JP2021188301A - Reuse method of structure - Google Patents

Reuse method of structure Download PDF

Info

Publication number
JP2021188301A
JP2021188301A JP2020092408A JP2020092408A JP2021188301A JP 2021188301 A JP2021188301 A JP 2021188301A JP 2020092408 A JP2020092408 A JP 2020092408A JP 2020092408 A JP2020092408 A JP 2020092408A JP 2021188301 A JP2021188301 A JP 2021188301A
Authority
JP
Japan
Prior art keywords
frame
truss
scale
roof frame
original
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020092408A
Other languages
Japanese (ja)
Other versions
JP7171153B2 (en
Inventor
洋一 向山
Yoichi Mukoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoe Corp
Original Assignee
Tomoe Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoe Corp filed Critical Tomoe Corp
Priority to JP2020092408A priority Critical patent/JP7171153B2/en
Publication of JP2021188301A publication Critical patent/JP2021188301A/en
Application granted granted Critical
Publication of JP7171153B2 publication Critical patent/JP7171153B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a reuse method of a structure capable of reusing almost all existing members when a temporary large space structure constructed in an exhibition or the like is scaled-down and reused.SOLUTION: A roof frame 2b of a scale-reduced building 1a has a similar shape of a roof frame size ratio A1/A (=B1/B) to a roof frame 2 of an original building 1, and coincides with a truss beam size ratio d/D. As shown in Fig. 5, one end or both ends of respective truss members 10, 11, 12, 13 after reduction in scale (hatched portions in Fig. 5 (a)) are cut off so as to correspond to a ratio S1/S of a dimension between truss upper chord nodes, and the truss is reassembled into a truss having a similar shape dimension as shown in Fig. 5 (b).SELECTED DRAWING: Figure 5

Description

本発明は、博覧会等で建設される短期間のみ使用される大規模展示場のような大空間構造物の屋根架構が、規模縮小されてリユースされる場合における、構造物のリユース方法に関する。 The present invention relates to a method for reusing a structure when a roof frame of a large space structure such as a large-scale exhibition hall constructed at an exposition or the like and used only for a short period of time is reduced in scale and reused.

従来、例えば、博覧会等で建設される大規模展示場等は、短期間使用の仮設建物として建設されることがあり、その場合、解体後にその架構部材を再利用することを前提として設計・施工されることがあった。 Conventionally, for example, a large-scale exhibition hall constructed at an exposition may be constructed as a temporary building for short-term use, and in that case, it is designed on the premise that the frame members will be reused after dismantling. It was sometimes constructed.

全く同じ建物としてリユースされる場合は問題ないが、例えば、図1に図示の建物1において、そのトラス構造の屋根架構2(平面寸法AxB、梁せいDの平版形)を規模縮小して、図2に示すように、規模縮小された建物1aとしてリユースする場合に、屋根架構2の中央部架構2a(平面寸法A1xB1、梁せいDの平版形)の部分のみを残して、その他の架構部分を省いたとすると、平面寸法の比がA1/A=B1/Bであったとしても、リユース後の架構(中央部架構2a)は元の架構(屋根架構2)の相似形とはなり得ず、従って、応力分布も全く変わるため、再利用された部材の強度が必ずしも十分とは限らない。 There is no problem if it is reused as the exact same building, but for example, in the building 1 shown in FIG. 1, the roof frame 2 (plan dimension AxB, beam frame D flat plate) of the truss structure is scaled down and shown in the figure. As shown in 2, when reusing as a scaled-down building 1a, only the central part frame 2a (plan dimension A 1 x B 1 , beam frame D flat plate) of the roof frame 2 is left, and other parts are left. If the frame part is omitted, even if the ratio of the plane dimensions is A 1 / A = B 1 / B, the frame after reuse (central frame 2a) is similar to the original frame (roof frame 2). Therefore, the strength of the recycled member is not always sufficient because the stress distribution changes completely.

即ち、既存の部材がそのまま再利用できるとは限らず、部材強度の検討をし、強度不足の場合には改めて新たに部材の設計・製作をする必要があった。 That is, it is not always possible to reuse existing members as they are, and it is necessary to study the strength of the members and to design and manufacture new members if the strength is insufficient.

構造物のリユースに関連する先行技術として、例えば、特許文献1あるいは特許文献2がある。特許文献1では、スパン方向がH形鋼の強軸使いのラーメン構造、桁行方向がH形鋼の弱軸使いのラーメン構造とH形鋼を強軸使いとした耐震間柱とを組み合わせた構造を、一定寸法の三次元架構を独立した単位ブロックとする鉄骨造の建物構造の構築方法が開示されている。この構築方法によれば、桁行方向および張間方向に前記ブロックを連続して建物を拡張、もしくは縮小できるとしている。 For example, Patent Document 1 or Patent Document 2 is a prior art related to the reuse of a structure. In Patent Document 1, a ramen structure using a strong shaft of H-shaped steel in the span direction, a ramen structure using a weak shaft of H-shaped steel in the girder direction, and a seismic column using H-shaped steel as a strong shaft are combined. , A method for constructing a steel-framed building structure in which a three-dimensional structure having a certain size is used as an independent unit block is disclosed. According to this construction method, the block can be continuously expanded or contracted in the girder direction and the stretch direction.

即ち、既設建物でも、必要な規模になるように、前記ブロックの数を減らしたり増やしたりすることができる。しかし、その規模(建物面積)が増減すれば、柱本数も比例して増減するだけなので、博覧会等で建設される大規模展示場等のように柱のない空間構造を規模縮小してリユースしようとする場合には、適用できない。 That is, even in an existing building, the number of the blocks can be reduced or increased so as to have a required scale. However, if the scale (building area) increases or decreases, the number of pillars will only increase or decrease in proportion, so the space structure without pillars, such as a large-scale exhibition hall constructed at an exposition, will be scaled down and reused. Not applicable if you try.

特許文献2では、競技施設やイベント施設等の比較的大スパンの屋根に適する屋根架構として、下弦が緊張材である張弦梁と上弦が緊張材である張弦梁とを直交させ、その交差部に束材を介装して交差梁を構成することを基本とし、緊張材にプレストレスを導入した張弦梁構造が開示されている。これら各部材同士の接合部は簡易なピン接合であるので、架構の組立ておよび解体が容易であり、かつ、各部材を高度にリユースすることも可能としている。 In Patent Document 2, as a roof frame suitable for a roof having a relatively large span such as a competition facility or an event facility, a tension beam whose lower chord is a tension material and a tension beam whose upper chord is a tension material are orthogonal to each other, and a bundle material is provided at the intersection thereof. A tension beam structure in which prestress is introduced into the tension material is disclosed on the basis of constructing a cross beam by interposing the roof. Since the joint between each of these members is a simple pin joint, it is easy to assemble and disassemble the frame, and each member can be highly reused.

特許文献2の発明は、本発明が対象としている大空間構造物の屋根架構の分野に属するが、既存屋根架構をリユースするに際して、交差梁である前記張弦梁の形状寸法はそのままに再利用することになるので、リユース後の屋根架構の規模縮小(張弦梁の短縮)は不可能である。従って、本発明が想定する規模縮小されてリユースされる場合には適用できない。 The invention of Patent Document 2 belongs to the field of roof frames of large space structures, which is the subject of the present invention, but when reusing an existing roof frame, the shape and dimensions of the chord beam, which is a cross beam, are reused as they are. Therefore, it is impossible to reduce the scale of the roof frame (shortening the chord beam) after reuse. Therefore, it cannot be applied when the scale is reduced and reused as assumed by the present invention.

特開2006−46023号公報Japanese Unexamined Patent Publication No. 2006-46023 特許第3918715号Patent No. 3918715

本発明は、博覧会等で建設される短期間のみ使用される大規模展示場のような大空間構造物の屋根架構が、規模縮小されてリユースされる場合において、サイズはそのままにほぼ全ての既存部材を再利用できる、構造物のリユース方法を提供するものである。 According to the present invention, when a roof frame of a large space structure such as a large-scale exhibition hall constructed at an exposition or the like, which is used only for a short period of time, is reduced in scale and reused, the size remains unchanged in almost all cases. It provides a method for reusing a structure in which existing members can be reused.

前記課題を解決するための本発明の手段は、展示場等構造物の架構をリユースする場合において、規模縮小後の架構形状寸法が元の架構と相似形であって、元の前記架構を構成する各部材の規模縮小後の節点間長さが、前記相似形の比率に合わせた長さになるように、規模縮小前の前記部材の一端もしくは両端の一部が切除加工されることを特徴とする、構造物のリユース方法である。 The means of the present invention for solving the above-mentioned problems is that when the frame of a structure such as an exhibition hall is reused, the frame shape dimension after the scale reduction is similar to the original frame, and the original frame is configured. It is characterized in that one end or a part of both ends of the member before the scale reduction is cut so that the internode length after the scale reduction of each member becomes a length corresponding to the ratio of the similar figures. It is a method of reusing a structure.

また、展示場等構造物の屋根架構をリユースする場合において、規模縮小後の屋根架構形状寸法が元の屋根架構と相似形であって、元の前記屋根架構を構成する各部材の規模縮小後の節点間長さが、前記相似形の比率に合わせた長さになるように、規模縮小前の前記部材の一端もしくは両端の一部が切除加工されることを特徴とする、構造物のリユース方法である。 Further, when the roof frame of a structure such as an exhibition hall is reused, the shape and dimensions of the roof frame after the scale reduction are similar to those of the original roof frame, and after the scale of each member constituting the original roof frame is reduced. Reuse of the structure, characterized in that one end or a part of both ends of the member before the scale reduction is cut so that the inter-node length of the member is adjusted to the ratio of the similar shape. The method.

また、本発明は、例えば、屋根架構が複層もしくは単層のトラス構造であって、軸芯回りに捩られている部材が含まれる構造物の架構において、前記部材の節点間長さが前記相似形の比率に合わせた長さになるように、規模縮小前の前記捩られている部材の一端もしくは両端の一部が切除加工されると共に、規模縮小後の前記屋根架構の形状に合わせた捩じり角度になるように、規模縮小後の前記捩られている部材がその軸芯回りに追加捩りを加えられることを特徴とする、前記の構造物のリユース方法である。 Further, in the present invention, for example, in a frame structure in which the roof frame is a multi-layer or single-layer truss structure and includes a member twisted around the axis, the internode length of the member is the above-mentioned. One end or a part of both ends of the twisted member before the scale reduction is cut off so that the length matches the ratio of the similar shape, and the length is matched to the shape of the roof frame after the scale reduction. The method for reusing the structure is characterized in that the twisted member after the scale is reduced in size so as to have a twist angle, and additional twist is applied around the axis thereof.

本発明は、以上のような手段であるので、展示場等構造物の屋根架構をリユースする場合において、規模縮小後の架構形状寸法が元の架構と相似形であるようにすれば、架構を構成する全部材は相似比率に応じて短くなるが各部材の剛比はそのままなので、応力値は変わっても応力分布状態は変わらない。しかも、規模縮小により前記架構に作用する荷重効果は低減されるため、前記応力値が小さくなるので、それら前記部材の強度は元の架構の時よりも余裕度が増すことになる。即ち、部材長さを短くするだけで(即ち、部材断面サイズはそのままで)同じ部材が再利用できるので、改めて部材の設計・製作をする必要がない。 Since the present invention is the above means, when the roof frame of a structure such as an exhibition hall is reused, if the frame shape dimension after the scale reduction is similar to the original frame, the frame can be constructed. All the constituent members become shorter according to the similarity ratio, but the rigidity ratio of each member remains the same, so that the stress distribution state does not change even if the stress value changes. Moreover, since the load effect acting on the frame is reduced by the scale reduction, the stress value becomes small, so that the strength of the members has a larger margin than in the original frame. That is, since the same member can be reused only by shortening the member length (that is, the member cross-sectional size remains the same), there is no need to design and manufacture the member again.

また、部材同士が接続される節点の接合部については、元の接合方式がボルト接合であれば、前記部材の切除加工された端部の方を前記節点の節点接合部材に合うようにボルト孔加工すれば、そのまま再利用が可能となる。 Further, regarding the joint portion of the node where the members are connected to each other, if the original joining method is bolt joining, a bolt hole is provided so that the cut end portion of the member matches the node joint member of the node. Once processed, it can be reused as it is.

部材寸法(長さ、断面)と応力および変形の関係について説明する。例えば、極簡単な例(図7(a),(b)参照)として、1本の単純梁Gに載荷された単位長さ当りの鉛直等分布荷重wによる最大の曲げモーメントMと最大のたわみδは、次式のようになる。

Figure 2021188301
Figure 2021188301
但し、w:鉛直等分布荷重、L:梁の長さ(支点間寸法)
E:ヤング係数、I:梁の断面二次モーメント The relationship between member dimensions (length, cross section) and stress and deformation will be described. For example, as a very simple example (see FIGS. 7A and 7B), the maximum bending moment M and the maximum deflection due to the vertically evenly distributed load w per unit length loaded on one simple beam G. δ is as follows.
Figure 2021188301
Figure 2021188301
However, w: vertical evenly distributed load, L: beam length (dimension between fulcrums)
E: Young's modulus, I: Moment of inertia of area of beam

上記(式1)および(式2)から分かるように、部材(単純梁G)に作用する曲げモーメントMは長さLの2乗に比例し、たわみδは長さLの4乗に比例する。 As can be seen from the above (Equation 1) and (Equation 2), the bending moment M acting on the member (simple beam G) is proportional to the square of the length L, and the deflection δ is proportional to the fourth power of the length L. ..

ここで、前記単純梁Gが下記の断面性能を有するトラス梁T(図8参照)であったとして、相似的に縮小された後のトラス梁T1の曲げ耐力M1とたわみδ1への影響を述べる。 Here, assuming that the simple beam G is a truss beam T (see FIG. 8) having the following cross-sectional performance, the bending strength M 1 and the deflection δ 1 of the truss beam T 1 after being reduced in a similar manner. Describe the impact.

(トラス梁T)
断面係数Z=a・j、断面二次モーメントI=a・j2/2
但し、a:片側の弦材断面積(上下弦材とも同じとする)
j:上下弦材の重心間寸法

Figure 2021188301
但し、F:材料強度
Figure 2021188301
(トラス梁T1
相似比率をα(<1.0)として(式3)、(式4)のj、Lをαj、αLに置換えて、断面係数Z1=(a・j)・α、 断面二次モーメントI1=(a・j2/2)・α2
Figure 2021188301
Figure 2021188301
(Truss beam T)
Section modulus Z = a · j, the geometrical moment of inertia I = a · j 2/2
However, a: Cross-sectional area of the chord material on one side (same for the upper and lower chord materials)
j: Dimensions between the centers of gravity of the upper and lower chords
Figure 2021188301
However, F: material strength
Figure 2021188301
(Truss beam T 1 )
With the similarity ratio as α (<1.0), replace j and L in (Equation 3) and (Equation 4) with αj and αL, and the moment of inertia of area Z 1 = (a · j) · α, moment of inertia of area I 1 = (a · j 2/2) · α 2
Figure 2021188301
Figure 2021188301

上記(式3)および(式4)と(式5)および(式6)との比較で分かるように、(式3)および(式4)と(式5)および(式6)は、(式5)と(式6)においてそれぞれ、相似比率αと相似比率αの2乗が乗じられていることを除いて同じなので、トラス梁T1はトラス梁Tに比べて、元の曲げ耐力M0はα倍に低下し、元の断面二次モーメントI、つまり、たわみδ0はα2倍に減る。 As can be seen from the comparison between (Equation 3) and (Equation 4) and (Equation 5) and (Equation 6), (Equation 3) and (Equation 4) and (Equation 5) and (Equation 6) are (Equation 6). Since the equations 5) and (6) are the same except that the similarity ratio α and the square of the similarity ratio α are multiplied, the truss beam T 1 has the original bending strength M as compared with the truss beam T. 0 drops to alpha times the original moment of inertia of I, that is, the deflection [delta] 0 is reduced to alpha 2-fold.

一方、部材(トラス梁)長さLがα倍になると、前述のように、曲げモーメントMは長さLの2乗に比例して減ってα2倍になるので、例えば、部材断面サイズがそのままで規模縮小後に形状寸法が元に対して相似形で、トラス梁の長さLと上下弦材の重心間寸法jが50%(=α)になったとすれば、曲げ耐力はα倍に低下するが作用する曲げモーメントMがα2倍に減少するので、規模縮小後のトラス梁の曲げ耐力の余裕度はα/α2=2.0倍になる。また、たわみはα2=0.25倍と大幅に改善される。 On the other hand, when the member (truss beam) length L becomes α times, as described above, the bending moment M decreases in proportion to the square of the length L and becomes α 2 times. If the shape and dimensions are similar to the original after the scale is reduced as it is, and the length L of the truss beam and the dimension j between the center of gravity of the upper and lower chords are 50% (= α), the bending strength is α times. Since the bending moment M that acts is reduced by α 2 times, the margin of bending momentum of the truss beam after scale reduction becomes α / α 2 = 2.0 times. In addition, the deflection is greatly improved with α 2 = 0.25 times.

以上は単純梁の場合であったが、より複雑な場合として、例えば、図9のような円筒形の立体トラス架構を、部材断面サイズはそのままで辺長A、Bおよび梁せいDを相似的に2/3に縮小して、図13のような縮小架構とした場合で検証する。これら図中の符号および設計条件は次の通りである。 The above is the case of a simple beam, but as a more complicated case, for example, a cylindrical three-dimensional truss frame as shown in FIG. 9 is similar to the side lengths A and B and the beam length D while keeping the member cross-sectional size as it is. It will be verified when it is reduced to 2/3 and the reduced frame is as shown in FIG. The symbols and design conditions in these figures are as follows.

(共通)△印:支点、矢印:支点移動可能方向
(図9〜図12:元架構)張間A×桁行B:60m×60m、トラス成D:3m、上下弦材:H-300x150x6.5x9および(一部に)H-294x200x8x12、ラチス材:φ-139x4.5および(支点近傍のみに)φ-165.2x5またはφ-190.7x5.3、固定荷重(鉛直等分布):1907N/m2
(Common) △ mark: fulcrum, arrow: fulcrum movable direction (Fig. 9 to Fig. 12: original frame) Zhangma A x girder line B: 60m x 60m, truss formation D: 3m, upper and lower chord material: H-300x150x6.5x9 And (partly) H-294x200x8x12, truss material: φ-139x4.5 and (only near the fulcrum) φ-165.2x5 or φ-190.7x5.3, fixed load (vertical equal distribution): 1907N / m 2

(図13〜図16:縮小架構)張間A1×桁行B1:40m×40m、トラスせいd:2m、上下弦材:H-300x150x6.5x9および(一部に)H-294x200x8x12、ラチス材:φ-139x4.5および(支点近傍のみに)φ-165.2x5またはφ-190.7x5.3、固定荷重:2293 N/m2
上記縮小架構は元架構の相似形なので、当然、各部材の配置も同じである。
(Figs. 13 to 16: Reduced frame) Zhangma A 1 x girder line B 1 : 40m x 40m, truss length d: 2m, upper and lower chord materials: H-300x150x6.5x9 and (partially) H-294x200x8x12, lattice material : Φ-139x4.5 and (only near the fulcrum) φ-165.2x5 or φ-190.7x5.3, fixed load: 2293 N / m 2
Since the reduced frame is similar to the original frame, the arrangement of each member is naturally the same.

ここで、上記のような版状架構における応力・変形と架構寸法との関係について、コンクリートスラブのような連続体の正方形平版との類比にて述べる。四辺単純支持(前記立体トラス架構の支点条件と同様)の場合の最大曲げモーメントMsと最大たわみδsは、版の中央で生じ、次式のようになることが知られている。

Figure 2021188301
Figure 2021188301
但し、C1、C2、C2 :係数(無次元)、p0:鉛直等分布の単位荷重(kN/m2)、
L:辺長(m)、E:ヤング係数(kN/m2)、t:版厚(m)、
I:版の断面二次モーメント(m4/m)
即ち、最大曲げモーメントは長さの2乗に比例し、最大たわみは長さの4乗に比例しかつ版の断面二次モーメントに反比例する。 Here, the relationship between stress / deformation and frame dimensions in the above-mentioned plate-shaped frame will be described by analogy with a square flat plate of a continuum such as a concrete slab. It is known that the maximum bending moment M s and the maximum deflection δ s in the case of simple four-sided support (similar to the fulcrum condition of the three-dimensional truss frame) occur in the center of the plate and are as follows.
Figure 2021188301
Figure 2021188301
However, C 1 , C 2, C 2 ' : Coefficient (dimensionless), p 0 : Vertical equal distribution unit load (kN / m 2 ),
L: Side length (m), E: Young's modulus (kN / m 2 ), t: Plate thickness (m),
I: Moment of inertia of area of plate (m 4 / m)
That is, the maximum bending moment is proportional to the square of the length, and the maximum deflection is proportional to the fourth power of the length and inversely proportional to the moment of inertia of area of the plate.

上式は連続体の場合なので、連続体ではない前記のような立体トラス架構に当て嵌めると、既述ように、1台のトラス梁の断面二次モーメントI1は a・j2/2 であり、(式8)の断面二次モーメントIは版の単位幅当りの値であることを考慮すると、1台のトラス梁の支配幅をsとすれば、I=I1/sと置ける。よって、(式8)は、

Figure 2021188301
但し、s:1台のトラス梁の支配幅(m)
となる。 Since the case of the above equation continuum, when fit to the space truss Frame as described above is not a continuum, already described so on, moment of inertia of I 1 of the truss beam one at a · j 2/2 Considering that the moment of inertia of area I in (Equation 8) is a value per unit width of the plate, if the dominant width of one truss beam is s, I = I 1 / s can be set. Therefore, (Equation 8) is
Figure 2021188301
However, s: the dominant width (m) of one truss beam
Will be.

次に、相似的に長さがα倍に縮小された場合は、次のようになる。
最大曲げモーメントは、(式7)のLをαLと置いて、

Figure 2021188301
最大たわみは、(式9)のL、j、sをそれぞれαL、αj、αsと置いて、
Figure 2021188301
となる。 Next, when the length is reduced by α times in a similar manner, it becomes as follows.
For the maximum bending moment, set L in (Equation 7) as αL.
Figure 2021188301
For the maximum deflection, place L, j, and s in (Equation 9) as αL, αj, and αs, respectively.
Figure 2021188301
Will be.

(式7)および(式9)と(式10)および(式11)との比較から分かるように、(式7)および(式9)と(式10)および(式11)は、(式10)と(式11)においてそれぞれ、相似比率αの2乗と相似比率αの3乗が乗じられていることを除いて同じなので、相似比率αの縮小架構は元架構に比べて最大曲げモーメントはα2倍に、最大たわみはα3倍になることが分かる。 As can be seen from the comparison between (Equation 7) and (Equation 9) and (Equation 10) and (Equation 11), (Equation 7) and (Equation 9) and (Equation 10) and (Equation 11) are (Equation 11). Since it is the same in 10) and (Equation 11) except that the square of the similarity ratio α and the cube of the similarity ratio α are multiplied, the reduced frame of the similarity ratio α has the maximum bending moment compared to the original frame. It can be seen that is α 2 times and the maximum deflection is α 3 times.

例題の前記立体トラス架構においてはα=2/3なので、最大曲げモーメントは(2/3)2=0.444倍、最大たわみは(2/3)3=0.296倍に相当する。但し、これらは(式10)および(式11)から分かるように、単位面積当りの鉛直等分布荷重p0に比例するので、鉛直等分布荷重p0が変わる場合は補正が必要である。 In the three-dimensional truss frame of the example, since α = 2/3, the maximum bending moment corresponds to (2/3) 2 = 0.444 times, and the maximum deflection corresponds to (2/3) 3 = 0.296 times. However, as can be seen from (Equation 10) and (Equation 11), these are proportional to the vertically evenly distributed load p 0 per unit area, so correction is required when the vertically equally distributed load p 0 changes.

一例として、図9および図13の円筒形立体トラス架構における固定(鉛直)荷重時の三次元応力解析結果を、それぞれ図10〜図12および図14〜16に示す。各図共、図10、図14が上弦材、図11、図15が下弦材、図12、図16がラチス材の軸力を示し、線幅の広い程軸力が大きく、ハッチングありが圧縮力、ハッチングなしが引張力である。各図中に表記の大きな数字は、最大の引張および圧縮の軸力値(kN)である。 As an example, the results of three-dimensional stress analysis under a fixed (vertical) load in the cylindrical three-dimensional truss frame of FIGS. 9 and 13 are shown in FIGS. 10 to 12 and 14 to 16, respectively. In each figure, FIGS. 10 and 14 show the axial force of the upper chord material, FIGS. 11 and 15 show the axial force of the lower chord material, and FIGS. 12 and 16 show the axial force of the lattice material. The tensile force is the force and no hatching. The large numbers in each figure are the maximum tensile and compressive axial force values (kN).

軸力の最大値は、元架構である図9の架構では、図10上弦材(引張272.0kN、圧縮730.9kN)、図11下弦材(引張444.9kN、圧縮490.5kN)、図12ラチス材(引張185.5kN、圧縮223.6kN)となっている。一方、縮小後の図13の架構では、図14上弦材(引張140.4kN、圧縮381.5kN)、図15下弦材(引張235.4kN、圧縮259.1kN)、図16ラチス材(引張95.9kN、圧縮117.1kN)となっている。 The maximum value of the axial force is as shown in Fig. 10 upper chord material (tension 272.0 kN, compression 730.9 kN), Fig. 11 lower chord material (tension 444.9 kN, compression 490.5 kN), and Fig. 12 lattice material (tension 272.0 kN, compression 730.9 kN) in the frame of Fig. 9, which is the original frame. The tension is 185.5kN and the compression is 223.6kN). On the other hand, in the frame of Fig. 13 after reduction, Fig. 14 upper chord material (tension 140.4kN, compression 381.5kN), Fig. 15 lower chord material (tension 235.4kN, compression 259.1kN), Fig. 16 lattice material (tension 95.9kN, compression 117.1). kN).

図10〜図12と図14〜図16とを比較すると、それぞれの最大軸力発生部材は同じ位置であり、かつ、引張および圧縮の各軸力最大値の図10〜図12に対する図14〜図16の比率は、図10、図14上弦材(引張0.517、圧縮0.522)、図11、図15下弦材(引張0.529、圧縮0.528)、図12、図16ラチス材(引張0.517、圧縮0.524)となっている。 Comparing FIGS. 10 to 12 with FIGS. 14 to 16, each maximum axial force generating member is at the same position, and FIGS. 14 to 14 with respect to FIGS. 10 to 12 of the maximum axial force values of tension and compression. The ratios in FIG. 16 are FIG. 10, FIG. 14 upper chord material (tension 0.517, compression 0.522), FIG. 11, FIG. 15 lower chord material (tension 0.529, compression 0.528), FIG. 12, FIG. 16 lattice material (tension 0.517, compression 0.524). It has become.

以上の結果と、(式10)および(式11)より推定される結果とを比較してみる。トラス梁の弦材軸力Nは、N=M/トラスせい(D=3m、d=2m)の関係があるので、(式10)および(式11)の関係は、そのまま弦材軸力にも当て嵌まる。 Let us compare the above results with the results estimated from (Equation 10) and (Equation 11). Since the chord material axial force N of the truss beam has a relationship of N = M / truss (D = 3 m, d = 2 m), the relationship of (Equation 10) and (Equation 11) is directly applied to the chord material axial force. Also applies.

よって、ここでは前記解析結果の弦材軸力との比較をする。図9〜図12の元架構に対する図13〜図16の縮小架構の相似比率αが2/3の場合の弦材軸力は、(式10)よりα2=(2/3)倍である。しかし、トラス部材の断面サイズが元のままなので、図9の元架構に対する図13の縮小架構の単位面積当り重量wの比が、2239/1907=1.20倍と重くなる点を考慮し補正すると、弦材軸力の相当倍率βは、β=(2/3)x1.2=0.533倍となる。 Therefore, here, a comparison is made with the chord material axial force of the analysis result. Chords axial force in the case of FIGS. 13 to 16 similar ratio alpha 2/3 reduction Frames of to the original Frames of 9 to 12 is the alpha 2 = (2/3) 2 times greater than (Equation 10) be. However, since the cross-sectional size of the truss member remains the same, the ratio of the weight w per unit area of the reduced frame of FIG. 13 to the original frame of FIG. 9 is corrected in consideration of the fact that it is 2239/1907 = 1.20 times heavier. Then, the equivalent magnification β of the chord material axial force becomes β = (2/3) 2 x 1.2 = 0.533 times.

前記解析結果による部材軸力最大値の図10〜図12に対する図14〜図16の比率は、前記の通り、0.52〜0.53倍なのでβとよく一致している。即ち、図9のような立体トラス架構の場合においても、架構を相似的に縮小する方法によれば、応力分布状態はほぼ変わらず、かつ相似比率に応じて応力の絶対値が小さくなるため、各部材の耐力は元架構の時よりも一様に余裕度が増す。 As described above, the ratio of the maximum member axial force to FIGS. 10 to 12 based on the analysis result is 0.52 to 0.53 times, which is in good agreement with β. That is, even in the case of the three-dimensional truss frame as shown in FIG. 9, according to the method of reducing the frame in a similar manner, the stress distribution state is almost unchanged and the absolute value of the stress becomes smaller according to the similarity ratio. The yield strength of each member is uniformly increased compared to the case of the original frame.

また、変形の解析結果(図示せず)については、最大たわみは中央節点で発生し、図9の元架構が9.8cm、図13の縮小架構が3.4cmであったので、その比率は3.4/9.8=0.347である。一方、(式11)のαを単位面積当り重量wの比(=1.2)により補正すれば、最大たわみの相当倍率βは、β=(2/3)x1.2=0.356倍なので、ほぼ一致している。 Regarding the deformation analysis results (not shown), the maximum deflection occurred at the central node, the original frame in FIG. 9 was 9.8 cm, and the reduced frame in FIG. 13 was 3.4 cm, so the ratio is 3.4 / 9.8 = 0.347. On the other hand, if α 3 of (Equation 11) is corrected by the ratio of weight w per unit area (= 1.2), the equivalent magnification β of the maximum deflection is β = (2/3) 3 x 1.2 = 0.356 times. So it's almost the same.

以上より、構造物の屋根架構を相似的に縮小してリユースする場合において、部材長さを短くするだけで(即ち、部材断面サイズはそのままで)同じ部材を再利用しても、損傷が無い限り、応力および変形について構造的に問題はないと言える。 From the above, when the roof frame of a structure is reduced and reused in a similar manner, there is no damage even if the same member is reused only by shortening the member length (that is, the member cross-sectional size remains the same). As long as it can be said that there is no structural problem with stress and deformation.

前記大規模展示場等の屋根架構では、その屋根架構を構成する部材に生じる応力の大小に最も影響を与える曲げモーメントは、主に鉛直荷重により発生することから、構造物を相似形に規模縮小することによる上記のような効果は、前記大規模展示場等の屋根架構において、最も期待できる。 In a roof frame such as the large-scale exhibition hall, the bending moment that most affects the magnitude of stress generated in the members constituting the roof frame is mainly generated by a vertical load, so the scale of the structure is reduced to a similar shape. The above effects can be expected most in the roof frame of the large-scale exhibition hall or the like.

本発明は、以上のような手段によるので、次のような効果が得られる。展示場等構造物の屋根架構を、規模縮小後の架構形状寸法が元の屋根架構と相似形であるようにリユースする方法によれば、
(1)屋根架構を構成する部材の規模縮小後の強度は、元の屋根架構の時よりも余裕度が増すことになるので、その部材長さを前記相似形の比率に合わせて短くするだけで、部材断面サイズはそのままに同じ部材のほぼ全てを再利用することができる。
Since the present invention is based on the above means, the following effects can be obtained. According to the method of reusing the roof frame of a structure such as an exhibition hall so that the frame shape and dimensions after the scale reduction are similar to the original roof frame.
(1) The strength of the members that make up the roof frame after scale reduction will have a greater margin than in the case of the original roof frame, so the length of the members should be shortened according to the ratio of the similar figures. Therefore, almost all of the same member can be reused while keeping the member cross-sectional size as it is.

(2)従って、改めて部材の設計・製作をする必要がない。
(3)元の屋根架構の部材を短く加工することにより、ほぼ全ての部材をそのまま再利用できるので、資源の有効活用に大いに寄与する。
(2) Therefore, there is no need to design and manufacture the members again.
(3) By shortening the original roof frame members, almost all the members can be reused as they are, which greatly contributes to the effective use of resources.

トラス構造から成る元の屋根架構の1例を示し、(a)は屋根架構伏図、(b)は(a)のイ−イ断面矢視図である。An example of the original roof frame consisting of a truss structure is shown, (a) is a roof frame frame view, and (b) is a cross-sectional view of (a). 図1の屋根架構の中央部を残して規模縮小した場合の1例を示し、(a)は規模縮小後の屋根架構伏図、(b)は(a)のロ−ロ断面矢視図である。An example of the case where the scale is reduced while leaving the central part of the roof frame in FIG. 1 is shown. be. 本発明の第1実施例であり、(a)は、図1の屋根架構を相似形に規模縮小した後の屋根架構伏図、(b)は(a)のハ−ハ断面矢視図である。In the first embodiment of the present invention, (a) is a roof frame frame plan after the roof frame of FIG. 1 is scaled down to a similar figure, and (b) is a cross-sectional view of Ha-ha in (a). be. 本発明の第2実施例であって、屋根が円筒形の場合において、図3と同様に規模縮小した後の屋根架構であり、図3(a)のハ−ハ断面矢視に対応する図である(屋根架構伏図は省略)。In the second embodiment of the present invention, when the roof is cylindrical, the roof frame is reduced in scale as in FIG. 3, and is a view corresponding to the cross-sectional view of the roof in FIG. 3 (a). (The roof frame plan is omitted). 本発明の実施例において、トラスの形状寸法を相似形に縮小する方法を説明した図であり、(a)は元のトラス、(b)は縮小後のトラスを示す。In the embodiment of the present invention, it is a figure explaining the method of reducing the shape dimension of a truss into a similar figure, (a) shows the original truss, and (b) shows the truss after reduction. 図4に図示の屋根架構2c棟部付近のP部分拡大伏図(図3(a)のP部分に対応)であって、棟部付近のトラスの上弦材10と下弦材11との位置関係を説明した図である。FIG. 4 is an enlarged plan view of the P part of the roof frame 2c near the ridge (corresponding to the P part of FIG. 3A), and the positional relationship between the upper chord member 10 and the lower chord member 11 of the truss near the ridge. It is a figure explaining. 図(a),(b)は、それぞれ部材寸法Lが曲げモーメントMとたわみδに及ぼす影響を、単純梁Gを例として説明した図である。FIGS. (A) and (b) are diagrams illustrating the effects of the member dimensions L on the bending moment M and the deflection δ, respectively, using the simple beam G as an example. 図7の単純梁Gをトラス梁Tとした場合の形状寸法を示す図である。It is a figure which shows the shape dimension when the simple beam G of FIG. 7 is a truss beam T. 立体トラス架構の一例であり、架構図を示す。It is an example of a three-dimensional truss frame, and shows the frame structure. 図9に図示する立体トラス架構の固定(鉛直)荷重時の三次元応力解析結果であって、上弦材の軸力図を示す。FIG. 9 is a three-dimensional stress analysis result under a fixed (vertical) load of the three-dimensional truss frame shown in FIG. 9, and shows an axial force diagram of the upper chord member. 図9に図示する立体トラス架構の固定(鉛直)荷重時の三次元応力解析結果であって、下弦材の軸力図を示す。FIG. 9 is a three-dimensional stress analysis result under a fixed (vertical) load of the three-dimensional truss frame shown in FIG. 9, and shows an axial force diagram of the lower chord member. 図9に図示する立体トラス架構の固定(鉛直)荷重時の三次元応力解析結果であって、ラチス材の軸力図を示す。FIG. 9 is a three-dimensional stress analysis result under a fixed (vertical) load of the three-dimensional truss frame shown in FIG. 9, and shows an axial force diagram of the lattice material. 図9の立体トラス架構を相似的に2/3に縮小した場合であり、縮小後の立体トラス架構図を示す。This is a case where the three-dimensional truss frame of FIG. 9 is reduced to 2/3 in a similar manner, and the reduced three-dimensional truss frame is shown. 図13に図示する立体トラス架構の固定(鉛直)荷重時の三次元応力解析結果であって、上弦材の軸力図を示す。FIG. 13 is a three-dimensional stress analysis result under a fixed (vertical) load of the three-dimensional truss frame shown in FIG. 13, and shows an axial force diagram of the upper chord member. 図13に図示する立体トラス架構の固定(鉛直)荷重時の三次元応力解析結果であって、下弦材の軸力図を示す。FIG. 13 is a three-dimensional stress analysis result under a fixed (vertical) load of the three-dimensional truss frame shown in FIG. 13, and shows an axial force diagram of the lower chord member. 図13に図示する立体トラス架構の固定(鉛直)荷重時の三次元応力解析結果であって、ラチス材の軸力図を示す。FIG. 13 is a three-dimensional stress analysis result under a fixed (vertical) load of the three-dimensional truss frame shown in FIG. 13, and shows an axial force diagram of the lattice material. ボールジョイント方式の立体トラスによる円形ドームを示す架構図であり、図(a)はその原型の斜視図、図(b)は原型の架構を相似的に規模縮小してリユースした架構の斜視図である。It is a frame structure showing a circular dome by a ball joint type three-dimensional truss, FIG. (A) is a perspective view of the prototype, and FIG. be. 図(a)〜(d)は、ボールジョイント方式の立体トラスの単位架構について、原型を相似的に規模縮小する場合の要領を説明した図である。FIGS. (A) to (d) are diagrams illustrating a procedure for reducing the scale of a prototype of a ball joint type three-dimensional truss unit frame in a similar manner.

本発明の第1実施例を図3乃至図5にて説明する。図3は、図1に示す元建物1の屋根架構2が相似的に規模縮小されて建物1aの屋根架構2bとなった場合を示す。屋根形状は平版であって、屋根架構2bは屋根架構2と相似形である。屋根架構寸法比A1/A(=B1/B)とトラス成寸法比d/Dは一致するので、屋根架構2bの全部材の長さは、相似比率に一致して短くなる。 The first embodiment of the present invention will be described with reference to FIGS. 3 to 5. FIG. 3 shows a case where the roof frame 2 of the original building 1 shown in FIG. 1 is similarly reduced in scale to become the roof frame 2b of the building 1a. The roof shape is planographic, and the roof frame 2b is similar to the roof frame 2. Since the roof structure dimensional ratio A 1 / A (= B 1 / B) and the truss formation size ratio d / D match, the lengths of all the members of the roof structure 2b are shortened in accordance with the similarity ratio.

図4は、屋根形状が円筒形の場合で、図3と同様にして規模縮小された後の屋根架構2cの断面軸組図(図3のハ−ハ断面矢視に対応)である。 FIG. 4 is a cross-sectional frame diagram of the roof frame 2c after the scale is reduced in the same manner as in FIG. 3 when the roof shape is cylindrical (corresponding to the ha-ha cross-sectional arrow view in FIG. 3).

縮小後の各部材10、11、12、13を短縮する仕方を説明する。図5に示すように、トラス上弦節点間寸法の比S1/Sに対応するように、元の各部材10、11、12、13の片端もしくは両端の一部(図5(a)の斜線部)が切除され、図5(b)のように、形状寸法が相似形のトラスに組み直される。 A method of shortening each member 10, 11, 12, and 13 after reduction will be described. As shown in FIG. 5, one end or a part of both ends of each of the original members 10, 11, 12, and 13 (diagonal line in FIG. 5A) so as to correspond to the ratio S 1 / S of the dimension between the upper chord nodes of the truss. Part) is excised and reassembled into a truss with similar figures and dimensions as shown in FIG. 5 (b).

縮小後の各部材10、11、12、13の切除側端部には、各節点接合部Jに接合するための新たなボルト孔(図示せず)が開けられる。この時、各節点接合部J、J、・・・は元のまま再利用するので、例えば、上弦材10の場合、トラス上弦節点から節点接合部J縁端までの寸法eは変わらないため、縮小後の上弦材10の寸法決定では、その点を考慮する必要がある。 A new bolt hole (not shown) for joining to each node joint J is formed at the cut side end of each member 10, 11, 12, and 13 after reduction. At this time, since the node joints J, J, ... Are reused as they are, for example, in the case of the upper chord material 10, the dimension e from the truss upper chord node to the node joint J edge does not change. It is necessary to take this into consideration when determining the dimensions of the upper chord member 10 after reduction.

また、縮小後トラスの形状寸法が元トラスと相似形なので、ラチス材12の傾斜角度θは同じである。 Further, since the shape and dimensions of the reduced truss are similar to those of the original truss, the inclination angle θ of the lattice material 12 is the same.

以上のように、本発明は、屋根架構2が相似形に縮小されてリユースされる方法であるので、屋根架構を構成する部材の長さを短くすることにより、部材断面サイズはそのままにほぼ全ての部材を再利用することが可能になる。 As described above, the present invention is a method in which the roof frame 2 is reduced to a similar shape and reused. Therefore, by shortening the length of the members constituting the roof frame, the cross-sectional size of the members remains almost the same. It becomes possible to reuse the members of.

図6は、本発明の第2実施例に関するトラス構造の屋根架構であって、上弦材と下弦材が平行ではない(捩れた位置関係にある)場合の、部分的なトラス伏図と断面軸組図である。図3(a)および図4のP部(棟部付近)に対応する。 FIG. 6 is a roof frame of a truss structure according to a second embodiment of the present invention, in which the upper chord member and the lower chord member are not parallel (in a twisted positional relationship), and a partial truss plan and a cross-sectional axis are shown. It is a group drawing. Corresponds to the P part (near the ridge part) of FIGS. 3 (a) and 4 (a).

このように上弦材と下弦材が平行ではない複層トラス構造は、例えば、特許第6450707などにおいて知られており、その上弦材と下弦材は、それぞれ部材軸回りに捩られていることが特徴である。また、複層ではなく、部材軸回りに捩られた部材から成る単層トラス構造もあり、例えば、特許第3418660において知られている。 Such a multi-layer truss structure in which the upper chord material and the lower chord material are not parallel is known, for example, in Japanese Patent No. 6450707, and the upper chord material and the lower chord material are characterized by being twisted around the member axis, respectively. Is. There is also a single-layer truss structure composed of a member twisted around a member axis instead of a plurality of layers, which is known, for example, in Japanese Patent No. 3418660.

本発明の第2実施例は、そのように部材軸回りに捩られている部材(弦材)を有する複層トラス構造もしくは単層トラス構造の屋根架構に対する場合である。 The second embodiment of the present invention is for a roof frame having a multi-layer truss structure or a single-layer truss structure having a member (string material) twisted around the member axis.

屋根形状が円筒形や2方向曲率を有する複層(もしくは単層)トラス構造の屋根架構では、図6のように、上弦材と下弦材が平行ではなく(複層トラスの場合)、かつそれら部材が軸回りに捩られて構築される場合がある。 In a roof frame with a multi-layer (or single-layer) truss structure whose roof shape is cylindrical or has a two-way curvature, the upper chord material and the lower chord material are not parallel (in the case of a multi-layer truss) and they are as shown in FIG. The member may be constructed by twisting around the axis.

元の屋根架構の形状寸法が縮小されて相似形になるように、トラスの各部材の片端もしくは両端を切除して短くするところまでは、実施例1と同じであるが、弦材10または11がその軸回りに捩られているので、その長さを短くすると単位長さ当りの捩れ角度は同じでも、部材端部での捩れ角度は、元の材長の時よりも少なくなるため、図5(b)に図示のように、元のまま再利用される節点接合部Jと接合する時、両者の接合面が一致せず、肌隙が生じることになる。 The chord material 10 or 11 is the same as in Example 1 up to the point where one end or both ends of each member of the truss is cut off and shortened so that the shape and dimensions of the original roof frame are reduced to a similar shape. Is twisted around its axis, so if the length is shortened, the twist angle per unit length will be the same, but the twist angle at the end of the member will be smaller than at the original material length. As shown in FIG. 5 (b), when joining with the node joining portion J that is reused as it is, the joining surfaces of the two do not match, and a skin gap is generated.

それを回避するために、規模縮小後の屋根架構の形状寸法に合った部材端部の捩じれ角度になるように、弦材10または11を軸芯回りに追加捩りを加えることが必要となる。 In order to avoid this, it is necessary to add additional twist around the axis of the chord member 10 or 11 so that the twist angle of the member end matches the shape and dimension of the roof frame after the scale reduction.

以上のように、第2実施例は、部材の節点間長さが相似形の比率に合わせた長さになるように、規模縮小前の部材10、11、12,13の一端もしくは両端の一部が切除および穴明加工されると共に、規模縮小後の屋根架構の形状に合った部材端部の捩じり角度になるように、短くなったそれら弦材10または11に対して軸芯回りに追加捩りを加えることを特徴とする、構造物のリユース方法である。 As described above, in the second embodiment, one end or both ends of the members 10, 11, 12, and 13 before the scale reduction is performed so that the length between the nodes of the members is adjusted to the ratio of similar figures. The part is cut and drilled, and the axis circumference is about the shortened chord material 10 or 11 so that the twist angle of the member end matches the shape of the roof frame after scale reduction. It is a method of reusing a structure, which is characterized by adding an additional twist to the roof.

図17および図18は、本発明の第3実施例であって、鋼管部材を節点の鋼球に1本ボルトにて接合するボールジョイント方式の立体トラスで構成される屋根架構(円形ドームを例示)を相似的に規模縮小してリユースする場合の説明図である。 17 and 18 are a third embodiment of the present invention, wherein a roof frame (circular dome is exemplified) composed of a ball joint type three-dimensional truss in which a steel pipe member is joined to a steel ball at a node with a single bolt. ) Is an explanatory diagram when the scale is reduced in a similar manner and reused.

この立体トラスの屋根架構は、図18(a)〜(d)に図示のように、主に、8本の鋼管部材で構成される四角錐体の集合体となっており、規模縮小してリユースする場合は、同図に示すように、節点間長さが相似形の比率に合う長さになるように各部材を切除し、切除側の部材端部に、ねじ孔を有する端部金物を新たに溶接し、その端部金物のねじ孔と元の鋼球のねじ孔とに螺合される新しいボルトを用いて、各鋼管を再度組み立てればよい。 As shown in FIGS. 18 (a) to 18 (d), the roof frame of this three-dimensional truss is mainly an aggregate of square pyramids composed of eight steel pipe members, and is reduced in scale. When reusing, as shown in the figure, each member is cut so that the length between the nodes matches the ratio of similar figures, and the end hardware having a screw hole at the end of the member on the cut side. Is newly welded, and each steel pipe may be reassembled using a new bolt screwed into the screw hole of the metal end and the screw hole of the original steel ball.

従って、リユースに際して廃棄される材料は、部材の切除部分と抜き取ったボルトのみであり、新規部材は新たに溶接された端部金物とボルトのみである。部材サイズおよびボルトサイズは元のままなので、鋼球はそのまま再利用ができる。 Therefore, the only materials that are discarded during reuse are the cut-out portion of the member and the bolt that has been removed, and the new members are only the newly welded end hardware and bolts. Since the member size and bolt size remain the same, the steel ball can be reused as it is.

以上は、屋根架構を相似的に規模縮小するリユース方法について述べたが、これらのことは屋根架構に限定されるものではなく、一般の構造物(例えば、工場や倉庫等)の架構を相似的に規模縮小してリユースする場合においても同様である。 The above has described the reuse method of reducing the scale of the roof frame in a similar manner, but these are not limited to the roof frame, but are similar to the frame of a general structure (for example, a factory or a warehouse). The same applies when the scale is reduced to and reused.

即ち、規模縮小後の架構形状寸法が元の架構と相似形であって、元の前記架構を構成する部材の規模縮小後の節点間長さが、前記相似形の比率に合わせた長さになるように、規模縮小前の前記部材の一端もしくは両端の一部が切除加工される方法によれば、応力分布状態はほぼ変わらず、かつ相似比率に応じて応力の絶対値が小さくなるため、各部材の耐力は元架構の時よりも一様に余裕度が増し、かつ、最大変形も前記相似比率に応じて大幅に減少することは、例題の前記立体トラス架構についての応力、変形の検証からも明らかである。よって本発明は、屋根架構に限定されるものではない。 That is, the frame shape dimension after the scale reduction is similar to the original frame, and the internode length after the scale reduction of the members constituting the original frame is the length that matches the ratio of the similar shape. Therefore, according to the method in which one end or a part of both ends of the member before the scale reduction is cut off, the stress distribution state is almost unchanged and the absolute value of the stress becomes smaller according to the similarity ratio. It is a verification of stress and deformation of the three-dimensional truss frame in the example that the yield strength of each member is uniformly increased as compared with the case of the original structure and the maximum deformation is also significantly reduced according to the similarity ratio. It is also clear from. Therefore, the present invention is not limited to the roof frame.

本発明は、特に、博覧会等で建設される短期間のみ使用される仮設の大空間構造物が、規模縮小されてリユースされる場合において、ほぼ全部の既存部材を再利用できるリユース方法であり、資源の有効活用に大いに寄与する。 The present invention is a reuse method capable of reusing almost all existing members, especially when a temporary large space structure constructed at an exposition or the like and used only for a short period of time is reduced in scale and reused. , Contributes greatly to the effective use of resources.

1:元建物
1a:規模縮小後の建物
2:元の屋根架構
2a、2b、2c:規模縮小後の屋根架構
10:上弦材
11:下弦材
12:ラチス材
13:束材
A、A1、B、B1:屋根架構寸法
D、d:トラス成寸法
G:梁
L:部材(梁)長さ(梁の支点間寸法)
M:曲げモーメント
δ:たわみ
S:元の屋根架構におけるトラスの上弦節点間寸法
1:規模縮小後の屋根架構におけるトラスの上弦節点間寸法
e:トラス節点から節点接合部縁端までの寸法
θ:ラチス材の傾斜角度
1: Original building 1a: Building after scale reduction 2: Original roof frame 2a, 2b, 2c: Roof frame after scale reduction 10: Upper chord material 11: Lower chord material 12: Lattice material 13: Bundle material A, A 1 , B, B 1 : Roof frame dimensions D, d: Truss construction dimensions G: Beam L: Member (beam) length (dimension between beam fulcrum)
M: Bending moment δ: Deflection S: Dimension between the upper chord nodes of the truss in the original roof frame S 1 : Dimension between the upper chord nodes of the truss in the roof frame after scale reduction e: Dimension from the truss node to the edge of the node joint θ : Tilt angle of truss material

Claims (3)

構造物の架構をリユースする場合において、規模縮小後の架構形状寸法が元の架構と相似形であって、前記元の架構を構成する各部材の規模縮小後の節点間長さが、前記相似形の比率に合わせた長さになるように、規模縮小前の前記各部材の一端もしくは両端の一部が切除加工されることを特徴とする、構造物のリユース方法。 When the frame of the structure is reused, the frame shape dimensions after the scale reduction are similar to the original frame, and the internode length after the scale reduction of each member constituting the original frame is similar to the original frame. A method for reusing a structure, characterized in that one end or a part of both ends of each member before scale reduction is cut so as to have a length that matches the ratio of shapes. 構造物の屋根架構をリユースする場合において、規模縮小後の屋根架構形状寸法が元の屋根架構と相似形であって、前記元の屋根架構を構成する各部材の規模縮小後の節点間長さが、前記相似形の比率に合わせた長さになるように、規模縮小前の前記各部材の一端もしくは両端の一部が切除加工されることを特徴とする、構造物のリユース方法。 When reusing a roof frame of a structure, the roof frame shape dimensions after scale reduction are similar to the original roof frame, and the length between nodes after scale reduction of each member constituting the original roof frame. However, a method for reusing a structure, characterized in that one end or a part of both ends of each member before the scale reduction is cut so as to have a length corresponding to the ratio of the similar shape. 軸芯回りに捩られている部材が含まれる構造物の架構において、前記捩られている部材の節点間長さが前記相似形の比率に合わせた長さになるように、規模縮小前の前記捩られている部材の一端もしくは両端の一部が切除加工されると共に、規模縮小後の前記構造物の架構の形状に合わせた捩じれ角度になるように規模縮小後の前記捩られている部材がその軸芯回りに追加捩りを加えられることを特徴とする、請求項1または請求項2記載の構造物のリユース方法。
In the frame of a structure including a member twisted around the axis core, the length before the scale reduction is made so that the length between the nodes of the twisted member becomes a length corresponding to the ratio of the similar figures. One end or a part of both ends of the twisted member is excised, and the twisted member after the scale is reduced so that the twist angle matches the shape of the frame of the structure after the scale is reduced. The method for reusing a structure according to claim 1 or 2, wherein an additional twist is applied around the axis.
JP2020092408A 2020-05-27 2020-05-27 How to reuse structures Active JP7171153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020092408A JP7171153B2 (en) 2020-05-27 2020-05-27 How to reuse structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020092408A JP7171153B2 (en) 2020-05-27 2020-05-27 How to reuse structures

Publications (2)

Publication Number Publication Date
JP2021188301A true JP2021188301A (en) 2021-12-13
JP7171153B2 JP7171153B2 (en) 2022-11-15

Family

ID=78848283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020092408A Active JP7171153B2 (en) 2020-05-27 2020-05-27 How to reuse structures

Country Status (1)

Country Link
JP (1) JP7171153B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657967A (en) * 1992-08-07 1994-03-01 Taisei Corp Framing method of building capable of reusing pc member
JP2006046023A (en) * 2004-08-09 2006-02-16 Shimizu Corp Structure of building

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657967A (en) * 1992-08-07 1994-03-01 Taisei Corp Framing method of building capable of reusing pc member
JP2006046023A (en) * 2004-08-09 2006-02-16 Shimizu Corp Structure of building

Also Published As

Publication number Publication date
JP7171153B2 (en) 2022-11-15

Similar Documents

Publication Publication Date Title
JP4040980B2 (en) Prestressed synthetic truss girder and manufacturing method thereof
US10626611B2 (en) Modular truss joint
US20020162285A1 (en) Framed structures with coupled girder system and method for dissipating seismic energy
JP2001515978A (en) Moment-resistant structure, support member, and construction method
JP6393170B2 (en) Design method for prestressed concrete beams.
Guan et al. Concept and behaviour of miniature bar-typed structural fuses with eccentricity
CN111364611B (en) Assembly type prestress self-resetting node
JP5575561B2 (en) Seismic structure of buildings
CN117306779A (en) Steel reinforced concrete column
JP6796335B2 (en) Reinforcing support member for reinforcing bar cage, reinforcing bar cage using this, and structure of reinforcing bar cage
JP2016204925A (en) Prestressed Concrete Slab
JP2021188301A (en) Reuse method of structure
JP6204027B2 (en) Reinforced structure
JP3709080B2 (en) String string structure
JP6865874B2 (en) Construction method of prestressed concrete floor slab and floor slab using prestressed concrete floor slab
US20040003548A1 (en) Framed structures with coupled girder system and method for dissipating seismic energy
JP6513754B2 (en) Reinforcement structure of reinforced concrete wall column
TW202208728A (en) Combined structure of the combined bundle of columns in the column
JP2021107619A (en) Building structure and method for forming building structure
JP6847552B2 (en) Truss assembly structure and assembly method
JP6568388B2 (en) Design method of reinforced concrete structure and reinforced concrete structure
CN214364054U (en) Assembly armpit support type top and bottom angle steel beam column connecting steel frame
WO2023200004A1 (en) Structural base material, structural member, structure, and construction method for structural member
JP7364510B2 (en) floor structure
Singh et al. Design of a double corbel using the strut-and-tie method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220106

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221101

R150 Certificate of patent or registration of utility model

Ref document number: 7171153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350