JP2021150204A - All-solid-state lithium secondary battery and manufacturing method thereof - Google Patents

All-solid-state lithium secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP2021150204A
JP2021150204A JP2020049813A JP2020049813A JP2021150204A JP 2021150204 A JP2021150204 A JP 2021150204A JP 2020049813 A JP2020049813 A JP 2020049813A JP 2020049813 A JP2020049813 A JP 2020049813A JP 2021150204 A JP2021150204 A JP 2021150204A
Authority
JP
Japan
Prior art keywords
solid electrolyte
solid
containing sheet
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020049813A
Other languages
Japanese (ja)
Inventor
雅一 満永
Masakazu Mitsunaga
雅一 満永
英寿 守上
Eiju Morigami
英寿 守上
哲夫 伊津
Tetsuo Itsu
哲夫 伊津
智史 山本
Tomohito Yamamoto
智史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Maxell Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Holdings Ltd filed Critical Maxell Holdings Ltd
Priority to JP2020049813A priority Critical patent/JP2021150204A/en
Publication of JP2021150204A publication Critical patent/JP2021150204A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

To provide an all-solid-state lithium secondary battery that prevents a short circuit from occurring at the outer peripheral ends of a positive electrode and a negative electrode, and has a high capacity and a high energy density even when the thickness of a solid electrolyte layer is reduced.SOLUTION: An all-solid-state lithium secondary battery disclosed in the present application includes a laminated electrode body including a positive electrode, a negative electrode, and a solid electrolyte-containing sheet arranged between the positive electrode and the negative electrode, and the solid electrolyte-containing sheet includes an insulating porous base material and a solid electrolyte filled in the insulating porous base material, and the peripheral portion of the solid electrolyte-containing sheet covers the outer peripheral side surface of the positive electrode or the negative electrode. The thickness of the solid electrolyte-containing sheet is 5 to 200 μm.SELECTED DRAWING: Figure 1

Description

本発明は、固体電解質を用いた高容量の全固体リチウム二次電池及びその製造方法に関するものである。 The present invention relates to a high-capacity all-solid-state lithium secondary battery using a solid electrolyte and a method for producing the same.

現在、リチウムイオン二次電池に用いられている有機電解液は、可燃性物質である有機溶媒を含んでいるため、電池に短絡等の異常事態が発生した際に、有機電解液が異常発熱する可能性がある。また、近年のリチウムイオン二次電池の高エネルギー密度化及び有機電解液中の有機溶媒量の増加傾向に伴い、より一層リチウムイオン二次電池の安全性及び信頼性が求められている。 Currently, the organic electrolyte used in lithium-ion secondary batteries contains an organic solvent, which is a flammable substance. Therefore, when an abnormal situation such as a short circuit occurs in the battery, the organic electrolyte generates abnormal heat. there is a possibility. Further, with the recent increase in energy density of lithium ion secondary batteries and the increasing tendency of the amount of organic solvent in organic electrolytic solutions, the safety and reliability of lithium ion secondary batteries are further required.

以上のような状況において、有機溶媒を用いない全固体型のリチウム二次電池が注目されている。全固体型のリチウム二次電池は、従来の有機溶媒系電解質に代えて、有機溶媒を用いない固体電解質の成形体を用いるものであり、固体電解質の異常発熱のおそれがなく、高い安全性を備えている。 Under the above circumstances, an all-solid-state lithium secondary battery that does not use an organic solvent is drawing attention. The all-solid-state lithium secondary battery uses a solid electrolyte molded product that does not use an organic solvent instead of the conventional organic solvent-based electrolyte, and there is no risk of abnormal heat generation of the solid electrolyte, resulting in high safety. I have.

一般に全固体リチウム二次電池では、正極と負極との間に固体電解質層が配置された積層電極体が用いられる。上記積層電極体は、各構成材料(活物質、固体電解質)を溶媒に分散させた塗料を塗布して積層膜を形成する方法や、各構成材料の粉体を型内にそのまま充填して加圧成形してペレットを形成する方法等により作製することができる。 Generally, in an all-solid-state lithium secondary battery, a laminated electrode body in which a solid electrolyte layer is arranged between a positive electrode and a negative electrode is used. The laminated electrode body can be prepared by applying a paint in which each constituent material (active material, solid electrolyte) is dispersed in a solvent to form a laminated film, or by filling a mold with powder of each constituent material as it is. It can be produced by a method of forming pellets by pressure molding or the like.

現在、小型の電子機器に用いられる電池として、コイン形の固体電解質電池の開発が進められているが、コイン形電池では、積層電極体のペレットを作製し、これを電池容器内に収容して電池を組み立てるのが一般的である。 Currently, a coin-shaped solid electrolyte battery is being developed as a battery used in a small electronic device. For a coin-shaped battery, pellets of laminated electrode bodies are prepared and stored in a battery container. It is common to assemble batteries.

コイン形電池の積層電極体をペレットとして作製する場合、各構成材料の粉体を型内で加圧成形するため、全体が円柱形状の積層体として形成され、正極及び負極の面積と固体電解質層の面積とが同じになる。このため、正極あるいは負極の端部から活物質粒子が脱離した場合、正極の外周端部と負極の外周端部とが接触して短絡が発生しやすくなるという問題がある。特に、電池の高容量化のために、電池容量に関わらない固体電解質層を薄く形成しようとした場合に、上記短絡がより発生しやすくなる。 When the laminated electrode body of the coin-shaped battery is manufactured as pellets, the powder of each constituent material is pressure-molded in the mold, so that the whole is formed as a cylindrical laminated body, and the areas of the positive electrode and the negative electrode and the solid electrolyte layer. Is the same as the area of. Therefore, when the active material particles are desorbed from the end portion of the positive electrode or the negative electrode, there is a problem that the outer peripheral end portion of the positive electrode and the outer peripheral end portion of the negative electrode are in contact with each other and a short circuit is likely to occur. In particular, when an attempt is made to form a thin solid electrolyte layer regardless of the battery capacity in order to increase the capacity of the battery, the short circuit is more likely to occur.

この問題を解決するために、特許文献1では、少なくとも正極及び負極のいずれかの一方の電極を、固体電解質層で覆った形状とすることが提案されている。積層電極体を上記の構成とすることにより、上記短絡の問題を防ぐことができるものの、特許文献1では、別個に作製した電極と固体電解質層とを、後で一体化する方法を用いるため、固体電解質層を薄く形成することは困難である。 In order to solve this problem, Patent Document 1 proposes a shape in which at least one of the positive electrode and the negative electrode is covered with a solid electrolyte layer. Although the problem of the short circuit can be prevented by adopting the laminated electrode body having the above configuration, in Patent Document 1, a method of later integrating the separately produced electrodes and the solid electrolyte layer is used. It is difficult to form a thin solid electrolyte layer.

一方、特許文献2及び3では、活物質や固体電解質の粉末を帯電させて塗布を行い、加圧して成膜する方法が提案されている。この方法によれば、各層の厚みを比較的自由に調整することができるため、固体電解質層の厚みを薄くすることも可能となると共に、電極の外周面部を固体電解質で覆った形状を作製することも可能である。 On the other hand, Patent Documents 2 and 3 propose a method in which a powder of an active material or a solid electrolyte is charged and applied, and then pressurized to form a film. According to this method, the thickness of each layer can be adjusted relatively freely, so that the thickness of the solid electrolyte layer can be reduced, and a shape in which the outer peripheral surface of the electrode is covered with the solid electrolyte is produced. It is also possible.

特開2009−64644号公報Japanese Unexamined Patent Publication No. 2009-64644 特開2010−282803号公報Japanese Unexamined Patent Publication No. 2010-282803 特開2019−21428号公報Japanese Unexamined Patent Publication No. 2019-21428

しかしながら、特許文献2及び3に記載の方法は、塗布膜を厚み方向に加圧するだけであり、塗布膜の面方向には何らの規制も付与されない。このため、前述の短絡を防止するために、正極又は負極の外周面部に固体電解質層を形成する場合、その外周面部における固体電解質層の厚みを調整することは困難である。 However, the methods described in Patent Documents 2 and 3 only pressurize the coating film in the thickness direction, and do not impose any restrictions on the surface direction of the coating film. Therefore, when the solid electrolyte layer is formed on the outer peripheral surface portion of the positive electrode or the negative electrode in order to prevent the above-mentioned short circuit, it is difficult to adjust the thickness of the solid electrolyte layer on the outer peripheral surface portion.

また、固体電解質層の成型体は脆いため、正極又は負極の外周面部に固体電解質層を形成すると、電池製造時において、正極又は負極の外周面部に形成された固体電解質層が脱離しやすく、正極の外周端部と負極の外周端部とが接触して短絡が発生するおそれがある。 Further, since the molded body of the solid electrolyte layer is brittle, when the solid electrolyte layer is formed on the outer peripheral surface of the positive electrode or the negative electrode, the solid electrolyte layer formed on the outer peripheral surface of the positive electrode or the negative electrode is easily detached at the time of battery production, and the positive electrode is formed. There is a possibility that a short circuit may occur due to contact between the outer peripheral end portion of the negative electrode and the outer peripheral end portion of the negative electrode.

本願は、上記問題を解決するためになされたものであり、正極と負極の外周端部における短絡発生を防ぐと共に、固体電解質層の厚みを薄くして高容量化された全固体リチウム二次電池を提供するものである。 The present application has been made to solve the above problems, and is an all-solid-state lithium secondary battery in which a short circuit is prevented from occurring at the outer peripheral ends of the positive electrode and the negative electrode, and the thickness of the solid electrolyte layer is reduced to increase the capacity. Is to provide.

本発明の全固体リチウム二次電池は、正極と、負極と、前記正極と前記負極との間に配置された固体電解質含有シートとを含む積層電極体を備え、前記固体電解質含有シートは、絶縁性多孔質基材と、前記絶縁性多孔質基材に充填された固体電解質とを含み、前記固体電解質含有シートの周縁部が、前記正極又は前記負極の外周側面部を覆っており、前記固体電解質含有シートの厚さが、5〜200μmである。 The all-solid lithium secondary battery of the present invention includes a laminated electrode body including a positive electrode, a negative electrode, and a solid electrolyte-containing sheet arranged between the positive electrode and the negative electrode, and the solid electrolyte-containing sheet is insulated. The solid electrolyte-containing sheet contains the porous porous substrate and the solid electrolyte filled in the insulating porous substrate, and the peripheral edge portion of the solid electrolyte-containing sheet covers the outer peripheral side surface portion of the positive electrode or the negative electrode, and the solid. The thickness of the electrolyte-containing sheet is 5 to 200 μm.

また、本発明の全固体リチウム二次電池の製造方法は、上記本発明の全固体リチウム二次電池を製造する方法であって、正極と負極とを準備する電極準備工程と、固体電解質粒子を絶縁性多孔質基材に充填して固体電解質含有シートを作製する充填工程と、前記正極と、前記固体電解質含有シートと、前記負極とをこの順に積層する積層工程と、前記固体電解質含有シートの周縁部を、積層した前記正極又は前記負極の一方の外周側に折り返して、前記固体電解質含有シートの周縁部により、前記正極又は前記負極の外周側面部を覆う折返し工程とを含む。 Further, the method for manufacturing the all-solid-state lithium secondary battery of the present invention is the above-mentioned method for manufacturing the all-solid-state lithium secondary battery of the present invention, in which an electrode preparation step for preparing a positive electrode and a negative electrode and solid electrolyte particles are provided. A filling step of filling an insulating porous base material to prepare a solid electrolyte-containing sheet, a laminating step of laminating the positive electrode, the solid electrolyte-containing sheet, and the negative electrode in this order, and the solid electrolyte-containing sheet. The peripheral portion is folded back to the outer peripheral side of one of the laminated positive electrode or the negative electrode, and the peripheral portion of the solid electrolyte-containing sheet covers the outer peripheral side surface portion of the positive electrode or the negative electrode.

本願によれば、固体電解質層の厚みを薄くしても、正極と負極の外周端部における短絡発生を防止でき、高容量・高エネルギー密度の全固体リチウム二次電池を提供することができる。 According to the present application, even if the thickness of the solid electrolyte layer is reduced, short circuits can be prevented from occurring at the outer peripheral ends of the positive electrode and the negative electrode, and an all-solid-state lithium secondary battery having a high capacity and a high energy density can be provided.

図1は、実施形態の全固体リチウム二次電池の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of an all-solid-state lithium secondary battery of the embodiment. 図2は、実施形態の全固体リチウム二次電池の積層電極体を製造する工程の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of a process of manufacturing a laminated electrode body of the all-solid-state lithium secondary battery of the embodiment.

(全固体リチウム二次電池)
本願で開示する全固体リチウム二次電池の実施形態を説明する。本実施形態の全固体リチウム二次電池は、正極と、負極と、上記正極と上記負極との間に配置された固体電解質含有シートとを含む積層電極体を備え、上記固体電解質含有シートは、絶縁性多孔質基材と、上記絶縁性多孔質基材に充填された固体電解質とを含み、上記固体電解質含有シートの周縁部が、上記正極又は上記負極の外周側面部を覆っており、上記固体電解質含有シートの厚さが、5〜200μmである。
(All-solid-state lithium secondary battery)
Embodiments of the all-solid-state lithium secondary battery disclosed in the present application will be described. The all-solid lithium secondary battery of the present embodiment includes a laminated electrode body including a positive electrode, a negative electrode, and a solid electrolyte-containing sheet arranged between the positive electrode and the negative electrode. The insulating porous base material and the solid electrolyte filled in the insulating porous base material are contained, and the peripheral portion of the solid electrolyte-containing sheet covers the outer peripheral side surface portion of the positive electrode or the negative electrode. The thickness of the solid electrolyte-containing sheet is 5 to 200 μm.

本実施形態の全固体リチウム二次電池では、固体電解質が絶縁性多孔質基材に充填されているので、薄く均一な固体電解質層を形成できる。これにより、高容量・高エネルギー密度の全固体リチウム二次電池を提供できる。また、上記固体電解質含有シートの周縁部が、正極又は負極の外周側面部を覆っているので、固体電解質層(固体電解質含有シート)を薄く形成しても、正極と負極の外周端部における短絡発生を防止できる。 In the all-solid-state lithium secondary battery of the present embodiment, since the solid electrolyte is filled in the insulating porous base material, a thin and uniform solid electrolyte layer can be formed. This makes it possible to provide an all-solid-state lithium secondary battery having a high capacity and a high energy density. Further, since the peripheral portion of the solid electrolyte-containing sheet covers the outer peripheral side surface portion of the positive electrode or the negative electrode, even if the solid electrolyte layer (solid electrolyte-containing sheet) is formed thinly, a short circuit occurs at the outer peripheral end portion of the positive electrode and the negative electrode. Occurrence can be prevented.

また、上記固体電解質含有シートの厚さが200μm以下であるため、固体電解質含有シートにある程度の柔軟性を付与でき、これにより、固体電解質含有シートの周縁部を、正極又は負極の外周側面部に折り曲げることが可能となり、簡便な方法で、固体電解質含有シートにより電極の外周側面部を覆うことができる。更に、上記固体電解質含有シートの厚さが5μm以上であるため、絶縁性多孔質基材が固体電解質を保持して、固体電解質含有シートの形状維持性を確保でき、正極及び負極と積層して積層電極体を確実に形成できる。 Further, since the thickness of the solid electrolyte-containing sheet is 200 μm or less, a certain degree of flexibility can be imparted to the solid electrolyte-containing sheet, whereby the peripheral portion of the solid electrolyte-containing sheet can be attached to the outer peripheral side surface portion of the positive electrode or the negative electrode. It can be bent, and the outer peripheral side surface portion of the electrode can be covered with the solid electrolyte-containing sheet by a simple method. Further, since the thickness of the solid electrolyte-containing sheet is 5 μm or more, the insulating porous base material can retain the solid electrolyte and secure the shape-retainability of the solid electrolyte-containing sheet, and can be laminated with the positive electrode and the negative electrode. A laminated electrode body can be reliably formed.

以下、図面に基づき本実施形態の全固体リチウム二次電池を説明する。図1は、本実施形態のコイン形の全固体リチウム二次電池の一例を示す断面図である。図1において、全固体リチウム二次電池10は、外装缶11と、封口缶12と、これらの間に介在するガスケット13で構成された外装体の内部に、負極14、正極15、固体電解質含有シート16からなる積層電極体が封入されている。固体電解質含有シート16は、絶縁性多孔質基材(図示せず。)と、上記絶縁性多孔質基材に充填された固体電解質とを含み、固体電解質含有シート16の周縁部16aが、正極15側に折り返されて、正極15の外周側面部を覆っている。固体電解質含有シート16の周縁部16aは、負極14側に折り返して負極14の外周側面部を覆う構成としてもよい。 Hereinafter, the all-solid-state lithium secondary battery of the present embodiment will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing an example of a coin-shaped all-solid-state lithium secondary battery of the present embodiment. In FIG. 1, the all-solid-state lithium secondary battery 10 contains a negative electrode 14, a positive electrode 15, and a solid electrolyte inside an exterior body composed of an outer can 11, a sealing can 12, and a gasket 13 interposed between them. A laminated electrode body made of the sheet 16 is enclosed. The solid electrolyte-containing sheet 16 contains an insulating porous base material (not shown) and a solid electrolyte filled in the insulating porous base material, and the peripheral portion 16a of the solid electrolyte-containing sheet 16 has a positive electrode. It is folded back to the 15 side and covers the outer peripheral side surface portion of the positive electrode 15. The peripheral edge portion 16a of the solid electrolyte-containing sheet 16 may be folded back toward the negative electrode 14 side to cover the outer peripheral side surface portion of the negative electrode 14.

封口缶12は、外装缶11の開口部にガスケット13を介して嵌合しており、外装缶11の開口端部が内方に締め付けられ、これによりガスケット13が封口缶12に当接することで、外装缶11の開口部が封口されて外装体の内部が密閉構造となっている。 The sealing can 12 is fitted to the opening of the outer can 11 via a gasket 13, and the opening end of the outer can 11 is tightened inward, whereby the gasket 13 comes into contact with the sealing can 12. The opening of the outer can 11 is sealed, and the inside of the outer body has a closed structure.

次に、本実施形態の全固体リチウム二次電池の各構成部材について説明する。 Next, each component of the all-solid-state lithium secondary battery of the present embodiment will be described.

<固体電解質含有シート>
本実施形態の全固体リチウム二次電池に係る固体電解質含有シートは、積層電極体の固体電解質層を構成するものであり、絶縁性多孔質基材と、上記絶縁性多孔質基材に充填された固体電解質及びバインダとを含んでいる。
<Solid electrolyte-containing sheet>
The solid electrolyte-containing sheet according to the all-solid-state lithium secondary battery of the present embodiment constitutes the solid electrolyte layer of the laminated electrode body, and is filled with the insulating porous base material and the insulating porous base material. Contains solid electrolytes and binders.

上記固体電解質含有シートの厚さは、前述のとおり、固体電解質含有シートの形状維持性を確保して、正極及び負極と積層して積層電極体を確実に形成できるように5μm以上に設定され、10μm以上とすることが好ましい。また、上記固体電解質含有シートの周縁部を、正極又は負極の外周側面部に折り曲げ可能とするために、固体電解質含有シートの厚さは200μm以下に設定され、100μm以下とすることが好ましい。 As described above, the thickness of the solid electrolyte-containing sheet is set to 5 μm or more so that the shape-retainability of the solid electrolyte-containing sheet can be ensured and the laminated electrode body can be reliably formed by laminating with the positive electrode and the negative electrode. It is preferably 10 μm or more. Further, in order to make the peripheral edge portion of the solid electrolyte-containing sheet bendable to the outer peripheral side surface portion of the positive electrode or the negative electrode, the thickness of the solid electrolyte-containing sheet is set to 200 μm or less, preferably 100 μm or less.

また、上記積層電極体において、電極と固体電解質含有シートとの界面でのイオン伝導性を確保するために、絶縁性多孔質基材の表面全体が、固体電解質層で覆われていることが好ましい。 Further, in the laminated electrode body, in order to ensure ionic conductivity at the interface between the electrode and the solid electrolyte-containing sheet, it is preferable that the entire surface of the insulating porous base material is covered with the solid electrolyte layer. ..

[固体電解質]
上記固体電解質としては、リチウムイオン伝導性を有していれば特に限定されず、例えば、硫化物系固体電解質、水素化物系固体電解質、酸化物系固体電解質等が使用できる。
[Solid electrolyte]
The solid electrolyte is not particularly limited as long as it has lithium ion conductivity, and for example, a sulfide-based solid electrolyte, a hydride-based solid electrolyte, an oxide-based solid electrolyte, and the like can be used.

上記硫化物系固体電解質としては、例えば、Li2S−P25、Li2S−SiS2、Li2S−P25−GeS2、Li2S−B23等の硫化物系固体電解質ガラス等が挙げられる他、近年、リチウムイオン伝導性が高いものとして注目されているLi10GeP212(LGPS系)やLi6PS5Cl(アルジロダイト系)も使用することができる。これらの中でも、特にリチウムイオン伝導性が高く、化学的に安定性の高いアルジロダイト系固体電解質が好ましく用いられる。 As the sulfide-based solid electrolyte, for example, sulfides such as Li 2 S-P 2 S 5 , Li 2 S-SiS 2, Li 2 S-P 2 S 5 -GeS 2, Li 2 S-B 2 S 3 In addition to physical solid electrolyte glass, Li 10 GeP 2 S 12 (LGPS system) and Li 6 PS 5 Cl (algirodite system), which have been attracting attention in recent years as having high lithium ion conductivity, can also be used. can. Among these, an algyrodite-based solid electrolyte having particularly high lithium ion conductivity and high chemical stability is preferably used.

上記水素化物系固体電解質としては、例えば、LiBH4と下記のアルカリ金属化合物との固溶体(例えば、LiBH4とアルカリ金属化合物とのモル比が1:1〜20:1の固溶体)等が挙げられる。上記固溶体におけるアルカリ金属化合物としては、ハロゲン化リチウム(LiI、LiBr、LiF、LiCl)、ハロゲン化ルビジウム(RbI、RbBr、RbF、RbCl)、ハロゲン化セシウム(CsI、CsBr、CsF、CsCl)、リチウムアミド、ルビジウムアミド、セシウムアミドから選ばれる少なくとも1種が挙げられる。 As the hydride-based solid electrolyte, for example, a solid solution of LiBH 4 and the alkali metal compound of the following (e.g., molar ratio of LiBH 4 and the alkali metal compound is 1: 1 to 20: 1 of solid solution), and the like .. Examples of the alkali metal compound in the solid solution include lithium halide (LiI, LiBr, LiF, LiCl), rubidium halide (RbI, RbBr, RbF, RbCl), cesium chloride (CsI, CsBr, CsF, CsCl) and lithium amide. , Rubidium amide, at least one selected from cesium amide.

上記酸化物系固体電解質としては、例えば、Li7La3Zr212、LiTi(PO43、LiGe(PO43、LiLaTiO3等が挙げられる。 Examples of the oxide-based solid electrolyte include Li 7 La 3 Zr 2 O 12 , LiTi (PO 4 ) 3 , LiGe (PO 4 ) 3 , LiLaTIO 3, and the like.

上記例示の固体電解質の中でも、リチウムイオン伝導性の高い硫化物系固体電解質を用いることがより好ましい。 Among the above-exemplified solid electrolytes, it is more preferable to use a sulfide-based solid electrolyte having high lithium ion conductivity.

上記固体電解質は、1種を単独で用いることができるが、2種以上を併用することもできる。上記固体電解質の形態は、絶縁性多孔質基材への充填性の観点から、粒子状が好ましいが、粒子状以外の形態であってもよい。また、上記固体電解質を2種以上併用する場合は、それぞれの固体電解質を粒子状の形態で混合してもよいし、それぞれの固体電解質を分子レベルで混合してもよく、また、それぞれの固体電解質を固体電解質含有シートの厚み方向に、それぞれの固体電解質粒子が異なる領域を層状に形成するように存在させてもよい。 One type of the solid electrolyte can be used alone, but two or more types can be used in combination. The form of the solid electrolyte is preferably in the form of particles from the viewpoint of fillingability into the insulating porous substrate, but may be in a form other than the form of particles. When two or more of the above solid electrolytes are used in combination, each solid electrolyte may be mixed in a particulate form, each solid electrolyte may be mixed at the molecular level, or each solid may be mixed. The electrolyte may be present in the thickness direction of the solid electrolyte-containing sheet so that the respective solid electrolyte particles form different regions in layers.

上記固体電解質粒子の平均粒子径としては、絶縁性多孔質基材の空孔内への充填性をより高め、良好なリチウムイオン伝導性を確保する観点から、5μm以下であることが好ましく、2μm以下であることがより好ましい。但し、固体電解質粒子のサイズが小さすぎると、取り扱い性が低下したり、より多くの量のバインダが必要となって抵抗値が増大したりするおそれがある。よって、固体電解質粒子の平均粒子径は、0.3μm以上であることが好ましく、0.5μm以上であることがより好ましい。 The average particle size of the solid electrolyte particles is preferably 5 μm or less, preferably 2 μm, from the viewpoint of further enhancing the filling property into the pores of the insulating porous base material and ensuring good lithium ion conductivity. The following is more preferable. However, if the size of the solid electrolyte particles is too small, the handleability may be lowered, or a larger amount of binder may be required to increase the resistance value. Therefore, the average particle size of the solid electrolyte particles is preferably 0.3 μm or more, and more preferably 0.5 μm or more.

本明細書でいう固体電解質粒子や、その他の粒子(正極活物質粒子、負極活物質粒子等)の平均粒子径は、例えば、レーザー散乱粒度分布計(例えば、HORIBA社製「LA−920」)を用い、これらの粒子を溶解したり膨潤させたりしない媒体に、粒子を分散させて測定した数平均粒子径である。 The average particle size of the solid electrolyte particles and other particles (positive positive active material particles, negative negative active material particles, etc.) referred to in the present specification is, for example, a laser scattering particle size distribution meter (for example, "LA-920" manufactured by HORIBA). It is the number average particle diameter measured by dispersing the particles in a medium that does not dissolve or swell these particles.

[絶縁性多孔質基材]
上記絶縁性多孔質基材は、固体電解質を充填して保持できれば特に限定されないが、取り扱い及び薄膜化が容易な不織布が好ましい。
[Insulating Porous Substrate]
The insulating porous base material is not particularly limited as long as it can be filled and held with a solid electrolyte, but a non-woven fabric that is easy to handle and thin is preferable.

上記絶縁性多孔質基材の空孔率は、固体電解質の充填量を一定以上とし、良好なリチウムイオン伝導性を確保する観点から、30体積%以上であることが好ましく、40体積%以上であることがより好ましい。但し、絶縁性多孔質基材の空孔率が大きすぎると、固体電解質含有シートの形状保持性が低下するおそれがある。よって、固体電解質含有シートの強度をより高める観点からは、絶縁性多孔質基材の空孔率は、90体積%以下であることが好ましく、85体積%以下であることがより好ましい。 The porosity of the insulating porous base material is preferably 30% by volume or more, preferably 40% by volume or more, from the viewpoint of keeping the filling amount of the solid electrolyte above a certain level and ensuring good lithium ion conductivity. More preferably. However, if the porosity of the insulating porous base material is too large, the shape retention of the solid electrolyte-containing sheet may decrease. Therefore, from the viewpoint of further increasing the strength of the solid electrolyte-containing sheet, the porosity of the insulating porous base material is preferably 90% by volume or less, and more preferably 85% by volume or less.

前述のとおり、絶縁性多孔質基材の表面全体を固体電解質層で覆うことが好ましいため、上記絶縁性多孔質基材の厚さは、前述の固体電解質含有シートの厚さよりも多少薄くして、絶縁性多孔質基材の表面全体が固体電解質層で覆われた状態で、固体電解質含有シートの厚さが5〜200μmの範囲となることが好ましい。従って、絶縁性多孔質基材の厚さは、3.5〜195μmに設定することが好ましく、8.5〜137μmとすることがより好ましい。 As described above, since it is preferable to cover the entire surface of the insulating porous base material with the solid electrolyte layer, the thickness of the insulating porous base material is slightly thinner than the thickness of the above-mentioned solid electrolyte-containing sheet. It is preferable that the thickness of the solid electrolyte-containing sheet is in the range of 5 to 200 μm in a state where the entire surface of the insulating porous base material is covered with the solid electrolyte layer. Therefore, the thickness of the insulating porous substrate is preferably set to 3.5 to 195 μm, more preferably 8.5 to 137 μm.

上記絶縁性多孔質基材として不織布を用いる場合、基材となる不織布を構成する繊維状物の繊維径は、20μm以下であることが好ましく、また、0.5μm以上であることが好ましい。 When a non-woven fabric is used as the insulating porous base material, the fiber diameter of the fibrous material constituting the non-woven fabric as the base material is preferably 20 μm or less, and preferably 0.5 μm or more.

また、上記不織布を構成する繊維状物の材質としては、リチウム金属と反応せず、絶縁性を有していれば特に限定されず、例えば、ポリプロピレン、ポリエチレン等のポリオレフィン;ポリスチレン;アラミド;ポリアミドイミド;ポリイミド;ナイロン;ポリエチレンテレフタレート(PET)等のポリエステル;ポリアリレート;セルロースやセルロース変成体;等の樹脂を用いることができる。また、ガラス、アルミナ、シリカ、ジルコニア等の無機材料も用いることができる。 The material of the fibrous material constituting the non-woven fabric is not particularly limited as long as it does not react with lithium metal and has insulating properties. For example, polyolefins such as polypropylene and polyethylene; polystyrene; aramid; polyamideimide Resins such as polyimide; nylon; polyester such as polyethylene terephthalate (PET); polyarylate; cellulose and cellulose modified product; can be used. Inorganic materials such as glass, alumina, silica, and zirconia can also be used.

また、上記不織布の目付けは、リチウムイオン伝導性を良好に確保できるだけの量の固体電解質粒子を十分に保持できるように、10g/m2以下であることが好ましく、8g/m2以下であることがより好ましく、また、十分な強度を確保する観点から、3g/m2以上であることが好ましく、4g/m2以上であることがより好ましい。 Further, the texture of the non-woven fabric is preferably 10 g / m 2 or less, preferably 8 g / m 2 or less so that a sufficient amount of solid electrolyte particles can sufficiently secure lithium ion conductivity. Is more preferable, and from the viewpoint of ensuring sufficient strength, it is preferably 3 g / m 2 or more, and more preferably 4 g / m 2 or more.

[バインダ]
上記バインダは、固体電解質と反応しないものが望ましく、ブチルゴム、クロロピレンゴム、アクリル樹脂、フッ素樹脂から選ばれる少なくとも1種の樹脂が好ましく用いられる。
[Binder]
The binder is preferably one that does not react with the solid electrolyte, and at least one resin selected from butyl rubber, chloropyrene rubber, acrylic resin, and fluororesin is preferably used.

また、上記バインダの含有量は、固体電解質含有シートの形状保持性をより高める観点から、固体電解質とバインダとの総質量に対して、0.5質量%以上であることが好ましく、1質量%以上であることが好ましく、また、バインダの量をある程度制限して、リチウムイオン伝導性の低下を抑制する観点からは、5質量%以下であることが好ましく、3質量%以下であることが好ましい。 Further, the content of the binder is preferably 0.5% by mass or more with respect to the total mass of the solid electrolyte and the binder from the viewpoint of further enhancing the shape retention of the solid electrolyte-containing sheet, and is 1% by mass. The above is preferable, and from the viewpoint of limiting the amount of the binder to some extent and suppressing the decrease in lithium ion conductivity, it is preferably 5% by mass or less, and preferably 3% by mass or less. ..

上記固体電解質含有シートの製造方法については特に制限はないが、固体電解質粒子をバインダと共に溶媒に分散させてスラリー等を調製し、これを湿式で絶縁性多孔質基材(樹脂製不織布等)の空孔に充填する工程で製造することが好ましい。これにより、固体電解質含有シートの強度が向上し、大面積の固体電解質含有シートの製造が容易となる。 The method for producing the above-mentioned solid electrolyte-containing sheet is not particularly limited, but a slurry or the like is prepared by dispersing the solid electrolyte particles in a solvent together with a binder, and this is used as a wet insulating porous substrate (resin non-woven fabric, etc.). It is preferably manufactured in the step of filling the pores. As a result, the strength of the solid electrolyte-containing sheet is improved, and the production of a large-area solid electrolyte-containing sheet becomes easy.

上記スラリーは、固体電解質粒子及びバインダを溶媒に投入し、混合して調製する。スラリーの溶媒は、固体電解質を劣化させ難いものを選択することが好ましい。特に、硫化物系固体電解質や水素化物系固体電解質は、微少量の水分によって化学反応を起こすため、ヘキサン、ヘプタン、オクタン、ノナン、デカン、デカリン、トルエン、キシレン等の炭化水素溶媒に代表される非極性非プロトン性溶媒を使用し、その含有水分量を0.001質量%(10ppm)以下とした超脱水溶媒として使用することがより好ましい。 The above slurry is prepared by adding solid electrolyte particles and a binder to a solvent and mixing them. It is preferable to select a solvent for the slurry that does not easily deteriorate the solid electrolyte. In particular, sulfide-based solid electrolytes and hydride-based solid electrolytes cause a chemical reaction with a very small amount of water, and are therefore represented by hydrocarbon solvents such as hexane, heptane, octane, nonane, decane, decalin, toluene, and xylene. It is more preferable to use a non-polar aprotic aprotic solvent and use it as a super-dehydrating solvent having a water content of 0.001% by mass (10 ppm) or less.

また、上記溶媒としては、三井・デュポンフロロケミカル社製の「バートレル(登録商標)」、日本ゼオン社製の「ゼオローラ(登録商標)」、住友3M社製の「ノベック(登録商標)」等のフッ素系溶媒、並びに、ジクロロメタン、ジエチルエーテル等の非水系有機溶媒を使用することもできる。 Examples of the solvent include "Bertrel (registered trademark)" manufactured by Mitsui Dupont Fluorochemical, "Zeolola (registered trademark)" manufactured by Zeon Corporation, and "Novec (registered trademark)" manufactured by Sumitomo 3M. Fluorine-based solvents and non-aqueous organic solvents such as dichloromethane and diethyl ether can also be used.

固体電解質粒子及びバインダを含むスラリーを絶縁性多孔質基材の空孔に充填する方法としては、スクリーン印刷法、ドクターブレード法、浸漬法等の塗工法が採用できる。 As a method of filling the pores of the insulating porous base material with the slurry containing the solid electrolyte particles and the binder, a coating method such as a screen printing method, a doctor blade method, or a dipping method can be adopted.

絶縁性多孔質基材の空孔にスラリーを充填した後には、乾燥によってスラリーの溶媒を除去し、必要に応じて加圧成形を行うことで、固体電解質含有シートを得ることができる。 After filling the pores of the insulating porous base material with the slurry, the solvent of the slurry is removed by drying, and if necessary, pressure molding is performed to obtain a solid electrolyte-containing sheet.

上記固体電解質含有シートの製造方法は、上記湿式法に制限されず、例えば、絶縁性多孔質基材の空孔に、固体電解質粒子とバインダ粒子との混合物を乾式で充填し、その後に加圧成形を行う方法で固体電解質含有シートを製造してもよい。 The method for producing the solid electrolyte-containing sheet is not limited to the wet method. For example, the pores of the insulating porous substrate are dry-filled with a mixture of solid electrolyte particles and binder particles, and then pressurized. A solid electrolyte-containing sheet may be produced by a molding method.

<正極>
上記正極としては、従来から知られているリチウムイオン二次電池に用いられている正極、即ち、Liイオンを吸蔵・放出可能な活物質を含有する正極であれば特に制限はない。例えば、正極活物質としては、LiMxMn2-x4(但し、Mは、Li、B、Mg、Ca、Sr、Ba、Ti、V、Cr、Fe、Co、Ni、Cu、Al、Sn、Sb、In、Nb、Mo、W、Y、Ru及びRhよりなる群から選択される少なくとも1種の元素であり、0.01≦x≦0.5)で表されるスピネル型リチウムマンガン複合酸化物、LixMn(1-y-x)Niyz(2-k)l(但し、Mは、Co、Mg、Al、B、Ti、V、Cr、Fe、Cu、Zn、Zr、Mo、Sn、Ca、Sr及びWよりなる群から選択される少なくとも1種の元素であり、0.8≦x≦1.2、0<y<0.5、0≦z≦0.5、k+l<1、−0.1≦k≦0.2、0≦l≦0.1)で表される層状化合物、LiCo1-xx2(但し、Mは、Al、Mg、Ti、Zr、Fe、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Sn、Sb及びBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦0.5)で表されるリチウムコバルト複合酸化物、LiNi1-xx2(但し、Mは、Al、Mg、Ti、Zr、Fe、Co、Cu、Zn、Ga、Ge、Nb、Mo、Sn、Sb及びBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦0.5)で表されるリチウムニッケル複合酸化物、LiM1-xxPO4(但し、Mは、Fe、Mn及びCoよりなる群から選択される少なくとも1種の元素で、Nは、Al、Mg、Ti、Zr、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Sn、Sb及びBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦0.5)で表されるオリビン型複合酸化物、Li4Ti512で表されるリチウムチタン複合酸化物等が挙げられ、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。
<Positive electrode>
The positive electrode is not particularly limited as long as it is a positive electrode used in a conventionally known lithium ion secondary battery, that is, a positive electrode containing an active material capable of storing and releasing Li ions. For example, as the positive electrode active material, LiM x Mn 2-x O 4 (where M is Li, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Co, Ni, Cu, Al, Spinel-type lithium manganese represented by 0.01 ≦ x ≦ 0.5), which is at least one element selected from the group consisting of Sn, Sb, In, Nb, Mo, W, Y, Ru and Rh. composite oxides, Li x Mn (1-yx ) Ni y M z O (2-k) F l ( where, M is, Co, Mg, Al, B , Ti, V, Cr, Fe, Cu, Zn, It is at least one element selected from the group consisting of Zr, Mo, Sn, Ca, Sr and W, and is 0.8 ≦ x ≦ 1.2, 0 <y <0.5, 0 ≦ z ≦ 0. 5. Layered compound represented by k + l <1, −0.1 ≦ k ≦ 0.2, 0 ≦ l ≦ 0.1), LiCo 1-x M x O 2 (where M is Al, Mg, It is at least one element selected from the group consisting of Ti, Zr, Fe, Ni, Cu, Zn, Ga, Ge, Nb, Mo, Sn, Sb and Ba, and is represented by 0 ≦ x ≦ 0.5). Lithium-cobalt composite oxide, LiNi 1-x M x O 2 (where M is Al, Mg, Ti, Zr, Fe, Co, Cu, Zn, Ga, Ge, Nb, Mo, Sn, Sb and At least one element selected from the group consisting of Ba, a lithium nickel composite oxide represented by 0 ≦ x ≦ 0.5), LiM 1-x N x PO 4 (where M is Fe, At least one element selected from the group consisting of Mn and Co, N is a group consisting of Al, Mg, Ti, Zr, Ni, Cu, Zn, Ga, Ge, Nb, Mo, Sn, Sb and Ba. It is at least one element selected from, and examples thereof include an olivine type composite oxide represented by 0 ≦ x ≦ 0.5), a lithium titanium composite oxide represented by Li 4 Ti 5 O 12, and the like. Only one of these may be used, or two or more thereof may be used in combination.

上記正極には、上記正極活物質と、導電助剤やバインダとを含有する正極合剤層を、集電体の片面又は両面に形成した構造のものを使用することができる。 As the positive electrode, one having a structure in which a positive electrode mixture layer containing the positive electrode active material and a conductive auxiliary agent or a binder is formed on one side or both sides of a current collector can be used.

上記正極のバインダとしては、例えば、ポリフッ化ビニリデン(PVDF)等のフッ素樹脂等が使用でき、また、正極の導電助剤としては、例えば、カーボンブラック等の炭素材料等が使用できるが、前述の固体電解質含有シートで使用した固体電解質を導電助剤として用いてもよい。 As the binder of the positive electrode, for example, a fluororesin such as polyvinylidene fluoride (PVDF) can be used, and as the conductive auxiliary agent of the positive electrode, for example, a carbon material such as carbon black can be used. The solid electrolyte used in the solid electrolyte-containing sheet may be used as the conductive auxiliary agent.

また、上記正極の集電体としては、アルミニウム等の金属の箔、パンチングメタル、網、エキスパンドメタル、発泡メタル等を用いることができる。 Further, as the current collector of the positive electrode, a metal foil such as aluminum, a punching metal, a net, an expanded metal, a foamed metal or the like can be used.

上記正極を製造するに際しては、例えば、正極活物質や導電助剤、バインダ等をキシレン等の溶媒に分散させた正極合剤含有ペースト、スラリー等を、集電体に塗布し、乾燥した後、必要に応じてカレンダ処理等の加圧成形をする方法が採用できる。上記溶媒としては、含有水分量を0.001質量%(10ppm)以下とした超脱水溶媒が好ましく用いられる。 In producing the positive electrode, for example, a positive electrode mixture-containing paste or slurry in which a positive electrode active material, a conductive auxiliary agent, a binder or the like is dispersed in a solvent such as xylene is applied to a current collector, dried, and then dried. If necessary, a method of pressure molding such as calendering can be adopted. As the solvent, a super dehydration solvent having a water content of 0.001% by mass (10 ppm) or less is preferably used.

また、正極集電体にパンチングメタル等の導電性多孔質基材を使用する場合には、例えば、上記正極合剤含有ペースト、スラリー等を、導電性多孔質基材の空孔内に充填し、乾燥した後、必要に応じてカレンダ処理等の加圧成形をする方法で、正極を製造することができる。このような方法で製造した正極であれば、大きな強度が確保できるため、より大面積の固体電解質含有シートを保持することが可能となる。 When a conductive porous base material such as punching metal is used for the positive electrode current collector, for example, the positive electrode mixture-containing paste, slurry, or the like is filled in the pores of the conductive porous base material. After drying, the positive electrode can be manufactured by a method of pressure molding such as calendering, if necessary. Since the positive electrode manufactured by such a method can secure a large strength, it is possible to hold a solid electrolyte-containing sheet having a larger area.

更に、上記正極合剤含有ペースト、スラリー等ではなく、正極活物質、導電助剤及びバインダ等を含有し、溶媒を含有しない正極合剤を、導電性多孔質基材の空孔内に乾式で充填し、必要に応じてカレンダ処理等の加圧成形をする方法で、正極を製造してもよい。 Further, instead of the above-mentioned positive electrode mixture-containing paste, slurry, etc., a positive electrode mixture containing a positive electrode active material, a conductive auxiliary agent, a binder, etc., and containing no solvent is dried in the pores of the conductive porous base material. The positive electrode may be manufactured by a method of filling and, if necessary, pressure molding such as calendering.

<負極>
上記負極としては、従来から知られているリチウムイオン二次電池に用いられている負極、即ち、Liイオンを吸蔵・放出可能な活物質を含有する負極であれば特に制限はない。例えば、負極活物質として、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維等のリチウムを吸蔵・放出可能な炭素系材料の1種又は2種以上の混合物が用いられる。また、Si、Sn、Ge、Bi、Sb、In等の元素を含む単体、化合物及びその合金;リチウム含有窒化物又はリチウム含有酸化物等のリチウム金属に近い低電圧で充放電できる化合物;リチウム金属;リチウム/アルミニウム合金等も負極活物質として用いることができる。
<Negative electrode>
The negative electrode is not particularly limited as long as it is a negative electrode used in a conventionally known lithium ion secondary battery, that is, a negative electrode containing an active material capable of storing and releasing Li ions. For example, as a negative electrode active material, carbon capable of storing and releasing lithium such as graphite, pyrolytic carbons, cokes, glassy carbons, calcined organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers. One or a mixture of two or more of the system materials is used. In addition, simple substances containing elements such as Si, Sn, Ge, Bi, Sb, and In, compounds and alloys thereof; compounds that can be charged and discharged at a low voltage close to that of lithium metals such as lithium-containing nitrides or lithium-containing oxides; lithium metals. A lithium / aluminum alloy or the like can also be used as the negative electrode active material.

上記負極には、負極活物質に導電助剤(カーボンブラック等の炭素材料、固体電解質等)やPVDF等のバインダ等を適宜添加した負極合剤を、集電体を芯材として成形体(負極合剤層)に仕上げたもの、又は上記の各種合金やリチウム金属の箔を単独、若しくは集電体上に負極剤層として積層したものなどが用いられる。 For the negative electrode, a negative electrode mixture obtained by appropriately adding a conductive auxiliary agent (carbon material such as carbon black, solid electrolyte, etc.) or a binder such as PVDF to the negative electrode active material is used as a core material of a molded body (negative electrode). A mixture layer) is used, or the above-mentioned various alloys or lithium metal foils are used alone or laminated on a current collector as a negative electrode agent layer.

上記負極に集電体を用いる場合には、その集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタル、発泡メタル等を用いることができる。 When a current collector is used for the negative electrode, copper or nickel foil, punching metal, net, expanded metal, foamed metal, or the like can be used as the current collector.

負極合剤層を有する負極を製造するに際しては、例えば、負極活物質やバインダ、更には必要に応じて使用する導電助剤等をキシレン等の溶媒に分散させた負極合剤含有ペースト、スラリー等を、集電体に塗布し、乾燥した後、必要に応じてカレンダ処理等の加圧成形をする方法が採用できる。上記溶媒としては、含有水分量を0.001質量%(10ppm)以下とした超脱水溶媒が好ましく用いられる。 When manufacturing a negative electrode having a negative electrode mixture layer, for example, a negative electrode mixture-containing paste or slurry in which a negative electrode active material, a binder, and a conductive auxiliary agent to be used as needed are dispersed in a solvent such as xylene. Can be applied to the current collector, dried, and then pressure-formed, such as by calendering, if necessary. As the solvent, a super dehydration solvent having a water content of 0.001% by mass (10 ppm) or less is preferably used.

また、負極集電体にパンチングメタル等の導電性多孔質基材を使用する場合には、例えば、上記負極合剤含有ペースト、スラリー等を、導電性多孔質基材の空孔内に充填し、乾燥した後、必要に応じてカレンダ処理等の加圧成形をする方法で、負極を製造することができる。このような方法で製造した負極であれば、大きな強度が確保できるため、より大面積の固体電解質含有シートを保持することが可能となる。 When a conductive porous base material such as punching metal is used for the negative electrode current collector, for example, the negative electrode mixture-containing paste, slurry, or the like is filled in the pores of the conductive porous base material. After drying, the negative electrode can be manufactured by a method of pressure molding such as calendering if necessary. Since the negative electrode manufactured by such a method can secure a large strength, it is possible to hold a solid electrolyte-containing sheet having a larger area.

更に、上記負極合剤含有ペースト、スラリー等ではなく、負極活物質やバインダ、更には導電助剤等を含有し、溶媒を含有しない負極合剤を、導電性多孔質基材の空孔内に乾式で充填し、必要に応じてカレンダ処理等の加圧成形をする方法で、負極を製造してもよい。 Further, instead of the above-mentioned negative electrode mixture-containing paste, slurry, etc., a negative electrode mixture containing a negative electrode active material, a binder, a conductive auxiliary agent, etc., and containing no solvent is placed in the pores of the conductive porous base material. The negative electrode may be manufactured by a method of filling by a dry method and, if necessary, performing pressure molding such as calendering.

<外装体>
上記外装体を構成する外装缶及び封口缶の材質としては、例えば、ステンレス鋼等が使用できる。また、ガスケットの材質には、ポリプロピレン、ナイロン等を使用できるほか、電池の用途との関係で耐熱性が要求される場合には、融点が240℃を超える耐熱樹脂を使用することもできる。上記耐熱樹脂としては、例えば、テトラフルオロエチレン−パーフルオロアルコキシエチレン共重合体(PFA)等のフッ素樹脂;ポリフェニレンエーテル(PPE);ポリスルフォン(PSF);ポリアリレート(PAR);ポリエーテルスルフォン(PES);ポリフェニレンスルフィド(PPS);ポリエーテルエーテルケトン(PEEK)等を使用することができる。また、電池が耐熱性を要求される用途に適用される場合、その封口には、ガラスハーメチックシールを利用することもできる。
<Exterior body>
As the material of the outer can and the sealing can constituting the outer body, for example, stainless steel or the like can be used. Further, polypropylene, nylon or the like can be used as the material of the gasket, and a heat-resistant resin having a melting point of more than 240 ° C. can be used when heat resistance is required in relation to the use of the battery. Examples of the heat-resistant resin include fluororesins such as tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA); polyphenylene ether (PPE); polysulfone (PSF); polyallylate (PAR); and polyethersulfone (PES). ); Polyphenylene sulfide (PPS); Polyetheretherketone (PEEK) and the like can be used. Further, when the battery is applied to an application requiring heat resistance, a glass hermetic seal can be used for the sealing.

<電極体>
上記正極と上記負極とは、前述の固体電解質含有シートを介して積層した積層電極体や、更にこの積層電極体を巻回した巻回電極体の形態で用いることができる。
<Electrode body>
The positive electrode and the negative electrode can be used in the form of a laminated electrode body laminated via the solid electrolyte-containing sheet described above, or a wound electrode body obtained by winding the laminated electrode body.

上記積層電極体を形成するに際しては、正極と負極と固体電解質含有シートとを積層した状態で加圧成形し、正極及び負極と固体電解質含有シートとの界面を接合し一体化すればよい。また、正極及び負極と固体電解質含有シートとを一度に加圧し接合するのではなく、一方の電極と固体電解質含有シートとを先に接合し、次に固体電解質含有シートの反対側にもう一方の電極を積層して接合し、積層電極体を形成するのであってもよい。 When forming the laminated electrode body, the positive electrode, the negative electrode, and the solid electrolyte-containing sheet may be pressure-molded in a laminated state, and the interface between the positive electrode, the negative electrode, and the solid electrolyte-containing sheet may be joined and integrated. Further, instead of pressing and joining the positive electrode and the negative electrode and the solid electrolyte-containing sheet at once, one electrode and the solid electrolyte-containing sheet are joined first, and then the other side is placed on the opposite side of the solid electrolyte-containing sheet. The electrodes may be laminated and joined to form a laminated electrode body.

<電池の形態>
本実施形態の全固体リチウム二次電池の形態は、図1に示すような、外装缶と封口缶とガスケットとで構成された外装体を有するもの、即ち、一般にコイン形電池やボタン形電池と称される形態のものに限定されず、例えば、樹脂フィルムや金属−樹脂ラミネートフィルムで構成された外装体を有するものや、金属製の円筒形や角筒形の外装缶と、その開口部を封止する封止構造とを有する外装体を有するものであってもよい。
<Battery form>
The all-solid-state lithium secondary battery of the present embodiment has an outer body composed of an outer can, a sealing can, and a gasket as shown in FIG. 1, that is, generally a coin-type battery or a button-type battery. It is not limited to the so-called form, and for example, a can having an outer body made of a resin film or a metal-resin laminated film, a metal cylindrical or square tubular outer can, and an opening thereof. It may have an exterior body having a sealing structure for sealing.

(全固体リチウム二次電池の製造方法)
次に、本願で開示する全固体リチウム二次電池の製造方法の実施形態について説明する。本実施形態の全固体リチウム二次電池の製造方法の好適な態様は、積層電極体の製造工程として、正極と負極とを準備する電極準備工程と、固体電解質粒子を絶縁性多孔質基材に充填して固体電解質含有シートを作製する充填工程と、上記正極と、上記固体電解質含有シートと、上記負極とをこの順に積層する積層工程と、上記固体電解質含有シートの周縁部を、積層した上記正極又は上記負極の一方の外周側に折り返して、上記固体電解質含有シートの周縁部により、上記正極又は上記負極の外周側面部を覆う折返し工程とを備えている。また、上記充填工程において、上記絶縁性多孔質基材にバインダを更に充填することが好ましい。
(Manufacturing method of all-solid-state lithium secondary battery)
Next, an embodiment of the method for manufacturing an all-solid-state lithium secondary battery disclosed in the present application will be described. A preferred embodiment of the method for manufacturing an all-solid lithium secondary battery of the present embodiment is an electrode preparation step of preparing a positive electrode and a negative electrode and a solid electrolyte particle as an insulating porous base material as a manufacturing step of a laminated electrode body. A filling step of filling to prepare a solid electrolyte-containing sheet, a laminating step of laminating the positive electrode, the solid electrolyte-containing sheet, and the negative electrode in this order, and laminating the peripheral portion of the solid electrolyte-containing sheet. It is provided with a folding step of folding back to the outer peripheral side of one of the positive electrode or the negative electrode and covering the outer peripheral side surface portion of the positive electrode or the negative electrode with the peripheral edge portion of the solid electrolyte-containing sheet. Further, in the filling step, it is preferable to further fill the insulating porous base material with a binder.

上記全固体リチウム二次電池の製造方法により、先に開示した全固体リチウム二次電池に用いる積層電極体を作製できる。その後、通常の方法で前述の外装体に収容して密閉構造にすればよい。 By the above-mentioned method for manufacturing an all-solid-state lithium secondary battery, a laminated electrode body used for the all-solid-state lithium secondary battery disclosed above can be produced. After that, it may be housed in the above-mentioned exterior body by a usual method to form a closed structure.

続いて、上記積層電極体の製造方法を図面に基づき説明する。但し、上記積層電極体の製造方法は、下記に示す製造方法に限定されるものではない。 Subsequently, a method for manufacturing the laminated electrode body will be described with reference to the drawings. However, the manufacturing method of the laminated electrode body is not limited to the manufacturing method shown below.

図2は、全固体リチウム二次電池の積層電極体を製造する工程の一例を示す断面図である。先ず、図2Aに示すように、例えば、金型20内に、前述の負極14、固体電解質含有シート16、及び正極15を順次載置する。この時、固体電解質含有シート16の外周を、正極15の外周より大きく設定する。また、負極14の大きさを正極15と同じ大きさとする。次に、図2Bに示すように、積層された負極14、固体電解質含有シート16及び正極15の全体を上から加圧することにより、固体電解質含有シート16の周縁部16aを正極15側に折り返して、固体電解質含有シート16の周縁部16aにより、正極15の外周側面部を覆うと共に、負極14、固体電解質含有シート16及び正極15を一体化させる。これにより、図2Cに示す積層電極体を得る。 FIG. 2 is a cross-sectional view showing an example of a process of manufacturing a laminated electrode body of an all-solid-state lithium secondary battery. First, as shown in FIG. 2A, for example, the above-mentioned negative electrode 14, the solid electrolyte-containing sheet 16, and the positive electrode 15 are sequentially placed in the mold 20. At this time, the outer circumference of the solid electrolyte-containing sheet 16 is set to be larger than the outer circumference of the positive electrode 15. Further, the size of the negative electrode 14 is the same as that of the positive electrode 15. Next, as shown in FIG. 2B, by pressurizing the entire laminated negative electrode 14, the solid electrolyte-containing sheet 16 and the positive electrode 15 from above, the peripheral edge portion 16a of the solid electrolyte-containing sheet 16 is folded back toward the positive electrode 15. The peripheral edge portion 16a of the solid electrolyte-containing sheet 16 covers the outer peripheral side surface portion of the positive electrode 15, and the negative electrode 14, the solid electrolyte-containing sheet 16 and the positive electrode 15 are integrated. As a result, the laminated electrode body shown in FIG. 2C is obtained.

その後、上記積層電極体を通常の方法で前述の外装体に収容して密閉構造にすれば、全固体リチウム二次電池を製造できる。 After that, if the laminated electrode body is housed in the outer body by a usual method to form a closed structure, an all-solid-state lithium secondary battery can be manufactured.

以下、実施例に基づいて本願で開示する全固体リチウム二次電池を詳細に説明する。但し、下記実施例は、本願で開示する全固体リチウム二次電池を制限するものではない。 Hereinafter, the all-solid-state lithium secondary battery disclosed in the present application will be described in detail based on Examples. However, the following examples do not limit the all-solid-state lithium secondary battery disclosed in the present application.

(実施例1)
<固体電解質含有シートの作製>
溶媒としてキシレン(含有水分量が10ppm以下の「超脱水」グレード)を用い、平均粒子径1μmの硫化物系固体電解質(Li6PS5Cl)粒子と、アクリル樹脂バインダ(アクリル酸ブチル−アクリル酸共重合体)とを、質量比で100:3の割合とし、固形分比が40質量%となるように上記溶媒と混合し、シンキーミキサーで10分間攪拌して均一なスラリーを調製した。このスラリー中に、厚み:38μm、目付け:8g/m2のPET製不織布(廣瀬製紙社製「05TH−8」)を通し、その後に引き上げることで、PET製不織布にスラリーを塗布した。その後、120℃で1時間の真空乾燥を行い、厚み:50μmの固体電解質含有シートを得た。作製した固体電解質含有シートにおける不織布の厚みは、固体電解質含有シート全体の厚みの80%であった。また、固体電解質含有シートにおけるPET製不織布の割合は25体積%であり、固体電解質粒子とバインダとの総質量中、バインダの割合は2.9質量%であった。
(Example 1)
<Preparation of solid electrolyte-containing sheet>
Using xylene (“super-dehydrated” grade with a water content of 10 ppm or less) as the solvent, sulfide-based solid electrolyte (Li 6 PS 5 Cl) particles with an average particle diameter of 1 μm and acrylic resin binder (butyl-acrylic acid acrylate). The copolymer) was mixed with the above solvent at a mass ratio of 100: 3 and a solid content ratio of 40% by mass, and stirred with a sinky mixer for 10 minutes to prepare a uniform slurry. A PET non-woven fabric having a thickness of 38 μm and a basis weight of 8 g / m 2 (“05TH-8” manufactured by Hirose Paper Co., Ltd.) was passed through this slurry, and then pulled up to apply the slurry to the PET non-woven fabric. Then, it was vacuum dried at 120 degreeC for 1 hour to obtain a solid electrolyte-containing sheet having a thickness of 50 μm. The thickness of the non-woven fabric in the produced solid electrolyte-containing sheet was 80% of the total thickness of the solid electrolyte-containing sheet. The proportion of the PET non-woven fabric in the solid electrolyte-containing sheet was 25% by volume, and the proportion of the binder was 2.9% by mass in the total mass of the solid electrolyte particles and the binder.

最後に、作製した固体電解質含有シートを直径11mmの円形に打ち抜き、積層電極体の作製に用いた。 Finally, the produced solid electrolyte-containing sheet was punched into a circle having a diameter of 11 mm and used for producing a laminated electrode body.

<正極の作製>
溶媒としてキシレン(含有水分量が10ppm以下の「超脱水」グレード)を用い、表面にLiとNbの非晶質複合酸化物が形成された平均粒子径3μmのLiNi0.6Co0.2Mn0.22と、硫化物系固体電解質(Li6PS5Cl)粒子と、導電助剤であるカーボンナノチューブ〔昭和電工社製「VGCF」(商品名)〕と、アクリル樹脂バインダ(アクリル酸ブチル−アクリル酸共重合体)とを、質量比で50:44:3:3の割合とし、固形分比が50質量%となるように上記溶媒と混合し、シンキーミキサーで10分間撹拌して均一なスラリーを調製した。このスラリーを、厚みが20μmのAl箔上にアプリケータを用いてギャップを200μmとして塗布し、120℃で真空乾燥を行って正極を得た。
<Preparation of positive electrode>
LiNi 0.6 Co 0.2 Mn 0.2 O 2 with an average particle size of 3 μm in which an amorphous composite oxide of Li and Nb was formed on the surface using xylene (“ultra-dehydrated” grade with a water content of 10 ppm or less) as a solvent. , Sulfurized solid electrolyte (Li 6 PS 5 Cl) particles, carbon nanotubes as a conductive aid ["VGCF" (trade name) manufactured by Showa Denko Co., Ltd.], and acrylic resin binder (butyl acrylate-acrylic acid co-weight). The mixture) was mixed with the above solvent so that the mass ratio was 50:44: 3: 3 and the solid content ratio was 50% by mass, and the mixture was stirred with a sinky mixer for 10 minutes to prepare a uniform slurry. .. This slurry was applied onto an Al foil having a thickness of 20 μm using an applicator with a gap of 200 μm, and vacuum dried at 120 ° C. to obtain a positive electrode.

最後に、作製した正極を直径10mmの円形に打ち抜き、積層電極体の作製に用いた。 Finally, the produced positive electrode was punched into a circle having a diameter of 10 mm and used for producing a laminated electrode body.

<負極の作製>
溶媒としてキシレン(含有水分量が10ppm以下の「超脱水」グレード)を用い、平均粒子径20μmの黒鉛と、硫化物系固体電解質(Li6PS5Cl)粒子と、アクリル樹脂バインダ(アクリル酸ブチル−アクリル酸共重合体)とを、質量比で50:47:3の割合とし、固形分比が50質量%となるように上記溶媒と混合し、シンキーミキサーで10分間撹拌して均一なスラリーを調製した。このスラリーを、厚みが20μmのステンレス鋼箔上にアプリケータを用いてギャップを200μmとして塗布し、120℃で真空乾燥を行って負極を得た。
<Manufacturing of negative electrode>
Using xylene (“super-dehydrated” grade with a water content of 10 ppm or less) as the solvent, graphite with an average particle diameter of 20 μm, sulfide-based solid electrolyte (Li 6 PS 5 Cl) particles, and acrylic resin binder (butyl acrylate). -Acrylic acid copolymer) with a mass ratio of 50:47: 3, mixed with the above solvent so that the solid content ratio is 50% by mass, and stirred with a sinky mixer for 10 minutes to make a uniform slurry. Was prepared. This slurry was applied onto a stainless steel foil having a thickness of 20 μm using an applicator with a gap of 200 μm, and vacuum dried at 120 ° C. to obtain a negative electrode.

最後に、作製した負極を直径10mmの円形に打ち抜き、積層電極体の作製に用いた。 Finally, the produced negative electrode was punched into a circle having a diameter of 10 mm and used for producing a laminated electrode body.

<電池の組み立て>
先ず、図2Aに示すように、金型内に、作製した負極、固体電解質含有シート及び正極を、負極合剤層及び正極合剤層が固体電解質含有シート側に配置されるようにして載置した。この時、固体電解質含有シートの中心点と、負極及び正極の中心点とを合わせて載置した。次に、図2Bに示すように、積層された負極、固体電解質含有シート及び正極の全体を、上部から392MPa(4tf/cm2)の圧力で加圧することにより、固体電解質含有シートの周縁部を正極側に折り返して、固体電解質含有シートの周縁部により、正極の外周側面部を覆うと共に、負極、固体電解質含有シート及び正極を一体化させ、図2Cに示す積層電極体を得た。
<Battery assembly>
First, as shown in FIG. 2A, the prepared negative electrode, solid electrolyte-containing sheet and positive electrode are placed in the mold so that the negative electrode mixture layer and the positive electrode mixture layer are arranged on the solid electrolyte-containing sheet side. bottom. At this time, the center point of the solid electrolyte-containing sheet and the center points of the negative electrode and the positive electrode were aligned and placed. Next, as shown in FIG. 2B, the peripheral portion of the solid electrolyte-containing sheet is pressed by pressing the entire laminated negative electrode, solid electrolyte-containing sheet, and positive electrode at a pressure of 392 MPa (4 tf / cm 2) from above. It was folded back to the positive electrode side to cover the outer peripheral side surface portion of the positive electrode with the peripheral edge portion of the solid electrolyte-containing sheet, and the negative electrode, the solid electrolyte-containing sheet and the positive electrode were integrated to obtain a laminated electrode body shown in FIG. 2C.

最後に、図1に示すように、上記積層電極体をステンレス鋼製の外装体の中に収納して実施例1の全固体リチウム二次電池を作製した。 Finally, as shown in FIG. 1, the laminated electrode body was housed in a stainless steel exterior body to prepare an all-solid-state lithium secondary battery of Example 1.

(比較例1)
固体電解質含有シート、正極、負極を、全て直径10mmの円形に打ち抜き、それぞれの中心点を合わせて積層し、全体を392MPa(4tf/cm2)の圧力で加圧して積層電極体を作製した。最後に、実施例1と同様にして比較例1の全固体リチウム二次電池を作製した。
(Comparative Example 1)
Solid electrolyte-containing sheet, positive electrode, a negative electrode, all punched into a circle having a diameter of 10 mm, laminated together respective center point, to produce a laminated electrode body is pressurized as a whole by a pressure of 392MPa (4tf / cm 2). Finally, the all-solid-state lithium secondary battery of Comparative Example 1 was produced in the same manner as in Example 1.

<全固体リチウム二次電池の評価>
作製した実施例1及び比較例1の電池の電圧を測定したところ、実施例1の電池では0.4Vを計測したが、比較例1では電圧を計測できなかった。これは、比較例1の積層電極体では、固体電解質含有シート、正極、負極を全て同じ大きさに形成し、固体電解質含有シートにより正極又は負極の外周側面部を覆っていないため、正極の外周端部と負極の外周端部とが接触して短絡が発生したからと考えられる。これに対し、実施例1の積層電極体では、固体電解質含有シートの周縁部が正極側に折り返され、固体電解質含有シートの周縁部により、正極の外周側面部が覆われているため、正極の外周端部と負極の外周端部との接触が防止され、短絡が発生しなかったものと考えられる。
<Evaluation of all-solid-state lithium secondary battery>
When the voltage of the prepared batteries of Example 1 and Comparative Example 1 was measured, 0.4 V was measured with the battery of Example 1, but the voltage could not be measured with Comparative Example 1. This is because in the laminated electrode body of Comparative Example 1, the solid electrolyte-containing sheet, the positive electrode, and the negative electrode are all formed to have the same size, and the solid electrolyte-containing sheet does not cover the outer peripheral side surface portion of the positive electrode or the negative electrode. It is probable that a short circuit occurred due to contact between the end portion and the outer peripheral end portion of the negative electrode. On the other hand, in the laminated electrode body of Example 1, the peripheral edge portion of the solid electrolyte-containing sheet is folded back toward the positive electrode side, and the peripheral edge portion of the solid electrolyte-containing sheet covers the outer peripheral side surface portion of the positive electrode. It is probable that the contact between the outer peripheral end portion and the outer peripheral end portion of the negative electrode was prevented and no short circuit occurred.

本願で開示する全固体リチウム二次電池は、固体電解質層の厚みを薄くしても、正極と負極の外周端部における短絡発生を防止でき、高容量・高エネルギー密度の全固体リチウム二次電池を実現でき、各種の電子機器(特に携帯電話やノート型パソーソナルコンピュータ等のポータブル電子機器)の電源用途に、好ましく用いることができる。 The all-solid-state lithium secondary battery disclosed in the present application can prevent short circuits from occurring at the outer peripheral ends of the positive electrode and the negative electrode even if the thickness of the solid electrolyte layer is reduced, and is a high-capacity, high-energy density all-solid-state lithium secondary battery. It can be preferably used as a power source for various electronic devices (particularly portable electronic devices such as mobile phones and notebook personal computers).

10 全固体リチウム二次電池
11 外装缶
12 封口缶
13 ガスケット
14 負極
15 正極
16 固体電解質含有シート
16a 周縁部
20 金型
10 All-solid-state lithium secondary battery 11 Exterior can 12 Sealed can 13 Gasket 14 Negative electrode 15 Positive electrode 16 Solid electrolyte-containing sheet 16a Peripheral part 20 Mold

Claims (10)

正極と、負極と、前記正極と前記負極との間に配置された固体電解質含有シートとを含む積層電極体を備えた全固体リチウム二次電池であって、
前記固体電解質含有シートは、絶縁性多孔質基材と、前記絶縁性多孔質基材に充填された固体電解質とを含み、
前記固体電解質含有シートの周縁部が、前記正極又は前記負極の外周側面部を覆っており、
前記固体電解質含有シートの厚さが、5〜200μmであることを特徴とする全固体リチウム二次電池。
An all-solid-state lithium secondary battery including a laminated electrode body including a positive electrode, a negative electrode, and a solid electrolyte-containing sheet arranged between the positive electrode and the negative electrode.
The solid electrolyte-containing sheet contains an insulating porous base material and a solid electrolyte filled in the insulating porous base material.
The peripheral portion of the solid electrolyte-containing sheet covers the outer peripheral side surface portion of the positive electrode or the negative electrode.
An all-solid-state lithium secondary battery characterized in that the thickness of the solid electrolyte-containing sheet is 5 to 200 μm.
前記絶縁性多孔質基材が、不織布からなる請求項1に記載の全固体リチウム二次電池。 The all-solid-state lithium secondary battery according to claim 1, wherein the insulating porous base material is made of a non-woven fabric. 前記不織布の目付けが、3〜10g/m2である請求項2に記載の全固体リチウム二次電池。 The all-solid-state lithium secondary battery according to claim 2 , wherein the non-woven fabric has a basis weight of 3 to 10 g / m 2. 前記絶縁性多孔質基材の表面全体が、前記固体電解質層で覆われている請求項1〜3のいずれかに記載の全固体リチウム二次電池。 The all-solid-state lithium secondary battery according to any one of claims 1 to 3, wherein the entire surface of the insulating porous base material is covered with the solid electrolyte layer. 前記絶縁性多孔質基材の厚さが、3.5〜195μmである請求項1〜4のいずれかに記載の全固体リチウム二次電池。 The all-solid-state lithium secondary battery according to any one of claims 1 to 4, wherein the thickness of the insulating porous substrate is 3.5 to 195 μm. 前記固体電解質含有シートは、バインダを更に含む請求項1〜5のいずれかに記載の全固体リチウム二次電池。 The all-solid-state lithium secondary battery according to any one of claims 1 to 5, wherein the solid electrolyte-containing sheet further includes a binder. 前記バインダの含有量が、前記固体電解質と前記バインダの総質量に対して、0.5〜5質量%である請求項6に記載の全固体リチウム二次電池。 The all-solid-state lithium secondary battery according to claim 6, wherein the content of the binder is 0.5 to 5% by mass with respect to the total mass of the solid electrolyte and the binder. 前記固体電解質は、粒子状の形態を有し、前記固体電解質の平均粒子径が、0.3〜5μmである請求項1〜7のいずれかに記載の全固体リチウム二次電池。 The all-solid-state lithium secondary battery according to any one of claims 1 to 7, wherein the solid electrolyte has a particulate form and the average particle diameter of the solid electrolyte is 0.3 to 5 μm. 請求項1〜8のいずれかに記載の全固体リチウム二次電池の製造方法であって、
正極と負極とを準備する電極準備工程と、
固体電解質粒子を絶縁性多孔質基材に充填して固体電解質含有シートを作製する充填工程と、
前記正極と、前記固体電解質含有シートと、前記負極とをこの順に積層する積層工程と、
前記固体電解質含有シートの周縁部を、積層した前記正極又は前記負極の一方の外周側に折り返して、前記固体電解質含有シートの周縁部により、前記正極又は前記負極の外周側面部を覆う折返し工程とを含むことを特徴とする全固体リチウム二次電池の製造方法。
The method for manufacturing an all-solid-state lithium secondary battery according to any one of claims 1 to 8.
The electrode preparation process for preparing the positive and negative electrodes,
A filling step of filling an insulating porous base material with solid electrolyte particles to prepare a solid electrolyte-containing sheet, and
A laminating step of laminating the positive electrode, the solid electrolyte-containing sheet, and the negative electrode in this order.
A folding step in which the peripheral edge portion of the solid electrolyte-containing sheet is folded back toward the outer peripheral side of one of the laminated positive electrode or the negative electrode, and the peripheral edge portion of the solid electrolyte-containing sheet covers the outer peripheral side surface portion of the positive electrode or the negative electrode. A method for manufacturing an all-solid-state lithium secondary battery, which comprises.
前記充填工程において、前記絶縁性多孔質基材にバインダを更に充填する請求項9に記載の全固体リチウム二次電池の製造方法。 The method for manufacturing an all-solid-state lithium secondary battery according to claim 9, wherein in the filling step, the insulating porous base material is further filled with a binder.
JP2020049813A 2020-03-19 2020-03-19 All-solid-state lithium secondary battery and manufacturing method thereof Pending JP2021150204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020049813A JP2021150204A (en) 2020-03-19 2020-03-19 All-solid-state lithium secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020049813A JP2021150204A (en) 2020-03-19 2020-03-19 All-solid-state lithium secondary battery and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2021150204A true JP2021150204A (en) 2021-09-27

Family

ID=77849276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020049813A Pending JP2021150204A (en) 2020-03-19 2020-03-19 All-solid-state lithium secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2021150204A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022109678A (en) * 2021-01-15 2022-07-28 本田技研工業株式会社 secondary battery
WO2023149290A1 (en) * 2022-02-01 2023-08-10 マクセル株式会社 Battery
CN117059887A (en) * 2023-10-12 2023-11-14 清陶(昆山)能源发展股份有限公司 Preparation method of composite solid electrolyte membrane and lithium ion battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041817A (en) * 2012-07-24 2014-03-06 Toshiba Corp Secondary battery
JP2015153663A (en) * 2014-02-17 2015-08-24 トヨタ自動車株式会社 Method for manufacturing all-solid battery
JP2016031789A (en) * 2014-07-25 2016-03-07 ニッポン高度紙工業株式会社 Solid electrolyte sheet and all-solid type secondary battery
JP2016139482A (en) * 2015-01-26 2016-08-04 三星電子株式会社Samsung Electronics Co.,Ltd. Solid electrolyte sheet and all-solid secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041817A (en) * 2012-07-24 2014-03-06 Toshiba Corp Secondary battery
JP2015153663A (en) * 2014-02-17 2015-08-24 トヨタ自動車株式会社 Method for manufacturing all-solid battery
JP2016031789A (en) * 2014-07-25 2016-03-07 ニッポン高度紙工業株式会社 Solid electrolyte sheet and all-solid type secondary battery
JP2016139482A (en) * 2015-01-26 2016-08-04 三星電子株式会社Samsung Electronics Co.,Ltd. Solid electrolyte sheet and all-solid secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022109678A (en) * 2021-01-15 2022-07-28 本田技研工業株式会社 secondary battery
JP7174085B2 (en) 2021-01-15 2022-11-17 本田技研工業株式会社 secondary battery
WO2023149290A1 (en) * 2022-02-01 2023-08-10 マクセル株式会社 Battery
CN117059887A (en) * 2023-10-12 2023-11-14 清陶(昆山)能源发展股份有限公司 Preparation method of composite solid electrolyte membrane and lithium ion battery
CN117059887B (en) * 2023-10-12 2023-12-22 清陶(昆山)能源发展股份有限公司 Preparation method of composite solid electrolyte membrane and lithium ion battery

Similar Documents

Publication Publication Date Title
JP7538195B2 (en) Method for manufacturing solid electrolyte sheet and method for manufacturing all-solid-state lithium secondary battery
US20040201948A1 (en) Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP6704295B2 (en) All-solid-state lithium secondary battery and manufacturing method thereof
KR20100024900A (en) Porous protective film layer-provided electrode, non-aqueous electrolyte secondary battery and method for manufacturing porous protective film layer-provided electrode
JP2021150204A (en) All-solid-state lithium secondary battery and manufacturing method thereof
JP2015225776A (en) Method for manufacturing all-solid battery
JP7345263B2 (en) Manufacturing method for all-solid-state lithium secondary battery
JP7246196B2 (en) All-solid lithium secondary battery
JP7278090B2 (en) All-solid lithium secondary battery and manufacturing method thereof
JPWO2022118928A5 (en)
WO2023054333A1 (en) All-solid-state battery
WO2021241423A1 (en) Negative electrode for all-solid-state secondary cell, method for manufacturing same, and all-solid-state secondary cell
JP7374664B2 (en) Solid electrolyte sheet and all-solid lithium secondary battery
WO2021044883A1 (en) All-solid-state battery negative electrode and all-solid-state battery
JP7401359B2 (en) Electrodes for all-solid-state batteries and all-solid-state batteries
WO2020218020A1 (en) Negative-electrode active material, negative electrode, and secondary battery
JP7253941B2 (en) All-solid lithium secondary battery and manufacturing method thereof
WO2022092055A1 (en) Negative electrode for all-solid-state secondary cell, and all-solid-state secondary cell
JP2021039860A (en) Negative electrode for all-solid battery, and all-solid battery
WO2023149290A1 (en) Battery
WO2023054293A1 (en) All solid state battery
US20230307652A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7376393B2 (en) Positive electrode for all-solid-state secondary batteries and all-solid-state secondary batteries
WO2024071175A1 (en) Multilayer sheet for alloy formation, method for producing negative electrode for nonaqueous electrolyte batteries, and method for producing nonaqueous electrolyte battery
WO2024101355A1 (en) All-solid-state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240624