JP2021156552A - Heating system - Google Patents

Heating system Download PDF

Info

Publication number
JP2021156552A
JP2021156552A JP2020059512A JP2020059512A JP2021156552A JP 2021156552 A JP2021156552 A JP 2021156552A JP 2020059512 A JP2020059512 A JP 2020059512A JP 2020059512 A JP2020059512 A JP 2020059512A JP 2021156552 A JP2021156552 A JP 2021156552A
Authority
JP
Japan
Prior art keywords
heat
source machine
heat source
refrigerant
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020059512A
Other languages
Japanese (ja)
Other versions
JP7374038B2 (en
Inventor
誠 森田
Makoto Morita
誠 森田
耕司 中島
Koji Nakajima
耕司 中島
岳彦 川上
Takehiko Kawakami
岳彦 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2020059512A priority Critical patent/JP7374038B2/en
Publication of JP2021156552A publication Critical patent/JP2021156552A/en
Application granted granted Critical
Publication of JP7374038B2 publication Critical patent/JP7374038B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

To provide a heating system suppressed in generation of dew condensation on a heat exchanger of a combustion heat source machine in reverse cycle defrosting.SOLUTION: In a heating system in which a combustion heat source machine 3 is disposed at a downstream side of a heat pump-type heat source machine 2 with respect to flow of a refrigerant circulated in a circulation circuit 25, when a prescribed defrost start condition is established in performing a heating operation of a heating terminal 4 by heating a heat medium by the heat pump-type heat source machine 2, a switch valve 6 is switched so that a flowing direction of the refrigerant becomes opposite to the flowing direction of the refrigerant in the heating operation, so as to execute reverse cycle defrosting for melting frost generated on the air heat exchanger 10 by supplying the refrigerant discharged from the compressor 5 to the air heat exchanger 10, and the combustion heat source machine 3 is operated to further increase a flow rate of the refrigerant in executing the reverse cycle defrosting in comparison with the flow rate of the refrigerant in the heating operation.SELECTED DRAWING: Figure 2

Description

本発明は、複数の熱源を用いた暖房システムに関するものである。 The present invention relates to a heating system using a plurality of heat sources.

従来この種のものでは、圧縮機、液冷媒熱交換器、四方弁、膨張弁、空気熱交換器を有するヒートポンプ式熱源機と、燃焼熱源機とを備え、ヒートポンプ式熱源機の下流側に燃焼熱源機を配設したものにおいて、ヒートポンプ式熱源機または燃焼熱源機で加熱された熱媒を用いて暖房端末による暖房運転を行うものがあった。(例えば、特許文献1参照。) Conventionally, this type of heat pump has a heat pump type heat source machine having a compressor, a liquid refrigerant heat exchanger, a four-way valve, an expansion valve, and an air heat exchanger, and a combustion heat source machine, and burns on the downstream side of the heat pump type heat source machine. In some cases in which a heat source machine is provided, a heating operation is performed by a heating terminal using a heat medium heated by a heat pump type heat source machine or a combustion heat source machine. (See, for example, Patent Document 1.)

特開2016−118340号公報Japanese Unexamined Patent Publication No. 2016-118340

ところで、この従来のものは、ヒートポンプ式熱源機により熱媒を加熱して暖房端末による暖房運転を行っているとき、空気熱交換器への着霜が進行すると、空気熱交換器の除霜が実行されることになる。 By the way, in this conventional one, when the heat medium is heated by the heat pump type heat source machine and the heating operation is performed by the heating terminal, if the frost formation on the air heat exchanger progresses, the defrosting of the air heat exchanger is performed. It will be executed.

この除霜時において、四方弁を冷媒の流れ方向が暖房運転時の冷媒の流れ方向と逆になるように切り換えた状態で除霜を行う、いわゆる逆サイクル除霜が実行された場合、暖房運転時に蒸発器として機能していた空気熱交換器が凝縮器として機能すると共に、暖房運転時に凝縮器として機能していた液冷媒熱交換器が蒸発器として機能することになる。 During this defrosting, when defrosting is performed with the four-way valve switched so that the flow direction of the refrigerant is opposite to the flow direction of the refrigerant during the heating operation, so-called reverse cycle defrosting is executed, the heating operation is performed. The air heat exchanger, which sometimes functioned as an evaporator, functions as a condenser, and the liquid refrigerant heat exchanger, which sometimes functioned as a condenser during the heating operation, functions as an evaporator.

そうすると、逆サイクル除霜時では、液冷媒熱交換器には低温の冷媒が流れることになり、液冷媒熱交換器を流通する熱媒も冷媒との熱交換により低温となる。ここで、逆サイクル除霜時において、暖房端末へ加熱された熱媒を供給するために燃焼熱源機がバックアップとして作動した場合、液冷媒熱交換器から流出して燃焼熱源機に流入する熱媒が低温となることから、燃焼熱源機の熱交換器において、燃焼ガスが急冷され熱交換面に結露が発生してしまい、熱交換器に結露が発生した状態が続くと熱交換器の腐触、破損を引き起こすおそれがあった。 Then, at the time of reverse cycle defrosting, a low temperature refrigerant flows through the liquid refrigerant heat exchanger, and the heat medium flowing through the liquid refrigerant heat exchanger also becomes low temperature due to heat exchange with the refrigerant. Here, during reverse cycle defrosting, when the combustion heat source machine operates as a backup to supply the heated heat medium to the heating terminal, the heat medium that flows out of the liquid refrigerant heat exchanger and flows into the combustion heat source machine. In the heat exchanger of the combustion heat source machine, the combustion gas is rapidly cooled and dew condensation occurs on the heat exchange surface, and if the heat exchanger continues to have dew condensation, the heat exchanger will rot. , May cause damage.

本発明は上記課題を解決するために、請求項1では、暖房端末と、前記暖房端末に熱媒を循環させる循環ポンプを有した循環回路と、冷媒を圧縮する圧縮機と、前記熱媒と前記冷媒とを熱交換させる液冷媒熱交換器と、切換弁と、膨張弁と、空気熱交換器とを有し、前記循環回路を循環する前記熱媒を加熱するヒートポンプ式熱源機と、前記循環回路を循環する前記熱媒を加熱する燃焼熱源機と、制御装置と、を備え、前記燃焼熱源機を、前記循環回路を循環する前記熱媒の流れに対し前記ヒートポンプ式熱源機の下流側に配設した暖房システムにおいて、前記制御装置は、前記ヒートポンプ式熱源機により前記熱媒を加熱して前記暖房端末による暖房運転を行っている時に、所定の除霜開始条件が成立したと判断した場合、前記切換弁を前記冷媒の流れ方向が前記暖房運転時の前記冷媒の流れ方向と逆になるように切り換えて、前記圧縮機から吐出された前記冷媒を前記空気熱交換器に供給して前記空気熱交換器に発生した霜を溶かす逆サイクル除霜を実行させると共に、前記燃焼熱源機を作動させ、さらに前記逆サイクル除霜実行時の前記熱媒の流量を前記暖房運転時の前記熱媒の流量よりも多くするものとした。 In order to solve the above problems, in the first aspect of the present invention, a heating terminal, a circulation circuit having a circulation pump for circulating a heat medium to the heating terminal, a compressor for compressing a refrigerant, and the heat medium are used. A heat pump type heat source machine having a liquid refrigerant heat exchanger for heat exchange with the refrigerant, a switching valve, an expansion valve, and an air heat exchanger to heat the heat medium circulating in the circulation circuit, and the above. A combustion heat source machine for heating the heat medium circulating in the circulation circuit and a control device are provided, and the combustion heat source machine is located on the downstream side of the heat pump type heat source machine with respect to the flow of the heat medium circulating in the circulation circuit. In the heating system arranged in the above, the control device determines that the predetermined defrosting start condition is satisfied when the heat medium is heated by the heat pump type heat source machine and the heating operation is performed by the heating terminal. In this case, the switching valve is switched so that the flow direction of the refrigerant is opposite to the flow direction of the refrigerant during the heating operation, and the refrigerant discharged from the compressor is supplied to the air heat exchanger. The reverse cycle defrosting that melts the frost generated in the air heat exchanger is executed, the combustion heat source machine is operated, and the flow rate of the heat medium during the reverse cycle defrosting execution is set to the heat during the heating operation. It was decided to increase the flow rate of the medium.

この発明の請求項1によれば、逆サイクル除霜実行時の熱媒の流量を暖房運転時の熱媒の流量よりも多くすることで、逆サイクル除霜実行時に液冷媒熱交換器を通過して燃焼熱源機に流入する熱媒の温度の低下度合いを小さくできると共に、液冷媒熱交換器にて熱媒から冷媒へ吸熱される吸熱量が大きくなって空気熱交換器の除霜に利用される熱量が多くなり、除霜時間が短縮されて低温の熱媒が燃焼熱源機に流入する時間を短くでき、作動中の燃焼熱源機の熱交換器の結露の発生を抑制することができる。結露発生の抑制により、燃焼熱源機の熱交換器の腐食、破損を抑制することができる。 According to claim 1 of the present invention, by making the flow rate of the heat medium during the reverse cycle defrosting execution larger than the flow rate of the heat medium during the heating operation, the heat medium passes through the liquid refrigerant heat exchanger during the reverse cycle defrosting execution. As a result, the degree of decrease in the temperature of the heat medium flowing into the combustion heat source machine can be reduced, and the amount of heat absorbed from the heat medium to the refrigerant by the liquid refrigerant heat exchanger increases, which is used for defrosting the air heat exchanger. The amount of heat generated can be increased, the defrosting time can be shortened, the time for the low-temperature heat medium to flow into the combustion heat source machine can be shortened, and the occurrence of dew condensation on the heat exchanger of the combustion heat source machine during operation can be suppressed. .. By suppressing the occurrence of dew condensation, it is possible to suppress corrosion and damage to the heat exchanger of the combustion heat source machine.

本発明の一実施形態の暖房システムの概略構成図。The schematic block diagram of the heating system of one Embodiment of this invention. 除霜運転時の動作を説明するタイムチャート。A time chart explaining the operation during defrosting operation.

次に、この発明の一実施形態の暖房システム1の構成について、図面に基づき説明する。図1に示すように、暖房システム1は主として、ヒートポンプ式熱源機2と、燃焼熱源機としての貯湯式燃焼熱源機3と、暖房端末4とを備えている。暖房システム1は、少なくともヒートポンプ式熱源機2または貯湯式燃焼熱源機3の何れか一方で加熱された熱媒(例えば、水または不凍液等の循環液)を用いて、暖房端末4にて熱媒から放熱することで、暖房端末4が設置された被空調空間を暖める暖房運転を行う。 Next, the configuration of the heating system 1 according to the embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the heating system 1 mainly includes a heat pump type heat source machine 2, a hot water storage type combustion heat source machine 3 as a combustion heat source machine, and a heating terminal 4. The heating system 1 uses a heat medium (for example, a circulating liquid such as water or antifreeze) heated by at least one of the heat pump type heat source machine 2 and the hot water storage type combustion heat source machine 3 and heat medium at the heating terminal 4. By radiating heat from the air-conditioned space, the heating operation for warming the air-conditioned space in which the heating terminal 4 is installed is performed.

前記ヒートポンプ式熱源機2は熱媒を加熱するための熱源機で、その筐体内に、冷媒を圧縮する回転数可変の圧縮機5、切換弁としての四方弁6、冷媒と熱媒との熱交換を行う負荷側熱交換器としての液冷媒熱交換器7、減圧器としての膨張弁8、室外ファン9の作動により送られる空気(外気)との熱交換を行う熱源側熱交換器としての空気熱交換器10とを有し、それらを冷媒配管11で環状に接続して冷媒が循環するヒートポンプ回路12を形成しているものである。 The heat pump type heat source machine 2 is a heat source machine for heating a heat medium, and in the housing thereof, a compressor 5 having a variable rotation speed for compressing the refrigerant, a four-way valve 6 as a switching valve, and heat between the refrigerant and the heat medium. As a liquid refrigerant heat exchanger 7 as a load side heat exchanger to be exchanged, an expansion valve 8 as a decompressor, and a heat source side heat exchanger to exchange heat with the air (outside air) sent by the operation of the outdoor fan 9. It has an air heat exchanger 10 and is connected in a ring shape by a refrigerant pipe 11 to form a heat pump circuit 12 in which a refrigerant circulates.

前記ヒートポンプ式熱源機2において、13は外気温度を検出する外気温度センサ、14は膨張弁8から空気熱交換器10までの冷媒配管11に設けられ、膨張弁8から流出する冷媒の温度を検出する冷媒温度センサ、15は空気熱交換器10から圧縮機5までの冷媒配管11に設けられ、空気熱交換器10から流出する冷媒の温度を検出する蒸発冷媒温度センサである。 In the heat pump type heat source machine 2, 13 is an outside air temperature sensor that detects the outside air temperature, and 14 is provided in the refrigerant pipe 11 from the expansion valve 8 to the air heat exchanger 10 to detect the temperature of the refrigerant flowing out from the expansion valve 8. The refrigerant temperature sensor 15 is provided in the refrigerant pipe 11 from the air heat exchanger 10 to the compressor 5, and is an evaporative refrigerant temperature sensor that detects the temperature of the refrigerant flowing out of the air heat exchanger 10.

また、前記液冷媒熱交換器7は、例えば、プレート式熱交換器で構成され、プレート式熱交換器は、複数の伝熱プレートが積層され、冷媒を流通させる冷媒流路と熱媒を流通させる熱媒流路とが各伝熱プレートを境にして交互に形成されている。上記のヒートポンプ回路12を循環する冷媒としては、HFC冷媒や二酸化炭素冷媒等の任意の冷媒を用いることができるものである。 Further, the liquid refrigerant heat exchanger 7 is composed of, for example, a plate type heat exchanger, and in the plate type heat exchanger, a plurality of heat transfer plates are laminated to flow a refrigerant flow path and a heat medium through which the refrigerant flows. The heat medium flow paths to be used are alternately formed with each heat transfer plate as a boundary. As the refrigerant that circulates in the heat pump circuit 12, any refrigerant such as an HFC refrigerant or a carbon dioxide refrigerant can be used.

前記冷媒配管11に設けられた四方弁6は、ヒートポンプ回路12における冷媒の流れ方向を切り換える機能を有し、圧縮機5から吐出された冷媒を、液冷媒熱交換器7、膨張弁8、空気熱交換器10の順に流通させ、圧縮機5に戻す流路を形成する状態(暖房運転時の状態)と、圧縮機5から吐出された冷媒を、空気熱交換器10、膨張弁8、液冷媒熱交換器7の順に流通させ、圧縮機5に戻す流路を形成する状態(除霜運転時の状態)とに切換可能なものである。 The four-way valve 6 provided in the refrigerant pipe 11 has a function of switching the flow direction of the refrigerant in the heat pump circuit 12, and uses the refrigerant discharged from the compressor 5 as the liquid refrigerant heat exchanger 7, the expansion valve 8, and the air. A state in which the heat exchanger 10 is circulated in this order to form a flow path for returning to the compressor 5 (state during heating operation), and a state in which the refrigerant discharged from the compressor 5 is passed through the air heat exchanger 10, the expansion valve 8, and the liquid. It is possible to switch to a state in which the refrigerant heat exchanger 7 is circulated in this order and a flow path for returning to the compressor 5 is formed (a state during the defrosting operation).

前記貯湯式燃焼熱源機3は、熱媒を加熱するための熱源機で、その筐体内には、送風ファン16からの燃焼用空気の供給を受けて燃料(ガス、灯油等)を燃焼させる燃焼器としてのバーナ17と、バーナ17の燃焼により発生した燃焼ガスから熱回収し前記熱媒を加熱する貯湯式熱交換器18と、貯湯式熱交換器18上方に隣接され貯湯式熱交換器18を通過した後の燃焼ガスを集合させる排気室19と、排気室19を通過した後の燃焼ガスを機外に排出する排気筒20とを有しているものである。 The hot water storage type combustion heat source machine 3 is a heat source machine for heating a heat medium, and inside the housing, combustion is performed by receiving combustion air from a blower fan 16 to burn fuel (gas, kerosene, etc.). The burner 17 as a container, the hot water storage type heat exchanger 18 that recovers heat from the combustion gas generated by the combustion of the burner 17 and heats the heat medium, and the hot water storage type heat exchanger 18 adjacent above the hot water storage type heat exchanger 18. It has an exhaust chamber 19 for collecting the combustion gas after passing through the exhaust chamber 19 and an exhaust pipe 20 for discharging the combustion gas after passing through the exhaust chamber 19 to the outside of the machine.

前記貯湯式熱交換器18は、内部に一定量(4L〜10L)の熱媒を貯留する円筒状で小容量の貯留缶体21と、貯留缶体21下部内側に形成されバーナ17の燃焼が行われる燃焼室22と、燃焼室22と排気室19とを連通しバーナ17の燃焼により発生した燃焼ガスを通過させる複数本の煙管23とで構成されているものである。なお、24は貯留缶体21内の熱媒の温度を検出する第1温度検出手段としての第1熱媒温度センサである。なお、第1熱媒温度センサ24は、直接、貯留缶体21に設置されたものでなくても、貯留缶体21から流出し暖房端末4に流入する熱媒の温度を検出するものであってもよい。 The hot water storage type heat exchanger 18 has a cylindrical and small-capacity storage can body 21 that stores a certain amount (4L to 10L) of heat medium inside, and a burner 17 formed inside the lower part of the storage can body 21 to burn. It is composed of a combustion chamber 22 to be performed, and a plurality of smoke tubes 23 that communicate the combustion chamber 22 and the exhaust chamber 19 and pass the combustion gas generated by the combustion of the burner 17. Reference numeral 24 denotes a first heat medium temperature sensor as a first temperature detecting means for detecting the temperature of the heat medium in the storage can body 21. The first heat medium temperature sensor 24 detects the temperature of the heat medium flowing out of the storage can body 21 and flowing into the heating terminal 4 even if it is not directly installed in the storage can body 21. You may.

25は暖房端末4に熱媒を循環させる循環回路で、循環回路25は、暖房端末4から流出した熱媒をヒートポンプ式熱源機2の液冷媒熱交換器7の熱媒流路に導く第1熱媒配管26と、ヒートポンプ式熱源機2の液冷媒熱交換器7から流出した熱媒を貯湯式燃焼熱源機3の貯湯式熱交換器18(貯留缶体21)に導く第2熱媒配管27と、貯湯式燃焼熱源機3の貯湯式熱交換器18(貯留缶体21)から流出した熱媒を暖房端末4に導く第3熱媒配管28とを有し、循環回路25は、ヒートポンプ式熱源機2と貯湯式燃焼熱源機3と暖房端末4とを、第1熱媒配管26、第2熱媒配管27、第3熱媒配管28で接続し、熱媒が循環するように形成されるものである。貯湯式燃焼熱源機3は、循環回路25を循環する熱媒の流れに対して、ヒートポンプ式熱源機2の下流側に配設されている。 Reference numeral 25 denotes a circulation circuit that circulates the heat medium to the heating terminal 4, and the circulation circuit 25 guides the heat medium flowing out from the heating terminal 4 to the heat medium flow path of the liquid refrigerant heat exchanger 7 of the heat pump type heat source machine 2. A second heat medium pipe that guides the heat medium flowing out from the heat medium pipe 26 and the liquid refrigerant heat exchanger 7 of the heat pump type heat source machine 2 to the hot water storage type heat exchanger 18 (storage can body 21) of the hot water storage type combustion heat source machine 3. It has 27 and a third heat medium pipe 28 that guides the heat medium flowing out from the hot water storage type heat exchanger 18 (storage can body 21) of the hot water storage type combustion heat source machine 3 to the heating terminal 4, and the circulation circuit 25 is a heat pump. The type heat source machine 2, the hot water storage type combustion heat source machine 3, and the heating terminal 4 are connected by the first heat medium pipe 26, the second heat medium pipe 27, and the third heat medium pipe 28, and are formed so that the heat medium circulates. Is to be done. The hot water storage type combustion heat source machine 3 is arranged on the downstream side of the heat pump type heat source machine 2 with respect to the flow of the heat medium circulating in the circulation circuit 25.

前記第1熱媒配管26には、循環回路25内の熱媒を循環させる循環ポンプ29が設けられると共に、熱媒を溜め循環回路25の圧力を調整するヒーポン側シスターン30が設けられている。なお、本実施形態では、循環ポンプ29はヒートポンプ式熱源機2内に設けられているが、循環ポンプ29は貯湯式燃焼熱源機3内に設けられていてもよく、ヒートポンプ式熱源機2内および貯湯式燃焼熱源機3内にそれぞれ1つずつに設けられていてもよい。 The first heat medium pipe 26 is provided with a circulation pump 29 that circulates the heat medium in the circulation circuit 25, and is provided with a heat pump side systurn 30 that stores the heat medium and adjusts the pressure of the circulation circuit 25. In the present embodiment, the circulation pump 29 is provided in the heat pump type heat source machine 2, but the circulation pump 29 may be provided in the hot water storage type combustion heat source machine 3, and in the heat pump type heat source machine 2 and in the heat pump type heat source machine 2. One may be provided in each of the hot water storage type combustion heat source machines 3.

前記第2熱媒配管27には、ヒートポンプ式熱源機2の液冷媒熱交換器7から流出し貯湯式燃焼熱源機3の貯湯式熱交換器18に流入する熱媒の温度を検出する第2温度検出手段としての第2熱媒温度センサ31が設けられている。 The second heat medium pipe 27 detects the temperature of the heat medium that flows out of the liquid refrigerant heat exchanger 7 of the heat pump type heat source machine 2 and flows into the hot water storage type heat exchanger 18 of the hot water storage type combustion heat source machine 3. A second heat medium temperature sensor 31 is provided as a temperature detecting means.

前記第3熱媒配管28には、熱媒を溜め循環回路25の圧力を調整する燃焼側シスターン32が設けられている。 The third heat medium pipe 28 is provided with a combustion side systurn 32 that stores the heat medium and adjusts the pressure of the circulation circuit 25.

また、暖房端末4毎に分岐した第3熱媒配管28の各々には、その開閉により暖房端末4への熱媒の供給を制御する熱動弁33がそれぞれ設けられ、熱動弁33は、暖房端末4が設置された被空調空間(室内)の温度が所定の温度になるように開閉が制御されるものである。暖房端末4は、床暖房パネルやラジエータ等、任意の端末を用いることができ、図1では2つ設けられているが、1つであってもよく、3つ以上であってもよく、数量や仕様が特に限定されるものではない。 Further, each of the third heat medium pipes 28 branched for each heating terminal 4 is provided with a thermal valve 33 that controls the supply of the heat medium to the heating terminal 4 by opening and closing the thermal valve 33. The opening and closing is controlled so that the temperature of the air-conditioned space (indoor) in which the heating terminal 4 is installed becomes a predetermined temperature. As the heating terminal 4, any terminal such as a floor heating panel or a radiator can be used, and although two are provided in FIG. 1, one may be one, or three or more may be used, and the quantity may be three or more. And specifications are not particularly limited.

34は暖房システム1の操作指示を行うリモコンで、リモコン34には、暖房端末4による暖房運転の開始または停止を指示する運転スイッチ、循環回路25を循環させる熱媒の目標温度を設定する温度設定スイッチ、表示部等が備えられているものである。 Reference numeral 34 denotes a remote controller for instructing the operation of the heating system 1, and the remote controller 34 is a temperature setting for setting an operation switch for instructing the start or stop of the heating operation by the heating terminal 4 and a target temperature of the heat medium for circulating the circulation circuit 25. It is equipped with a switch, a display unit, and the like.

35は各種のデータやプログラムを記憶する記憶手段(ROM、不揮発性メモリ等)と、演算・制御処理を行う制御手段とを備え、ヒートポンプ式熱源機2の動作を制御する制御装置としてのヒーポン側制御装置であり、ヒーポン側制御装置35は、リモコン34の信号や、外気温度センサ13、第2熱媒温度センサ31からの信号をうけ、圧縮機5や循環ポンプ29等のアクチュエータの動作を制御すると共に、後述する貯湯式燃焼熱源機3の燃焼側制御装置36と通信可能に接続され、燃焼側制御装置36との間で動作指示等の信号のやりとりをすることができる。 Reference numeral 35 denotes a storage means (ROM, non-volatile memory, etc.) for storing various data and programs, and a control means for performing arithmetic / control processing, and the heat pump side as a control device for controlling the operation of the heat pump type heat source machine 2. The heat pump side control device 35 receives a signal from the remote control 34 and a signal from the outside air temperature sensor 13 and the second heat medium temperature sensor 31 to control the operation of actuators such as the compressor 5 and the circulation pump 29. At the same time, it is communicably connected to the combustion side control device 36 of the hot water storage type combustion heat source machine 3 described later, and signals such as operation instructions can be exchanged with the combustion side control device 36.

36は各種のデータやプログラムを記憶する記憶手段(ROM、不揮発性メモリ等)と、演算・制御処理を行う制御手段とを備え、貯湯式燃焼熱源機3の動作を制御する制御装置としての燃焼側制御装置であり、燃焼側制御装置36は、第1熱媒温度センサ24からの信号をうけ、送風ファン16、バーナ17の動作を制御すると共に、ヒーポン側制御装置35と通信可能に接続されているものである。 Reference numeral 36 denotes a storage means (ROM, non-volatile memory, etc.) for storing various data and programs, and a control means for performing calculation / control processing, and combustion as a control device for controlling the operation of the hot water storage type combustion heat source machine 3. It is a side control device, and the combustion side control device 36 receives a signal from the first heat medium temperature sensor 24, controls the operation of the blower fan 16 and the burner 17, and is connected to the heaton side control device 35 so as to be communicable. Is what you are doing.

次に、この一実施形態の暖房システム1における暖房運転時の動作について説明する。暖房端末4に供給される高温の熱媒を生成する暖房運転は、ヒートポンプ式熱源機2または貯湯式燃焼熱源機3の何れか一方を単独で作動させて行う場合と、ヒートポンプ式熱源機2および貯湯式燃焼熱源機3の双方を作動させて行う場合がある。 Next, the operation during the heating operation in the heating system 1 of this embodiment will be described. The heating operation for generating the high-temperature heat medium supplied to the heating terminal 4 is performed by operating either the heat pump type heat source machine 2 or the hot water storage type combustion heat source machine 3 independently, or the heat pump type heat source machine 2 and In some cases, both of the hot water storage type combustion heat source machine 3 are operated.

まず、ヒートポンプ式熱源機2のみを作動させて暖房運転を行う場合について説明すると、リモコン34から暖房端末4による被空調空間としての室内の加熱の指示がなされ、ヒートポンプ式熱源機2が作動する場合、ヒーポン側制御装置35は、四方弁6を暖房運転時の状態となるように流路を切り換え、圧縮機5、膨張弁8、室外ファン9、および循環ポンプ29を駆動させて暖房運転を開始させる。この時、暖房運転が行われる暖房端末4に対応する熱動弁33も開弁される。 First, a case where only the heat pump type heat source machine 2 is operated to perform the heating operation will be described. When the remote control 34 gives an instruction to heat the room as an air-conditioned space by the heating terminal 4, and the heat pump type heat source machine 2 operates. , The heat pump side control device 35 switches the flow path so that the four-way valve 6 is in the state during the heating operation, drives the compressor 5, the expansion valve 8, the outdoor fan 9, and the circulation pump 29 to start the heating operation. Let me. At this time, the thermal valve 33 corresponding to the heating terminal 4 in which the heating operation is performed is also opened.

前記暖房運転中、ヒートポンプ回路12では、圧縮機5で圧縮された高温・高圧のガス状の冷媒が圧縮機5から吐出され、冷媒は凝縮器として機能する液冷媒熱交換器7にて、循環回路25を流れる熱媒と熱交換を行って熱媒に熱を放出して加熱しながら気液混合状態で高圧の冷媒に変化する。そして、この状態の冷媒が膨張弁8において減圧されて低圧の冷媒となって蒸発しやすい状態となり、蒸発器として機能する空気熱交換器10において、室外ファン9の作動により送られる外気と熱交換を行って外気から吸熱して低温・低圧のガス状の冷媒となって、再び圧縮機5へ戻るものである。 During the heating operation, in the heat pump circuit 12, a high-temperature, high-pressure gaseous refrigerant compressed by the compressor 5 is discharged from the compressor 5, and the refrigerant is circulated by the liquid refrigerant heat exchanger 7 functioning as a condenser. It exchanges heat with the heat medium flowing through the circuit 25, releases heat to the heat medium, and changes to a high-pressure refrigerant in a gas-liquid mixed state while heating. Then, the refrigerant in this state is depressurized by the expansion valve 8 to become a low-pressure refrigerant and easily evaporate, and in the air heat exchanger 10 functioning as an evaporator, heat exchange with the outside air sent by the operation of the outdoor fan 9. It absorbs heat from the outside air to become a low-temperature, low-pressure gaseous refrigerant, and returns to the compressor 5 again.

前記循環回路25では、一定回転数で駆動される循環ポンプ29の駆動により液冷媒熱交換器7に流入した低温の熱媒は、凝縮器として機能する液冷媒熱交換器7において冷媒と熱交換されて加熱された後、貯湯式燃焼熱源機3の貯湯式熱交換器18では加熱されることなく通過し、その後、暖房端末4に供給されて室内の暖房に用いられ、暖房端末4を流通するときに放熱されて温度低下した熱媒は再び液冷媒熱交換器7へと戻るものである。このとき、貯湯式燃焼熱源機3の貯湯式熱交換器18(貯留缶体21)には、ヒートポンプ式熱源機2で加熱された熱媒が貯留され、貯湯式熱交換器18(貯留缶体21)内の熱媒の温度はヒートポンプ式熱源機2が作動しているかぎり、目標温度と略同温度に保たれる。 In the circulation circuit 25, the low-temperature heat medium that has flowed into the liquid refrigerant heat exchanger 7 by driving the circulation pump 29 driven at a constant rotation speed exchanges heat with the refrigerant in the liquid refrigerant heat exchanger 7 that functions as a condenser. After being heated, it passes through the hot water storage type heat exchanger 18 of the hot water storage type combustion heat source machine 3 without being heated, and then is supplied to the heating terminal 4 and used for indoor heating, and is distributed through the heating terminal 4. The heat medium that has been dissipated and whose temperature has dropped is returned to the liquid refrigerant heat exchanger 7. At this time, the heat medium heated by the heat pump type heat source machine 2 is stored in the hot water storage type heat exchanger 18 (storage can body 21) of the hot water storage type combustion heat source machine 3, and the hot water storage type heat exchanger 18 (storage can body 21) is stored. The temperature of the heat medium in 21) is maintained at substantially the same temperature as the target temperature as long as the heat pump type heat source machine 2 is operating.

なお、前記暖房運転中、ヒーポン側制御装置35は、第2熱媒温度センサ31の検出値に応じて、圧縮機5の回転数を制御する。ここでは、第2熱媒温度センサ31により検出される熱媒の温度が、例えばユーザによりリモコン34で設定された設定温度に基づいて決定される目標温度になるように、圧縮機5の回転数を制御する。 During the heating operation, the heat pump side control device 35 controls the rotation speed of the compressor 5 according to the detected value of the second heat medium temperature sensor 31. Here, the number of revolutions of the compressor 5 is such that the temperature of the heat medium detected by the second heat medium temperature sensor 31 becomes a target temperature determined based on, for example, a set temperature set by the user on the remote controller 34. To control.

また、ヒーポン側制御装置35は、圧縮機5から吐出される冷媒の吐出温度に応じて、膨張弁8の弁開度を制御する。ここでは、圧縮機5から吐出される冷媒の吐出温度が、例えば、リモコン34の設定温度に対応した制御上の目標冷媒吐出温度となるように、膨張弁8の弁開度を制御する。 Further, the heat pump side control device 35 controls the valve opening degree of the expansion valve 8 according to the discharge temperature of the refrigerant discharged from the compressor 5. Here, the valve opening degree of the expansion valve 8 is controlled so that the discharge temperature of the refrigerant discharged from the compressor 5 becomes, for example, the control target refrigerant discharge temperature corresponding to the set temperature of the remote controller 34.

さらに、ヒーポン側制御装置35は、外気温度センサ13により検出された外気温度に応じて、室外ファン9の回転数を制御する。 Further, the heaton side control device 35 controls the rotation speed of the outdoor fan 9 according to the outside air temperature detected by the outside air temperature sensor 13.

続いて、貯湯式燃焼熱源機3のみを作動させて暖房運転を行う場合について説明すると、リモコン34から暖房端末4による被空調空間としての室内の加熱の指示がなされ、ヒーポン側制御装置35を介して、燃焼側制御装置36がその指示を受け、貯湯式燃焼熱源機3が作動する場合、燃焼側制御装置36は、送風ファン16および燃料ポンプ(図示せず)を駆動させ、バーナ17での燃焼を行わせると共に、循環ポンプ29を駆動させ、暖房運転を開始させる。この時、暖房運転が行われる暖房端末4に対応する熱動弁33も開弁される。 Next, a case where only the hot water storage type combustion heat source machine 3 is operated to perform the heating operation will be described. The remote control 34 gives an instruction to heat the room as an air-conditioned space by the heating terminal 4, and the heating is instructed via the heat pump side control device 35. When the combustion side control device 36 receives the instruction and the hot water storage type combustion heat source machine 3 operates, the combustion side control device 36 drives the blower fan 16 and the fuel pump (not shown), and the burner 17 operates. Combustion is performed, and the circulation pump 29 is driven to start the heating operation. At this time, the thermal valve 33 corresponding to the heating terminal 4 in which the heating operation is performed is also opened.

前記暖房運転中、燃焼側制御装置36は、第1熱媒温度センサ24の検出する貯留缶体21内の熱媒の温度がリモコン34で設定された設定温度に基づいて決定される目標温度になるように、バーナ17の燃焼の実行または停止、燃焼量の調整により制御するものであり、暖房運転開始時は、熱媒の温度が目標温度に素早く上昇するように、バーナ17の燃焼量を予め設定された上限燃焼量にし、その後、熱媒の温度が目標温度に近づいていくにつれてバーナ17の燃焼量を徐々に下げていき、熱媒の温度を目標温度に維持するのが可能であれば予め設定された下限燃焼量まで燃焼量を下げて燃焼を行い、熱媒の温度が目標温度より所定温度高い燃焼オフ温度に達したら、バーナ17の燃焼を停止し、熱媒の温度が目標温度または目標温度より所定温度低い燃焼オン温度に達したら、バーナ17の燃焼を再開させ、貯留缶体21内の熱媒の温度を目標温度に近づけるべく燃焼量を適宜制御するものである。 During the heating operation, the combustion side control device 36 sets the temperature of the heat medium in the storage can body 21 detected by the first heat medium temperature sensor 24 to a target temperature determined based on the set temperature set by the remote control 34. It is controlled by executing or stopping the combustion of the burner 17 and adjusting the combustion amount so that the combustion amount of the burner 17 is controlled so that the temperature of the heat medium quickly rises to the target temperature at the start of the heating operation. It is possible to set the upper limit combustion amount set in advance, and then gradually reduce the combustion amount of the burner 17 as the temperature of the heat medium approaches the target temperature to maintain the temperature of the heat medium at the target temperature. For example, the combustion amount is reduced to the preset lower limit combustion amount to perform combustion, and when the temperature of the heat medium reaches the combustion off temperature which is a predetermined temperature higher than the target temperature, the combustion of the burner 17 is stopped and the temperature of the heat medium is the target. When the combustion on temperature reaches a predetermined temperature lower than the temperature or the target temperature, the combustion of the burner 17 is restarted, and the combustion amount is appropriately controlled so that the temperature of the heat medium in the storage can body 21 approaches the target temperature.

前記循環回路25では、一定回転数で駆動される循環ポンプ29の駆動により暖房端末4を流出した低温の熱媒は、ヒートポンプ式熱源機2の液冷媒熱交換器7では加熱されることなく通過し、貯湯式燃焼熱源機3の貯湯式熱交換器18において燃焼ガスと熱交換されて加熱された後、暖房端末4に供給されて室内の暖房に用いられ、暖房端末4を流通するときに放熱されて温度低下した熱媒は、再び液冷媒熱交換器7では加熱されることなく通過して貯湯式熱交換器18へと戻るものである。 In the circulation circuit 25, the low-temperature heat medium flowing out of the heating terminal 4 due to the drive of the circulation pump 29 driven at a constant rotation speed passes through the liquid refrigerant heat exchanger 7 of the heat pump type heat source machine 2 without being heated. Then, after being heated by exchanging heat with the combustion gas in the hot water storage type heat exchanger 18 of the hot water storage type combustion heat source machine 3, it is supplied to the heating terminal 4 and used for indoor heating, and when the heating terminal 4 is distributed. The heat medium that has been dissipated and the temperature has dropped passes through the liquid refrigerant heat exchanger 7 without being heated again and returns to the hot water storage type heat exchanger 18.

続いて、暖房負荷が大きく、ヒートポンプ式熱源機2または貯湯式燃焼熱源機3の何れか一方を作動では出力が足りず、ヒートポンプ式熱源機2および貯湯式燃焼熱源機3の双方を作動させて暖房運転を行う場合について説明すると、ヒートポンプ式熱源機2および貯湯式燃焼熱源機3の双方を作動させて暖房運転を行う場合は、貯湯式燃焼熱源機3の第1熱媒温度センサ24により検出される熱媒の温度が、リモコン34で設定された設定温度に基づいて決定される目標温度になるように、ヒーポン側制御装置35と燃焼側制御装置36とが必要に応じて互いに連係しつつ、圧縮機5の回転数を制御すると共にバーナ17の制御を行うものである。 Subsequently, the heating load is large, and the output is insufficient when either the heat pump type heat source machine 2 or the hot water storage type combustion heat source machine 3 is operated. Therefore, both the heat pump type heat source machine 2 and the hot water storage type combustion heat source machine 3 are operated. Explaining the case of performing the heating operation, when the heating operation is performed by operating both the heat pump type heat source machine 2 and the hot water storage type combustion heat source machine 3, it is detected by the first heat medium temperature sensor 24 of the hot water storage type combustion heat source machine 3. The heat pump side control device 35 and the combustion side control device 36 cooperate with each other as necessary so that the temperature of the heat medium to be generated becomes a target temperature determined based on the set temperature set by the remote control 34. , The number of rotations of the compressor 5 is controlled and the burner 17 is controlled.

前記循環回路25では、一定回転数で駆動される循環ポンプ29の駆動により液冷媒熱交換器7に流入した低温の熱媒は、液冷媒熱交換器7において冷媒と熱交換されて加熱された後、貯湯式燃焼熱源機3の貯湯式熱交換器18において燃焼ガスと熱交換されてさらに加熱され、加熱された熱媒は、その後、暖房端末4に供給されて室内の暖房に用いられ、暖房端末4を流通するときに放熱されて温度低下した熱媒は再び液冷媒熱交換器7へと戻るものである。 In the circulation circuit 25, the low-temperature heat medium flowing into the liquid refrigerant heat exchanger 7 by driving the circulation pump 29 driven at a constant rotation speed is heated by heat exchange with the refrigerant in the liquid refrigerant heat exchanger 7. Later, in the hot water storage type heat exchanger 18 of the hot water storage type combustion heat source machine 3, heat is exchanged with the combustion gas and further heated, and the heated heat medium is then supplied to the heating terminal 4 and used for indoor heating. The heat medium whose temperature has dropped due to heat radiated when flowing through the heating terminal 4 returns to the liquid refrigerant heat exchanger 7 again.

ここで、ヒートポンプ式熱源機2または貯湯式燃焼熱源機3の何れか一方を作動させて行う暖房運転について、どちらの熱源機を優先して作動させるかを決定するための判定は、外気温度と熱源機を作動させるためのコスト(ヒートポンプ式熱源機2であれば電気代、貯湯式燃焼熱源機3であれば燃料代)とに基づいて行われる。具体的には、ヒートポンプ式熱源機2、貯湯式燃焼熱源機3それぞれの稼働コストの比較し、稼働コストが最も低いものを優先作動させる熱源機とし、他方を補助作動させる熱源機とするものであり、ヒートポンプ式熱源機2の稼働コストは、外気温度に応じた熱効率(成績係数)と時間帯に応じて変化する電気代に基づいて算出され、貯湯式燃焼熱源機3の稼働コストは、熱効率と燃料代に基づいて算出される。 Here, regarding the heating operation performed by operating either the heat pump type heat source machine 2 or the hot water storage type combustion heat source machine 3, the determination for determining which heat source machine is to be operated with priority is the outside air temperature. It is performed based on the cost for operating the heat source machine (electricity cost for the heat pump type heat source machine 2 and fuel cost for the hot water storage type combustion heat source machine 3). Specifically, the operating costs of the heat pump type heat source machine 2 and the hot water storage type combustion heat source machine 3 are compared, and the heat source machine having the lowest operating cost is used as the heat source machine for preferential operation, and the other is used as the heat source machine for auxiliary operation. The operating cost of the heat pump type heat source machine 2 is calculated based on the thermal efficiency (coefficient of performance) according to the outside air temperature and the electricity cost that changes according to the time zone, and the operating cost of the hot water storage type combustion heat source machine 3 is the thermal efficiency. It is calculated based on the fuel cost.

例えば、ヒートポンプ式熱源機2のみを作動させての暖房運転中に、外気温度が変動(外気温度が低下)した場合、熱媒を加熱する熱源が、ヒートポンプ式熱源機2から貯湯式燃焼熱源機3へ切り換えられ、貯湯式燃焼熱源機3のみを作動させての暖房運転中に、外気温度が変動(外気温度が上昇)した場合、貯湯式燃焼熱源機3からヒートポンプ式熱源機2へ切り換えられるものである。 For example, when the outside air temperature fluctuates (the outside air temperature drops) during the heating operation in which only the heat pump type heat source machine 2 is operated, the heat source for heating the heat medium is changed from the heat pump type heat source machine 2 to the hot water storage type combustion heat source machine. When the outside air temperature fluctuates (the outside air temperature rises) during the heating operation in which only the hot water storage type combustion heat source machine 3 is operated, the hot water storage type combustion heat source machine 3 is switched to the heat pump type heat source machine 2. It is a thing.

次に、本実施形態において、ヒートポンプ式熱源機2のみを作動させての暖房運転中に、除霜運転を行う場合について、図2のタイムチャートを用いて説明する。図2では、本実施形態および比較例の循環回路25を循環する熱媒の流量の経時推移、循環ポンプ29の回転数の経時推移、および貯湯式燃焼熱源機3に流入する熱媒の温度(図2上では燃焼熱源機流入熱媒温度と表記)の経時推移を示している。 Next, in the present embodiment, a case where the defrosting operation is performed during the heating operation in which only the heat pump type heat source machine 2 is operated will be described with reference to the time chart of FIG. In FIG. 2, the time course of the flow rate of the heat medium circulating in the circulation circuit 25 of the present embodiment and the comparative example, the time course of the rotation speed of the circulation pump 29, and the temperature of the heat medium flowing into the hot water storage type combustion heat source machine 3 ( FIG. 2 shows the time course of the combustion heat source machine inflow heat medium temperature).

まず、本実施形態において、時間t1までヒートポンプ式熱源機2のみを作動させての暖房運転が行われており、暖房端末4に供給される熱媒の目標温度が45℃に設定された状態であり、ヒーポン側制御装置35は、第2熱媒温度センサ31で検出される熱媒の温度が目標温度になるように圧縮機5等を制御している。このとき、ヒートポンプ式熱源機2の液冷媒熱交換器7の出口から暖房端末4の流入口までの循環回路25(第2熱媒配管27、貯留缶体21、第3熱媒配管28)内の熱媒の温度は目標温度(45℃)と略同じ温度となっている。 First, in the present embodiment, the heating operation is performed by operating only the heat pump type heat source machine 2 until the time t1, and the target temperature of the heat medium supplied to the heating terminal 4 is set to 45 ° C. The heat pump side control device 35 controls the compressor 5 and the like so that the temperature of the heat medium detected by the second heat medium temperature sensor 31 becomes the target temperature. At this time, in the circulation circuit 25 (second heat medium pipe 27, storage can body 21, third heat medium pipe 28) from the outlet of the liquid refrigerant heat exchanger 7 of the heat pump type heat source machine 2 to the inflow port of the heating terminal 4. The temperature of the heat medium is substantially the same as the target temperature (45 ° C.).

前記暖房運転中において、外気温度が低い場合、空気熱交換器10は徐々に着霜する。暖房運転中に、所定の除霜開始条件が成立した場合、例えば、外気温度センサ13で検出される外気温度と蒸発冷媒温度センサ15で検出される空気熱交換器10の出口側の冷媒温度との温度差が所定値を超えた場合、空気熱交換器10の霜を溶かすための除霜運転の実行を開始するものである。 During the heating operation, if the outside air temperature is low, the air heat exchanger 10 gradually frosts. When a predetermined defrosting start condition is satisfied during the heating operation, for example, the outside air temperature detected by the outside air temperature sensor 13 and the refrigerant temperature on the outlet side of the air heat exchanger 10 detected by the evaporated refrigerant temperature sensor 15. When the temperature difference of the above exceeds a predetermined value, the execution of the defrosting operation for melting the frost of the air heat exchanger 10 is started.

前記除霜運転について説明すると、本実施形態の除霜運転は、暖房運転時の冷媒の流れ方向と逆方向に冷媒を循環させる形態(いわゆる逆サイクル除霜)で、空気熱交換器10に発生した霜を溶かすものである。逆サイクル除霜が実行された場合、暖房運転時に蒸発器として機能していた空気熱交換器10が凝縮器として機能すると共に、暖房運転時に凝縮器として機能していた液冷媒熱交換器7が蒸発器として機能することになる。なお、循環ポンプ29の駆動は逆サイクル除霜時も継続される。 Explaining the defrosting operation, the defrosting operation of the present embodiment is a mode in which the refrigerant is circulated in the direction opposite to the flow direction of the refrigerant during the heating operation (so-called reverse cycle defrosting), and is generated in the air heat exchanger 10. It melts the frost that has formed. When the reverse cycle defrosting is executed, the air heat exchanger 10 that functions as an evaporator during the heating operation functions as a condenser, and the liquid refrigerant heat exchanger 7 that functions as a condenser during the heating operation It will function as an evaporator. The drive of the circulation pump 29 is continued even during the reverse cycle defrosting.

図2に戻り、時間t1において、ヒーポン側制御装置35は、所定の除霜開始条件が成立したと判断した場合、四方弁6を冷媒の流れ方向が暖房運転時の冷媒の流れ方向と逆になるように切り換えて、圧縮機5から吐出された冷媒を空気熱交換器10に供給して空気熱交換器10に発生した霜を溶かす逆サイクル除霜を実行させる。 Returning to FIG. 2, when the heat pump side control device 35 determines that the predetermined defrosting start condition is satisfied at time t1, the flow direction of the refrigerant in the four-way valve 6 is opposite to the flow direction of the refrigerant during the heating operation. The refrigerant discharged from the compressor 5 is supplied to the air heat exchanger 10 to perform reverse cycle defrosting to melt the frost generated in the air heat exchanger 10.

このとき、暖房端末4による暖房運転が継続されるように、ヒーポン側制御装置35は燃焼側制御装置36に指示してバックアップとして貯湯式燃焼熱源機3を作動させ、貯湯式燃焼熱源機3にて熱媒を加熱して暖房端末4へ供給する。さらに、ヒーポン側制御装置35は、逆サイクル除霜実行時に、循環ポンプ29の回転数を暖房運転時の回転数(ここでは3000rpm)よりも高い回転数(ここでは4000rpm)にして、逆サイクル除霜実行時に循環回路25を流れる熱媒の流量(ここでは6L/min)を暖房運転時に循環回路25を流れる熱媒の流量(ここでは5L/min)よりも多くするようにしている。 At this time, the heat pump side control device 35 instructs the combustion side control device 36 to operate the hot water storage type combustion heat source machine 3 as a backup so that the heating operation by the heating terminal 4 is continued, and the hot water storage type combustion heat source machine 3 is used. The heat medium is heated and supplied to the heating terminal 4. Further, the heat pump side control device 35 sets the rotation speed of the circulation pump 29 to a rotation speed (4000 rpm in this case) higher than the rotation speed in the heating operation (3000 rpm in this case) at the time of executing the reverse cycle defrosting to perform reverse cycle defrosting. The flow rate of the heat medium flowing through the circulation circuit 25 during frost execution (here, 6 L / min) is set to be larger than the flow rate of the heat medium flowing through the circulation circuit 25 during the heating operation (here, 5 L / min).

一方、比較例では、逆サイクル除霜時の循環ポンプ29の回転数は、暖房運転時の循環ポンプ29の回転数(ここでは3000rpm)と同じとし、循環回路25を流れる熱媒の流量も逆サイクル除霜時と暖房運転時とで同じ流量(ここでは5L/min)としている。 On the other hand, in the comparative example, the rotation speed of the circulation pump 29 during the reverse cycle defrosting is the same as the rotation speed of the circulation pump 29 during the heating operation (here, 3000 rpm), and the flow rate of the heat medium flowing through the circulation circuit 25 is also opposite. The same flow rate (here, 5 L / min) is used during cycle defrosting and heating operation.

ここで、本実施形態の逆サイクル除霜中である時間t1〜t2における貯湯式燃焼熱源機3に流入する熱媒の温度推移と、比較例の逆サイクル除霜中である時間t1〜t3における貯湯式燃焼熱源機3に流入する熱媒の温度推移とを比較すると、双方ともに熱媒の温度が徐々に減少している。これは、逆サイクル除霜により液冷媒熱交換器7が蒸発器として機能し、液冷媒熱交換器7に低温の冷媒が流れることに伴い、液冷媒熱交換器7を流通する熱媒も冷媒との熱交換により低温となるからである。 Here, the temperature transition of the heat medium flowing into the hot water storage type combustion heat source machine 3 during the reverse cycle defrosting of the present embodiment and the time t1 to t3 during the reverse cycle defrosting of the comparative example. Comparing with the temperature transition of the heat medium flowing into the hot water storage type combustion heat source machine 3, the temperature of the heat medium is gradually decreasing in both cases. This is because the liquid refrigerant heat exchanger 7 functions as an evaporator due to reverse cycle defrosting, and as the low temperature refrigerant flows through the liquid refrigerant heat exchanger 7, the heat medium flowing through the liquid refrigerant heat exchanger 7 also becomes a refrigerant. This is because the temperature becomes low due to heat exchange with.

比較例を基準として本実施形態を見ると、逆サイクル除霜時において、比較例の熱媒の温度よりも本実施形態の熱媒温度の方が高めに推移し、熱媒の最低温度を見ても比較例(19℃)よりも本実施形態(24℃)の方が高くなっている。本実施形態では、逆サイクル除霜時に暖房運転時よりも循環ポンプ29の回転数を高くすることで熱媒の流量を多くしている。そうすると、液冷媒熱交換器7において、比較例よりも本実施形態の方が、熱媒の流れが速くなって、液冷媒熱交換器7通過後の熱媒の温度が高い状態(比較例での液冷媒熱交換器7通過後の熱媒温度<本実施形態での液冷媒熱交換器7通過後の熱媒温度の関係)となる、つまり、本実施形態のように熱媒の流量を多くして速く流れる方が比較例のようにゆっくり流れるよりも液冷媒熱交換器7通過後の熱媒の温度は下がらないということである。よって、本実施形態のように、逆サイクル除霜実行時の熱媒の流量を暖房運転時の熱媒の流量よりも多くすると、逆サイクル除霜時に液冷媒熱交換器7を通過して貯湯式燃焼熱源機3に流入する熱媒の温度の低下度合いを小さくでき、貯湯式燃焼熱源機3の貯湯式熱交換器18の結露の発生を抑制することができる。 Looking at the present embodiment with reference to the comparative example, the temperature of the heat medium of the present embodiment changes to a higher temperature than the temperature of the heat medium of the comparative example at the time of reverse cycle defrosting, and the minimum temperature of the heat medium is observed. However, the temperature in this embodiment (24 ° C.) is higher than that in the comparative example (19 ° C.). In the present embodiment, the flow rate of the heat medium is increased by increasing the rotation speed of the circulation pump 29 during the reverse cycle defrosting as compared with the heating operation. Then, in the liquid refrigerant heat exchanger 7, the flow of the heat medium is faster in the present embodiment than in the comparative example, and the temperature of the heat medium after passing through the liquid refrigerant heat exchanger 7 is higher (in the comparative example). The heat medium temperature after passing through the liquid refrigerant heat exchanger 7 <relationship between the heat medium temperature after passing through the liquid refrigerant heat exchanger 7 in the present embodiment), that is, the flow rate of the heat medium as in the present embodiment. It means that the temperature of the heat medium after passing through the liquid refrigerant heat exchanger 7 does not decrease when the amount of heat flows faster than when the amount of heat flows slowly as in the comparative example. Therefore, if the flow rate of the heat medium during the reverse cycle defrosting is larger than the flow rate of the heat medium during the heating operation as in the present embodiment, the hot water is stored through the liquid refrigerant heat exchanger 7 during the reverse cycle defrosting. The degree of decrease in the temperature of the heat medium flowing into the hot water storage type combustion heat source machine 3 can be reduced, and the occurrence of dew condensation on the hot water storage type heat exchanger 18 of the hot water storage type combustion heat source machine 3 can be suppressed.

さらに、比較例を基準として本実施形態を見ると、逆サイクル除霜時において、比較例の除霜時間(時間t1〜t3)よりも本実施形態の除霜時間(時間t1〜t2)の方が短くなっている。本実施形態では、逆サイクル除霜時に暖房運転時よりも循環ポンプ29の回転数を高くすることで熱媒の流量を多くしている。熱媒の流量が多くなると、液冷媒熱交換器7において、冷媒への熱伝達率が上がり、熱媒から冷媒へ吸熱される吸熱量が大きくなるので、空気熱交換器10の除霜に利用される熱量が多くなり、除霜時間が短くなる。よって、本実施形態のように、逆サイクル除霜実行時の熱媒の流量(6L/min)を暖房運転時の熱媒の流量(5L/min)よりも多くすると、除霜の時間が短縮でき、低温の熱媒が貯湯式燃焼熱源機3に流入する時間を短くでき、貯湯式燃焼熱源機3の貯湯式熱交換器18の結露の発生を抑制することができる。 Further, looking at the present embodiment with reference to the comparative example, the defrosting time (time t1 to t2) of the present embodiment is longer than the defrosting time (time t1 to t3) of the comparative example at the time of reverse cycle defrosting. Is getting shorter. In the present embodiment, the flow rate of the heat medium is increased by increasing the rotation speed of the circulation pump 29 during the reverse cycle defrosting as compared with the heating operation. When the flow rate of the heat medium increases, the heat transfer rate to the refrigerant increases in the liquid refrigerant heat exchanger 7, and the amount of heat absorbed from the heat medium to the refrigerant increases, so that it is used for defrosting the air heat exchanger 10. The amount of heat generated increases and the defrosting time shortens. Therefore, as in the present embodiment, if the flow rate of the heat medium (6 L / min) during the reverse cycle defrosting execution is larger than the flow rate (5 L / min) of the heat medium during the heating operation, the defrosting time is shortened. Therefore, the time for the low-temperature heat medium to flow into the hot water storage type combustion heat source machine 3 can be shortened, and the occurrence of dew condensation in the hot water storage type heat exchanger 18 of the hot water storage type combustion heat source machine 3 can be suppressed.

そして、本実施形態の時間t2において、ヒーポン側制御装置35は、所定の除霜終了条件が成立したと判断した場合、逆サイクル除霜を終了する。前記除霜終了条件は、例えば、空気熱交換器10を通過して膨張弁8に向かう冷媒温度センサ14で検出される冷媒の温度が、予め設定された除霜終了温度(例えば、5℃)に達することである。 Then, at the time t2 of the present embodiment, the heat pump side control device 35 ends the reverse cycle defrosting when it is determined that the predetermined defrosting end condition is satisfied. The defrosting end condition is, for example, that the temperature of the refrigerant detected by the refrigerant temperature sensor 14 passing through the air heat exchanger 10 and heading toward the expansion valve 8 is a preset defrosting end temperature (for example, 5 ° C.). Is to reach.

前記逆サイクル除霜を終了したら、ヒーポン側制御装置35は、四方弁6を暖房運転時の状態に切り換え、循環ポンプ29の回転数を暖房運転時の回転数(3000rpm)に戻すと共に、燃焼側制御装置36に貯湯式燃焼熱源機3の作動停止指示を送り、貯湯式燃焼熱源機3の作動を停止させ、ヒートポンプ式熱源機2のみを作動させての暖房運転を再開するものである。 When the reverse cycle defrosting is completed, the heat pump side control device 35 switches the four-way valve 6 to the state during the heating operation, returns the rotation speed of the circulation pump 29 to the rotation speed during the heating operation (3000 rpm), and at the same time, the combustion side. An instruction to stop the operation of the hot water storage type combustion heat source machine 3 is sent to the control device 36, the operation of the hot water storage type combustion heat source machine 3 is stopped, and only the heat pump type heat source machine 2 is operated to restart the heating operation.

なお、上記の本実施形態では、逆サイクル除霜時における貯湯式燃焼熱源機3の貯湯式熱交換器18の結露を問題として挙げたが、この結露の問題は貯湯式燃焼熱源機3に限られるものではない。貯湯式燃焼熱源機3の代わりに瞬間式燃焼熱源機を適用した場合であっても、瞬間式燃焼熱源機のフィンチューブ式熱交換器が結露する問題がある。結露を抑制するためには先に説明した本実施形態と同様に、逆サイクル除霜時の循環ポンプ29の回転数を暖房運転時より高くして熱媒の流量を多くすればよいものである。 In the above embodiment, the dew condensation of the hot water storage type heat exchanger 18 of the hot water storage type combustion heat source machine 3 at the time of reverse cycle defrosting is mentioned as a problem, but the problem of this dew condensation is limited to the hot water storage type combustion heat source machine 3. It is not something that can be done. Even when the instantaneous combustion heat source machine is applied instead of the hot water storage type combustion heat source machine 3, there is a problem that the fin tube type heat exchanger of the instantaneous combustion heat source machine condenses. In order to suppress dew condensation, the rotation speed of the circulation pump 29 during the reverse cycle defrosting may be higher than that during the heating operation to increase the flow rate of the heat medium, as in the present embodiment described above. ..

また、本実施形態では、ヒートポンプ式熱源機2のみを作動させての暖房運転中に、ヒートポンプ式熱源機2が逆サイクル除霜を行う場合を例に挙げたが、ヒートポンプ式熱源機2および貯湯式燃焼熱源機3の双方を作動させての暖房運転中に、ヒートポンプ式熱源機2が逆サイクル除霜を行う場合であってもよく、その場合についても、逆サイクル除霜時に行われる動作は、先に説明した本実施形態の動作と同様、貯湯式燃焼熱源機3を作動させ、循環ポンプ29の回転数を暖房運転時より高くして熱媒の流量を多くするものである。 Further, in the present embodiment, the case where the heat pump type heat source machine 2 performs reverse cycle defrosting during the heating operation in which only the heat pump type heat source machine 2 is operated has been described as an example, but the heat pump type heat source machine 2 and the hot water storage The heat pump type heat source machine 2 may perform reverse cycle defrosting during the heating operation by operating both of the type combustion heat source machines 3, and even in that case, the operation performed during the reverse cycle defrosting is performed. Similar to the operation of the present embodiment described above, the hot water storage type combustion heat source machine 3 is operated to increase the rotation speed of the circulation pump 29 to be higher than that during the heating operation to increase the flow rate of the heat medium.

以上説明したように、燃焼熱源機3(本実施形態では貯湯式燃焼熱源機3)が、循環回路25を循環する熱媒の流れに対してヒートポンプ式熱源機2の下流側に配設されている暖房システム1において、ヒートポンプ式熱源機2により熱媒を加熱して暖房端末4による暖房運転を行っている時に、ヒーポン側制御装置35が所定の除霜開始条件が成立したと判断した場合、四方弁6を冷媒の流れ方向が暖房運転時の冷媒の流れ方向と逆になるように切り換えて、圧縮機5から吐出された冷媒を空気熱交換器10に供給して空気熱交換器10に発生した霜を溶かす逆サイクル除霜を実行させると共に、燃焼熱源機3を作動させ、さらに循環ポンプ29の回転数を高くし、逆サイクル除霜実行時に循環回路25を流れる熱媒の流量を暖房運転時の熱媒の流量よりも多くするようにしたことで、逆サイクル除霜時に液冷媒熱交換器7を通過して燃焼熱源機3に流入する熱媒の温度の低下度合いを小さくできると共に、液冷媒熱交換器7にて熱媒から冷媒へ吸熱される吸熱量が大きくなって空気熱交換器10の除霜に利用される熱量が多くなり、除霜時間が短縮されて低温の熱媒が燃焼熱源機3に流入する時間を短くでき、作動中の燃焼熱源機3の熱交換器(本実施形態では貯湯式熱交換器18)の結露の発生を抑制することができる。結露発生の抑制により、燃焼熱源機3の熱交換器の腐食、破損を抑制することできるものである。また、逆サイクル除霜時は、燃焼熱源機3を作動させるので、燃焼熱源機3で加熱された熱媒が暖房端末4に供給されて暖房運転が継続され、快適性を損なうことがない。 As described above, the combustion heat source machine 3 (in this embodiment, the hot water storage type combustion heat source machine 3) is arranged on the downstream side of the heat pump type heat source machine 2 with respect to the flow of the heat medium circulating in the circulation circuit 25. In the heating system 1, when the heat medium is heated by the heat pump type heat source machine 2 and the heating operation is performed by the heating terminal 4, the heaton side control device 35 determines that the predetermined defrosting start condition is satisfied. The four-way valve 6 is switched so that the flow direction of the refrigerant is opposite to the flow direction of the refrigerant during the heating operation, and the refrigerant discharged from the compressor 5 is supplied to the air heat exchanger 10 to the air heat exchanger 10. In addition to executing reverse cycle defrosting to melt the generated frost, the combustion heat source machine 3 is operated, the rotation speed of the circulation pump 29 is further increased, and the flow rate of the heat medium flowing through the circulation circuit 25 is heated when the reverse cycle defrosting is executed. By making the flow rate of the heat medium larger than that during operation, it is possible to reduce the degree of decrease in the temperature of the heat medium that passes through the liquid refrigerant heat exchanger 7 and flows into the combustion heat source machine 3 during reverse cycle defrosting. , The amount of heat absorbed from the heat medium to the refrigerant by the liquid refrigerant heat exchanger 7 increases, the amount of heat used for defrosting the air heat exchanger 10 increases, the defrosting time is shortened, and low-temperature heat The time for the medium to flow into the combustion heat source machine 3 can be shortened, and the occurrence of dew condensation on the heat exchanger (hot water storage type heat exchanger 18 in the present embodiment) of the combustion heat source machine 3 during operation can be suppressed. By suppressing the occurrence of dew condensation, it is possible to suppress corrosion and damage to the heat exchanger of the combustion heat source machine 3. Further, since the combustion heat source machine 3 is operated during the reverse cycle defrosting, the heat medium heated by the combustion heat source machine 3 is supplied to the heating terminal 4 to continue the heating operation, and the comfort is not impaired.

なお、本発明は一実施形態に限定されるものではなく、本実施形態では、貯湯式燃焼熱源機3は暖房用途にのみ使用するものとしたが、貯留缶体21内の熱媒と給水とを熱交換する給湯用熱交換器、または、貯留缶体21内の熱媒と浴槽水とを熱交換する風呂用熱交換器を貯留缶体21内に設け、貯湯式燃焼熱源機3を暖房用途に加え給湯用途や風呂用途に使用することができるものとしてもよいものである。 The present invention is not limited to one embodiment. In the present embodiment, the hot water storage type combustion heat source machine 3 is used only for heating purposes, but the heat medium and water supply in the storage can body 21 A hot water supply heat exchanger for heat exchange or a bath heat exchanger for heat exchange between the heat medium in the storage can body 21 and the bath water is provided in the storage can body 21 to heat the hot water storage type combustion heat source machine 3. In addition to the intended use, it may be used for hot water supply or bath.

また、本実施形態では、ヒーポン側制御装置35が主にヒートポンプ式熱源機2を制御し、燃焼側制御装置36が主に貯湯式燃焼熱源機3を制御するものとしたが、ヒーポン側制御装置35および燃焼側制御装置36を1つの制御装置として、ヒートポンプ式熱源機2および貯湯式燃焼熱源機3の双方を制御するようにしてもよいものである。 Further, in the present embodiment, the heat pump side control device 35 mainly controls the heat pump type heat source machine 2, and the combustion side control device 36 mainly controls the hot water storage type combustion heat source machine 3, but the heat pump side control device The 35 and the combustion side control device 36 may be used as one control device to control both the heat pump type heat source machine 2 and the hot water storage type combustion heat source machine 3.

1 暖房システム
2 ヒートポンプ式熱源機
3 貯湯式燃焼熱源機
4 暖房端末
5 圧縮機
6 四方弁
7 液冷媒熱交換器
8 膨張弁
10 空気熱交換器
25 循環回路
29 循環ポンプ
35 ヒーポン側制御装置
1 Heating system 2 Heat pump type heat source machine 3 Hot water storage type combustion heat source machine 4 Heating terminal 5 Compressor 6 Four-way valve 7 Liquid refrigerant heat exchanger 8 Expansion valve 10 Air heat exchanger 25 Circulation circuit 29 Circulation pump 35 Heat pump side control device

Claims (1)

暖房端末と、
前記暖房端末に熱媒を循環させる循環ポンプを有した循環回路と、
冷媒を圧縮する圧縮機と、前記熱媒と前記冷媒とを熱交換させる液冷媒熱交換器と、切換弁と、膨張弁と、空気熱交換器とを有し、前記循環回路を循環する前記熱媒を加熱するヒートポンプ式熱源機と、
前記循環回路を循環する前記熱媒を加熱する燃焼熱源機と、
制御装置と、を備え、
前記燃焼熱源機を、前記循環回路を循環する前記熱媒の流れに対し前記ヒートポンプ式熱源機の下流側に配設した暖房システムにおいて、
前記制御装置は、前記ヒートポンプ式熱源機により前記熱媒を加熱して前記暖房端末による暖房運転を行っている時に、所定の除霜開始条件が成立したと判断した場合、前記切換弁を前記冷媒の流れ方向が前記暖房運転時の前記冷媒の流れ方向と逆になるように切り換えて、前記圧縮機から吐出された前記冷媒を前記空気熱交換器に供給して前記空気熱交換器に発生した霜を溶かす逆サイクル除霜を実行させると共に、前記燃焼熱源機を作動させ、さらに前記逆サイクル除霜実行時の前記熱媒の流量を前記暖房運転時の前記熱媒の流量よりも多くするようにしたことを特徴とする暖房システム。
With a heating terminal
A circulation circuit having a circulation pump that circulates a heat medium in the heating terminal, and
The compressor having a compressor for compressing the refrigerant, a liquid refrigerant heat exchanger for heat exchange between the heat medium and the refrigerant, a switching valve, an expansion valve, and an air heat exchanger, and circulating the circulation circuit. A heat pump type heat source machine that heats the heat medium,
A combustion heat source machine that heats the heat medium that circulates in the circulation circuit,
Equipped with a control device,
In a heating system in which the combustion heat source machine is arranged on the downstream side of the heat pump type heat source machine with respect to the flow of the heat medium circulating in the circulation circuit.
When the control device determines that a predetermined defrosting start condition is satisfied when the heat medium is heated by the heat pump type heat source machine and the heating operation is performed by the heating terminal, the switching valve is set to the refrigerant. The flow direction is switched so as to be opposite to the flow direction of the refrigerant during the heating operation, and the refrigerant discharged from the compressor is supplied to the air heat exchanger to generate heat in the air heat exchanger. The reverse cycle defrosting that melts the frost is executed, the combustion heat source machine is operated, and the flow rate of the heat medium during the reverse cycle defrosting is made larger than the flow rate of the heat medium during the heating operation. A heating system characterized by the fact that it has been made.
JP2020059512A 2020-03-30 2020-03-30 heating system Active JP7374038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020059512A JP7374038B2 (en) 2020-03-30 2020-03-30 heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020059512A JP7374038B2 (en) 2020-03-30 2020-03-30 heating system

Publications (2)

Publication Number Publication Date
JP2021156552A true JP2021156552A (en) 2021-10-07
JP7374038B2 JP7374038B2 (en) 2023-11-06

Family

ID=77917381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020059512A Active JP7374038B2 (en) 2020-03-30 2020-03-30 heating system

Country Status (1)

Country Link
JP (1) JP7374038B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046692A (en) * 2004-07-30 2006-02-16 Daikin Ind Ltd Heat pump air conditioner
JP2013024458A (en) * 2011-07-20 2013-02-04 Panasonic Corp Heat pump type hot water heating device
JP2016118340A (en) * 2014-12-22 2016-06-30 リンナイ株式会社 Heating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046692A (en) * 2004-07-30 2006-02-16 Daikin Ind Ltd Heat pump air conditioner
JP2013024458A (en) * 2011-07-20 2013-02-04 Panasonic Corp Heat pump type hot water heating device
JP2016118340A (en) * 2014-12-22 2016-06-30 リンナイ株式会社 Heating system

Also Published As

Publication number Publication date
JP7374038B2 (en) 2023-11-06

Similar Documents

Publication Publication Date Title
JP6252211B2 (en) Air conditioning system
JP4899549B2 (en) Compressor operating method of refrigeration apparatus and refrigeration apparatus
JP4867749B2 (en) Heat pump water heater
KR102043215B1 (en) Heat pump and Method for controlling the same
JP6976878B2 (en) Heat pump air conditioning system
JP5861726B2 (en) Air conditioning system
JP6749471B2 (en) Air conditioner
EP2522933B1 (en) Heat storing apparatus having cascade cycle and control process of the same
JP5589607B2 (en) Heat pump cycle equipment
JP6672619B2 (en) Air conditioning system
JP2018063094A (en) Air conditioner with hot water supply function
JP6537990B2 (en) Heat pump type cold and hot water supply system
JP2017009269A5 (en)
KR20080073996A (en) Heat source air conditioning system and control method
JP7144343B2 (en) heating system
JP2009264718A (en) Heat pump hot water system
JP5150300B2 (en) Heat pump type water heater
JP7374038B2 (en) heating system
JP7074915B2 (en) Heat pump device
JP2021001718A (en) Heat pump type hot water heating system
KR20140063930A (en) An engine-driven heat pump system
JP7368307B2 (en) heating system
JP2009192197A (en) Heat pump cycle system
JP7287809B2 (en) heating system
JP7274896B2 (en) heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231024

R150 Certificate of patent or registration of utility model

Ref document number: 7374038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150