JP2021183838A - エンジン装置 - Google Patents

エンジン装置 Download PDF

Info

Publication number
JP2021183838A
JP2021183838A JP2020090134A JP2020090134A JP2021183838A JP 2021183838 A JP2021183838 A JP 2021183838A JP 2020090134 A JP2020090134 A JP 2020090134A JP 2020090134 A JP2020090134 A JP 2020090134A JP 2021183838 A JP2021183838 A JP 2021183838A
Authority
JP
Japan
Prior art keywords
purge
value
air
learning
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020090134A
Other languages
English (en)
Other versions
JP7247955B2 (ja
Inventor
正直 井戸側
Masanao Idogawa
孝宏 内田
Takahiro Uchida
雅広 加地
Masahiro Kachi
玲子 郷
Reiko Go
啓勝 山本
Hirokatsu Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020090134A priority Critical patent/JP7247955B2/ja
Priority to US17/238,210 priority patent/US11230983B2/en
Publication of JP2021183838A publication Critical patent/JP2021183838A/ja
Application granted granted Critical
Publication of JP7247955B2 publication Critical patent/JP7247955B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/089Layout of the fuel vapour installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0042Controlling the combustible mixture as a function of the canister purging, e.g. control of injected fuel to compensate for deviation of air fuel ratio when purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0045Estimating, calculating or determining the purging rate, amount, flow or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/182Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • F02D41/004Control of the valve or purge actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • F02D41/2461Learning of the air-fuel ratio control by learning a value and then controlling another value
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

【課題】パージ濃度関連値(学習値)の確からしさをより適切に推定する。【解決手段】エンジンの要求負荷率と蒸発燃料ガスの濃度に関連するパージ濃度関連値に基づくパージ補正量とを用いて要求噴射量を設定して燃料噴射弁を制御し、蒸発燃料ガスを吸気管に供給するパージを実行するときには、要求パージ率に基づく駆動デューティを用いてパージ制御バルブを制御し、パージを実行しているときには、空燃比センサにより検出される空燃比の要求空燃比に対するずれである空燃比ずれに基づいてパージ濃度関連値を学習する。そして、第1パージ通路を介して蒸発燃料ガスを吸気管に供給する第1パージのときのパージ濃度関連値の学習回数を反映すると共に第2パージ通路を介して蒸発燃料ガスを気管に供給する第2パージのときのパージ濃度関連値の学習回数を反映しない第1カウンタを用いてパージ濃度関連値の確からしさを推定する。【選択図】図13

Description

本発明は、エンジン装置に関する。
従来、この種のエンジン装置としては、エンジンの吸気管におけるスロットル弁よりも下流側に蒸発燃料を含む蒸発燃料ガスをパージする第1パージ通路と、過給機からの過給圧を用いて負圧を発生させるエゼクタにより吸気管における過給機のコンプレッサよりも上流側に蒸発燃料ガスをパージする第2パージ通路と、を備えるものが提案されている(例えば、特許文献1参照)。このエンジン装置では、吸気管のスロットル弁よりも下流側の吸気管圧力とエゼクタによる発生圧力とを比較し、パージが第1パージ通路および第2パージ通路のうちの何れを介して実施されるかを検出する。そして、パージ通路が第1パージ通路と第2パージ通路とで切替わるときに、パージ制御バルブの制御に用いる制御特性データを、第1パージ通路に適した第1制御特性データと第2パージ通路に適した第2制御特性データとで切り替える。
特開2019−052561号公報
エンジン装置では、パージ通路が第2パージ通路である第2パージのときには、パージ通路が第1パージ通路である第1パージのときに比して、蒸発燃料ガスがエンジンの燃焼室に至るまでの経路が長くこの時間が長くなることや過給圧の変動が生じることなどにより、エンジンの空燃比が不安定になりやすい。このため、蒸発燃料ガスの濃度に関連するパージ濃度関連値の学習(更新)を空燃比の要求空燃比に対するずれに基づいて実行する場合、第2パージのときに、パージ濃度関連値(学習値)の精度が低くなりやすい(理論的に想定される理論値に対する学習値のずれが大きくなりやすい)。これを考慮して、パージ濃度関連値の確からしさをより適切に推定することが求められている。
本発明のエンジン装置は、パージ濃度関連値(学習値)の確からしさをより適切に推定することを主目的とする。
本発明のエンジン装置は、上述の主目的を達成するために以下の手段を採った。
本発明のエンジン装置は、
吸気管に配置されたスロットルバルブと、燃料噴射弁とを有し、燃料タンクから供給される燃料を用いて動力を出力するエンジンと、
前記吸気管の前記スロットルバルブよりも上流側に配置されたコンプレッサを有する過給機と、
前記燃料タンク内で発生した蒸発燃料を含む蒸発燃料ガスを前記吸気管の前記スロットルバルブよりも下流側に接続された第1パージ通路と第2パージ通路とに分岐して前記吸気管に供給する供給通路と、前記吸気管の前記コンプレッサと前記スロットルバルブとの間からの還流通路に吸気ポートが接続され且つ前記吸気管の前記コンプレッサよりも上流側に排気ポートが接続され且つ前記第2パージ通路に吸引ポートが接続されたエゼクタと、前記供給通路に設けられたパージ制御バルブと、を有する蒸発燃料処理装置と、
前記エンジンの排気管に取り付けられた空燃比センサと、
前記エンジンの要求負荷率と前記蒸発燃料ガスの濃度に関連するパージ濃度関連値に基づくパージ補正量とを用いて要求噴射量を設定して前記燃料噴射弁を制御し、前記蒸発燃料ガスを前記吸気管に供給するパージを実行するときには、要求パージ率に基づく駆動デューティを用いて前記パージ制御バルブを制御し、前記パージを実行しているときには、前記空燃比センサにより検出される空燃比の要求空燃比に対するずれである空燃比ずれに基づいて前記パージ濃度関連値を学習する制御装置と、
を備えるエンジン装置であって、
前記制御装置は、前記第1パージ通路を介して前記蒸発燃料ガスを前記吸気管に供給する第1パージのときの前記パージ濃度関連値の学習回数を反映すると共に前記第2パージ通路を介して前記蒸発燃料ガスを前記吸気管に供給する第2パージのときの前記パージ濃度関連値の学習回数を反映しない第1カウンタを用いて前記パージ濃度関連値の確からしさを推定する、
ことを要旨とする。
本発明のエンジン装置では、エンジンの要求負荷率と蒸発燃料ガスの濃度に関連するパージ濃度関連値に基づくパージ補正量とを用いて要求噴射量を設定して燃料噴射弁を制御し、蒸発燃料ガスを吸気管に供給するパージを実行するときには、要求パージ率に基づく駆動デューティを用いてパージ制御バルブを制御し、パージを実行しているときには、空燃比センサにより検出される空燃比の要求空燃比に対するずれである空燃比ずれに基づいてパージ濃度関連値を学習する。そして、第1パージ通路を介して蒸発燃料ガスを吸気管に供給する第1パージのときのパージ濃度関連値の学習回数を反映すると共に第2パージ通路を介して蒸発燃料ガスを気管に供給する第2パージのときのパージ濃度関連値の学習回数を反映しない第1カウンタを用いてパージ濃度関連値の確からしさを推定する。これにより、パージ濃度関連値(学習値)の確からしさをより適切に推定することができる。
本発明のエンジン装置において、前記制御装置は、前記第2パージのときには、前記第1カウンタを保持するものとしてもよい。また、前記制御装置は、前記第1パージで、前記第1カウンタが第1閾値以上に至った条件を含む第1学習完了条件が成立すると、前記駆動デューティを所定デューティよりも大きくする高デューティ制御を許可するものとしてもよい。後者のようにすれば、高デューティ制御をより適切なときに許可することができる。
本発明のエンジン装置において、前記制御装置は、前記第2パージのときには、前記パージ濃度関連値を学習するごとに前記第1カウンタとは異なる第2カウンタをカウントアップするものとしてもよい。こうすれば、第2パージのときのパージ濃度関連値の学習回数を認識することができる。
この場合、前記制御装置は、前記第1パージのときには、前記第2カウンタをリセットするものとしてもよい。また、前記制御装置は、前記第1パージから前記第2パージに切り替わったときに、前記駆動デューティを所定デューティよりも大きくする高デューティ制御を許可していないときにおいて、前記第2パージで、前記第2カウンタが第2閾値以上に至った条件を含む第2学習完了条件が成立すると、前記高デューティ制御を許可するものとしてもよい。後者のようにすれば、第2パージのときでも、高デューティ制御を許可することができる。
本発明のエンジン装置において、前記制御装置は、前記要求負荷率と前記空燃比センサのずれに関連する空燃比補正量と前記パージ補正量とを用いて前記要求噴射量を設定し、更に、所定条件が成立したときに、前記エンジンの吸入空気量または負荷率が大きいときに小さいときよりも領域幅が広くなるように区分された複数の領域のうち現在の前記吸入空気量または前記負荷率が属する所属領域の前記空燃比補正量を設定するものとしてもよい。
本発明のエンジン装置において、前記制御装置は、前記エゼクタの前記吸引ポートの圧力であるエゼクタ圧と、前記吸気管の前記スロットルバルブよりも下流側の圧力であるスロットル後圧に前記第1パージ通路の断面積に対する前記第2パージ通路の断面積に基づくオフセット量を加味した値と、に基づいて前記第1パージおよび前記第2パージのうち支配的である支配パージを判定するものとしてもよい。こうすれば、第1パージ通路の断面積に対する第2パージ通路の断面積に基づくオフセット量を加味しないものに比して、支配パージをより適切に判定することができる。ここで、「断面積」は、管径によって表わされるものとしてもよい。
この場合、前記制御装置は、前記スロットル後圧の負の値としての絶対値が大きいほど負の値としての絶対値が大きくなるように前記オフセット量を設定するものとしてもよい。これは、スロットル後圧の負の値としての絶対値が大きいほど第1パージ通路の断面積に対する第2パージ通路の断面積の影響が大きいことに基づく。
また、この場合、前記制御装置は、前記吸気管の前記コンプレッサおよび前記スロットルバルブの間の圧力である過給圧と前記吸気管の前記コンプレッサよりも上流側の圧力であるコンプレッサ前圧との圧力差と、前記駆動デューティと、に基づいて前記エゼクタ圧を推定するものとしてもよい。こうすれば、エゼクタ圧を推定することができる。
エンジン装置10の構成の概略を示す構成図である。 電子制御ユニット70の入出力信号の一例を示す説明図である。 燃料噴射制御ルーチンの一例を示すフローチャートである。 複数の負荷率領域Rk[1]〜Rk[n]の一例を示す説明図である。 空燃比補正量設定ルーチンの一例を示すフローチャートである。 空燃比補正量設定用マップの一例を示す説明図である。 パージ補正量設定ルーチンの一例を示すフローチャートである。 パージ制御ルーチンの一例を示すフローチャートである。 支配パージ判定ルーチンの一例を示すフローチャートである。 エゼクタ圧設定用マップの一例を示す説明図である。 第1パージ通路62の断面積に比して第2パージ通路63の断面積が小さいときのオフセット量設定用マップの一例を示す説明図である。 全開パージ流量推定用マップの一例を示す説明図である。 パージ濃度関連値学習ルーチンの一例を示すフローチャートである。 更新量設定用マップの一例を示す説明図である。 パージを実行しているときの支配パージフラグFpd、下流パージ濃度学習の学習回数Ndn、上流パージ濃度学習の学習回数Nup、許可フラグFhi、許可履歴フラグFhidnの様子の一例を示す説明図である。
次に、本発明を実施するための形態を実施例を用いて説明する。
図1は、本発明の一実施例としてのエンジン装置10の構成の概略を示す構成図であり、図2は、電子制御ユニット70の入出力信号の一例を示す説明図である。実施例のエンジン装置10は、エンジン12からの動力を用いて走行する一般的な車両や、エンジン12に加えてモータを備える各種のハイブリッド車両に搭載され、図1や図2に示すように、エンジン12と、過給機40と、蒸発燃料処理装置50と、電子制御ユニット70とを備える。
エンジン12は、燃料タンク11から供給されるガソリンや軽油などの燃料を用いて動力を出力する内燃機関として構成されている。このエンジン12は、エアクリーナ22により清浄された空気を吸気管23に吸入してインタークーラ25、スロットルバルブ26、サージタンク27の順に通過させる。そして、吸気バルブ29を介して燃焼室30に吸入した空気に燃焼室30に取り付けられた筒内噴射弁28から燃料を噴射して空気と燃料とを混合し、点火プラグ31による電気火花によって爆発燃焼させる。エンジン12は、こうした爆発燃焼によるエネルギにより押し下げられるピストン32の往復運動をクランクシャフト14の回転運動に変換する。燃焼室30から排気バルブ34を介して排気管35に排出される排気は、一酸化炭素(CO)や炭化水素(HC)、窒素酸化物(NOx)の有害成分を浄化する触媒(三元触媒)を有する浄化装置37,38を介して外気に排出される。なお、筒内噴射弁28には、燃料タンク11からフィードポンプ11pや低圧側燃料通路17、高圧ポンプ18、高圧側燃料通路19を介して燃料が供給される。高圧ポンプ18は、エンジン12からの動力により駆動されて低圧側燃料通路17の燃料を加圧して高圧側燃料通路19に供給する。
過給機40は、ターボチャージャとして構成されており、コンプレッサ41と、タービン42と、回転軸43と、ウェイストゲートバルブ44と、ブローオフバルブ45とを備える。コンプレッサ41は、吸気管23のインタークーラ25よりも上流側に配置されている。タービン42は、排気管35の浄化装置37よりも上流側に配置されている。回転軸43は、コンプレッサ41とタービン42とを連結する。ウェイストゲートバルブ44は、排気管35におけるタービン42よりも上流側と下流側とを連絡するバイパス管36に設けられており、電子制御ユニット70により制御される。ブローオフバルブ45は、吸気管23におけるコンプレッサ41よりも上流側と下流側とを連絡するバイパス管24に設けられており、電子制御ユニット70により制御される。
この過給機40では、ウェイストゲートバルブ44の開度の調節により、バイパス管36を流通する排気量とタービン42を流通する排気量との分配比が調節され、タービン42の回転駆動力が調節され、コンプレッサ41による圧縮空気量が調節され、エンジン12の過給圧(吸気圧)が調節される。ここで、分配比は、詳細には、ウェイストゲートバルブ44の開度が小さいほど、バイパス管36を流通する排気量が少なくなると共にタービン42を流通する排気量が多くなるように調節される。なお、エンジン12は、ウェイストゲートバルブ44が全開のときには、過給機40を備えない自然吸気タイプのエンジンと同様に動作可能になっている。
また、過給機40では、吸気管23におけるコンプレッサ41よりも下流側の圧力が上流側の圧力よりもある程度高いときに、ブローオフバルブ45を開弁させることにより、コンプレッサ41よりも下流側の余剰圧力を解放することができる。なお、ブローオフバルブ45は、電子制御ユニット70により制御されるバルブに代えて、吸気管23におけるコンプレッサ41よりも下流側の圧力が上流側の圧力よりもある程度高くなると開弁する逆止弁として構成されるものとしてもよい。
蒸発燃料処理装置50は、燃料タンク11内で発生した蒸発燃料ガス(パージガス)をエンジン12の吸気管23に供給するパージを行なうための装置であり、導入通路52と、開閉バルブ53と、バイパス通路54と、リリーフバルブ55a,55bと、キャニスタ56と、共通通路61と、第1パージ通路62と、第2パージ通路63と、バッファ部64と、パージ制御バルブ65と、逆止弁66,67と、還流通路68と、エゼクタ69とを備える。実施例の「供給通路」としては、導入通路52および共通通路61が相当する。
導入通路52は、燃料タンク11とキャニスタ56とに接続されている。開閉バルブ53は、導入通路52に設けられており、ノーマルクローズタイプの電磁バルブとして構成されている。この開閉バルブ53は、電子制御ユニット70により制御される。
バイパス通路54は、導入通路52の開閉バルブ53よりも燃料タンク11側とキャニスタ56側とをバイパスすると共に、2つに分岐して合流する分岐部54a,54bを有する。リリーフバルブ55aは、分岐部54aに設けられると共に逆止弁として構成されており、燃料タンク11側の圧力がキャニスタ56側の圧力に比してある程度大きくなると開弁する。リリーフバルブ55bは、分岐部54bに設けられると共に逆止弁として構成されており、キャニスタ56側の圧力が燃料タンク11側の圧力に比してある程度大きくなると開弁する。
キャニスタ56は、導入通路52に接続されていると共に大気開放通路57を介して大気に開放されている。このキャニスタ56の内部には、燃料タンク11からの蒸発燃料を吸着可能な例えば活性炭などの吸着剤が充填されている。大気開放通路57には、エアフィルタ58が設けられている。
共通通路61は、導入通路52のキャニスタ56付近に接続され、分岐点61aで第1パージ通路62および第2パージ通路63に分岐する。第1パージ通路62は、吸気管23のスロットルバルブ26とサージタンク27との間に接続されている。第2パージ通路63は、エゼクタ69の吸引ポートに接続されている。
バッファ部64は、共通通路61に設けられている。このバッファ部64の内部には、燃料タンク11やキャニスタ56からの蒸発燃料を吸着可能な例えば活性炭などの吸着剤が充填されている。パージ制御バルブ65は、共通通路61のバッファ部64よりも分岐点61a側に設けられている。このパージ制御バルブ65は、ノーマルクローズタイプの電磁バルブとして構成されている。このパージ制御バルブ65は、電子制御ユニット70により制御される。
逆止弁66は、第1パージ通路62の分岐点61a付近に設けられている。この逆止弁66は、パージ通路60の共通通路61側から第1パージ通路62(吸気管23)側の方向の蒸発燃料を含む蒸発燃料ガス(パージガス)の流れを許容すると共に逆方向の蒸発燃料ガスの流れを禁止する。逆止弁67は、第2パージ通路63の分岐点61a付近に設けられている。この逆止弁67は、パージ通路60の共通通路61側から第2パージ通路63(エゼクタ69)側の方向の蒸発燃料ガスの流れを許容すると共に逆方向の蒸発燃料ガスの流れを禁止する。
還流通路68は、吸気管23のコンプレッサ41とインタークーラ25との間と、エゼクタ69の吸気ポートと、に接続されている。エゼクタ69は、吸気ポートと吸引ポートと排気ポートとを有する。エゼクタ69の吸気ポートは、還流通路68に接続されており、吸引ポートは、第2パージ通路63に接続されており、排気ポートは、吸気管23のコンプレッサ41よりも上流側に接続されている。吸気ポートの先端部は、先細状に形成されている。
このエゼクタ69では、過給機40が作動しているとき(吸気管23のコンプレッサ41とインタークーラ25との間の圧力が正圧になるとき)に、吸気ポートと排気ポートとの間に圧力差が生じ、吸気ポートから排気ポートに向かって還流吸気(吸気管23のコンプレッサ41よりも下流側から還流通路68を介して還流される吸気)が流れる。このとき、還流吸気が吸気ポートの先端部で減圧され、その先端部周辺で負圧が発生する。そして、その負圧により、蒸発燃料ガスが第2パージ通路63から吸引ポートを介して吸引され、この蒸発燃料ガスが負圧の還流吸気と共に排気ポートを介して吸気管23のコンプレッサ41よりも上流側に供給される。
こうして構成される蒸発燃料処理装置50は、基本的には、以下のように動作する。吸気管23のスロットルバルブ26よりも下流側の圧力(後述のサージ圧Ps)が負圧で、且つ、開閉バルブ53およびパージ制御バルブ65が開弁しているときには、逆止弁66が開弁し、燃料タンク11内で発生した蒸発燃料ガス(パージガス)やキャニスタ56から脱離した蒸発燃料ガスが導入通路52や共通通路61、第1パージ通路62を介して吸気管23のスロットルバルブ26よりも下流側に供給される。以下、これを「下流パージ」という。このとき、吸気管23のコンプレッサ41とインタークーラ25との間の圧力(後述の過給圧Pc)が負圧またはゼロであれば、エゼクタ69が作動しないから、逆止弁66は開弁しない。
また、吸気管23のコンプレッサ41とインタークーラ25との間の圧力(過給圧Pc)が正圧で、且つ、開閉バルブ53およびパージ制御バルブ65が開弁しているときには、エゼクタ69が作動して逆止弁67が開弁し、蒸発燃料ガスが導入通路52や共通通路61、第2パージ通路63、エゼクタ69を介して吸気管23のコンプレッサ41よりも上流側に供給される。以下、これを「上流パージ」という。このとき、吸気管23のスロットルバルブ26よりも下流側の圧力(サージ圧Ps)に応じて、逆止弁66が開弁または閉弁する。
したがって、蒸発燃料処理装置50では、吸気管23のスロットルバルブ26よりも下流側の圧力(サージ圧Ps)や、吸気管23のコンプレッサ41とインタークーラ25との間の圧力(過給圧Pc)に応じて、パージのうち下流パージだけが行なわれたり、上流パージだけが行なわれたり、下流パージおよび上流パージの両方が行なわれたりする。
電子制御ユニット70は、CPUを中心とするマイクロプロセッサとして構成されており、CPUに加えて、処理プログラムを記憶するROMや、データを一時的に記憶するRAM、データを記憶保持する不揮発性のフラッシュメモリ、入出力ポート、通信ポートを備える。電子制御ユニット70には、各種センサからの信号が入力ポートを介して入力されている。
電子制御ユニット70に入力される信号としては、例えば、燃料タンク11内の圧力を検出する内圧センサ11aからのタンク内圧Ptnkや、エンジン12のクランクシャフト14の回転位置を検出するクランクポジションセンサ14aからのクランク角θcr、エンジン12の冷却水の温度を検出する水温センサ16からの冷却水温Tw、スロットルバルブ26の開度を検出するスロットルポジションセンサ26aからのスロットル開度THを挙げることができる。吸気バルブ29を開閉するインテークカムシャフトや排気バルブ34を開閉するエキゾーストカムシャフトの回転位置を検出する図示しないカムポジションセンサからのカムポジションθcaも挙げることができる。吸気管23のコンプレッサ41よりも上流側に取り付けられたエアフローメータ23aからの吸入空気量Qaや、吸気管23のコンプレッサ41よりも上流側に取り付けられた吸気温センサ23tからの吸気温Tin、吸気管23のコンプレッサ41よりも上流側に取り付けられた吸気圧センサ23bからの吸気圧(コンプレッサ前圧)Pin、吸気管23のコンプレッサ41とインタークーラ25との間に取り付けられた過給圧センサ23cからの過給圧Pcも挙げることができる。サージタンク27に取り付けられたサージ圧センサ27aからのサージ圧(スロットル後圧)Psや、サージタンク27に取り付けられた温度センサ27bからのサージ温度Tsも挙げることができる。筒内噴射弁28に供給する燃料の燃圧を検出する燃圧センサ28aからの供給燃圧Pfdも挙げることができる。排気管35の浄化装置37よりも上流側に取り付けられたフロント空燃比センサ35aからのフロント空燃比AF1や、排気管35の浄化装置37と浄化装置38との間に取り付けられたリヤ空燃比センサ35bからのリヤ空燃比AF2も挙げることができる。パージ制御バルブポジションセンサ65aからのパージ制御バルブ65の開度Opvや第2パージ通路63に取り付けられたOBD用センサ(圧力センサ)63aからのセンサ信号Pobdも挙げることができる。
電子制御ユニット70からは、各種制御信号が出力ポートを介して出力されている。電子制御ユニット70から出力される信号としては、例えば、スロットルバルブ26への制御信号や、筒内噴射弁28への制御信号、点火プラグ31への制御信号を挙げることができる。ウェイストゲートバルブ44への制御信号、ブローオフバルブ45への制御信号、開閉バルブ53への制御信号も挙げることができる。パージ制御バルブ65への制御信号も挙げることができる。
電子制御ユニット70は、エンジン12の回転数Neや負荷率(エンジン12の1サイクルあたりの行程容積に対する1サイクルで実際に吸入される空気の容積の割合)KLを演算している。回転数Neは、クランクポジションセンサ14aからのクランク角θcrに基づいて演算される。負荷率KLは、エアフローメータ23aからの吸入空気量Qaと回転数Neとに基づいて演算される。
こうして構成された実施例のエンジン装置10では、電子制御ユニット70は、エンジン12の要求負荷率KL*に基づいて、スロットルバルブ26の開度を制御する吸入空気量制御や、筒内噴射弁28からの燃料噴射量を制御する燃料噴射制御、点火プラグ31の点火時期を制御する点火制御、ウェイストゲートバルブ44の開度を制御する過給制御、パージ制御バルブ65の開度を制御するパージ制御などを行なう。以下、燃料噴射制御やパージ制御について説明する。なお、吸入空気量制御や点火制御、過給制御については、本発明の中核をなさないため、詳細な説明を省略する。
燃料噴射制御について説明する。図3は、燃料噴射制御ルーチンの一例を示すフローチャートである。このルーチンは、電子制御ユニット70により繰り返し実行される。このルーチンが実行されると、電子制御ユニット70は、エンジン12の負荷率KLや、空燃比補正量α[i]、パージ補正量βなどのデータを入力する(ステップS100)。
ここで、エンジン12の負荷率KLは、吸入空気量Qaと回転数Neとに基づいて演算された値が入力される。空燃比補正量α[i]は、負荷率KLについて区分された複数の負荷率領域Rk[1]〜Rk[n](n:領域数)のうち現在の負荷率KLの属する所属領域(領域番号i(i:1〜nのうちの何れか))のフロント空燃比センサ35aのずれ(オフセット量)に関連する補正量であり、後述の空燃比補正量設定ルーチンにより設定された値が入力される。図4は、複数の負荷率領域Rk[1]〜Rk[n]の一例を示す説明図である。複数の負荷率領域Rk[1]〜Rk[n]は、実施例では、図示するように、負荷率KLについて想定される範囲が、負荷率KLの小さい側から順に負荷率領域Rk[1],・・・,Rk[n]となり且つ最も高負荷率の負荷率領域Rk[n]の領域幅(負荷率KLの範囲)がそれ以外の負荷率領域Rk[1]〜Rk[n−1]の領域幅に比して広くなるように区分されて設定されるものとした。パージ補正量βは、上述の下流パージや上流パージに関連する補正量であり、後述のパージ補正量設定ルーチンにより設定された値が入力される。
続いて、負荷率KLに基づいて筒内噴射弁28のベース噴射量Qfbsを設定し(ステップS110)、設定したベース噴射量Qfbsに空燃比補正量α[i]およびパージ補正量βを加えて筒内噴射弁28の要求噴射量Qf*を設定し(ステップS120)、設定した要求噴射量Qf*を用いて筒内噴射弁28を制御して(ステップS130)、本ルーチンを終了する。ここで、ベース噴射量Qfbsは、燃焼室30内の混合気の空燃比を要求空燃比AF*とするための筒内噴射弁28の要求噴射量Qf*のベース値である。このベース噴射量Qfbsは、例えば、燃焼室30内の混合気の空燃比を要求空燃比AF*とするための筒内噴射弁28の単位噴射量(負荷率KLの1%当たりの噴射量)Qfpuと、負荷率KLと、の積として演算された値が設定される。
次に、図3の燃料噴射量制御ルーチンで用いられる、複数の負荷率領域Rk[1]〜Rk[n]のそれぞれの空燃比補正量α[1]〜α[n]を設定する処理について、図5の空燃比補正量設定ルーチンを用いて説明する。このルーチンは、電子制御ユニット70により繰り返し実行される。なお、負荷率領域Rk[1]〜Rk[n]の空燃比補正量α[1]〜α[n]は、それぞれ、現在のトリップで設定するまでは、初期値または前回以前のトリップで最後に設定した値になっている。
図5の空燃比補正量設定ルーチンが実行されると、電子制御ユニット70は、最初に、現在のトリップでの本ルーチンの初回の実行であるか否かを判定する(ステップS200)。そして、現在のトリップでの本ルーチンの初回の実行であると判定したときには、複数の負荷率領域Rk[1]〜Rk[n]の設定完了フラグFα[1]〜Fα[n]の全てを初期値としての値0にリセットする(ステップS210)。ここで、設定完了フラグFα[1]〜Fα[n]は、それぞれ、現在のトリップで空燃比補正量α[1]〜α[n]を設定したか否かを示すフラグである。ステップS200で現在のトリップでの本ルーチンの初回の実行でないと判定したときには、ステップS210の処理を実行しない。
続いて、エンジン12の冷却水温Twや定常運転フラグFst、複数の負荷率領域Rk[1]〜Rk[n]のうち現在の負荷率KLの属する所属領域の領域番号iなどのデータを入力する(ステップS220)。ここで、冷却水温Twは、水温センサ16により検出された値が入力される。定常運転フラグFstは、図示しない定常運転フラグ設定ルーチンにより設定された値が入力される。定常運転フラグ設定ルーチンでは、電子制御ユニット70は、エンジン12の回転数Neや吸入空気量Qa、負荷率KLのうちの少なくとも1つを用いてエンジン12を定常運転しているか否かを判定し、エンジン12を定常運転していると判定したときには、定常運転フラグFstに値1を設定し、エンジン12を定常運転していないと判定したときには、定常運転フラグFstに値0を設定する。所属領域の領域番号iは、負荷率KLと複数の負荷率領域Rk[1]〜Rk[n]とに基づいて設定された値が入力される。
そして、冷却水温Twを閾値Twrefと比較すると共に(ステップS230)、定常運転フラグFstの値を調べる(ステップS240)。ここで、閾値Twrefとしては、例えば、55℃〜65℃程度が用いられる。ステップS230,S240の処理は、領域番号iの空燃比補正量α[i]の設定条件が成立したか否かを判定する処理である。ステップS230で冷却水温Twが閾値Twref未満のときや、ステップS240で定常運転フラグFstが値0のときには、領域番号iの空燃比補正量α[i]の設定条件は成立していないと判断し、本ルーチンを終了する。
ステップS230で冷却水温Twが閾値Twref以上で、且つ、ステップS240で定常運転フラグFstが値1のときには、領域番号iの空燃比補正量α[i]の設定条件が成立したと判断し、領域番号iの設定完了フラグFα[i]の値を調べる(ステップS250)。そして、領域番号iの設定完了フラグFα[i]が値0のときには、現在のトリップで領域番号iの空燃比補正量α[i]を設定していないと判断し、フロント空燃比AF1を入力し(ステップS260)、入力したフロント空燃比AF1に基づいて領域番号iの空燃比補正量α[i]を設定し(ステップS270)、領域番号iの設定完了フラグFα[i]に値1を設定して(ステップS280)、本ルーチンを終了する。
ここで、フロント空燃比AF1は、フロント空燃比センサ35aにより検出された値が入力される。領域番号iの空燃比補正量α[i]は、その設定条件が成立したときのフロント空燃比AF1を空燃比補正量設定用マップに適用して求めることができる。空燃比補正量設定用マップは、領域番号iの空燃比補正量α[i]の設定条件が成立したときのフロント空燃比AF1と空燃比補正量α[i]との関係として実験や解析により予め定められ、図示しないROMやフラッシュメモリに記憶されている。図6は、空燃比補正量設定用マップの一例を示す説明図である。図示するように、空燃比補正量α[i]は、設定条件が成立したときのフロント空燃比AF1が要求空燃比AF*に対してリッチ側、リーン側のときにそれぞれ負の範囲内、正の範囲内で且つフロント空燃比AF1と要求空燃比AF*との差分が大きい(フロント空燃比AF1が要求空燃比AF*から離間する)ほど絶対値が大きくなるように設定される。そして、この空燃比補正量α[i]が小さいほど、図3の燃料噴射制御ルーチンにおいて、要求噴射量Qf*を少なくして筒内噴射弁28を制御することになる。なお、上述したように、複数の負荷率領域Rk[1]〜Rk[n]は、最も高負荷率の負荷率領域Rk[n]の領域幅がそれ以外の負荷率領域Rk[1]〜Rk[n−1]の領域幅に比して広くなるように設定されるから(図4参照)、負荷率領域Rk[n]の空燃比補正量α[n]の信頼性は、負荷率領域Rk[1]〜Rk[n−1]の空燃比補正量α[1]〜α[n−1]の信頼性に比して低い。
ステップS250で領域番号iの設定完了フラグFα[i]が値1のときには、現在のトリップで領域番号iの空燃比補正量α[i]を設定していると判断し、ステップS260〜S280の処理を実行することなく、本ルーチンを終了する。
次に、図3の燃料噴射量制御ルーチンで用いられるパージ補正量βを設定する処理について、図7のパージ補正量設定ルーチンを用いて説明する。このルーチンは、電子制御ユニット70により繰り返し実行される。このルーチンが実行されると、電子制御ユニット70は、最初に、吸入空気量Qaやパージ制御バルブ65の開度Opv、要求パージ率Rprq、パージ濃度関連値Cpなどのデータを入力する(ステップS300)。
ここで、吸入空気量Qaは、エアフローメータ23aにより検出された値が入力される。パージ制御バルブ65の開度Opvは、パージ制御バルブポジションセンサ65aにより検出された値が入力される。要求パージ率Rprqは、後述のパージ制御ルーチンにより設定された値が入力される。なお、この要求パージ率Rprqは、後述のパージ条件が成立していないとき(パージ制御を実行しないとき)には、値0が設定される。パージ濃度関連値Cpは、パージ率1%当たりの燃焼室30内の空燃比(フロント空燃比センサ35aにより検出されるフロント空燃比AF1)の要求空燃比AF*に対するずれに関連する補正係数であり、パージ濃度関連値Cpが負の値のときには、パージ制御バルブ65を通過する気体(ガス)に蒸発燃料が含まれていることを意味し、値0以上のときには、パージ制御バルブ65を通過する気体に蒸発燃料が含まれていないことを意味する。このパージ濃度関連値Cpは、後述のパージ濃度関連値学習ルーチンにより設定された値が入力される。また、パージ濃度関連値Cpは、トリップを開始するときに初期値としての値0が設定される。なお、「パージ濃度」は、蒸発燃料ガスにおける蒸発燃料の濃度を意味し、「パージ率」は、吸入空気量に対する蒸発燃料ガスの割合を意味する。
こうしてデータを入力すると、入力したパージ制御バルブ65の開度Opvを用いてパージの実行の有無を判定する(ステップS310)。そして、パージを実行していないと判定したときには、パージ補正量βに値0を設定して(ステップS320)、本ルーチンを終了する。
ステップS310でパージを実行していると判定したときには、パージ濃度関連値Cpと吸入空気量Qaと要求パージ率Rprqとの積をパージ補正量βに設定して(ステップS330)、本ルーチンを終了する。こうして設定されるパージ補正量βは、パージ濃度関連値Cpが負の値のときには、負の値となり、パージ濃度関連値Cpの絶対値が大きいほど絶対値が大きくなり、吸入空気量Qaや要求パージ率Rprqが大きいほど絶対値が大きくなる。また、パージ補正量βは、パージ濃度関連値Cpが値0のときには、値0となる。さらに、パージ補正量βは、パージ濃度関連値Cpが正の値のときには、正の値となり、パージ濃度関連値Cpの絶対値が大きいほど絶対値が大きくなり、吸入空気量Qaや要求パージ率Rprqが大きいほど絶対値が大きくなる。そして、このパージ補正量βが小さいほど、図3の燃料噴射制御ルーチンにおいて、要求噴射量Qf*を少なくして筒内噴射弁28を制御することになる。
次に、パージ制御について説明する。図8は、パージ制御ルーチンの一例を示すフローチャートである。図9は、下流パージおよび上流パージのうち支配的である支配パージを判定するための支配パージ判定ルーチンの一例を示すフローチャートである。これらのルーチンは、電子制御ユニット70により、パージ条件が成立しているとき(パージを実行するとき)に繰り返し実行される。ここで、パージ条件としては、例えば、エンジン12の運転制御(燃料噴射制御など)を行なっており、且つ、複数の負荷率領域Rk[1]〜Rk[n]のうち現在の負荷率KLの属する所属領域(領域番号i)の設定完了フラグFα[i]が値1である(現在のトリップで空燃比補正量α[i]を設定済みである)条件が用いられる。以下、説明の容易のために、最初に、支配パージの判定について図9の支配パージ判定ルーチンを用いて説明し、その後、その判定に基づくパージ制御について図8のパージ制御ルーチンを用いて説明する。
図9の支配パージ判定ルーチンが実行されると、電子制御ユニット70は、最初に、吸気圧Pinや過給圧Pc、サージ圧Ps、駆動デューティDdrなどのデータを入力する(ステップS500)。ここで、吸気圧Pinは、吸気圧センサ23bにより検出された値が入力される。過給圧Pcは、過給圧センサ23cにより検出された値が入力される。サージ圧Psは、サージ圧センサ27aにより検出された値が入力される。駆動デューティDdrは、図8のパージ制御ルーチンにより設定された値が入力される。
こうしてデータを入力すると、過給圧Pcから吸気圧Pinを減じた値と駆動デューティDdrとに基づいてエゼクタ圧Pejを推定する(ステップS510)。ここで、エゼクタ圧Pejは、過給圧Pcから吸気圧Pinを減じた値と駆動デューティDdrとをエゼクタ圧設定用マップに適用して求めることができる。エゼクタ圧設定用マップは、過給圧Pcから吸気圧Pinを減じた値と駆動デューティDdrとエゼクタ圧Pejとの関係として実験や解析により予め定められ、図示しないROMやフラッシュメモリに記憶されている。図10は、エゼクタ圧設定用マップの一例を示す説明図である。図示するように、エゼクタ圧Pejは、駆動デューティDdrが大きいほど大きくなり(負の値としての絶対値が小さくなり)、且つ、過給圧Pc(過給圧Pcから吸気圧Pinを減じた値)が大きいほど小さくなる(負の値としての絶対値が大きくなる)ように設定される。
続いて、サージ圧Psに基づいて、第1パージ通路62の断面積に対する第2パージ通路63の断面積に基づく影響を補正するためにサージ圧Psをオフセットするオフセット量kdを設定する(ステップS520)。ここで、オフセット量kdは、サージ圧Psをオフセット量設定用マップに適用して求めることができる。オフセット量設定用マップは、サージ圧Psとオフセット量kdとの関係として実験や解析により予め定められ、図示しないROMやフラッシュメモリに記憶されている。図11は、第1パージ通路62の断面積に比して第2パージ通路63の断面積が小さいときのオフセット量設定用マップの一例を示す説明図である。図示するように、オフセット量kdは、サージ圧Psの負の値としての絶対値が大きいほど負の値としての絶対値が大きくなるように設定される。これは、サージ圧Psが負の値としての絶対値が大きいほど、第1パージ通路62の断面積に対する第2パージ通路63の断面積に基づく影響が大きくなることに基づく。なお、第1パージ通路62や第2パージ通路63が管によって構成されている場合、断面積は管径の2乗に比例するから、第1パージ通路62の断面積に対する第2パージ通路63の断面積に基づく影響は、第1パージ通路62の管径に対する第2パージ通路の管径に基づく影響と言い換えることができる。
そして、エゼクタ圧Pejとサージ圧Psからオフセット量kdを減じた値とを比較する(ステップS530)。エゼクタ圧Pejがサージ圧Psからオフセット量kdを減じた値以上である(負の値としての絶対値が以下である)と判定したときには、蒸発燃料ガスが第1パージ通路62に支配的に流れる(支配パージが下流パージである)と判断し、支配パージフラグFpdに値0を設定して(ステップS540)、本ルーチンを終了する。
ステップS530でエゼクタ圧Pejがサージ圧Psからオフセット量kdを減じた値よりも小さい(負の値としての絶対値が大きい)と判定したときには、蒸発燃料ガスが第2パージ通路63に支配的に流れる(支配パージが上流パージである)と判断し、支配パージフラグFpdに値1を設定して(ステップS550)、本ルーチンを終了する。
実施例では、このように、サージ圧Psに基づいて、第1パージ通路62の断面積に対する第2パージ通路の断面積に基づく影響を補正するためのオフセット量kdを設定し、エゼクタ圧Pejとサージ圧Psからオフセット量kdを減じた値とを比較して、下流パージおよび上流パージのうち支配的である支配パージを判定する。これにより、第1パージ通路62の断面積に対する第2パージ通路の断面積に基づく影響を考慮しないものに比して、支配パージをより適切に判定することができる。
次に、パージ制御について、図8のパージ制御ルーチンを用いて説明する。このルーチンが実行されると、電子制御ユニット70は、最初に、吸入空気量Qaや吸気圧Pin、過給圧Pc、サージ圧Ps、支配パージフラグFpd、許可フラグFhiなどのデータを入力する(ステップS400)。ここで、吸入空気量Qaは、エアフローメータ23aにより検出された値が入力される。吸気圧Pinは、吸気圧センサ23bにより検出された値が入力される。過給圧Pcは、過給圧センサ23cにより検出された値が入力される。サージ圧Psは、サージ圧センサ27aにより検出された値が入力される。支配パージフラグFpdは、図9の支配パージ判定ルーチンにより設定された値が入力される。許可フラグFhiは、高デューティ(後述の比較的小さい所定デューティD1よりも大きいデューティ)を用いたパージ制御バルブ65の制御(以下、「高デューティ制御」という)を許可するときには値1が設定され、高デューティ制御を禁止するときには値0が設定される。この許可フラグFhiは、後述のパージ濃度関連値学習ルーチンにより設定された値が入力される。また、許可フラグFhiは、トリップを開始するときに初期値として値0が設定される。
続いて、支配パージフラグFpdに基づいて目標パージ率Rptgを設定する(ステップS410)。ここで、目標パージ率Rptgは、各トリップで、パージ条件の初回の成立期間(パージ条件の成立が開始してから中断または終了するまでの期間)には、開始パージ率Rpst1から徐々に(例えば、レート値ΔRp1を用いたレート処理により)大きくなるように設定される。また、目標パージ率Rptgは、各トリップで、パージ条件の2回目以降の成立期間(パージ条件の成立が再開してから中断または終了するまでの期間)には、再開パージ率Rpst2から徐々に(例えば、レート値ΔRp2を用いたレート処理により)大きくなるように設定される。開始パージ率Rpst1や再開パージ率Rpst2としては、エンジン12の空燃比の乱れを抑制するために、比較的小さい値が用いられる。また、開始パージ率Rpst1や再開パージ率Rpst2、レート値ΔRp1,ΔRp2のうちの少なくとも1つは、支配パージフラグFpdが値1のとき即ち支配パージが上流パージであるときに、支配パージフラグFpdが値0のとき即ち支配パージが下流パージであるときに比して小さい値が設定される。なお、パージ条件の成立が中断するときとしては、例えば、エンジン装置10が搭載される車両の走行中にアクセルオフされてエンジン12の燃料カットを行なうときなどが挙げられる。
そして、支配パージフラグFpdに基づいて上限パージ率Rplimを設定する(ステップS420)。ここで、上限パージ率Rplimは、支配パージフラグFpdが値1のとき即ち支配パージが上流パージであるときに、支配パージフラグFpdが値0のとき即ち支配パージが下流パージであるときに比して小さい値が設定される。
さらに、サージ圧Psと過給圧Pcから吸気圧Pinを減じた値とに基づいて全開パージ流量Qpmaxを推定する(ステップS430)。ここで、全開パージ流量Qpmaxは、パージ制御バルブ65の駆動デューティを100%としたときのパージ流量(吸気管23に供給される蒸発燃料ガスの体積流量)である。この全開パージ流量Qpmaxは、サージ圧Psと過給圧Pcから吸気圧Pinを減じた値とを全開パージ流量推定用マップに適用して求めることができる。全開パージ流量推定用マップは、サージ圧Psと過給圧Pcから吸気圧Pinを減じた値と全開パージ流量Qpmaxとの関係として実験や解析により予め定められ、図示しないROMやフラッシュメモリに記憶されている。図12は、全開パージ流量推定用マップの一例を示す説明図である。図示するように、全開パージ流量Qpmaxは、サージ圧Psが小さい(負の値としての絶対値が大きい)ほど多くなり、且つ、過給圧Pcから吸気圧Pinを減じた値が大きいほど多くなるように設定される。
加えて、吸入空気量Qaと所定時間T1前のバルブ前パージ流量(過去Qpv)とに基づいて燃焼室30内の空気量である燃焼室空気量Qccを推定する(ステップS440)。ここで、バルブ前パージ流量Qpvは、共通通路61のパージ制御バルブ65よりも導入通路52側の蒸発燃料ガスの流量である。所定時間T1前のバルブ前パージ流量(過去Qpv)としては、所定時間T1前にパージを実行しているときには、所定時間T1前に本ルーチンを実行したときに後述のステップS490の処理で推定した値が用いられ、所定時間T1前にパージを実行していないときには、値0が用いられる。なお、所定時間T1は、共通通路61のパージ制御バルブ65よりも導入通路52側の蒸発燃料ガスが燃焼室30に到達するのに要する時間として定められ、支配パージフラグFpdやエンジン12の回転数Neに基づく時間が用いられるものとしてもよいし、簡単のために一定時間が用いられるものとしてもよい。燃焼室空気量Qccは、例えば、吸入空気量Qaおよび過去のバルブ前パージ流量(過去Qpv)を燃焼室空気量推定用マップに適用して求めることができる。燃焼室空気量推定用マップは、吸入空気量Qaおよび過去のバルブ前パージ流量(過去Qpv)と燃焼室空気量Qccとの関係として実験や解析により予め定められ、図示しないROMやフラッシュメモリに記憶されている。
こうして全開パージ流量Qpmaxおよび燃焼室空気量Qccを推定すると、これらに基づいて全開パージ率Rpmaxを推定する(ステップS450)。ここで、全開パージ率Rpmaxは、全開パージ流量Qpmaxを燃焼室空気量Qccで除することにより演算することができる。続いて、目標パージ率Rptgを全開パージ率Rpmaxおよび上限パージ率Rplimで制限(上限ガード)して要求パージ率Rprqを設定する(ステップS460)。即ち、目標パージ率Rptgと全開パージ率Rpmaxと上限パージ率Rplimとのうち最も小さい値を要求パージ率Rprqに設定する。
そして、許可フラグFhiの値を調べる(ステップS470)。許可フラグFhiが値1のとき、即ち、高デューティ制御を許可するときには、要求パージ率Rprqを全開パージ率Rpmaxで除してパージ制御バルブ65の駆動デューティDdrを設定し(ステップS472)、設定した駆動デューティDdrを用いてパージ制御バルブ65を制御する(ステップS480)。
ステップS470で許可フラグFhiが値0のとき、即ち、高デューティ制御を禁止するときには、要求パージ率Rprqを全開パージ率Rpmaxで除した値を比較的小さい所定デューティD1で制限(上限ガード)してパージ制御バルブ65の駆動デューティDdrを設定し(ステップS474)、設定した駆動デューティDdrを用いてパージ制御バルブ65を制御する(ステップS480)。
そして、吸入空気量Qaおよび要求パージ率Rprqに基づいてバルブ前パージ流量Qpvを推定して(ステップS490)、本ルーチンを終了する。ここで、バルブ前パージ流量Qpvは、例えば、吸入空気量Qaおよび要求パージ率Rprqをバルブ前パージ流量推定用マップに適用して求めることができる。バルブ前パージ流量推定用マップは、吸入空気量Qaおよび要求パージ率Rprqとバルブ前パージ流量Qpvとの関係として実験や解析により予め定められ、図示しないROMやフラッシュメモリに記憶されている。
実施例では、このように、下流パージおよび上流パージのうち支配パージが何れであるかにより、目標パージ率Rptg(開始パージ率Rpst1、再開パージ率Rpst2、レート値ΔRp1,ΔRp2のうちの少なくとも1つ)および上限パージ率Rplimを異なるものとした。支配パージが上流パージであるときには、支配パージが下流パージであるときに比して、蒸発燃料ガスがエンジン12の燃焼室30に至るまでの経路が長くこの時間が長くなることや、過給圧Pcの変動が生じること、負荷率領域Rk[n]の空燃比補正量α[n]の信頼性が負荷率領域Rk[1]〜Rk[n−1]の空燃比補正量α[1]〜α[n−1]の信頼性に比して低いことなどの理由により、燃料噴射制御によりフロント空燃比AF1が不安定になりやすい。実施例では、支配パージが上流パージであるときに、支配パージが下流パージであるときに比して目標パージ率Rptgや上限パージ率Rplimを小さくすることにより、フロント空燃比AF1が不安定になるのを抑制することができる。
次に、図3の燃料噴射制御ルーチンでパージ補正量βの設定に用いられるパージ濃度関連値Cpを設定する(学習する)処理について説明する。図13は、パージ濃度関連値学習ルーチンの一例を示すフローチャートである。このルーチンは、電子制御ユニット70により繰り返し実行される。なお、パージ濃度関連値Cpは、トリップを開始するときに初期値としての値0が設定される。
図13のパージ濃度関連値学習ルーチンが実行されると、電子制御ユニット70は、最初に、パージ制御バルブ65の開度Opvを入力し(ステップS600)、入力したパージ制御バルブ65の開度Opvを用いてパージの実行の有無を判定する(ステップS610)。ここで、パージ制御バルブ65の開度Opvは、パージ制御バルブポジションセンサ65aにより検出された値が入力される。
ステップS610でパージを実行していないと判定したときには、パージ濃度関連値Cpを前回値で保持し(ステップS620)、支配パージが下流パージのときのパージ濃度関連値Cpの学習である下流パージ濃度学習の学習回数Ndn、および、支配パージが上流パージのときのパージ濃度関連値Cpの学習である上流パージ濃度学習の学習回数Nupを何れも前回値で保持する(ステップS622)。そして、下流パージ濃度学習の学習回数Ndnを用いてパージ濃度関連値Cp(学習値)の確からしさを推定して(ステップS820)、本ルーチンを終了する。ステップS820の処理では、下流パージ濃度学習の学習回数Ndnが多いほどパージ濃度関連値Cpの確からしさが高いと推定する。このようにパージ濃度関連値Cpの確からしさを推定する理由については後述する。このパージ濃度関連値Cpの確からしさ(下流パージ濃度学習の学習回数Ndn)は、例えば、OBD用センサ63aからのセンサ信号Pobdを用いた第2パージ通路63の異常の有無の診断の実行条件などに用いられる。
ステップS610でパージを実行していると判定したときには、フロント空燃比AF1や支配パージフラグFpdを入力する(ステップS630)。ここで、フロント空燃比AF1は、フロント空燃比センサ35aにより検出された値が入力される。支配パージフラグFpdは、図9の支配パージ判定ルーチンにより設定された値が入力される。
こうしてデータを入力すると、前回および今回の支配パージフラグ(前回Fpd),(今回Fpd)の値を調べる(ステップS640)。この処理は、前回および今回の支配パージが下流パージであるとき、支配パージが下流パージから上流パージに切り替わる第1切替の直後であるとき、前回および今回の支配パージが上流パージであるとき、支配パージが上流パージから下流パージに切り替わる第2切替の直後であるときの4つのケースのうちの何れであるかを判定する処理である。なお、上述したように、図9の支配パージ判定ルーチンはパージ条件が成立しているとき(パージを実行するとき)に繰り返し実行されるから、4つのケースには、前回に支配パージフラグ(前回Fpd)を入力してから今回に支配パージフラグ(今回Fpd)を入力するまでの間にパージが中断した場合も含まれる。
ステップS640で前回および今回の支配パージフラグ(前回Fpd),(今回Fpd)が何れも値0のとき、即ち、前回および今回の支配パージが下流パージであるときには、上流パージ濃度学習の学習回数Nupを値0にリセットする(ステップS650)。そして、フロント空燃比AF1に基づいて更新量γを設定し(ステップS660)、前回のパージ濃度関連値(前回Cp)に更新量γを加えた値を新たなパージ濃度関連値Cpに設定する(ステップS670)。このようにして下流パージ濃度学習が行なわれる。
ここで、更新量γは、フロント空燃比AF1を更新量設定用マップに適用して求めることができる。更新量設定用マップは、フロント空燃比AF1と更新量γとの関係として実験や解析により予め定められ、図示しないROMやフラッシュメモリに記憶されている。図14は、更新量設定用マップの一例を示す説明図である。図示するように、更新量γは、フロント空燃比AF1が要求空燃比AF*に対してリッチ側、リーン側のときにそれぞれ負の範囲内、正の範囲内で且つフロント空燃比AF1と要求空燃比AF*との差分が大きい(フロント空燃比AF1が要求空燃比AF*から離間する)ほど絶対値が大きくなるように設定される。こうして設定されるパージ濃度関連値Cpは、負の値のときには、パージ制御バルブ65を通過する気体(ガス)に蒸発燃料が含まれていることを意味し、値0以上のときには、パージ制御バルブ65を通過する気体に蒸発燃料が含まれていないことを意味する。
続いて、下流パージ濃度学習の学習回数Ndnを値1だけカウントアップして更新する(ステップS680)。この下流パージ濃度学習の学習回数Ndnは、トリップを開始するときに初期値としての値0が設定される。そして、パージ濃度関連値Cpが負の閾値Cpref1以下であるか否かを判定すると共に(ステップS690)、下流パージ濃度学習の学習回数Ndnが閾値Ndnref以上であるか否かを判定する(ステップS700)。ここで、閾値Cpref1および閾値Ndnrefは、下流パージ濃度学習の完了条件が成立しているか否かを判定するのに用いられる閾値である。閾値Cpref1としては、例えば、−10%/%〜−15%/%程度が用いられる。閾値Ndnrefとしては、例えば、20回〜40回程度が用いられる。
ステップS690でパージ濃度関連値Cpが閾値Cpref1よりも大きいと判定し、且つ、ステップS700で下流パージ濃度学習の学習回数Ndnが閾値Ndnref未満であると判定したときには、下流パージ濃度学習の完了条件が成立していないと判断する。そして、許可フラグFhiおよび許可履歴フラグFhidnを変更することなく、下流パージ濃度学習の学習回数Ndnを用いてパージ濃度関連値Cpの確からしさを推定して(ステップS820)、本ルーチンを終了する。ここで、許可フラグFhiは、トリップを開始するときに初期値として値0が設定される。許可履歴フラグFhidnは、トリップを開始するときに初期値としての値0が設定され、支配パージが下流パージで高デューティ制御を許可した(下流パージ濃度学習の完了条件が成立した)ときに値1が設定される。
ステップS690でパージ濃度関連値Cpが閾値Cpref1以下であると判定したときや、ステップS700で下流パージ濃度学習の学習回数Ndnが閾値Ndnref以上であると判定したときには、下流パージ濃度学習の完了条件が成立していると判断する。そして、許可フラグFhiに値1を設定すると共に(ステップS710)、許可履歴フラグFhidnに値1を設定し(ステップS720)、下流パージ濃度学習の学習回数Ndnを用いてパージ濃度関連値Cpの確からしさを推定して(ステップS820)、本ルーチンを終了する。こうしたステップS690〜S710の処理により、下流パージ濃度学習の完了条件が成立したときに、高デューティ制御を許可することができる。なお、下流パージ濃度学習の完了条件の成立の有無に拘わらずに、ステップS640で今回の支配パージフラグ(今回Fpd)が値0のときには、ステップS660,S670の処理により、下流パージ濃度学習が行なわれる。
ステップS640で今回の支配パージフラグ(今回Fpd)が値1のとき、即ち、支配パージが下流パージから上流パージに切り替わる第1切替の直後であるときや前回および今回の支配パージが上流パージであるときには、下流パージ濃度学習の学習回数Ndnを前回値で保持し(ステップS730)、上述のステップS660,S670の処理と同様に、更新量γを設定すると共にパージ濃度関連値Cpを設定する(ステップS740,S750)。このようにして上流パージ濃度学習が行なわれる。
続いて、上流パージ濃度学習の学習回数Nupを値1だけカウントアップして更新する(ステップS760)。ここで、上流パージ濃度学習の学習回数Nupは、トリップを開始するときに初期値としての値0が設定される。そして、パージ濃度関連値Cpが負の閾値Cpref2以下であるか否かを判定すると共に(ステップS770)、上流パージ濃度学習の学習回数Nupが閾値Nupref以上であるか否かを判定する(ステップS780)。ここで、閾値Cpref2および閾値Nuprefは、上流パージ濃度学習の完了条件が成立しているか否かを判定するのに用いられる閾値である。閾値Cpref2としては、例えば、上述の閾値Cpref1と同一の値が用いられる。閾値Nuprefとしては、例えば、上述の閾値Ndnrefと同一の値が用いられる。
ステップS770でパージ濃度関連値Cpが閾値Cpref2よりも大きいと判定し、且つ、ステップS780で上流パージ濃度学習の学習回数Nupが閾値Nupref未満であると判定したときには、上流パージ濃度学習の完了条件が成立していないと判断する。そして、許可フラグFhiを変更することなく(値0または値1で保持して)、下流パージ濃度学習の学習回数Ndnを用いてパージ濃度関連値Cpの確からしさを推定して(ステップS820)、本ルーチンを終了する。
ステップS770でパージ濃度関連値Cpが閾値Cpref2以下であると判定したときや、ステップS780で上流パージ濃度学習の学習回数Nupが閾値Nupref以上であると判定したときには、上流パージ濃度学習の完了条件が成立していると判断する。そして、許可フラグFhiに値1を設定し(ステップS790)、下流パージ濃度学習の学習回数Ndnを用いてパージ濃度関連値Cpの確からしさを推定して(ステップS820)、本ルーチンを終了する。こうしたステップS770〜S790の処理により、支配パージが下流パージであるときに高デューティ制御を許可していなくても、上流パージ濃度学習の完了条件が成立したときに、高デューティ制御を許可することができる。これにより、支配パージが上流パージであるときに、高デューティ制御を許可できずにパージ率を大きくできない、という不都合が生じるのを抑制することができる。なお、上流パージ濃度学習の完了条件の成立の有無に拘わらずに、ステップS640で今回の支配パージフラグ(今回Fpd)が値1のときには、ステップS770,S780の処理により、上流パージ濃度学習が行なわれる。
ステップS640で前回の支配パージフラグ(前回Fpd)が値1で且つ今回の支配パージフラグ(今回Fpd)が値0のとき、即ち、支配パージが上流パージから下流パージに切り替わる第2切替の直後であるときには、許可履歴フラグFhidnの値を調べる(ステップS800)。この処理は、支配パージが前回の下流パージから上流パージに切り替わる第1切替が生じた後に上流パージから今回の下流パージと切り替わる第2切替が生じたときにおいて、第2切替よりも前に支配パージが下流パージで高デューティ制御を許可した(下流パージ濃度学習の完了条件が成立した)履歴があるか否かを判定する処理である。
ステップ800で許可フラグFhidnが値1のときには、第2切替よりも前に支配パージが下流パージで高デューティ制御を許可した履歴があると判断し、許可フラグFhiを保持して、ステップS660以降の処理を実行する。支配パージが前回以前の下流パージのときに許可フラグFhiおよび許可履歴フラグFhidnに値1を設定すると、その後に支配パージが上流パージになっても許可フラグFhiおよび許可履歴フラグFhidnを値1で保持するから、支配パージが今回の下流パージになったときに、許可フラグFhiを値1で保持する、即ち、高デューティ制御の許可を保持することになる。
ステップS800で許可履歴フラグFhidnが値0のときには、第2切替よりも前に支配パージが下流パージで高デューティ制御を許可した履歴がないと判断し、許可フラグFhiに値0を設定して(ステップS810)、ステップS650以降の処理を実行する。ステップS800で許可履歴フラグFhidnが値0のときとしては、第1切替と第2切替との間(支配パージが上流パージのとき)に許可フラグFhiを値1に切り替えた場合と切り替えなかった場合とがある。したがって、ステップS800で許可履歴フラグFhidnが値0のときには、許可フラグFhiを値1から値0に切り替えるまたは値0で保持する、即ち、高デューティ制御を許可から禁止に切り替えるまたは禁止で保持することになる。
上述したように、支配パージが上流パージであるときには、支配パージが下流パージであるときに比して、燃料噴射制御によりフロント空燃比AF1が不安定になりやすい。このため、支配パージが上流パージであるときには、支配パージが下流パージであるときに比して、パージ濃度関連値Cp(学習値)の精度が低くなりやすい(理論的に想定される理論値に対する学習値のずれが大きくなりやすい)。このことから、支配パージが前回以前の下流パージのときに高デューティ制御を許可した(下流パージ濃度学習の完了条件が成立した)履歴がなく、且つ、支配パージが上流パージのときに高デューティ制御を許可したときにおいて、支配パージが今回の下流パージに切り替わったときに高デューティ制御の許可を継続すると、高デューティ制御で下流パージ濃度学習を行なっていないなどの理由により、エンジン12の空燃比が乱れる可能性がある。これに対して、実施例では、支配パージが前回以前の下流パージであるときに高デューティ制御を許可した履歴がなく、且つ、支配パージが上流パージであるときに高デューティ制御を許可したときにおいて、支配パージが今回の下流パージに切り替わったときには、高デューティ制御を許可から禁止に切り替えることにより、支配パージが上流パージから下流パージに切り変わった後にエンジン12の空燃比が乱れるのを抑制することができる。
図13のパージ濃度関連値学習ルーチンを用いて説明したように、実施例では、下流パージ濃度学習の学習回数Ndnと上流パージ濃度学習の学習回数Nupとを別々にカウントし、両者のうち下流パージ濃度学習の学習回数Ndn(トリップの開始からの累積回数)だけを用いてパージ濃度関連値Cp(学習値)の確からしさを推定する。支配パージが上流パージであるときには、支配パージが下流パージであるときに比して、上述したようにエンジン12のフロント空燃比AF1が不安定になりやすいため、パージ濃度関連値Cp(学習値)の精度が低くなりやすい(理論的に想定される理論値に対する学習値のずれが大きくなりやすい)。したがって、下流パージ濃度学習の学習回数Ndnと上流パージ濃度学習の学習回数Nupとを別々にカウントし、両者のうち下流パージ濃度学習の学習回数Ndnだけをパージ濃度関連値Cp(学習値)の確からしさとして用いることにより、パージ濃度関連値Cpの確からしさをより適切に推定することができる。実施例では、下流パージ濃度学習の学習回数Nupをトリップ開始からの累積回数とするために、支配パージが上流パージのときに、学習回数Nupを値0にリセットせずに保持するものとした。
図15は、パージを実行しているときの支配パージフラグFpd、下流パージ濃度学習の学習回数Ndn、上流パージ濃度学習の学習回数Nup、許可フラグFhi、許可履歴フラグFhidnの様子の一例を示す説明図である。図示するように、支配パージフラグFpdが値0のときには、下流パージ濃度学習を実行するごとに学習回数Ndnをカウントアップし、許可フラグFhiが値0および許可履歴フラグFhidnが値0で支配パージフラグFpdが値0から値1に切り替わると(時刻t11)、許可フラグFhiを値0で保持する。そして、学習回数Ndnを保持しつつ、上流パージ濃度学習を実行するごとに学習回数Nupをカウントアップし、学習回数Nupが閾値Nupref以上に至ると(時刻t12)、許可フラグFhiを値0から値1に切り替える。
その後に支配パージフラグFpdが値1から値0に切り替わると(時刻t13)、学習回数Nupを値0にリセットすると共に、許可履歴フラグFhidnが値0であるために許可フラグFhiを値1から値0に切り替える。支配パージフラグFpdが値0のときに学習回数Nupを値0にリセットするのは以下の理由による。上述したように、支配パージが上流パージであるときには、支配パージが下流パージであるときに比して、パージ濃度関連値Cp(学習値)の精度が低くなりやすい(理論値に対する学習値のずれが大きくなりやすい)。このため、許可フラグFhiが値0で支配パージフラグFpdが値0から値1に切り替わったときには、上流パージで高デューティ制御を許可する前の上流パージ濃度学習の機会を確保するために、許可フラグFhiを値0から値1に切り替える条件(上流パージ濃度学習の完了条件)に用いる学習回数Nupを、前回の続きからではなく値0からカウントするのが好ましい。こうした理由により、実施例では、支配パージフラグFpdが値0のときには、学習回数Nupを値0にリセットするものとした。
そして、下流パージ濃度学習を実行するごとに学習回数Ndnをカウントアップし、学習回数Ndnが閾値Ndnref以上に至ると(時刻t14)、許可フラグFhiをおよび許可履歴フラグFhidnを値1に切り替える(時刻t15)。その後に支配パージフラグFpdが値0から値1に切り替わると(時刻t15)、許可フラグFhiおよび許可履歴フラグFhidnを値1で保持すると共に学習回数Ndnを保持しつつ、上流パージ濃度学習を実行するごとに学習回数Nupをカウントアップする。そして、支配パージフラグFpdが値1から値0に切り替わると(時刻t16)、学習回数Nupを値0にリセットすると共に、許可履歴フラグFhidnが値1であるために許可フラグFhiを値1で保持する。
以上説明した実施例のエンジン装置10では、下流パージ濃度学習の学習回数Ndnと上流パージ濃度学習の学習回数Nupとを別々にカウントし、両者のうち下流パージ濃度学習の学習回数Ndn(トリップの開始からの累積回数)だけをパージ濃度関連値Cp(学習値)の確からしさとして用いるものとした。これにより、パージ濃度関連値Cpの確からしさをより適切に推定することができる。
また、実施例のエンジン装置10では、支配パージが下流パージから上流パージに切り替わったときに高デューティ制御を許可していないときにおいて、支配パージが上流パージのときに、上流パージ濃度学習の学習回数Nupが閾値Nupref以上に至った条件を含む上流パージ濃度学習の完了条件が成立すると、高デューティ制御を許可する。これにより、支配パージが下流パージであるときに高デューティ制御を許可していなくても、支配パージが上流パージであるときに、高デューティ制御を許可することができる。
実施例のエンジン装置10では、支配パージが下流パージのときには、下流パージ濃度学習を実行するごとに学習回数Ndnをカウントアップし、支配パージが上流パージのときには、学習回数Ndnを保持するものとした。しかし、支配パージが上流パージのときには、学習回数Ndnを値0に向けてカウントダウンするものとしてもよいし、学習回数Ndnを値0にリセットするものとしてもよい。
実施例のエンジン装置10では、支配パージが上流パージのときには、上流パージ濃度学習を実行するごとに学習回数Nupをカウントアップし、支配パージが下流パージのときには、学習回数Nupを値0にリセットするものとした。しかし、支配パージが下流パージのときには、学習回数Nupを保持するものとしてもよいし、学習回数Nupを値0に向けてカウントダウンするものとしてもよい。
実施例のエンジン装置10では、下流パージおよび上流パージのうち支配パージが何れであるかにより、目標パージ率Rptg(開始パージ率Rpst1、再開パージ率Rpst2、レート値ΔRp1,ΔRp2のうちの少なくとも1つ)および上限パージ率Rplimを異なるものとした。しかし、下流パージおよび上流パージのうち支配パージが何れであるかにより、目標パージ率Rptgおよび上限パージ率Rplimのうちの何れかだけを異なるものとしてもよいし、パージ制御バルブ65の制御に関する、目標パージ率Rptgや上限パージ率Rplim以外のパラメータを異なるものとしてもよい。
実施例のエンジン装置10では、サージ圧Psに基づいてオフセット量kdを設定し、エゼクタ圧Pejとサージ圧Psからオフセット量kdを減じた値とに基づいて下流パージおよび上流パージのうち支配パージが何れであるかを判定するものとした。しかし、エゼクタ圧Pejとサージ圧Psに無関係な一定のオフセット量kdをサージ圧Psから減じた値とに基づいて下流パージおよび上流パージのうち支配パージが何れであるかを判定するものとしてもよい。この場合でも、実施例に比して精度は劣るものの、第1パージ通路62の断面積に対する第2パージ通路の断面積に基づく影響を考慮しないものに比して、下流パージおよび上流パージのうちの何れが支配的パージであるかを適切に判定することができる。
実施例のエンジン装置10では、複数の負荷率領域Rk[1]〜Rk[n]について、それぞれ、1トリップで1回だけ空燃比補正量α[1]〜α[n]を設定するものとした。しかし、1トリップで複数回に亘って空燃比補正量α[1]〜α[n]を設定するものとしてもよい。この場合、図5の空燃比補正量設定ルーチンのステップS250の処理を実行しないものとしてもよい。
実施例のエンジン装置10では、負荷率KLについて想定される範囲を複数の負荷率領域Rk[1]〜Rk[n]に区分し、複数の負荷率領域Rk[1]〜Rk[n]のそれぞれの空燃比補正量α[1]〜α[n]を設定するものとした。しかし、これに代えて、吸入空気量Qaについて想定される範囲を複数の空気量領域Rq[1]〜Rq[n]に区分し、複数の空気量領域Rq[1]〜Rq[n]のそれぞれの空燃比補正量α[1]〜α[n]を設定するものとしてもよい。
実施例のエンジン装置10では、エゼクタ圧Pejとサージ圧Psからオフセット量kdを減じた値とに基づいて下流パージおよび上流パージのうち支配パージが何れであるかを判定するものとした。しかし、負荷率KLや吸入空気量Qaに基づいて下流パージおよび上流パージのうち支配パージが何れであるかを判定するものとしてもよい。この場合、負荷率KLと、負荷率領域Rk[n−1]と負荷率領域Rk[n]との境界値と、に基づいて下流パージおよび上流パージのうち支配パージが何れであるかを判定したり、吸入空気量Qaと、空気量領域Rq[n−1]と空気量領域Rq[n]との境界値と、に基づいて下流パージおよび上流パージのうち支配パージが何れであるかを判定したりしてもよい。
実施例のエンジン装置10では、エンジン12は、燃焼室30内に燃料を噴射する筒内噴射弁28を備えるものとした。しかし、エンジン12は、筒内噴射弁28に加えてまたは代えて、吸気ポートに燃料を噴射するポート噴射弁を備えるものとしてもよい。
実施例のエンジン装置10では、過給機40は、吸気管23に配置されるコンプレッサ41と排気管35に配置されるタービン42とが回転軸43を介して連結されるターボチャージャとして構成されるものとした。しかし、これに代えて、エンジン12やモータにより駆動されるコンプレッサが吸気管23に配置されるスーパーチャージャとして構成されるものとしてもよい。
実施例のエンジン装置10では、蒸発燃料処理装置50において、共通通路61は、導入通路52のキャニスタ56付近に接続されるものとした。しかし、キャニスタ56に接続されるものとしてもよい。
実施例では、一般的な自動車や各種のハイブリッド自動車に搭載されるエンジン装置10の形態とした。しかし、自動車以外の車両に搭載されるエンジン装置の形態としてもよいし、建設設備などの移動しない設備に搭載されるエンジン装置の形態としてもよい。
実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、エンジン12が「エンジン」に相当し、過給機40が「過給機」に相当し、蒸発燃料処理装置50が「蒸発燃料処理装置」に相当し、フロント空燃比センサ35aが「空燃比センサ」に相当し、電子制御ユニット70が「制御装置」に相当する。
なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。
以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明は、エンジン装置の製造産業などに利用可能である。
10 エンジン装置、11 燃料タンク、11a 内圧センサ、12 エンジン、14 クランクシャフト、14a クランクポジションセンサ、16 水温センサ、17 低圧側燃料通路、18 高圧ポンプ、19 高圧側燃料通路、22 エアクリーナ、23 吸気管、23a エアフローメータ、23b 吸気圧センサ、23c 過給圧センサ、23t 吸気温センサ、24 バイパス管、25 インタークーラ、26 スロットルバルブ、26a スロットルポジションセンサ、27 サージタンク、27a サージ圧センサ、27b 温度センサ、28 筒内噴射弁、28a 燃圧センサ、29 吸気バルブ、30 燃焼室、31 点火プラグ、32 ピストン、34 排気バルブ、35 排気管、35a フロント空燃比センサ、35b リヤ空燃比センサ、36 バイパス管、37,38 浄化装置、40 過給機、41 コンプレッサ、42 タービン、43 回転軸、44 ウェイストゲートバルブ、45 ブローオフバルブ、50 蒸発燃料処理装置、52 導入通路、53 開閉バルブ、54 バイパス通路、54a,54b 分岐部、55a,55b リリーフバルブ、55b リリーフバルブ、56 キャニスタ、57 大気開放通路、58 エアフィルタ、61 共通通路、61a 分岐点、62 第1パージ通路、63 第2パージ通路、63a OBD用センサ、64 バッファ部、65 パージ制御バルブ、65a パージ制御バルブポジションセンサ、66 逆止弁、67 逆止弁、68 還流通路、69 エゼクタ、70 電子制御ユニット。

Claims (8)

  1. 吸気管に配置されたスロットルバルブと、燃料噴射弁とを有し、燃料タンクから供給される燃料を用いて動力を出力するエンジンと、
    前記吸気管の前記スロットルバルブよりも上流側に配置されたコンプレッサを有する過給機と、
    前記燃料タンク内で発生した蒸発燃料を含む蒸発燃料ガスを前記吸気管の前記スロットルバルブよりも下流側に接続された第1パージ通路と第2パージ通路とに分岐して前記吸気管に供給する供給通路と、前記吸気管の前記コンプレッサと前記スロットルバルブとの間からの還流通路に吸気ポートが接続され且つ前記吸気管の前記コンプレッサよりも上流側に排気ポートが接続され且つ前記第2パージ通路に吸引ポートが接続されたエゼクタと、前記供給通路に設けられたパージ制御バルブと、を有する蒸発燃料処理装置と、
    前記エンジンの排気管に取り付けられた空燃比センサと、
    前記エンジンの要求負荷率と前記蒸発燃料ガスの濃度に関連するパージ濃度関連値に基づくパージ補正量とを用いて要求噴射量を設定して前記燃料噴射弁を制御し、前記蒸発燃料ガスを前記吸気管に供給するパージを実行するときには、要求パージ率に基づく駆動デューティを用いて前記パージ制御バルブを制御し、前記パージを実行しているときには、前記空燃比センサにより検出される空燃比の要求空燃比に対するずれである空燃比ずれに基づいて前記パージ濃度関連値を学習する制御装置と、
    を備えるエンジン装置であって、
    前記制御装置は、前記第1パージ通路を介して前記蒸発燃料ガスを前記吸気管に供給する第1パージのときの前記パージ濃度関連値の学習回数を反映すると共に前記第2パージ通路を介して前記蒸発燃料ガスを前記吸気管に供給する第2パージのときの前記パージ濃度関連値の学習回数を反映しない第1カウンタを用いて前記パージ濃度関連値の確からしさを推定する、
    エンジン装置。
  2. 請求項1記載のエンジン装置であって、
    前記制御装置は、前記第2パージのときには、前記第1カウンタを保持する、
    エンジン装置。
  3. 請求項1または2記載のエンジン装置であって、
    前記制御装置は、前記第1パージで、前記第1カウンタが第1閾値以上に至った条件を含む第1学習完了条件が成立すると、前記駆動デューティを所定デューティよりも大きくする高デューティ制御を許可する、
  4. 請求項1ないし3のうちの何れか1つの請求項に記載のエンジン装置であって、
    前記制御装置は、前記第2パージのときには、前記パージ濃度関連値を学習するごとに前記第1カウンタとは異なる第2カウンタをカウントアップする、
    エンジン装置。
  5. 請求項4記載のエンジン装置であって、
    前記制御装置は、前記第1パージのときには、前記第2カウンタをリセットする、
    前記エンジン装置。
  6. 請求項4または5記載のエンジン装置であって、
    前記制御装置は、前記第1パージから前記第2パージに切り替わったときに、前記駆動デューティを所定デューティよりも大きくする高デューティ制御を許可していないときにおいて、前記第2パージで、前記第2カウンタが第2閾値以上に至った条件を含む第2学習完了条件が成立すると、前記高デューティ制御を許可する、
    エンジン装置。
  7. 請求項1ないし6のうちの何れか1つの請求項に記載のエンジン装置であって、
    前記制御装置は、前記要求負荷率と前記空燃比センサのずれに関連する空燃比補正量と前記パージ補正量とを用いて前記要求噴射量を設定し、更に、所定条件が成立したときに、前記エンジンの吸入空気量または負荷率が大きいときに小さいときよりも領域幅が広くなるように区分された複数の領域のうち現在の前記吸入空気量または前記負荷率が属する所属領域の前記空燃比補正量を設定する、
    エンジン装置。
  8. 請求項1ないし7のうちの何れか1つの請求項に記載のエンジン装置において、
    前記制御装置は、前記エゼクタの前記吸引ポートの圧力であるエゼクタ圧と、前記吸気管の前記スロットルバルブよりも下流側の圧力であるスロットル後圧に前記第1パージ通路の断面積に対する前記第2パージ通路の断面積に基づくオフセット量を加味した値と、に基づいて前記第1パージおよび前記第2パージのうち支配的である支配パージを判定する、
    エンジン装置。
JP2020090134A 2020-05-22 2020-05-22 エンジン装置 Active JP7247955B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020090134A JP7247955B2 (ja) 2020-05-22 2020-05-22 エンジン装置
US17/238,210 US11230983B2 (en) 2020-05-22 2021-04-23 Engine device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020090134A JP7247955B2 (ja) 2020-05-22 2020-05-22 エンジン装置

Publications (2)

Publication Number Publication Date
JP2021183838A true JP2021183838A (ja) 2021-12-02
JP7247955B2 JP7247955B2 (ja) 2023-03-29

Family

ID=78608732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020090134A Active JP7247955B2 (ja) 2020-05-22 2020-05-22 エンジン装置

Country Status (2)

Country Link
US (1) US11230983B2 (ja)
JP (1) JP7247955B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7264114B2 (ja) * 2020-05-22 2023-04-25 トヨタ自動車株式会社 エンジン装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160305352A1 (en) * 2015-04-20 2016-10-20 Ford Global Technologies, Llc System and method for controlling canister purging
JP2016200123A (ja) * 2015-04-14 2016-12-01 トヨタ自動車株式会社 内燃機関の制御装置
JP2017125422A (ja) * 2016-01-12 2017-07-20 愛三工業株式会社 蒸発燃料処理装置
JP2018062924A (ja) * 2016-10-14 2018-04-19 マツダ株式会社 エンジンの制御装置
JP2018178939A (ja) * 2017-04-19 2018-11-15 トヨタ自動車株式会社 内燃機関の制御装置
JP2019052561A (ja) * 2017-09-13 2019-04-04 日立オートモティブシステムズ株式会社 過給機付内燃機関の蒸発燃料処理装置及び制御方法
JP2020033933A (ja) * 2018-08-29 2020-03-05 株式会社デンソー 蒸発燃料処理装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11111885B2 (en) * 2019-06-10 2021-09-07 Ford Global Technologies, Llc Systems and methods for purging a fuel vapor canister in dual-path purge systems

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200123A (ja) * 2015-04-14 2016-12-01 トヨタ自動車株式会社 内燃機関の制御装置
US20160305352A1 (en) * 2015-04-20 2016-10-20 Ford Global Technologies, Llc System and method for controlling canister purging
JP2017125422A (ja) * 2016-01-12 2017-07-20 愛三工業株式会社 蒸発燃料処理装置
JP2018062924A (ja) * 2016-10-14 2018-04-19 マツダ株式会社 エンジンの制御装置
JP2018178939A (ja) * 2017-04-19 2018-11-15 トヨタ自動車株式会社 内燃機関の制御装置
JP2019052561A (ja) * 2017-09-13 2019-04-04 日立オートモティブシステムズ株式会社 過給機付内燃機関の蒸発燃料処理装置及び制御方法
JP2020033933A (ja) * 2018-08-29 2020-03-05 株式会社デンソー 蒸発燃料処理装置

Also Published As

Publication number Publication date
US20210363930A1 (en) 2021-11-25
JP7247955B2 (ja) 2023-03-29
US11230983B2 (en) 2022-01-25

Similar Documents

Publication Publication Date Title
US9303574B2 (en) Control device of engine with supercharger
JP6093258B2 (ja) 過給機付きエンジンの排気還流装置のための故障検出装置
KR100233930B1 (ko) 내연기관의 제어장치
CN104100417A (zh) 发动机的排气回流装置
US11248570B2 (en) Engine apparatus
JP7247955B2 (ja) エンジン装置
JP2019027296A (ja) エンジンシステム
JP5660322B2 (ja) 内燃機関のegr制御装置
JP7371570B2 (ja) エンジン装置
JP2009191650A (ja) 内燃機関の制御装置
JP7264113B2 (ja) エンジン装置
JP7276248B2 (ja) エンジン装置
JP7264114B2 (ja) エンジン装置
JP4523766B2 (ja) 内燃機関の燃焼制御装置
JP3846481B2 (ja) 筒内噴射式内燃機関の制御装置
JP2021195911A (ja) エンジン装置
JP6049563B2 (ja) エンジンの制御装置
JP2021179199A (ja) エンジン装置
JP2021179200A (ja) エンジン装置
JP2021181771A (ja) エンジン装置
US11286869B2 (en) Engine device
JP2022023343A (ja) エンジン装置
JP2022023344A (ja) エンジン装置
JP2021188511A (ja) エンジン装置
JP2021169783A (ja) エンジン装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230227

R151 Written notification of patent or utility model registration

Ref document number: 7247955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151