
JP2000104786A (en) Floating preventive mechanism of base isolation device
JP2011127768A (en) Hoisting type base isolation device
KR101230056B1 (en) Moving Floor Structure for Seismic Isolation
CN215594372U (en) Steel construction formula antidetonation industry factory building ceiling structure
CN215371319U (en) Foldable antidetonation gallows
JP2541871B2 (en) Seismic isolation floor structure
JPH10169241A (en) Base-isolated building
CN216276276U (en) Building shock absorption structure using damper
CN218406776U (en) Anti-seismic fabricated house
CN212226658U (en) Novel finished product antidetonation gallows

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201027

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201027

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210514

R150 Certificate of patent or registration of utility model

Ref document number: 6889506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250