JP2021145546A - Motor and manufacturing method of motor - Google Patents

Motor and manufacturing method of motor Download PDF

Info

Publication number
JP2021145546A
JP2021145546A JP2021104591A JP2021104591A JP2021145546A JP 2021145546 A JP2021145546 A JP 2021145546A JP 2021104591 A JP2021104591 A JP 2021104591A JP 2021104591 A JP2021104591 A JP 2021104591A JP 2021145546 A JP2021145546 A JP 2021145546A
Authority
JP
Japan
Prior art keywords
load
motor
motor shaft
counterload
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021104591A
Other languages
Japanese (ja)
Other versions
JP7149381B2 (en
Inventor
照一 松木
Terukazu Matsuki
照一 松木
哲三 石川
Tetsuzo Ishikawa
哲三 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2021104591A priority Critical patent/JP7149381B2/en
Publication of JP2021145546A publication Critical patent/JP2021145546A/en
Application granted granted Critical
Publication of JP7149381B2 publication Critical patent/JP7149381B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • F16D1/08Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key
    • F16D1/0852Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key with radial clamping between the mating surfaces of the hub and shaft
    • F16D1/0858Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key with radial clamping between the mating surfaces of the hub and shaft due to the elasticity of the hub (including shrink fits)
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly
    • F16D2250/0084Assembly or disassembly

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • General Details Of Gearings (AREA)
  • Gear Transmission (AREA)

Abstract

To provide a technique which can contribute to improve productivity in regards to a motor in which a pinion shaft is assembled to a motor shaft.SOLUTION: A motor 12 comprises: a motor shaft 32 having a concave part 32b in a load end part; a pinion shaft 34 pressed into the concave part 32b; a load side bearing 36 that supports the motor shaft 32; and a non-load side bearing 38. The motor further comprises a load transmission structure 40 which make a thrust load Fa operated to the motor shaft 32 toward a non-load side possible to transmit for the load side bearing 36 and a load reception member 64 other than the non-load side bearing 38.SELECTED DRAWING: Figure 2

Description

本発明は、モータ及びピニオン軸の組み付け方法に関する。 The present invention relates to a method of assembling a motor and a pinion shaft.

モータ軸には、その回転動力を減速機や被駆動装置に伝達可能にするため、ピニオン軸を組み付ける場合がある。この一例として、特許文献1には、モータ軸に凹部を設け、その凹部にピニオン軸を焼き嵌めにより押し込んだモータが開示されている。 A pinion shaft may be attached to the motor shaft in order to transmit the rotational power to the speed reducer or the driven device. As an example of this, Patent Document 1 discloses a motor in which a recess is provided in the motor shaft and the pinion shaft is pushed into the recess by shrink fitting.

特開2016−63599号公報Japanese Unexamined Patent Publication No. 2016-63599

特許文献1のモータのように、ピニオン軸の組み付けに焼き嵌めを用いる場合、モータ軸の凹部を加熱する作業が必要となる。これに伴い、ピニオン軸の組み付けに要する時間が余計に増大してしまうため、生産性の観点から改善の余地があった。 When shrink fitting is used for assembling the pinion shaft as in the motor of Patent Document 1, it is necessary to heat the concave portion of the motor shaft. Along with this, the time required for assembling the pinion shaft increases more, so there is room for improvement from the viewpoint of productivity.

本発明のある態様は、こうした状況に鑑みてなされ、その目的の1つは、ピニオン軸がモータ軸に組み付けられたモータに関して、生産性の向上に役立つ技術を提供することにある。 One aspect of the present invention has been made in view of these circumstances, one of which is to provide a technique for improving productivity of a motor in which a pinion shaft is assembled to a motor shaft.

本発明のある態様はモータに関する。このモータは、負荷側端部に凹部を有するモータ軸と、前記凹部内に押し込まれたピニオン軸と、前記モータ軸を支持する負荷側軸受及び反負荷側軸受と、を備えたモータであって、反負荷側に向けて前記モータ軸に作用するスラスト荷重を、前記負荷側軸受及び前記反負荷側軸受以外の荷重受け部材に伝達可能にするための荷重伝達用構造を備える。 One aspect of the present invention relates to a motor. This motor is a motor including a motor shaft having a recess at the end on the load side, a pinion shaft pushed into the recess, and a load-side bearing and a non-load-side bearing that support the motor shaft. Provided is a load transmission structure for enabling a thrust load acting on the motor shaft toward the counterload side to be transmitted to a load receiving member other than the load side bearing and the counterload side bearing.

本発明の他の態様はモータに関する。このモータは、負荷側端部に凹部を有するモータ軸と、前記凹部内に押し込まれたピニオン軸と、を備えたモータであって、前記ピニオン軸には、ボルトを負荷側から挿通するための挿通穴が形成され、前記凹部の底部には、前記ボルトをねじ込むためのタップ穴が形成される。 Another aspect of the invention relates to a motor. This motor is a motor including a motor shaft having a recess at the end on the load side and a pinion shaft pushed into the recess, for inserting a bolt into the pinion shaft from the load side. An insertion hole is formed, and a tap hole for screwing the bolt is formed at the bottom of the recess.

本発明の他の態様はピニオン軸の組み付け方法に関する。この方法は、モータのモータ軸にピニオン軸を組み付けるための方法であって、前記モータ軸は、負荷側端部に凹部を有し、前記モータは、前記モータ軸を支持する負荷側軸受及び反負荷側軸受と、反負荷側に向けて前記モータ軸に作用するスラスト荷重を、前記負荷側軸受及び前記反負荷側軸受以外の荷重受け部材に伝達可能にするための荷重伝達用構造と、を備え、前記荷重伝達用構造を用いて前記スラスト荷重を前記モータ軸から前記荷重受け部材に伝達可能にした状態で、前記凹部に前記ピニオン軸を圧入する。 Another aspect of the present invention relates to a method of assembling a pinion shaft. This method is a method for assembling a pinion shaft to a motor shaft of a motor. The motor shaft has a recess at a load side end, and the motor has a load side bearing and a counter that support the motor shaft. A load-side bearing and a load-transmitting structure for enabling a thrust load acting on the motor shaft toward the counter-load side to be transmitted to a load receiving member other than the load-side bearing and the counter-load-side bearing. The pinion shaft is press-fitted into the recess in a state where the thrust load can be transmitted from the motor shaft to the load receiving member by using the load transmission structure.

本発明の他の態様はピニオン軸の組み付け方法に関する。この方法は、モータのモータ軸にピニオン軸を組み付けるための方法であって、前記モータ軸は、負荷側端部に凹部を有し、前記ピニオン軸には、ボルトを負荷側から挿通するための挿通穴が形成され、前記凹部の底部には、タップ穴が形成され、前記挿通穴に挿通されるボルトを前記タップ穴にねじ込むことにより、前記ボルトから前記ピニオン軸に圧入力を付与し、前記凹部内に前記ピニオン軸を圧入させる。 Another aspect of the present invention relates to a method of assembling a pinion shaft. This method is a method for assembling a pinion shaft to a motor shaft of a motor, in which the motor shaft has a recess at an end on the load side, and a bolt is inserted into the pinion shaft from the load side. An insertion hole is formed, a tap hole is formed at the bottom of the recess, and a bolt inserted into the insertion hole is screwed into the tap hole to apply a pressure input from the bolt to the pinion shaft. The pinion shaft is press-fitted into the recess.

本発明によれば、ピニオン軸がモータ軸に組み付けられたモータに関して、生産性の向上に役立つ技術を提供できる。 According to the present invention, it is possible to provide a technique useful for improving productivity with respect to a motor in which a pinion shaft is assembled to a motor shaft.

第1実施形態のモータが用いられるギヤモータを示す断面図である。It is sectional drawing which shows the gear motor which uses the motor of 1st Embodiment. 第1実施形態のピニオン軸の組み付け工程を示す図である。It is a figure which shows the assembly process of the pinion shaft of 1st Embodiment. 第2実施形態のモータを用いたピニオン軸の組み付け工程を示す図である。It is a figure which shows the assembly process of the pinion shaft using the motor of 2nd Embodiment. 第3実施形態のモータを用いたピニオン軸の組み付け工程を示す図である。It is a figure which shows the assembly process of the pinion shaft using the motor of 3rd Embodiment. 第4実施形態のモータを用いたピニオン軸の組み付け工程を示す図である。It is a figure which shows the assembly process of the pinion shaft using the motor of 4th Embodiment. 第5実施形態のモータを用いたピニオン軸の組み付け工程を示す図である。It is a figure which shows the assembly process of the pinion shaft using the motor of 5th Embodiment. 図6のピニオン軸周りの拡大図である。It is an enlarged view around the pinion axis of FIG. 図8(a)は、第5実施形態のピニオン軸の組み付け工程の途中状態を示す図であり、図8(b)は、第5実施形態のピニオン軸の組み付け工程の途中状態を示す他の図である。FIG. 8A is a diagram showing an intermediate state of the pinion shaft assembling process of the fifth embodiment, and FIG. 8B is another diagram showing an intermediate state of the pinion shaft assembling process of the fifth embodiment. It is a figure.

以下、実施形態、変形例では、同一の構成要素に同一の符号を付し、重複する説明を省略する。また、各図面では、説明の便宜のため、構成要素の一部を適宜省略したり、構成要素の寸法を適宜拡大、縮小して示す。 Hereinafter, in the embodiments and modifications, the same components will be designated by the same reference numerals, and duplicate description will be omitted. Further, in each drawing, for convenience of explanation, some of the constituent elements are appropriately omitted, and the dimensions of the constituent elements are appropriately enlarged or reduced.

(第1の実施の形態)
まず、第1実施形態のモータを想到するに至った背景から説明する。ピニオン軸がモータ軸に組み付けられたモータに関して、生産性の向上を図るうえでは、ピニオン軸の組み付けに圧入を用いることが考えられる。ピニオン軸をモータ軸に圧入する場合、モータ軸には、ピニオン軸から反負荷側に向かうスラスト荷重が作用する。このスラスト荷重は、通常、モータ軸を支持する反負荷側軸受により受けられる。よって、モータ軸に作用するスラスト荷重が増大すると、反負荷側軸受への負担が懸念される。特に、ピニオン軸の組み付けに圧入を用いる場合、焼き嵌めを用いる場合と比べ、モータ軸に作用するスラスト荷重が増大するため、反負荷側軸受への負担がより懸念される。
(First Embodiment)
First, the background that led to the idea of the motor of the first embodiment will be described. For a motor in which the pinion shaft is assembled to the motor shaft, it is conceivable to use press fitting for assembling the pinion shaft in order to improve productivity. When the pinion shaft is press-fitted into the motor shaft, a thrust load from the pinion shaft toward the opposite load side acts on the motor shaft. This thrust load is usually received by a counterload side bearing that supports the motor shaft. Therefore, if the thrust load acting on the motor shaft increases, there is a concern that the load on the bearing on the non-load side will be increased. In particular, when press-fitting is used for assembling the pinion shaft, the thrust load acting on the motor shaft increases as compared with the case where shrink fitting is used, so that the load on the bearing on the non-load side is more concerned.

この対策として、本実施形態のモータは、反負荷側に向けてモータ軸に作用するスラスト荷重を荷重受け部材に伝達可能にするための荷重伝達用構造を備えている。これにより、荷重伝達用構造を用いてスラスト荷重をモータ軸から荷重受け部材に伝達可能にした状態で、モータ軸の凹部にピニオン軸を圧入でき、その圧入時の反負荷側軸受への負担を抑えられる。よって、本実施形態のモータによれば、反負荷側軸受への負担を抑えつつ、モータ軸の凹部にピニオン軸を圧入でき、モータの生産性の向上に役立たせることができる。以下、第1実施形態のモータの詳細を説明する。 As a countermeasure against this, the motor of the present embodiment is provided with a load transmission structure for enabling the thrust load acting on the motor shaft toward the counterload side to be transmitted to the load receiving member. As a result, the pinion shaft can be press-fitted into the recess of the motor shaft while the thrust load can be transmitted from the motor shaft to the load receiving member using the load transmission structure, and the load on the counter-load side bearing at the time of press-fitting can be applied. It can be suppressed. Therefore, according to the motor of the present embodiment, the pinion shaft can be press-fitted into the recess of the motor shaft while suppressing the load on the bearing on the non-load side, which can be useful for improving the productivity of the motor. Hereinafter, the details of the motor of the first embodiment will be described.

図1は、第1実施形態のモータ12が用いられるギヤモータ10を示す断面図である。ギヤモータ10は、モータ12と、減速機14を備え、これらが一体化される。本明細書では、モータ12のモータ軸32の軸方向、周方向、径方向に関して、単に「軸方向」、「周方向」、「径方向」ともいう。モータ軸32の軸方向のうち、モータ軸32を通る動力伝達経路上において、被駆動装置に近い側を負荷側といい、負荷側とは反対側を反負荷側という。先に減速機14を説明する。 FIG. 1 is a cross-sectional view showing a gear motor 10 in which the motor 12 of the first embodiment is used. The gear motor 10 includes a motor 12 and a speed reducer 14, and these are integrated. In the present specification, the axial direction, the circumferential direction, and the radial direction of the motor shaft 32 of the motor 12 are also simply referred to as "axial direction", "circumferential direction", and "diameter direction". Of the axial directions of the motor shaft 32, the side closer to the driven device on the power transmission path passing through the motor shaft 32 is referred to as the load side, and the side opposite to the load side is referred to as the counterload side. The speed reducer 14 will be described first.

減速機14は、減速機ケーシング16と、出力部材18と、減速機構20と、を備える。減速機ケーシング16は、減速機構20が内側に収容される筒状のケーシング本体部22と、減速機構20より反負荷側に配置される反負荷側壁部24とを有する。本実施形態のケーシング本体部22は、反負荷側に配置される第1本体部材22aと、負荷側に配置される第2本体部材22bとを有する。 The speed reducer 14 includes a speed reducer casing 16, an output member 18, and a speed reduction mechanism 20. The speed reducer casing 16 has a cylindrical casing main body 22 in which the speed reduction mechanism 20 is housed, and a counter load side wall portion 24 arranged on the counter load side of the speed reduction mechanism 20. The casing main body 22 of the present embodiment has a first main body member 22a arranged on the counterload side and a second main body member 22b arranged on the load side.

出力部材18は、モータ軸32の回転動力を被駆動装置に出力するためのものである。出力部材18は、ケーシング本体部22の内側に収容され、ケーシング本体部22に軸受(不図示)を介して回転自在に支持される。 The output member 18 is for outputting the rotational power of the motor shaft 32 to the driven device. The output member 18 is housed inside the casing main body 22, and is rotatably supported by the casing main body 22 via a bearing (not shown).

減速機構20は、モータ軸32の回転動力を減速して出力部材18に伝達可能である。本実施形態の減速機構20は、振り分け型の偏心揺動減速機構である。この種の減速機構20は公知のため、ここでは説明を簡易にとどめる。 The speed reduction mechanism 20 can reduce the rotational power of the motor shaft 32 and transmit it to the output member 18. The deceleration mechanism 20 of the present embodiment is a distribution type eccentric swing deceleration mechanism. Since this type of deceleration mechanism 20 is known, the description thereof will be briefly described here.

減速機構20は、後述するピニオン軸34周りに配置される複数の入力歯車26を有する。本図では一つの入力歯車26のみ示す。入力歯車26は、ピニオン軸34のピニオン部34bと噛合する。入力歯車26は、その中央部に挿通されるクランク軸28により支持され、クランク軸28と一体回転可能に設けられる。ピニオン軸34の回転により入力歯車26が回転すると、ピニオン軸34の回転が減速されて減速機構20から出力部材18に伝達される。 The speed reduction mechanism 20 has a plurality of input gears 26 arranged around the pinion shaft 34, which will be described later. In this figure, only one input gear 26 is shown. The input gear 26 meshes with the pinion portion 34b of the pinion shaft 34. The input gear 26 is supported by a crankshaft 28 inserted into the central portion thereof, and is provided so as to be rotatable integrally with the crankshaft 28. When the input gear 26 is rotated by the rotation of the pinion shaft 34, the rotation of the pinion shaft 34 is decelerated and transmitted from the speed reduction mechanism 20 to the output member 18.

モータ12の説明に移る。本実施形態のモータ12はサーボモータである。モータ12は、主に、モータケーシング30と、モータ軸32と、ピニオン軸34と、負荷側軸受36と、反負荷側軸受38と、荷重伝達用構造40と、を備える。 The explanation of the motor 12 will be given. The motor 12 of this embodiment is a servo motor. The motor 12 mainly includes a motor casing 30, a motor shaft 32, a pinion shaft 34, a load side bearing 36, a counterload side bearing 38, and a load transmission structure 40.

モータケーシング30は、モータフレーム42と、負荷側カバー44と、第1反負荷側カバー46と、第2反負荷側カバー48とを備える。 The motor casing 30 includes a motor frame 42, a load side cover 44, a first counterload side cover 46, and a second counterload side cover 48.

モータフレーム42は筒状をなし、その内側にステータ50やロータ52が収容される。ステータ50は、ロータ52を回転させるための回転磁場を生成可能であり、モータフレーム42に固定される。ロータ52は、ステータ50が生成する回転磁界との間での磁気的相互作用により回転可能である。モータ軸32は、ロータ52と一体回転可能に設けられる。 The motor frame 42 has a cylindrical shape, and the stator 50 and the rotor 52 are housed inside the motor frame 42. The stator 50 can generate a rotating magnetic field for rotating the rotor 52 and is fixed to the motor frame 42. The rotor 52 is rotatable by magnetic interaction with the rotating magnetic field generated by the stator 50. The motor shaft 32 is provided so as to be rotatable integrally with the rotor 52.

負荷側カバー44は、モータフレーム42の負荷側開口部を覆い、ボルトによりモータフレーム42に固定される。本実施形態の負荷側カバー44は、減速機ケーシング16の反負荷側壁部24を兼用する。ただし、負荷側カバー44は、減速機ケーシング16の反負荷側壁部24を兼用せずに、反負荷側壁部24と別体に設けてもよい。負荷側カバー44は、モータケーシング30の内部空間30aと、その内部空間30aより負荷側に設けられる他の空間54とを隔てている。本実施形態での他の空間54とは、減速機ケーシング16の内部空間である。 The load-side cover 44 covers the load-side opening of the motor frame 42 and is fixed to the motor frame 42 by bolts. The load-side cover 44 of the present embodiment also serves as the anti-load side wall portion 24 of the speed reducer casing 16. However, the load side cover 44 may be provided separately from the anti-load side wall portion 24 without also serving as the anti-load side wall portion 24 of the speed reducer casing 16. The load-side cover 44 separates the internal space 30a of the motor casing 30 from another space 54 provided on the load side of the internal space 30a. The other space 54 in this embodiment is the internal space of the speed reducer casing 16.

負荷側カバー44には、負荷側カバー44を軸方向に貫通し、モータ軸32が挿通される第1貫通孔44aが形成される。モータ軸32と第1貫通孔44aとの間にはオイルシール56が介装される。オイルシール56は、減速機ケーシング16内に封入される潤滑油の漏洩を規制する。オイルシール56は、第1貫通孔44aの負荷側の開口端縁44bより反負荷側に設けられる。 The load-side cover 44 is formed with a first through-hole 44a that penetrates the load-side cover 44 in the axial direction and through which the motor shaft 32 is inserted. An oil seal 56 is interposed between the motor shaft 32 and the first through hole 44a. The oil seal 56 regulates the leakage of the lubricating oil sealed in the speed reducer casing 16. The oil seal 56 is provided on the opposite side of the opening end edge 44b on the load side of the first through hole 44a.

負荷側カバー44には、第1貫通孔44aの反負荷側部分に第1嵌込部44cが形成される。第1嵌込部44cには負荷側軸受36が隙間嵌めにより嵌め込まれ、負荷側カバー44は第1嵌込部44c内の負荷側軸受36を支持する。なお、第1嵌込部44cには負荷側軸受36が締まり嵌めにより嵌め込まれてもよい。 In the load side cover 44, the first fitting portion 44c is formed in the counterload side portion of the first through hole 44a. A load-side bearing 36 is fitted into the first fitting portion 44c by gap fitting, and the load-side cover 44 supports the load-side bearing 36 in the first fitting portion 44c. The load-side bearing 36 may be fitted into the first fitting portion 44c by tightening.

第1反負荷側カバー46は、モータフレーム42の反負荷側開口部を覆い、ボルトによりモータフレーム42に固定される。第1反負荷側カバー46は、モータケーシング30の内部空間30aと、その内部空間30aより反負荷側に設けられる他の空間48a、58とを隔てる。本実施形態での他の空間48a、58とは、第2反負荷側カバー48の内部のカバー内空間48aと、モータケーシング30の外部の外部空間58である。 The first counterload side cover 46 covers the counterload side opening of the motor frame 42 and is fixed to the motor frame 42 by bolts. The first counterload side cover 46 separates the internal space 30a of the motor casing 30 from the other spaces 48a and 58 provided on the counterload side of the internal space 30a. The other spaces 48a and 58 in the present embodiment are the inner cover inner space 48a of the second counterload side cover 48 and the outer outer space 58 of the motor casing 30.

第1反負荷側カバー46には、第1反負荷側カバー46を軸方向に貫通し、モータ軸32が挿通される第2貫通孔46aが形成される。第1反負荷側カバー46には、第2貫通孔46aの負荷側部分に第2嵌込部46bが形成される。第2嵌込部46bには反負荷側軸受38が隙間嵌めにより嵌め込まれ、第1反負荷側カバー46は第2嵌込部46b内の反負荷側軸受38を支持する。なお、第2嵌込部46bには反負荷側軸受38が締まり嵌めにより嵌め込まれてもよい。 The first counterload side cover 46 is formed with a second through hole 46a through which the first counterload side cover 46 is axially penetrated and the motor shaft 32 is inserted. In the first counterload side cover 46, a second fitting portion 46b is formed in the load side portion of the second through hole 46a. A counterload side bearing 38 is fitted into the second fitting portion 46b by gap fitting, and the first counterload side cover 46 supports the counterload side bearing 38 in the second fitting portion 46b. The counterload side bearing 38 may be fitted into the second fitting portion 46b by tightening.

第2反負荷側カバー48は、第1反負荷側カバー46より反負荷側に配置される。第2反負荷側カバー48は、有底筒状をなす覆い部48aと、覆い部48aの開口端縁から径方向外側に張り出すフランジ部48bとを有する。フランジ部48bは、第1反負荷側カバー46の反負荷側壁面に突き当てられ、取付ボルト60を用いて第1反負荷側カバー46に着脱可能に取り付けられる。 The second counterload side cover 48 is arranged on the counterload side with respect to the first counterload side cover 46. The second counterload side cover 48 has a covering portion 48a having a bottomed cylindrical shape, and a flange portion 48b protruding radially outward from the open end edge of the covering portion 48a. The flange portion 48b is abutted against the anti-load side wall surface of the first anti-load side cover 46, and is detachably attached to the first anti-load side cover 46 by using a mounting bolt 60.

モータ軸32の負荷側端部32aは、負荷側カバー44より負荷側に突出する。モータ軸32は、負荷側端部32aに形成される凹部32bを有する。凹部32bは、モータ軸32の負荷側端面から反負荷側に凹むように形成される。 The load-side end 32a of the motor shaft 32 projects toward the load side from the load-side cover 44. The motor shaft 32 has a recess 32b formed in the load side end portion 32a. The recess 32b is formed so as to be recessed from the load side end surface of the motor shaft 32 to the opposite load side.

モータ軸32の反負荷側端部32cは、第1反負荷側カバー46より反負荷側に突出する。モータ軸32の反負荷側端部32cは、第2反負荷側カバー48の覆い部48aにより反負荷側や径方向外側から覆われる。 The counterload side end portion 32c of the motor shaft 32 projects to the counterload side from the first counterload side cover 46. The counterload side end portion 32c of the motor shaft 32 is covered from the counterload side and the radial outside by the cover portion 48a of the second counterload side cover 48.

モータ軸32の反負荷側端部32cの周りには回転角検出装置62が配置される。回転角検出装置62は、モータ軸32の回転角を検出するためのものであり、たとえば、ロータリーエンコーダである。回転角検出装置62の検出信号は外部制御装置(不図示)に出力され、外部制御装置によるモータ12の制御に用いられる。回転角検出装置62は、発光素子、受光素子等の検出素子を収容する筐体62aを備える。モータ軸32の反負荷側端部32cの一部は筐体62aから反負荷側に突出する。回転角検出装置62は、第2反負荷側カバー48の覆い部48aにより反負荷側や径方向外側から覆われる。 A rotation angle detecting device 62 is arranged around the counterload side end portion 32c of the motor shaft 32. The rotation angle detection device 62 is for detecting the rotation angle of the motor shaft 32, and is, for example, a rotary encoder. The detection signal of the rotation angle detection device 62 is output to an external control device (not shown) and used for controlling the motor 12 by the external control device. The rotation angle detection device 62 includes a housing 62a that houses detection elements such as a light emitting element and a light receiving element. A part of the non-load side end 32c of the motor shaft 32 projects from the housing 62a to the non-load side. The rotation angle detection device 62 is covered from the counterload side or the radial outside by the covering portion 48a of the second counterload side cover 48.

モータ軸32の反負荷側端部32cには、モータケーシング30を冷却するためのファンが装着されていない。このファンは、モータ軸32と一体回転可能に設けられ、その回転によりモータケーシング30を冷却させる空気流を発生させるものである。 A fan for cooling the motor casing 30 is not mounted on the counterload side end portion 32c of the motor shaft 32. This fan is provided so as to be rotatable integrally with the motor shaft 32, and the rotation of the fan generates an air flow that cools the motor casing 30.

ピニオン軸34は、モータ軸32と同軸に設けられる。ピニオン軸34は、モータ軸32の凹部32b内に押し込まれた軸部34aと、軸部34aより負荷側に設けられるピニオン部34bとを有する。軸部34aは、締まり嵌めによって、モータ軸32の凹部32b内に嵌め込まれており、モータ軸32と一体回転可能である。ピニオン部34bの外周面には入力歯車26と噛合する複数の歯部が形成される。モータ軸32の回転動力は、入力歯車26とピニオン部34bの噛合により、ピニオン軸34を介して入力歯車26に伝達される。 The pinion shaft 34 is provided coaxially with the motor shaft 32. The pinion shaft 34 has a shaft portion 34a pushed into the recess 32b of the motor shaft 32, and a pinion portion 34b provided on the load side of the shaft portion 34a. The shaft portion 34a is fitted into the recess 32b of the motor shaft 32 by tightening, and can rotate integrally with the motor shaft 32. A plurality of tooth portions that mesh with the input gear 26 are formed on the outer peripheral surface of the pinion portion 34b. The rotational power of the motor shaft 32 is transmitted to the input gear 26 via the pinion shaft 34 by the meshing of the input gear 26 and the pinion portion 34b.

負荷側軸受36は、モータ軸32のロータ52より負荷側にある負荷側部分を回転自在に支持する。負荷側軸受36は、たとえば、転がり軸受等である。負荷側軸受36の内輪は、モータ軸32の負荷側部分に締まり嵌めにより固定される。 The load-side bearing 36 rotatably supports the load-side portion on the load side of the rotor 52 of the motor shaft 32. The load side bearing 36 is, for example, a rolling bearing or the like. The inner ring of the load-side bearing 36 is fixed to the load-side portion of the motor shaft 32 by tightening and fitting.

反負荷側軸受38は、モータ軸32のロータ52より反負荷側にある反負荷側部分を回転自在に支持する。反負荷側軸受38は、たとえば、転がり軸受等である。負荷側軸受36の内輪は、モータ軸32の反負荷側部分に締まり嵌めにより固定される。 The counterload side bearing 38 rotatably supports the counterload side portion on the counterload side of the rotor 52 of the motor shaft 32. The counterload side bearing 38 is, for example, a rolling bearing or the like. The inner ring of the load-side bearing 36 is fixed to the non-load-side portion of the motor shaft 32 by tightening and fitting.

図2は、ピニオン軸34の組み付け工程を示す図である。荷重伝達用構造40は、モータ軸32に作用するスラスト荷重Faを、負荷側軸受36及び反負荷側軸受38以外の荷重受け部材64に伝達可能にするためのものである。このスラスト荷重Faは、モータ軸32の凹部32bにピニオン軸34を圧入するとき、反負荷側に向けてモータ軸32に作用する。 FIG. 2 is a diagram showing an assembling process of the pinion shaft 34. The load transmission structure 40 is for enabling the thrust load Fa acting on the motor shaft 32 to be transmitted to the load receiving member 64 other than the load side bearing 36 and the non-load side bearing 38. This thrust load Fa acts on the motor shaft 32 toward the opposite load side when the pinion shaft 34 is press-fitted into the recess 32b of the motor shaft 32.

本実施形態の荷重伝達用構造40は、モータ軸32の反負荷側端面32dである。このモータ軸32の反負荷側端面32dは、第2反負荷側カバー48がないとき、第1反負荷側カバー46より反負荷側にある外部空間58に露出する。ここでの「第2反負荷側カバー48がないとき」とは、本実施形態では、第2反負荷側カバー48を第1反負荷側カバー46に取り付ける前段階にあるときを意味する。 The load transmission structure 40 of the present embodiment is the counterload side end surface 32d of the motor shaft 32. The counterload side end surface 32d of the motor shaft 32 is exposed to the external space 58 on the counterload side of the first counterload side cover 46 when the second counterload side cover 48 is not present. Here, "when there is no second counterload side cover 48" means that in the present embodiment, the second counterload side cover 48 is in the stage before being attached to the first counterload side cover 46.

荷重受け部材64は、第1反負荷側カバー46より反負荷側にて外部空間58に配置される。荷重受け部材64は、モータ軸32に作用するスラスト荷重Faの伝達先となる。荷重受け部材64には、モータ軸32のスラスト荷重Faを受けるための受け面64aが設けられる。本実施形態の受け面64aは平坦面である。荷重受け部材64の受け面64aには、モータ軸32の反負荷側端面32dが直接に当接される。これにより、モータ軸32のスラスト荷重Faをモータ軸32から荷重受け部材64に伝達可能な状態となる。 The load receiving member 64 is arranged in the external space 58 on the counterload side of the first counterload side cover 46. The load receiving member 64 serves as a transmission destination of the thrust load Fa acting on the motor shaft 32. The load receiving member 64 is provided with a receiving surface 64a for receiving the thrust load Fa of the motor shaft 32. The receiving surface 64a of the present embodiment is a flat surface. The counter-load side end surface 32d of the motor shaft 32 is directly in contact with the receiving surface 64a of the load receiving member 64. As a result, the thrust load Fa of the motor shaft 32 can be transmitted from the motor shaft 32 to the load receiving member 64.

以上のモータ12を用いたピニオン軸34の組み付け方法を説明する。まず、モータケーシング30にモータ12の構成部品を組み付け、モータ軸32にピニオン軸34が組み付けられていない半製品66を準備する。ここでの組み付け対象となる構成部品には、モータ軸32、負荷側軸受36、反負荷側軸受38、ステータ50、ロータ52、回転角検出装置62等が含まれ、第2反負荷側カバー48は含まれない。 A method of assembling the pinion shaft 34 using the above motor 12 will be described. First, the components of the motor 12 are assembled to the motor casing 30, and the semi-finished product 66 to which the pinion shaft 34 is not assembled to the motor shaft 32 is prepared. The components to be assembled here include the motor shaft 32, the load side bearing 36, the counterload side bearing 38, the stator 50, the rotor 52, the rotation angle detection device 62, and the like, and the second counterload side cover 48. Is not included.

なお、本実施形態の半製品66には、減速機ケーシング16の第1本体部材22aが組み付けられており、減速機14の他の構成部品(減速機構20等)は組み付けられていない。これにより、第1本体部材22aの内部にプレス用金型を配置可能な空間が確保される。 The semi-finished product 66 of the present embodiment is assembled with the first main body member 22a of the speed reducer casing 16, and is not assembled with other components (reduction mechanism 20 and the like) of the speed reducer 14. As a result, a space in which the press die can be arranged is secured inside the first main body member 22a.

続いて、荷重伝達用構造40を用いてモータ軸32のスラスト荷重Faをモータ軸32から荷重受け部材64に伝達可能な状態(以下、荷重伝達可能状態という)にする。本実施形態では、荷重伝達用構造40となるモータ軸32の反負荷側端面32dを荷重受け部材64の受け面64aに当接させることで、モータ12の半製品66を荷重伝達可能状態にする。 Subsequently, the load transmission structure 40 is used to bring the thrust load Fa of the motor shaft 32 into a state in which the thrust load Fa can be transmitted from the motor shaft 32 to the load receiving member 64 (hereinafter, referred to as a load transmission possible state). In the present embodiment, the semi-finished product 66 of the motor 12 is brought into a load transmitting state by bringing the counterload side end surface 32d of the motor shaft 32, which is the load transmitting structure 40, into contact with the receiving surface 64a of the load receiving member 64. ..

続いて、モータ12の半製品66を荷重伝達可能状態にしたまま、モータ軸32の凹部32bにピニオン軸34の軸部34aを反負荷側に向けて圧入する。この圧入工程では、プレス用金型等を用いてピニオン軸34に圧入力を付与する。この圧入工程は、モータ12の半製品66と荷重受け部材64を治具等により固定した状態で行う。この圧入工程は、モータ軸32やピニオン軸34を加熱せずに常温環境のもとで行う。ピニオン軸34は、モータ軸32の凹部32bの底面に当たるまで、その凹部32b内に圧入する。なお、モータ軸32の凹部32bの底面に当たる手前で、ピニオン軸34の圧入を止めてもよい。モータ軸32の凹部32bにピニオン軸34を圧入した後、第2反負荷側カバー48を第1反負荷側カバー46に取り付ける。 Subsequently, while the semi-finished product 66 of the motor 12 is in a load-transmissible state, the shaft portion 34a of the pinion shaft 34 is press-fitted into the recess 32b of the motor shaft 32 toward the counterload side. In this press-fitting step, a press-fitting force is applied to the pinion shaft 34 using a press die or the like. This press-fitting step is performed in a state where the semi-finished product 66 of the motor 12 and the load receiving member 64 are fixed by a jig or the like. This press-fitting step is performed in a room temperature environment without heating the motor shaft 32 and the pinion shaft 34. The pinion shaft 34 is press-fitted into the recess 32b of the motor shaft 32 until it hits the bottom surface of the recess 32b. The press-fitting of the pinion shaft 34 may be stopped before it hits the bottom surface of the recess 32b of the motor shaft 32. After the pinion shaft 34 is press-fitted into the recess 32b of the motor shaft 32, the second counterload side cover 48 is attached to the first counterload side cover 46.

これにより、モータ軸32の凹部32bにピニオン軸34を圧入するとき、モータ軸32に作用するスラスト荷重Faが荷重受け部材64に伝達され、反負荷側軸受38への負担を抑えられる。本実施形態では、モータ軸32の反負荷側端面32dから荷重受け部材64にスラスト荷重Faが伝達される。つまり、モータ軸32の荷重伝達用構造40から荷重受け部材64にスラスト荷重Faが伝達される。 As a result, when the pinion shaft 34 is press-fitted into the recess 32b of the motor shaft 32, the thrust load Fa acting on the motor shaft 32 is transmitted to the load receiving member 64, and the load on the counterload side bearing 38 can be suppressed. In the present embodiment, the thrust load Fa is transmitted from the counterload side end surface 32d of the motor shaft 32 to the load receiving member 64. That is, the thrust load Fa is transmitted from the load transmission structure 40 of the motor shaft 32 to the load receiving member 64.

また、本実施形態では、荷重伝達用構造40がモータ軸32の反負荷側端面32dであるため、ピニオン軸34を組み付けるとき、モータ軸32への他部材の着け外しが不要になる。また、モータ12は、モータ軸32の反負荷側端面32dを覆う第2反負荷側カバー48を備えるため、外部の物体との接触からモータ軸32を保護でき、かつ、安全を確保できる。 Further, in the present embodiment, since the load transmission structure 40 is the counterload side end surface 32d of the motor shaft 32, it is not necessary to attach / detach other members to / from the motor shaft 32 when assembling the pinion shaft 34. Further, since the motor 12 includes a second counterload side cover 48 that covers the counterload side end surface 32d of the motor shaft 32, the motor shaft 32 can be protected from contact with an external object and safety can be ensured.

なお、荷重伝達用構造40となるモータ軸32の反負荷側端面32dは、第1反負荷側カバー46より反負荷側に突出する例を説明した。この他にも、モータ軸32の反負荷側端面32dを外部空間58に露出させる場合、その反負荷側端面32dは、第1反負荷側カバー46より反負荷側に突出していなくともよい。この場合、たとえば、荷重受け部材64に負荷側に突出するとともに第1反負荷側カバー46の第2貫通孔46a内に差し込み可能な突起部を設け、その突起部の先端部に受け面64aを設けてもよい。これによっても、前述の荷重伝達可能状態にすることができる。 An example has been described in which the counterload side end surface 32d of the motor shaft 32, which is the load transmission structure 40, protrudes to the counterload side from the first counterload side cover 46. In addition to this, when the counterload side end surface 32d of the motor shaft 32 is exposed to the external space 58, the counterload side end surface 32d does not have to protrude from the first counterload side cover 46 to the counterload side. In this case, for example, the load receiving member 64 is provided with a protrusion that protrudes toward the load side and can be inserted into the second through hole 46a of the first counterload side cover 46, and the receiving surface 64a is provided at the tip of the protrusion. It may be provided. This also makes it possible to bring the load transferable state described above.

(第2の実施の形態)
図3は、第2実施形態のモータ12を用いたピニオン軸34の組み付け工程を示す図である。第2実施形態のモータ12は、第1実施形態と比べて、荷重伝達用構造40が主に異なる。第2実施形態の荷重伝達用構造40は、モータ軸32の反負荷側端面32dに形成される雌ねじ孔32eである。この雌ねじ孔32eは、後述するねじ部材68を着脱可能に装着するための装着部として機能する。
(Second Embodiment)
FIG. 3 is a diagram showing an assembling process of the pinion shaft 34 using the motor 12 of the second embodiment. The motor 12 of the second embodiment is mainly different from the first embodiment in the load transmission structure 40. The load transmission structure 40 of the second embodiment is a female screw hole 32e formed in the counterload side end surface 32d of the motor shaft 32. The female screw hole 32e functions as a mounting portion for mounting the screw member 68, which will be described later, in a detachable manner.

モータ軸32の雌ねじ孔32eにはねじ部材68が装着される。ねじ部材68は、モータ軸32のスラスト荷重をモータ軸32から荷重受け部材64に伝達するための荷重伝達部材70として機能する。ねじ部材68は、モータ軸32の反負荷側端面32dより反負荷側に突出する突出部材としても機能する。ねじ部材68は、ピニオン軸34の組み付け工程にのみモータ軸32に装着され、モータ12の組み立て後にはモータ軸32から取り外される。 A screw member 68 is attached to the female screw hole 32e of the motor shaft 32. The screw member 68 functions as a load transmission member 70 for transmitting the thrust load of the motor shaft 32 from the motor shaft 32 to the load receiving member 64. The screw member 68 also functions as a protruding member that projects from the counterload side end surface 32d of the motor shaft 32 to the counterload side. The screw member 68 is attached to the motor shaft 32 only in the assembling step of the pinion shaft 34, and is removed from the motor shaft 32 after the motor 12 is assembled.

ねじ部材68は、雄ねじ部が形成されたねじ軸部68aと、ねじ軸部68aの基端側に設けられる頭部68bとを有する。ねじ部材68は、モータ軸32の雌ねじ孔32eにねじ軸部68aをねじ込むことで装着される。ねじ部材68の頭部68bには、荷重受け部材64の受け面64aに当接させるための当て面70aが形成される。本実施形態の当て面70aは平坦面である。ねじ部材68は、第2反負荷側カバー48がないとき、第1反負荷側カバー46より反負荷側にある外部空間58に露出する。 The screw member 68 has a screw shaft portion 68a on which a male screw portion is formed, and a head portion 68b provided on the proximal end side of the screw shaft portion 68a. The screw member 68 is attached by screwing the screw shaft portion 68a into the female screw hole 32e of the motor shaft 32. A contact surface 70a for abutting the receiving surface 64a of the load receiving member 64 is formed on the head 68b of the screw member 68. The contact surface 70a of the present embodiment is a flat surface. When the second counterload side cover 48 is not provided, the screw member 68 is exposed to the external space 58 on the counterload side of the first counterload side cover 46.

以上のモータ12を用いたピニオン軸34の組み付け方法を説明する。まず、第1実施形態と同様、モータ軸32にピニオン軸34が組み付けられていない半製品66を準備する。 A method of assembling the pinion shaft 34 using the above motor 12 will be described. First, as in the first embodiment, a semi-finished product 66 in which the pinion shaft 34 is not assembled to the motor shaft 32 is prepared.

続いて、荷重伝達用構造40となるモータ軸32の雌ねじ孔32eにねじ部材68を装着し、そのねじ部材68の当て面70aを荷重受け部材64の受け面64aに当接させる。これにより、荷重伝達用構造40となる雌ねじ孔32eを用いてモータ軸32のスラスト荷重Faをモータ軸32から荷重受け部材64に伝達可能な荷重伝達可能状態になる。 Subsequently, the screw member 68 is attached to the female screw hole 32e of the motor shaft 32 that becomes the load transmission structure 40, and the contact surface 70a of the screw member 68 is brought into contact with the receiving surface 64a of the load receiving member 64. As a result, the thrust load Fa of the motor shaft 32 can be transmitted from the motor shaft 32 to the load receiving member 64 by using the female screw hole 32e which is the load transmission structure 40.

続いて、モータ12の半製品66を荷重伝達可能状態にしたまま、モータ軸32の凹部32bにピニオン軸34の軸部34aを反負荷側に向けて圧入する。この後、ねじ部材68をモータ軸32の雌ねじ孔32eから取り外し、第2反負荷側カバー48を第1反負荷側カバー46に取り付ける。 Subsequently, while the semi-finished product 66 of the motor 12 is in a load-transmissible state, the shaft portion 34a of the pinion shaft 34 is press-fitted into the recess 32b of the motor shaft 32 toward the counterload side. After that, the screw member 68 is removed from the female screw hole 32e of the motor shaft 32, and the second counterload side cover 48 is attached to the first counterload side cover 46.

これにより、モータ軸32の凹部32bにピニオン軸34を圧入するとき、モータ軸32に作用するスラスト荷重Faが荷重受け部材64に伝達され、反負荷側軸受38への負担を抑えられる。本実施形態では、モータ軸32の雌ねじ孔32eからねじ部材68を介して荷重受け部材64にスラスト荷重Faが伝達される。つまり、モータ軸32の荷重伝達用構造40から荷重伝達部材70を介して荷重受け部材64にスラスト荷重Faが伝達される。 As a result, when the pinion shaft 34 is press-fitted into the recess 32b of the motor shaft 32, the thrust load Fa acting on the motor shaft 32 is transmitted to the load receiving member 64, and the load on the counterload side bearing 38 can be suppressed. In the present embodiment, the thrust load Fa is transmitted from the female screw hole 32e of the motor shaft 32 to the load receiving member 64 via the screw member 68. That is, the thrust load Fa is transmitted from the load transmission structure 40 of the motor shaft 32 to the load receiving member 64 via the load transmission member 70.

また、本実施形態では、モータ軸32の反負荷側端面32dにねじ部材68を装着することで、モータ軸32の反負荷側端面32dより反負荷側に離れた位置に荷重受け部材64に当接させるための当て面70aを配置できる。よって、モータ軸32の第1反負荷側カバー46からの突出寸法によらず、ねじ部材68の軸方向寸法を調整することで、モータ12の半製品66を荷重伝達可能状態にし易くなる。このため、モータ12の半製品66を荷重伝達可能状態にするうえで、モータ軸32の突出寸法を小さくする設計や、モータ軸32を第1反負荷側カバー46から突出させない設計が許容される。 Further, in the present embodiment, by mounting the screw member 68 on the anti-load side end surface 32d of the motor shaft 32, the load receiving member 64 is hit at a position away from the anti-load side end surface 32d of the motor shaft 32 on the anti-load side. A contact surface 70a for contact can be arranged. Therefore, by adjusting the axial dimension of the screw member 68 regardless of the protruding dimension of the motor shaft 32 from the first non-load side cover 46, it becomes easy to bring the semi-finished product 66 of the motor 12 into a load transferable state. Therefore, in order to make the semi-finished product 66 of the motor 12 capable of transmitting a load, a design that reduces the protruding dimension of the motor shaft 32 and a design that does not project the motor shaft 32 from the first counterload side cover 46 are permitted. ..

なお、本実施形態では、モータ軸32の反負荷側端面32dより反負荷側に突出する突出部材がねじ部材68であり、その突出部材が装着される装着部が雌ねじ孔32eである例を説明した。この突出部材と装着部の組み合わせは、ねじ部材68と雌ねじ孔32eの組み合わせに限定されるものではない。たとえば、装着部は、モータ軸32の反負荷側端面32dに設けた凹部とし、突出部材は、その凹部に一部が押し込まれるとともにモータ軸32と同軸に延びる柱状体としてもよい。また、本実施形態のように、荷重伝達用構造40が装着部となる場合、モータ軸32の反負荷側端部32cにファンを装着してもよい。 In this embodiment, an example will be described in which the protruding member protruding from the counterload side end surface 32d of the motor shaft 32 to the counterload side is the screw member 68, and the mounting portion on which the protruding member is mounted is the female screw hole 32e. bottom. The combination of the protruding member and the mounting portion is not limited to the combination of the screw member 68 and the female screw hole 32e. For example, the mounting portion may be a recess provided on the counter-load side end surface 32d of the motor shaft 32, and the projecting member may be a columnar body that is partially pushed into the recess and extends coaxially with the motor shaft 32. Further, when the load transmission structure 40 serves as a mounting portion as in the present embodiment, a fan may be mounted on the counter-load side end portion 32c of the motor shaft 32.

(第3の実施の形態)
図4は、第3実施形態のモータ12を用いたピニオン軸34の組み付け工程を示す図である。第1実施形態、第2実施形態の荷重受け部材64はモータ12とは別の部材である例を説明した。本実施形態の荷重受け部材64はモータ12の負荷側カバー44である。この負荷側カバー44の負荷側壁面には、モータ軸32のスラスト荷重Faを受けるための受け面64aが設けられる。本実施形態の受け面64aは、第1貫通孔44aの負荷側の開口周縁部に設けられる。本実施形態の受け面64aは平坦面であり、モータ軸32と同心の環状をなしている。
(Third Embodiment)
FIG. 4 is a diagram showing an assembling step of the pinion shaft 34 using the motor 12 of the third embodiment. An example has been described in which the load receiving member 64 of the first embodiment and the second embodiment is a member different from the motor 12. The load receiving member 64 of this embodiment is a load side cover 44 of the motor 12. A receiving surface 64a for receiving the thrust load Fa of the motor shaft 32 is provided on the load side wall surface of the load side cover 44. The receiving surface 64a of the present embodiment is provided at the peripheral edge of the opening on the load side of the first through hole 44a. The receiving surface 64a of the present embodiment is a flat surface and has an annular shape concentric with the motor shaft 32.

第2実施形態では、モータ軸32の反負荷側端面32dに形成された雌ねじ孔32e(装着部)が荷重伝達用構造40であり、その雌ねじ孔32eに装着されるねじ部材68が荷重伝達部材70である例を説明した。 In the second embodiment, the female screw hole 32e (mounting portion) formed on the counter-load side end surface 32d of the motor shaft 32 is the load transmission structure 40, and the screw member 68 mounted in the female screw hole 32e is the load transmission member. An example of 70 has been described.

本実施形態の荷重伝達用構造40は、モータ軸32の負荷側部分に形成される貫通穴32fである。この貫通穴32fは、後述する当接部材72を着脱可能に保持するための保持部として機能する。この貫通穴32fは、負荷側カバー44の受け面64aの近傍に設けられる。より詳しくは、貫通穴32fは、負荷側カバー44の受け面64aと軸方向に重なる又はほぼ重なる位置に設けられる。また、貫通穴32fは、モータ軸32の凹部32bより反負荷側に設けられる。貫通穴32fは、モータ軸32の軸方向と直交する方向に沿って直線状に延びる。 The load transmission structure 40 of the present embodiment is a through hole 32f formed in the load side portion of the motor shaft 32. The through hole 32f functions as a holding portion for holding the contact member 72, which will be described later, in a detachable manner. The through hole 32f is provided in the vicinity of the receiving surface 64a of the load side cover 44. More specifically, the through hole 32f is provided at a position that overlaps or substantially overlaps the receiving surface 64a of the load side cover 44 in the axial direction. Further, the through hole 32f is provided on the side opposite to the load side from the recess 32b of the motor shaft 32. The through hole 32f extends linearly along a direction orthogonal to the axial direction of the motor shaft 32.

本実施形態の荷重伝達部材70は、モータ軸32の貫通穴32fに挿通されることで、その貫通穴32fに保持される当接部材72である。これにより、当接部材72は、モータ軸32に対する軸方向での位置が保持される。当接部材72は、ピニオン軸34の組み付け工程にのみモータ軸32に保持され、モータ12の組み立て後にはモータ軸32から取り外される。 The load transmission member 70 of the present embodiment is a contact member 72 that is inserted into the through hole 32f of the motor shaft 32 and is held in the through hole 32f. As a result, the contact member 72 is held in an axial position with respect to the motor shaft 32. The abutting member 72 is held by the motor shaft 32 only in the assembling step of the pinion shaft 34, and is removed from the motor shaft 32 after the motor 12 is assembled.

本実施形態の当接部材72は長尺体であり、モータ軸32の貫通穴32fに対して当接部材72の長手方向(図中左右方向)に抜き差し可能に挿通される。当接部材72と貫通穴32fは互いに嵌め合う断面形状である。本実施形態では当接部材72は角柱状の断面形状であり、貫通穴32fは当接部材72と嵌め合う角穴状の断面形状である。 The contact member 72 of the present embodiment is a long body, and is inserted and removed from the through hole 32f of the motor shaft 32 in the longitudinal direction (left-right direction in the drawing) of the contact member 72. The abutting member 72 and the through hole 32f have a cross-sectional shape that fits each other. In the present embodiment, the contact member 72 has a prismatic cross-sectional shape, and the through hole 32f has a square hole-shaped cross section that fits with the contact member 72.

当接部材72は、負荷側カバー44の受け面64aに当接する当て面70aを有する。本実施形態の当て面70aは反負荷側に臨む平坦面であり、当接部材72の長手方向の両端部に設けられる。当接部材72の当て面70aは負荷側カバー44の受け面64aに面接触した状態で当接する。なお、モータ軸32の貫通穴32fの負荷側内壁面も、当接部材72の負荷側外壁面に面接触した状態で当接する。 The contact member 72 has a contact surface 70a that contacts the receiving surface 64a of the load side cover 44. The contact surface 70a of the present embodiment is a flat surface facing the counterload side, and is provided at both ends of the contact member 72 in the longitudinal direction. The contact surface 70a of the contact member 72 contacts the receiving surface 64a of the load side cover 44 in a surface contact state. The load-side inner wall surface of the through hole 32f of the motor shaft 32 also comes into contact with the load-side outer wall surface of the contact member 72 in a state of surface contact.

以上のモータ12を用いたピニオン軸34の組み付け方法を説明する。まず、第1実施形態と同様、モータ軸32にピニオン軸34が組み付けられていない半製品66を準備する。このとき、第1実施形態、第2実施形態と異なり、モータ12の半製品66には第2反負荷側カバー48を組み付けてもよい。 A method of assembling the pinion shaft 34 using the above motor 12 will be described. First, as in the first embodiment, a semi-finished product 66 in which the pinion shaft 34 is not assembled to the motor shaft 32 is prepared. At this time, unlike the first embodiment and the second embodiment, the second counterload side cover 48 may be attached to the semi-finished product 66 of the motor 12.

続いて、荷重伝達用構造40となるモータ軸32の貫通穴32fに当接部材72を挿通し、モータ軸32の貫通穴32fに当接部材72を保持させ、その当接部材72の当て面70aを負荷側カバー44の受け面64aに当接させる。これにより、荷重伝達用構造40を用いてモータ軸32のスラスト荷重Faをモータ軸32から負荷側カバー44に伝達可能な荷重伝達可能状態になる。 Subsequently, the contact member 72 is inserted into the through hole 32f of the motor shaft 32 which is the load transmission structure 40, the contact member 72 is held in the through hole 32f of the motor shaft 32, and the contact surface of the contact member 72 is held. The 70a is brought into contact with the receiving surface 64a of the load side cover 44. As a result, the load transmission possible state is such that the thrust load Fa of the motor shaft 32 can be transmitted from the motor shaft 32 to the load side cover 44 by using the load transmission structure 40.

続いて、モータ12の半製品66を荷重伝達可能状態にしたまま、モータ軸32の凹部32bにピニオン軸34の軸部34aを反負荷側に向けて圧入する。この後、当接部材72はモータ軸32の貫通穴32fから抜き出す。 Subsequently, while the semi-finished product 66 of the motor 12 is in a load-transmissible state, the shaft portion 34a of the pinion shaft 34 is press-fitted into the recess 32b of the motor shaft 32 toward the counterload side. After that, the contact member 72 is pulled out from the through hole 32f of the motor shaft 32.

これにより、モータ軸32の凹部32bにピニオン軸34を圧入するとき、モータ軸32に作用するスラスト荷重Faが負荷側カバー44に伝達され、反負荷側軸受38への負担を抑えられる。本実施形態では、モータ軸32の貫通穴32fから当接部材72を介して負荷側カバー44にスラスト荷重Faが伝達される。つまり、モータ軸32の荷重伝達用構造40から荷重伝達部材70を介して負荷側カバー44にスラスト荷重Faが伝達される。 As a result, when the pinion shaft 34 is press-fitted into the recess 32b of the motor shaft 32, the thrust load Fa acting on the motor shaft 32 is transmitted to the load side cover 44, and the load on the counterload side bearing 38 can be suppressed. In the present embodiment, the thrust load Fa is transmitted from the through hole 32f of the motor shaft 32 to the load side cover 44 via the contact member 72. That is, the thrust load Fa is transmitted from the load transmission structure 40 of the motor shaft 32 to the load side cover 44 via the load transmission member 70.

(第4の実施の形態)
図5は、第4実施形態のモータ12を用いたピニオン軸34の組み付け工程を示す図である。第3実施形態ではモータ軸32の負荷側部分に形成される貫通穴32fが荷重伝達用構造40である例を説明した。
(Fourth Embodiment)
FIG. 5 is a diagram showing an assembling step of the pinion shaft 34 using the motor 12 of the fourth embodiment. In the third embodiment, an example in which the through hole 32f formed in the load side portion of the motor shaft 32 is the load transmission structure 40 has been described.

本実施形態では、モータ軸32の負荷側部分に形成される溝部32gが荷重伝達用構造40となる。この溝部32gは、モータ軸32の負荷側部分の外周面に周方向に沿って形成される。この溝部32gは、後述する当接部材72を着脱可能に保持するための保持部として機能する。 In the present embodiment, the groove portion 32g formed on the load side portion of the motor shaft 32 serves as the load transmission structure 40. The groove portion 32g is formed along the circumferential direction on the outer peripheral surface of the load side portion of the motor shaft 32. The groove portion 32g functions as a holding portion for holding the contact member 72, which will be described later, in a detachable manner.

本実施形態の当接部材72は、荷重伝達用構造40となる溝部32gに嵌め込まれることで溝部32gに保持される止め輪72aと、負荷側カバー44の受け面64aと止め輪72aとの間に挟み込まれるリング部材72bとを有する。止め輪72aは、一部を切り欠いた環状をなしており、径方向に拡径可能である。リング部材72bの内側には、モータ軸32の負荷側部分が挿通される。当接部材72は、モータ軸32の溝部32gに止め輪72aが嵌め込まれ、かつ、負荷側カバー44と止め輪72aとの間にリング部材72bが挟み込まれることで、モータ軸32の溝部32gに保持される。このとき、当接部材72は、モータ軸32に対する軸方向での位置が保持される。 The contact member 72 of the present embodiment is between the retaining ring 72a held in the groove 32g by being fitted into the groove 32g of the load transmission structure 40, and the receiving surface 64a and the retaining ring 72a of the load side cover 44. It has a ring member 72b sandwiched between the two. The retaining ring 72a has an annular shape with a part cut out, and the diameter can be expanded in the radial direction. A load-side portion of the motor shaft 32 is inserted inside the ring member 72b. The contact member 72 is formed in the groove portion 32g of the motor shaft 32 by fitting the retaining ring 72a into the groove portion 32g of the motor shaft 32 and sandwiching the ring member 72b between the load side cover 44 and the retaining ring 72a. Retained. At this time, the contact member 72 is held in an axial position with respect to the motor shaft 32.

以上のモータ12を用いたピニオン軸34の組み付け方法を説明する。まず、第3実施形態と同様、モータ軸32にピニオン軸34が組み付けられていない半製品66を準備する。 A method of assembling the pinion shaft 34 using the above motor 12 will be described. First, as in the third embodiment, a semi-finished product 66 in which the pinion shaft 34 is not assembled to the motor shaft 32 is prepared.

続いて、当接部材72のリング部材72bの内側にモータ軸32の負荷側部分を入り込ませて、そのリング部材72bを負荷側カバー44の受け面64aに当接させるまで反負荷側に移動させる。この後、当接部材72の止め輪72aをモータ軸32の溝部32gに嵌め込み、モータ軸32に対する止め輪72a及びリング部材72b、つまり、当接部材72の軸方向での位置を保持させる。これにより、荷重伝達用構造40となる溝部32gを用いてモータ軸32のスラスト荷重Faをモータ軸32から負荷側カバー44に伝達可能な荷重伝達可能状態になる。 Subsequently, the load side portion of the motor shaft 32 is inserted into the ring member 72b of the contact member 72, and the ring member 72b is moved to the opposite load side until it comes into contact with the receiving surface 64a of the load side cover 44. .. After that, the retaining ring 72a of the contact member 72 is fitted into the groove portion 32g of the motor shaft 32 to hold the retaining ring 72a and the ring member 72b with respect to the motor shaft 32, that is, the positions of the contact member 72 in the axial direction. As a result, the thrust load Fa of the motor shaft 32 can be transmitted from the motor shaft 32 to the load side cover 44 by using the groove portion 32 g which is the load transmission structure 40.

続いて、モータ12の半製品66を荷重伝達可能状態にしたまま、モータ軸32の凹部32bにピニオン軸34の軸部34aを反負荷側に向けて圧入する。この後、当接部材72の止め輪72aを拡径させてモータ軸32の溝部32gから取り外した後、当接部材72のリング部材72bもモータ軸32から取り外す。 Subsequently, while the semi-finished product 66 of the motor 12 is in a load-transmissible state, the shaft portion 34a of the pinion shaft 34 is press-fitted into the recess 32b of the motor shaft 32 toward the counterload side. After that, the retaining ring 72a of the contact member 72 is enlarged in diameter and removed from the groove portion 32g of the motor shaft 32, and then the ring member 72b of the contact member 72 is also removed from the motor shaft 32.

これにより、モータ軸32の凹部32bにピニオン軸34を圧入するとき、モータ軸32に作用するスラスト荷重Faが負荷側カバー44に伝達され、反負荷側軸受38への負担を抑えられる。本実施形態では、モータ軸32の溝部32gから当接部材72を介して負荷側カバー44にスラスト荷重が伝達される。つまり、モータ軸32の荷重伝達用構造40から荷重伝達部材70を介して負荷側カバー44にスラスト荷重Faが伝達される。 As a result, when the pinion shaft 34 is press-fitted into the recess 32b of the motor shaft 32, the thrust load Fa acting on the motor shaft 32 is transmitted to the load side cover 44, and the load on the counterload side bearing 38 can be suppressed. In the present embodiment, the thrust load is transmitted from the groove 32g of the motor shaft 32 to the load side cover 44 via the contact member 72. That is, the thrust load Fa is transmitted from the load transmission structure 40 of the motor shaft 32 to the load side cover 44 via the load transmission member 70.

なお、第3実施形態では、負荷側カバー44に当接する当接部材72を保持する保持部が貫通穴32fであり、第4実施形態では、その保持部が溝部32gである例を説明した。この保持部はこれらに限定されるものではない。また、第4実施形態の当接部材72は、保持部となる溝部32gに嵌め込まれる第1部材が止め輪72aであり、負荷側カバー44の受け面64aと止め輪72aとの間に挟み込まれる第2部材がリング部材72bである例を説明した。この第1部材と第2部材の組み合わせは、止め輪72aとリング部材72bに限定されるものではない。たとえば、第1部材は、モータ軸32に保持部として形成される貫通穴に挿通される長尺体としてもよい。また、モータ軸32に保持部として雄ねじ部を形成しておき、その雄ねじ部に当接部材72としてのナット体を装着してもよい。 In the third embodiment, the holding portion for holding the contact member 72 that abuts on the load side cover 44 is the through hole 32f, and in the fourth embodiment, the holding portion is the groove portion 32g. This holding portion is not limited to these. Further, in the contact member 72 of the fourth embodiment, the first member fitted into the groove portion 32g serving as the holding portion is a retaining ring 72a, which is sandwiched between the receiving surface 64a of the load side cover 44 and the retaining ring 72a. An example in which the second member is the ring member 72b has been described. The combination of the first member and the second member is not limited to the retaining ring 72a and the ring member 72b. For example, the first member may be a long body inserted into a through hole formed as a holding portion in the motor shaft 32. Further, a male screw portion may be formed on the motor shaft 32 as a holding portion, and a nut body as a contact member 72 may be attached to the male screw portion.

(第5の実施の形態)
図6は、第5実施形態のモータ12を用いたピニオン軸34の組み付け工程を示す図である。前述の実施形態では、ピニオン軸34を圧入するときの反負荷側軸受38への負担を抑えるため、モータ12に荷重伝達用構造40を設ける例を説明した。本実施形態では、同様の目的のため、モータ12に荷重伝達用構造40を設ける代わりに、以下の構成を採用している。
(Fifth Embodiment)
FIG. 6 is a diagram showing an assembling step of the pinion shaft 34 using the motor 12 of the fifth embodiment. In the above-described embodiment, an example in which the load transmission structure 40 is provided in the motor 12 has been described in order to suppress the load on the counterload side bearing 38 when the pinion shaft 34 is press-fitted. In the present embodiment, for the same purpose, instead of providing the load transmission structure 40 in the motor 12, the following configuration is adopted.

図7は、図6のピニオン軸34周りの拡大図である。ピニオン軸34には、圧入ボルト74を負荷側から挿通するための挿通穴34cが形成される。圧入ボルト74は、後述のように、モータ軸32の凹部32bへのピニオン軸34の圧入に用いられる。挿通穴34cは、モータ軸32の軸方向に沿って形成される。挿通穴34cは、ピニオン軸34を軸方向に貫通し、軸方向の両側に向かって開口する。挿通穴34cは、圧入ボルト74の回転を伴わない軸方向での抜き差しを許容するキリ穴である。モータ軸32の凹部32bの底部には、圧入ボルト74をねじ込むためのタップ穴32hが形成される。タップ穴32hは、凹部32bの底面から反負荷側に向かって凹むように形成され、負荷側に向かって開口している。 FIG. 7 is an enlarged view around the pinion axis 34 of FIG. The pinion shaft 34 is formed with an insertion hole 34c for inserting the press-fit bolt 74 from the load side. The press-fitting bolt 74 is used for press-fitting the pinion shaft 34 into the recess 32b of the motor shaft 32, as will be described later. The insertion hole 34c is formed along the axial direction of the motor shaft 32. The insertion hole 34c penetrates the pinion shaft 34 in the axial direction and opens toward both sides in the axial direction. The insertion hole 34c is a drilled hole that allows the press-fitting bolt 74 to be inserted and removed in the axial direction without rotation. A tap hole 32h for screwing the press-fitting bolt 74 is formed at the bottom of the recess 32b of the motor shaft 32. The tap hole 32h is formed so as to be recessed from the bottom surface of the recess 32b toward the anti-load side, and is open toward the load side.

以上のモータ12を用いたピニオン軸34の組み付け方法を説明する。まず、第1実施形態と同様、モータ軸32にピニオン軸34が組み付けられていない半製品66を準備する。 A method of assembling the pinion shaft 34 using the above motor 12 will be described. First, as in the first embodiment, a semi-finished product 66 in which the pinion shaft 34 is not assembled to the motor shaft 32 is prepared.

続いて、ピニオン軸34の挿通穴34cに負荷側から圧入ボルト74を挿通し、挿通穴34cから反負荷側に向かって圧入ボルト74のねじ軸部74aの一部を突出させる。この状態で、図8(a)に示すように、圧入ボルト74のねじ軸部74aをモータ軸32の凹部32b内に挿通させ、そのねじ軸部74aをモータ軸32のタップ穴32hにねじ込ませる。ここで、圧入ボルト74のねじ軸部74aは、モータ軸32の凹部32bの負荷側開口部から底面までの軸方向での寸法Laより、ピニオン軸34の挿通穴34cからの突出寸法Lbが大きくなるように設定される。これにより、モータ軸32のタップ穴32hに圧入ボルト74のねじ軸部74aがねじ込まれるまで、モータ軸32の凹部32b内にピニオン軸34の軸部34aを圧入させずともよくなる。 Subsequently, the press-fitting bolt 74 is inserted into the insertion hole 34c of the pinion shaft 34 from the load side, and a part of the screw shaft portion 74a of the press-fitting bolt 74 is projected from the insertion hole 34c toward the counterload side. In this state, as shown in FIG. 8A, the screw shaft portion 74a of the press-fitting bolt 74 is inserted into the recess 32b of the motor shaft 32, and the screw shaft portion 74a is screwed into the tap hole 32h of the motor shaft 32. .. Here, the screw shaft portion 74a of the press-fitting bolt 74 has a larger protrusion dimension Lb from the insertion hole 34c of the pinion shaft 34 than the dimension La in the axial direction from the load side opening to the bottom surface of the recess 32b of the motor shaft 32. Is set to be. As a result, it is not necessary to press-fit the shaft portion 34a of the pinion shaft 34 into the recess 32b of the motor shaft 32 until the screw shaft portion 74a of the press-fit bolt 74 is screwed into the tap hole 32h of the motor shaft 32.

この後、図8(b)に示すように、圧入ボルト74にねじ締め方向の回転力Fcを付与し、その回転力Fcにより圧入ボルト74のねじ軸部74aをタップ穴32hにねじ込ませる。圧入ボルト74にねじ締め方向の回転力Fcを付与すると、圧入ボルト74のねじ軸部74aの雄ねじとタップ穴32hの雌ねじとの接触により、その回転力Fcが反負荷側に向かう圧入力Fdに変換される。この圧入力Fdは圧入ボルト74に作用しており、圧入ボルト74の頭部74bからピニオン軸34に付与される。この圧入力Fdがピニオン軸34に付与されることにより、モータ軸32の凹部32b内にピニオン軸34が圧入される。モータ軸32の凹部32b内にピニオン軸34が圧入された後、圧入ボルト74のねじ締め方向での回転量の増大に伴い、ピニオン軸34の凹部32bに対する圧入量が増大する。 After that, as shown in FIG. 8B, a rotational force Fc in the screw tightening direction is applied to the press-fitting bolt 74, and the screw shaft portion 74a of the press-fitting bolt 74 is screwed into the tap hole 32h by the rotational force Fc. When a rotational force Fc in the screw tightening direction is applied to the press-fitting bolt 74, the rotational force Fc is directed to the counterload side by contact between the male screw of the screw shaft portion 74a of the press-fitting bolt 74 and the female screw of the tap hole 32h. Will be converted. This press-fitting Fd acts on the press-fitting bolt 74, and is applied to the pinion shaft 34 from the head 74b of the press-fitting bolt 74. By applying this pressure input Fd to the pinion shaft 34, the pinion shaft 34 is press-fitted into the recess 32b of the motor shaft 32. After the pinion shaft 34 is press-fitted into the recess 32b of the motor shaft 32, the press-fit amount of the pinion shaft 34 into the recess 32b increases as the amount of rotation of the press-fit bolt 74 in the screw tightening direction increases.

モータ軸32の凹部32bの底面に当たるまでピニオン軸34を圧入させたら、圧入ボルト74をねじ締め方向と逆方向に回転させる。圧入ボルト74は、モータ軸32のタップ穴32hから圧入ボルト74のねじ軸部74aが抜け出るまで回転させる。この後、ピニオン軸34の挿通穴34cから圧入ボルト74のねじ軸部74aを抜き出す。なお、この他にも、圧入ボルト74は、タップ穴32hにねじ込んだままとしてもよいし、ピニオン軸34の挿通穴34cに他部材を用いて挿通した状態を保持してもよい。 After the pinion shaft 34 is press-fitted until it hits the bottom surface of the recess 32b of the motor shaft 32, the press-fitting bolt 74 is rotated in the direction opposite to the screw tightening direction. The press-fit bolt 74 is rotated until the screw shaft portion 74a of the press-fit bolt 74 comes out from the tap hole 32h of the motor shaft 32. After that, the screw shaft portion 74a of the press-fitting bolt 74 is pulled out from the insertion hole 34c of the pinion shaft 34. In addition to this, the press-fitting bolt 74 may be left screwed into the tap hole 32h, or may be held in a state of being inserted into the insertion hole 34c of the pinion shaft 34 by using another member.

ここで、モータ軸32のタップ穴32hには、圧入ボルト74をねじ込むとき、圧入ボルト74に作用する圧入力Fdの反力Feが作用する。この反力Feは、反負荷側(図中下側)に向かう圧入力Fdとは反対側の負荷側(図中上側)に向けて作用しており、圧入力Fdと相殺する。よって、本実施形態によれば、ピニオン軸34を圧入する場合に、ピニオン軸34からモータ軸32に作用する圧入力Fdが、圧入ボルト74からモータ軸32に作用する反力Feと相殺されることで、負荷側軸受36に作用するスラスト荷重Faを軽減できる。このため、本実施形態によっても、反負荷側軸受38への負担を抑えつつ、モータ軸32の凹部32bにピニオン軸34を圧入でき、モータ12の生産性の向上に役立たせることができる。 Here, when the press-fitting bolt 74 is screwed into the tap hole 32h of the motor shaft 32, the reaction force Fe of the press-fitting input Fd acting on the press-fitting bolt 74 acts. This reaction force Fe acts toward the load side (upper side in the figure) opposite to the pressure input Fd toward the counterload side (lower side in the figure), and cancels out with the pressure input Fd. Therefore, according to the present embodiment, when the pinion shaft 34 is press-fitted, the press-fitting Fd acting on the motor shaft 32 from the pinion shaft 34 is canceled by the reaction force Fe acting on the motor shaft 32 from the press-fitting bolt 74. As a result, the thrust load Fa acting on the load side bearing 36 can be reduced. Therefore, also in this embodiment, the pinion shaft 34 can be press-fitted into the recess 32b of the motor shaft 32 while suppressing the load on the bearing on the counterload side 38, which can be useful for improving the productivity of the motor 12.

また、本実施形態では、モータ軸32の凹部32b内にピニオン軸34を圧入するにあたり、前述の実施形態で説明した荷重受け部材64を不要にできる。また、本実施形態では、ピニオン軸34の挿通穴34cとモータ軸32のタップ穴32hを組み合わせた簡易な構成によって、モータ軸32の凹部32b内にピニオン軸34を容易に圧入できる。 Further, in the present embodiment, when the pinion shaft 34 is press-fitted into the recess 32b of the motor shaft 32, the load receiving member 64 described in the above-described embodiment can be eliminated. Further, in the present embodiment, the pinion shaft 34 can be easily press-fitted into the recess 32b of the motor shaft 32 by a simple configuration in which the insertion hole 34c of the pinion shaft 34 and the tap hole 32h of the motor shaft 32 are combined.

以上、本発明の実施形態の例について詳細に説明した。前述した実施形態は、いずれも本発明を実施するにあたっての具体例を示したものにすぎない。実施形態の内容は、本発明の技術的範囲を限定するものではなく、請求の範囲に規定された発明の思想を逸脱しない範囲において、構成要素の変更、追加、削除等の多くの設計変更が可能である。前述の実施形態では、このような設計変更が可能な内容に関して、「実施形態の」「実施形態では」等との表記を付して説明しているが、そのような表記のない内容に設計変更が許容されないわけではない。また、図面の断面に付したハッチングは、ハッチングを付した対象の材質を限定するものではない。 The examples of the embodiments of the present invention have been described in detail above. All of the above-described embodiments are merely specific examples for carrying out the present invention. The content of the embodiment does not limit the technical scope of the present invention, and many design changes such as changes, additions, and deletions of components are made without departing from the idea of the invention defined in the claims. It is possible. In the above-described embodiment, the contents that can be changed in such a design are described with the notations such as "in the embodiment" and "in the embodiment", but the contents are designed without such notations. It's not that changes aren't tolerated. Further, the hatching attached to the cross section of the drawing does not limit the material of the object to which the hatching is attached.

モータ12は減速機14と一体化される例を説明したが、減速機14と一体化されていなくともよい。減速機14の減速機構20は、振り分け型の偏心揺動減速機構を例に説明したが、その種類は特に限定されない。たとえば、単純遊星型の遊星歯車減速機構等でもよい。ピニオン軸34は、減速機14の減速機構20に回転動力を伝達する例を説明したが、被駆動装置に回転動力を伝達してもよい。 Although the example in which the motor 12 is integrated with the speed reducer 14 has been described, it does not have to be integrated with the speed reducer 14. The speed reduction mechanism 20 of the speed reducer 14 has been described by taking a distribution type eccentric swing speed reduction mechanism as an example, but the type thereof is not particularly limited. For example, a simple planetary planetary gear reduction mechanism or the like may be used. Although the example in which the pinion shaft 34 transmits the rotational power to the reduction mechanism 20 of the reduction gear 14 has been described, the rotational power may be transmitted to the driven device.

モータ12は第2反負荷側カバー48を備える例を説明したが、第2反負荷側カバー48を備えていなくともよい。この場合、第1実施形態で説明した効果を得るうえでは、荷重伝達用構造40となるモータ軸32の反負荷側端面32dが、第1反負荷側カバー46より反負荷側にある外部空間58に露出していればよい。また、第2実施形態で説明した効果を得るうえでは、モータ軸32の装着部に装着される突出部材が、第1反負荷側カバー46より反負荷側にある外部空間58に露出していればよい。 Although the example in which the motor 12 includes the second counterload side cover 48 has been described, the motor 12 may not include the second counterload side cover 48. In this case, in order to obtain the effect described in the first embodiment, the anti-load side end surface 32d of the motor shaft 32 serving as the load transmission structure 40 is located on the anti-load side of the first anti-load side cover 46, which is the external space 58. It suffices if it is exposed to. Further, in order to obtain the effect described in the second embodiment, the protruding member mounted on the mounting portion of the motor shaft 32 should be exposed to the external space 58 on the counterload side of the first counterload side cover 46. Just do it.

第1実施形態から第4実施形態で説明した荷重伝達用構造40や、第5実施形態で説明したピニオン軸34の挿通穴34cとモータ軸32のタップ穴32hとの組み合わせは、他の実施形態に記載のものと組み合わせられていてもよい。たとえば、第2実施形態で説明したように、モータ軸32の反負荷側端面32dに装着部を設けつつ、第3、第4実施形態で説明したような、モータ軸32の負荷側部分に保持部を設けてもよい。また、モータ軸32の反負荷側端面32dに装着部を設けつつ、第5実施形態で説明したような、ピニオン軸34の挿通穴34cとモータ軸32のタップ穴32hの組み合わせが用いられてもよい。 The load transmission structure 40 described in the first to fourth embodiments and the combination of the insertion hole 34c of the pinion shaft 34 and the tap hole 32h of the motor shaft 32 described in the fifth embodiment are other embodiments. It may be combined with the one described in. For example, as described in the second embodiment, the mounting portion is provided on the counterload side end surface 32d of the motor shaft 32, and is held by the load side portion of the motor shaft 32 as described in the third and fourth embodiments. A part may be provided. Further, even if the combination of the insertion hole 34c of the pinion shaft 34 and the tap hole 32h of the motor shaft 32 as described in the fifth embodiment is used while providing the mounting portion on the counterload side end surface 32d of the motor shaft 32. good.

モータ軸32の反負荷側端部32cの周りには回転角検出装置62が配置される例を説明した。回転角検出装置62の配置位置は特に限定されず、たとえば、モータケーシング30内に収容されていてもよい。また、モータ12は、回転角検出装置62を備えていなくともよい。また、回転角検出装置62は、ロータリーエンコーダを例に説明したが、その具体例は特に限定されず、たとえば、レゾルバ等でもよい。 An example in which the rotation angle detection device 62 is arranged around the counterload side end portion 32c of the motor shaft 32 has been described. The arrangement position of the rotation angle detection device 62 is not particularly limited, and may be housed in the motor casing 30, for example. Further, the motor 12 does not have to include the rotation angle detecting device 62. Further, the rotation angle detection device 62 has been described by taking a rotary encoder as an example, but the specific example thereof is not particularly limited, and for example, a resolver or the like may be used.

12…モータ、32…モータ軸、32a…負荷側端部、32b…凹部、32d…反負荷側端面、32h…タップ穴、34…ピニオン軸、34c…挿通穴、36…負荷側軸受、38…反負荷側軸受、40…荷重伝達用構造、44…負荷側カバー、46…第1反負荷側カバー、48…第2反負荷側カバー、58…外部空間、64…荷重受け部材、72…当接部材。 12 ... Motor, 32 ... Motor shaft, 32a ... Load side end, 32b ... Recess, 32d ... Non-load side end face, 32h ... Tap hole, 34 ... Pinion shaft, 34c ... Insert hole, 36 ... Load side bearing, 38 ... Anti-load side bearing, 40 ... load transmission structure, 44 ... load side cover, 46 ... first anti-load side cover, 48 ... second anti-load side cover, 58 ... external space, 64 ... load receiving member, 72 ... Contact member.

Claims (11)

負荷側端部に凹部を有するモータ軸と、
前記凹部内に押し込まれたピニオン軸と、
前記モータ軸を支持する負荷側軸受及び反負荷側軸受と、を備えたモータであって、
反負荷側に向けて前記モータ軸に作用するスラスト荷重を、前記負荷側軸受及び前記反負荷側軸受以外の荷重受け部材に伝達可能にするための荷重伝達用構造を備え、
前記反負荷側軸受を支持する第1反負荷側カバーを備え、
前記荷重伝達用構造は、前記第1反負荷側カバーより反負荷側にある外部空間に露出する前記モータ軸の反負荷側端面であり、
前記モータ軸の反負荷側端面を覆う第2反負荷側カバーを備え、
前記荷重伝達用構造となる前記モータ軸の反負荷側端面は、前記第2反負荷側カバーがないとき、前記第1反負荷側カバーより反負荷側にある外部空間に露出するモータ。
A motor shaft with a recess at the load side end,
The pinion shaft pushed into the recess and
A motor including a load-side bearing and a non-load-side bearing that support the motor shaft.
It is provided with a load transmission structure for allowing a thrust load acting on the motor shaft toward the counterload side to be transmitted to a load receiving member other than the load side bearing and the counterload side bearing.
A first counterload side cover for supporting the counterload side bearing is provided.
The load transmission structure is an end face on the anti-load side of the motor shaft exposed to an external space on the anti-load side of the first anti-load side cover.
A second counterload side cover that covers the counterload side end face of the motor shaft is provided.
A motor whose anti-load side end surface of the motor shaft having the load transmission structure is exposed to an external space on the anti-load side of the first anti-load side cover when the second anti-load side cover is not provided.
前記第2反負荷側カバーは、前記第1反負荷側カバーに着脱可能に取り付けられる請求項1に記載のモータ。 The motor according to claim 1, wherein the second counterload side cover is detachably attached to the first counterload side cover. 前記第2反負荷側カバーは、前記第1反負荷側カバーの反負荷側壁面にボルトにより取り付けられる請求項2に記載のモータ。 The motor according to claim 2, wherein the second counterload side cover is attached to the counterload side wall surface of the first counterload side cover with bolts. 前記反負荷側軸受は、前記モータ軸に締まり嵌めにより固定される請求項1〜3のいずれかに記載のモータ。 The motor according to any one of claims 1 to 3, wherein the counterload side bearing is fixed to the motor shaft by tightening and fitting. 前記反負荷側軸受は、前記第1反負荷側カバーに隙間嵌めにより嵌め込まれる請求項1〜4のいずれかに記載のモータ。 The motor according to any one of claims 1 to 4, wherein the counterload side bearing is fitted into the first counterload side cover by gap fitting. 前記モータ軸の反負荷側端部には、冷却ファンが装着されていない請求項1〜5のいずれかに記載のモータ。 The motor according to any one of claims 1 to 5, wherein a cooling fan is not mounted on the opposite end of the motor shaft. 前記モータ軸の反負荷側端面は、前記第1反負荷側カバーより反負荷側に突出する請求項1〜6のいずれかに記載のモータ。 The motor according to any one of claims 1 to 6, wherein the end face on the counterload side of the motor shaft projects to the counterload side from the first counterload side cover. 請求項1に記載のモータの製造方法であって、
前記第2反負荷側カバーが取り付けられていない状態において、前記第1反負荷側カバーより反負荷側にある外部空間に露出する前記モータ軸の反負荷側端面を前記外部空間に配置された荷重受け部材に当接させた状態で、前記凹部に前記ピニオン軸を圧入する圧入工程を有するモータの製造方法。
The method for manufacturing a motor according to claim 1.
When the second anti-load side cover is not attached, the load is such that the anti-load side end face of the motor shaft exposed to the external space on the anti-load side of the first anti-load side cover is arranged in the external space. A method for manufacturing a motor, which comprises a press-fitting step of press-fitting the pinion shaft into the recess in a state of being in contact with a receiving member.
前記圧入工程は、少なくともステータ、ロータ、前記モータ軸、前記負荷側軸受、前記反負荷側軸受及び前記第1反負荷側カバーがモータケーシングに組み付けられた状態で行われる請求項8に記載のモータの製造方法。 The motor according to claim 8, wherein the press-fitting step is performed in a state where at least the stator, the rotor, the motor shaft, the load side bearing, the counterload side bearing, and the first counterload side cover are assembled to the motor casing. Manufacturing method. 前記圧入工程は、前記モータに減速機のケーシング部材が組み付けられた状態で、当該ケーシング部材の内部に配置したプレス用金型を用いて圧入する請求項8または9に記載のモータの製造方法。 The method for manufacturing a motor according to claim 8 or 9, wherein the press-fitting step is performed by using a press die arranged inside the casing member in a state where the casing member of the speed reducer is assembled to the motor. 前記圧入工程を行った後に、前記第2反負荷側カバーを前記第1反負荷側カバーに取り付けるカバー取付工程を有する請求項8〜10のいずれかに記載のモータの製造方法。 The method for manufacturing a motor according to any one of claims 8 to 10, further comprising a cover attaching step of attaching the second counterload side cover to the first counterload side cover after performing the press-fitting step.
JP2021104591A 2017-03-13 2021-06-24 Motor and motor manufacturing method Active JP7149381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021104591A JP7149381B2 (en) 2017-03-13 2021-06-24 Motor and motor manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017047482A JP6905359B2 (en) 2017-03-13 2017-03-13 How to assemble the motor and pinion shaft
JP2021104591A JP7149381B2 (en) 2017-03-13 2021-06-24 Motor and motor manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017047482A Division JP6905359B2 (en) 2017-03-13 2017-03-13 How to assemble the motor and pinion shaft

Publications (2)

Publication Number Publication Date
JP2021145546A true JP2021145546A (en) 2021-09-24
JP7149381B2 JP7149381B2 (en) 2022-10-06

Family

ID=63259217

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017047482A Active JP6905359B2 (en) 2017-03-13 2017-03-13 How to assemble the motor and pinion shaft
JP2021104591A Active JP7149381B2 (en) 2017-03-13 2021-06-24 Motor and motor manufacturing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017047482A Active JP6905359B2 (en) 2017-03-13 2017-03-13 How to assemble the motor and pinion shaft

Country Status (3)

Country Link
JP (2) JP6905359B2 (en)
CN (1) CN108574366B (en)
DE (1) DE102018105194B4 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6905359B2 (en) 2017-03-13 2021-07-21 住友重機械工業株式会社 How to assemble the motor and pinion shaft
JP2021048660A (en) * 2019-09-17 2021-03-25 株式会社ニッセイ Motor and assembly method for press-fit member
JP7114553B2 (en) * 2019-11-12 2022-08-08 オリエンタルモーター株式会社 Fastening structure and method for motor and pinion gear
CN111371246B (en) * 2020-03-09 2021-07-09 贵州航天林泉电机有限公司 Air-cooled structure electric drive assembly for track inspection vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63174831A (en) * 1987-01-16 1988-07-19 Daido Metal Kogyo Kk Press fitting method for bush or bearing and tool thereof
JPH01183330A (en) * 1988-01-18 1989-07-21 Fuji Elelctrochem Co Ltd Device for forcing gear onto shaft end of motor
JPH07274436A (en) * 1994-03-31 1995-10-20 Suzuki Motor Corp Driving arrangement for motor car
JP2005240416A (en) * 2004-02-26 2005-09-08 Nidec-Shimpo Corp Sheet-shutter driving device
JP2008148480A (en) * 2006-12-12 2008-06-26 Nippon Densan Corp Motor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3434366A (en) 1967-05-29 1969-03-25 Emerson Electric Co Modular drive and gear reduction unit
JPS5914343A (en) * 1982-07-16 1984-01-25 Toshiba Corp Rotational shaft press-fitting device
JP2716237B2 (en) * 1990-02-27 1998-02-18 ファナック株式会社 Motor balance structure
US7830062B2 (en) * 2006-12-12 2010-11-09 Nidec Corporation Motor having round and angular coils
JP5063722B2 (en) * 2010-03-19 2012-10-31 三菱電機株式会社 Electric drive device and electric power steering device equipped with the same
JP5327724B2 (en) * 2010-11-11 2013-10-30 株式会社安川電機 Rotating electric machine, robot, manufacturing method of rotating electric machine, hollow shaft
DE102011090128B4 (en) * 2011-12-29 2020-11-26 Seg Automotive Germany Gmbh Electric machine and method for its assembly
JP5948882B2 (en) * 2012-01-17 2016-07-06 株式会社ジェイテクト Manufacturing method of electric motor
CN203406744U (en) * 2013-08-23 2014-01-22 叶建丰 Rotary encoder used for motor
JP2016063599A (en) * 2014-09-17 2016-04-25 ナブテスコ株式会社 Motor with reduction gear
JP6382167B2 (en) 2015-08-31 2018-08-29 瓜生製作株式会社 Impact tool
CN205992839U (en) * 2016-08-28 2017-03-01 宜昌博远电子有限公司 Universal conventional table tool for micro-motor rotor processing
JP6905359B2 (en) 2017-03-13 2021-07-21 住友重機械工業株式会社 How to assemble the motor and pinion shaft

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63174831A (en) * 1987-01-16 1988-07-19 Daido Metal Kogyo Kk Press fitting method for bush or bearing and tool thereof
JPH01183330A (en) * 1988-01-18 1989-07-21 Fuji Elelctrochem Co Ltd Device for forcing gear onto shaft end of motor
JPH07274436A (en) * 1994-03-31 1995-10-20 Suzuki Motor Corp Driving arrangement for motor car
JP2005240416A (en) * 2004-02-26 2005-09-08 Nidec-Shimpo Corp Sheet-shutter driving device
JP2008148480A (en) * 2006-12-12 2008-06-26 Nippon Densan Corp Motor

Also Published As

Publication number Publication date
CN108574366A (en) 2018-09-25
JP6905359B2 (en) 2021-07-21
JP7149381B2 (en) 2022-10-06
DE102018105194B4 (en) 2022-10-13
CN108574366B (en) 2021-01-15
JP2018152998A (en) 2018-09-27
DE102018105194A1 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
JP2021145546A (en) Motor and manufacturing method of motor
JP5440227B2 (en) Hollow reducer built-in actuator
CN107524761B (en) Speed reducer and actuator
JP5984606B2 (en) Wave gear unit with input bearing
JP5816584B2 (en) Power transmission device
US8598755B2 (en) Electric rotary actuator
EP2562438A2 (en) Shaft coupling structure and steering system
KR101927490B1 (en) Hollow wave gear unit
JP2012144181A (en) Steering device
CN105691185B (en) Hub drive assembly
JP6078486B2 (en) Case structure of drive unit
WO2018116739A1 (en) Rotational drive source for electrical actuator, and electrical actuator
KR101786197B1 (en) Motor with reducer
JP2016136822A (en) Drive unit
CN111828554A (en) Rotary actuator
JP2016016479A (en) Joint driving device
JP2016156436A (en) Speed reduction device
JP2011144858A (en) Power transmission device and assembling method thereof
JP2011149513A (en) Power transmission device
JP2010286011A (en) Power transmission device
JP2010236598A (en) Ball screw device
JP2013181638A (en) Power transmission device
JP5120352B2 (en) Rotating linear motion conversion mechanism and nut
JP2011179653A (en) Two-stage planetary gear type reduction gear
JP2009068507A (en) Reduction gear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220926

R150 Certificate of patent or registration of utility model

Ref document number: 7149381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150