JP2021086681A - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
JP2021086681A
JP2021086681A JP2019213200A JP2019213200A JP2021086681A JP 2021086681 A JP2021086681 A JP 2021086681A JP 2019213200 A JP2019213200 A JP 2019213200A JP 2019213200 A JP2019213200 A JP 2019213200A JP 2021086681 A JP2021086681 A JP 2021086681A
Authority
JP
Japan
Prior art keywords
positive electrode
insulating layer
active material
negative electrode
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019213200A
Other languages
English (en)
Other versions
JP7253147B2 (ja
Inventor
大樹 加藤
Daiki Kato
大樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019213200A priority Critical patent/JP7253147B2/ja
Priority to US17/068,873 priority patent/US11777101B2/en
Priority to KR1020200132025A priority patent/KR102506723B1/ko
Priority to CN202011190820.3A priority patent/CN112864546B/zh
Priority to DE102020130701.2A priority patent/DE102020130701B4/de
Publication of JP2021086681A publication Critical patent/JP2021086681A/ja
Application granted granted Critical
Publication of JP7253147B2 publication Critical patent/JP7253147B2/ja
Priority to US18/454,175 priority patent/US20230395807A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

【課題】電極間の短絡をより適切に抑制することができる新しい構成の非水電解質二次電池を提供すること。【解決手段】ここに開示される非水電解質二次電池1は、正極30と、負極40と、非水電解質とを備える。正極30は、正極集電体32と、正極集電体32の表面の一部に備えられ、正極活物質を含む正極活物質層34と、正極集電体32の表面の他の一部に備えられ、無機フィラーを含む絶縁層36と、を備え、負極40は、負極集電体42と、負極集電体42の表面の一部に備えられ、負極活物質を含む負極活物質層44と、を備える。絶縁層36は、正極活物質層34の端部に沿って配置された第1絶縁層36aと、第1絶縁層36aとは離間した位置であって、負極活物質層44の端部と対向する位置に形成された第2絶縁層36bと、を含む。【選択図】図3

Description

本発明は、非水電解質二次電池に関する。
非水電解質二次電池は、軽量で高いエネルギー密度が得られることから、ポータブル電源や車両搭載用の高出力電源等として好ましく用いられている。この非水電解質二次電池では、正極と負極とがセパレータ等で絶縁された構成の蓄電要素が積層されて、一つの電池ケース内に収容されている。ここで非水電解質二次電池においては、負極での電解質イオンの析出を抑制するために、負極の活物質層が正極の活物質層よりも幅方向で寸法が広くなるように設計され得る。
特開2017−143004号公報
ところで、この種の非水電解質二次電池においては、正極と負極との短絡をより確実に抑制するために、電極の集電体の表面から電極活物質層の端部にオーバーラップするように、絶縁層を設けることが提案されている(例えば特許文献1参照)。特許文献1には、絶縁層が、製造時のペースト乾燥によって表面または内部に形成される微細なクラックを溝部として備えることで、当該溝部の肉厚が薄くなり、他の部分よりも柔軟となって、絶縁層に物理的な負荷が作用した場合でも正極活物質層の端部および絶縁層の脱落を抑制できることが開示されている。しかしながら、クラックが存在していても脱離や短絡が抑制されるような絶縁層は、ある程度多量のバインダを含んだり、ある程度の厚みを要したり、特定種のバインダを含んだりする必要があり得る。
本出願は、かかる事情に鑑みてなされたものであり、その目的は、電極間の短絡をより適切に抑制することができる新しい構成の非水電解質二次電池を提供することである。
本発明者らの検討によると、上記特許文献1に開示された非水電解質二次電池の構成において、正負極間の短絡が懸念される箇所に亘って上記絶縁層を備えると、コストおよび製造時間(例えば乾燥時間)の長大化等の面で改善の余地があることを知見した。そこで、かかる課題を解決するものとして、ここに開示される技術は、新しい構成の非水電解質二次電池を提供する。
すなわち、ここに開示される非水電解質二次電池は、正極と、前記正極と対向している負極と、非水電解質とを備えている。前記正極は、正極集電体と、前記正極集電体の表面の一部に備えられ、正極活物質を含む正極活物質層と、前記正極集電体の表面の他の一部に備えられ、無機フィラーを含む絶縁層と、を備える。前記負極は、負極集電体と、前記負極集電体の表面の一部に備えられ、負極活物質を含む負極活物質層と、を備える。そして前記絶縁層は、前記正極活物質層の端部に沿って配置された第1絶縁層と、前記第1絶縁層とは離間した位置であって、前記負極活物質層の端部と対向する位置に形成された第2絶縁層と、を含む。
上記構成によると、絶縁層は、正極活物質層の端部に沿う位置と、負極活物質層の端部に対向する位置と、に分けて形成されている。これにより、正極活物質層の分解に伴う短絡の発生を抑制すると共に、正極と負極との短絡が生じやすい位置に適切に絶縁層を配置することができる。加えて、過剰に絶縁層を設けることをしないため、電池抵抗の上昇や体積容量率の低下を抑制することもできる。
本技術に係る非水電解質二次電池の好適な一態様において、前記第2絶縁層の平均厚みは、負極集電体の厚み以上である。このような構成によると、第2絶縁層によって、負極切断時に発生し得る負極集電体のバリによる短絡を、好適に抑制することができる。
本技術に係る非水電解質二次電池の好適な一態様において、前記第1絶縁層は、前記正極集電体と前記正極活物質層の端部との間に入り込むとともに、前記端部を覆うように形成されている。このような構成によると、正極活物質層の端部において電流が集中し、正極活物質が分解されるなどして短絡が発生することを未然に抑制することができるために好ましい。
本技術に係る非水電解質二次電池の好適な一態様では、前記負極の前記第2絶縁層と対向する側の端部は、切断面により構成されている。ここに開示される二次電池の構成によると、上述の通り、負極活物質層の角部だけでなく、負極集電体のバリに起因して発生する短絡をも好適に抑制することができる。したがって、本構成は、負極の端部が切断面によって構成されている電池に適用すると、その効果が顕著に表れ得るために好ましい。
以上の非水電解質二次電池の構成は、過充電時の安全性と低抵抗とをバランスよく実現しうることから、例えば、正極と負極とを含む発電要素が複数積層された積層構造を有する大容量の電池に採用された際に、特にその効果が顕著に発現される。また例えば、ハイレートで大電流を繰り返し充放電する、電池自体の充放電により高温になりやすい用途の二次電池にも好適に適用することができる。さらに、ヒトが密接に使用し高い安全性が要求される用途の二次電池にも好適に適用することができる。したがって、ここに開示される非水電解質二次電池は、例えば車両の駆動用電源(主電源)や、中でもハイブリッド自動車やプラグインハイブリッド自動車等の駆動用電源等として特に好適に利用することができる。
一実施形態に係る非水電解質二次電池の構成を模式的に示す切欠き斜視図である。 捲回型電極体の構成を説明する部分展開図である。 一実施形態に係る非水電解質二次電池の絶縁層の配置を説明する要部断面図である。 第1絶縁層の構成を説明する断面模式図である。 一実施形態にかかる正極の製造工程を説明する模式図である。 (a)ダイコータと、(b)シム板と、(c)正極との関係を説明する模式図である。
以下、ここに開示される非水電解質二次電池の一実施形態について説明する。なお、本明細書において特に言及している事項(例えば、絶縁層の配置等)以外の事柄であって本発明の実施に必要な事柄(例えば、本発明を特徴付けない二次電池の構造等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、下記に示す図面における寸法関係(長さ、幅、厚さ等)は必ずしも実際の寸法関係を反映するものではない。そして本明細書において数値範囲を示す「A〜B」との表記は、「A以上」「B以下」を意味し、一例では「好ましくはAよりも大きく」「好ましくはBよりも小さい」ことを包含する。
本明細書において「非水電解質二次電池」とは、電荷担体として非水電解質を用い、正負極間の電荷担体の移動に伴って繰り返しの充放電が可能な電池一般をいう。非水電解質二次電池における電解質は、例えば、非水電解液、ゲル状電解質、固体電解質のいずれであってもよい。このような非水電解質二次電池には、一般にリチウムイオン電池やリチウム二次電池等と称される電池の他、リチウムポリマー電池、リチウムイオンキャパシタ等が包含される。以下、これに限定するものではないが、非水電解液二次電池がリチウムイオン二次電池である場合を例にして、ここに開示される技術について説明する。
[リチウムイオン二次電池]
図1は、一実施形態に係るリチウムイオン二次電池(以下、単に「二次電池」等という。)1の構成を示す切欠き斜視図である。図2は捲回型電極体20の構成を説明する部分展開図である。図3は、電極体20の要部断面図である。図面中の符号H、Yは、電極の厚み方向、幅方向を意味するものとする。また、幅方向Yのうち、幅方向の中心に向かう方向をY1とし、反対(幅方向の端部側)に向かう方向をY2という場合がある。ただし、これらの方向は、説明の便宜上定めた方向に過ぎず、リチウムイオン二次電池の設置形態を何ら限定するものではない。
リチウムイオン二次電池1は、扁平形状の捲回型電極体20と、図示しない非水電解質と、扁平な角型の電池ケース10と、を備えている。電池ケース10は、捲回型電極体20と非水電解質とを収容する外装容器である。電池ケース10の材質としては、例えば、アルミニウム等の軽量で熱伝導性の良い金属材料が好適である。電池ケース10は、開口を有する有底直方体状のケース本体11と、この開口を塞ぐ蓋部材(封口板)12と、を備えている。蓋部材12は、矩形の板状部材である。蓋部材12からは、外部接続用の正極端子38と負極端子48とがケースの外方に向けて突出している。
捲回電極体20は、帯状の正極30と帯状の負極40とが、帯状のセパレータ50によって絶縁された状態で積層され、長手方向に直交する幅方向を捲回軸WLとして捲回されて構成されている。捲回型電極体20は扁平形状であり、幅方向Yの断面において長円形状を有している。なお、図1の電池ケース10の幅方向は、捲回型電極体20の捲回軸WLと一致する方向である。
正極30は、正極集電体32と、正極活物質層34と、絶縁層36とを備えている。
正極集電体32は、その表面に正極活物質層34および絶縁層36を保持している。正極集電体32は、正極活物質層34および絶縁層36を保持しない、その他の領域(以下、非塗工部という。)を有する。正極活物質層34は、正極活物質を含む多孔質体であり、電解液を含浸し得る。正極活物質は、電荷担体であるリチウムイオンを、電解液に放出したり、電解液から吸蔵する。正極活物質層34は、正極集電体32の表面(片面または両面)の一部に備えられる。正極集電体32は、正極活物質層34に電荷を供給したり回収したりするための部材である。正極集電体32は、電池内の正極環境において電気化学的に安定であり、導電性の良好な金属(例えばアルミニウム、アルミニウム合金、ニッケル、チタン、ステンレス鋼等)からなる導電性部材により好適に構成される。
正極活物質層34は、典型的には、粉末状の正極活物質が導電材と共にバインダ(結着剤)により互いに結合されるとともに、正極集電体32に接合されている。正極活物質としては、従来からリチウムイオン二次電池の正極活物質として用いられる各種の材料を特に制限なく使用することができる。好適例として、リチウムニッケル酸化物(例えばLiNiO)、リチウムコバルト酸化物(例えばLiCoO)、リチウムマンガン酸化物(例えばLiMn)や、これらの複合体(例えば、LiNi0.5Mn1.5、LiNi1/3Co1/3Mn1/3)等の、リチウムと遷移金属元素とを構成金属元素として含む酸化物(リチウム遷移金属酸化物)の粒子や、リン酸マンガンリチウム(LiMnPO)、リン酸鉄リチウム(LiFePO)等の、リチウムと遷移金属元素とを構成金属元素として含むリン酸塩の粒子等が挙げられる。このような正極活物質層34は、例えば、正極活物質と導電材とバインダ(例えば、メタクリル酸エステル重合体等のアクリル系樹脂、ポリフッ化ビニリデン(PVdF)等のハロゲン化ビニル樹脂、ポリエチレンオキサイド(PEO)等のポリアルキレンオキサイド等)とを適当な分散媒(例えばN−メチル−2−ピロリドン)に分散させてなる正極ペーストを、正極集電体32の表面に供給した後、乾燥して分散媒を除去することにより作製することができる。導電材を含む構成においては、導電材として、例えば、カーボンブラック(典型的にはアセチレンブラック、ケッチェンブラック)、活性炭、黒鉛、炭素繊維等の炭素材料を好適に用いることができる。これらはいずれか1種を単独で、あるいは2種以上を組み合わせて用いてもよい。
図4に示すように、正極活物質層34は、断面視において、正極活物質層34の表面が平坦で厚みがほぼ均一な平坦領域A1と、端部Eに向かうにつれて正極活物質層34の表面が集電体32に向けて湾曲している端部領域A2とを有する。平坦領域A1は、正極集電体22の表面に形成されている。平坦領域A1は、正極集電体22の表面に接している。特に限定されるものではないが、平坦領域A1の平均厚みは、概ね10〜200μm、典型的には20〜150μm、例えば40〜100μmであってもよい。平坦領域A1は、ここでは正極活物質層34の幅方向Yの中心を含んでいる。平坦領域A1は、幅方向Yに幅Lmを有している。
端部領域A2は、平坦領域A1からY2方向に延びている。端部領域A2は、全体が集電体32の表面に形成されていてもよい。幾つかの形態では、端部領域A2は、少なくとも一部が後述する第1絶縁層36aの表面に形成されていてもよい。図4に示す端部領域A2は、一部が第1絶縁層36aの上に積層されている。端部領域A2は、ここでは正極集電体32の表面から第1絶縁層36aの表面に亘って形成されている。端部領域A2は、幅方向Yに幅Leを有している。幅Leは、通常、平坦領域A1の幅Lmよりも短い。特に限定されるものではないが、幅Leは、概ね10μm以上、典型的には20〜10000μm、例えば30〜5000μm、さらには50〜500μmであってもよい。端部領域A2は、断面視において、正極集電体22のY2方向の端部に近づくにつれて厚みが連続的に減少する傾斜面S1と、傾斜面S1とは逆に、正極集電体22のY1方向の端部に近づくにつれて厚みが連続的に減少する傾斜面S2と、を有している。傾斜面S1は、典型的には少なくとも一部が第1絶縁層36aによって覆われている。傾斜面S2が存在する構成では、傾斜面S2は、第1絶縁層36aによって全体が覆われている。端部領域A2は、平面視において露出されない。
絶縁層36は、無機フィラーとバインダとを含み、電気絶縁性を備える。このような絶縁層36は、典型的には、無機フィラーがバインダによって、互いに、また正極集電体32に結着されることで形成される。絶縁層36は、電荷担体の通過を可能とする多孔質な層であってよい。絶縁層36は、例えば図2,3等に示されるように、第1絶縁層36aと、第2絶縁層36bと、を含む。第1絶縁層36aは、正極活物質層34の端部に沿って配置される。第1絶縁層36aは、正極活物質層34の非塗工部32Aが設けられる側(すなわち、Y2方向)の端部に沿って配置される。第2絶縁層36bは、第1絶縁層36aとは離間した位置に設けられる。換言すると、第1絶縁層36aと第2絶縁層36bとの間には、非塗工部32Aが設けられている。また、第2絶縁層36bの正極活物質層34および第1絶縁層36aとは異なる側(すなわち、Y2方向)には、非塗工部32Aが設けられている。第2絶縁層36bは、対向する負極40の負極活物質層44の端部に向かい合う位置に形成されている。
第1絶縁層36aは、図4に示すように、幅方向に所定の幅Lcで形成されている。幅Lcは、正極活物質層の端部Eと、第1絶縁層36aのY2方向の端部の間の距離である。第1絶縁層36aは、幅方向において、正極活物質層34と非塗工部32Aとの境界部に位置している。第1絶縁層36aは、微視的には、例えば図4に示すように、正極集電体32と正極活物質層34の端部Eとの間に入り込んでいてもよい。また、第1絶縁層36aは、正極活物質層34の傾斜面S1の少なくとも一部を覆うように、その一部が正極活物質層34の上面を覆うように配置されてもよい。いくつかの例では、例えば図4に示すように、第1絶縁層36aは、正極活物質層34の傾斜面S1の全部を覆っていてもよい。また、端部領域A2においては、例えば、正極集電体32に近い側から、正極集電体32と傾斜表面S2との間に入り込んだ第1絶縁層36aと、正極活物質層34の端部領域A2と、傾斜面S1の上に重ねられた絶縁層26と、が積層された重畳部Bが構成されていてもよい。重畳部Bは、ここでは上下3層構造を有している。積重部Bの幅は、正極集電体32と正極活物質層34との間に第1絶縁層36aが入り込んだ寸法Lbである。積重部Bの最大厚みは、平坦領域A1の平均厚みと同じかそれよりも小さいとよい。
第2絶縁層36bは、図3に示すように、第1絶縁層36aとは幅方向Yで離間して配置されている。第2絶縁層36bは、負極30のY2方向の端部X(以下、点Xという場合がある。)よりもY1方向の側とY2方向の側に架かるように位置している。第2絶縁層36bは、幅方向の両側を、非塗工部32Aによって挟まれている。このように、正極30は、幅方向Yに沿って、正極活物質層34、第1絶縁層36a、非塗工部32A、第2絶縁層36b、および、非塗工部32Aが、この順に連続して配置されている。
ここで、これに限定されるものではないが、第1絶縁層36aの幅Lcは、正極活物質層34の端部Eと、負極30のY2方向の端部Xと、の間の距離をLdとすると、20%Ld以上であるとよい。幅Lcは、後述する第2絶縁層36bの寸法との関係もあるが、25%Ld以上であってもよいし、30%Ld以上であってもよい。ただし、後述する第2絶縁層36bの寸法との関係によっては、おおよそ60%Ld以下であることが適切であり、50%Ld以下であってよく、40%Ld以下や30%Ld以下、さらには25%LD以下であってもよい。
また、第1絶縁層36aと第2絶縁層36bとの間の離間距離は、10%Ld以上が適切であり、20%Ld以上であってよく、さらには30%Ld以上や、40%Ld以上、50%Ld以上であってもよい。しかしながら、第1絶縁層36aおよび第2絶縁層36bの寸法の関係から、離間距離は60%Ld以下とすることが適当である。
第2絶縁層36bの端部XからY1方向に向かう部分の寸法L1は、これに限定されるものではないが、20%Ld以上であるとよい。寸法L1は、前述の第1絶縁層36aの寸法や離間距離との関係もあるが、25%Ld以上であってもよいし、30%Ld以上であってもよい。ただし、第1絶縁層36aの寸法や離間距離を考慮すると、おおよそ60%Ld以下であることが適切であり、50%Ld以下であってよく、40%Ld以下や30%Ld以下、さらには25%Ld以下であってもよい。
また、第2絶縁層36bの端部XからY2方向に向かう部分の寸法L2は、これに限定されるものではないが、20%Ld以上であるとよい。寸法L2は、二次電池1の抵抗を低減する観点や、集箔不良を低減する観点等からは、短い方が好ましい。かかる観点において、寸法L2は、50%Ld以下であるとよく、40%Ld以下や、30%Ld以下であることが適切である。
このような絶縁層36を構成する無機フィラーとしては、600℃以上、典型的には700℃以上、例えば900℃以上の温度で軟化や溶融をせず、正負極間の絶縁を維持し得る程度の耐熱性、電気化学的安定性を備える材料を用いることができる。典型的には、上記の耐熱性および絶縁性を備える無機材料、ガラス材料、およびこれらの複合材料などにより構成することができる。このような無機フィラーとしては、具体的には、アルミナ(Al)、マグネシア(MgO)、シリカ(SiO)、チタニア(TiO)等の無機酸化物、窒化アルミニウム、窒化ケイ素等の窒化物、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム等の金属水酸化物、マイカ、タルク、ベーマイト、ゼオライト、アパタイト、カオリン等の粘土鉱物、ガラス材料等が挙げられる。なかでも、無機フィラーとしては、品質が安定しているうえに安価で入手が容易なベーマイト(Al・HO)、アルミナ(Al)、シリカ(SiO)等を用いるのが好ましく、適切な硬度を備えるベーマイトがより好ましい。これらはいずれか1種を単独で含んでもよいし、2種以上を組み合わせて含んでもよい。
絶縁層36に含まれるバインダとしては、例えば上記正極活物質層に用いることができる各種のバインダを好ましく用いることができる。中でも、バインダとしては、複数の正極集電体32を束ねて集電するときの柔軟性を絶縁層36に付与しつつ、適切な厚みの絶縁層36を好適に形成するとの観点から、ポリフッ化ビニリデン(PVdF)等のハロゲン化ビニル樹脂を好ましく用いることができる。絶縁層36に含まれるバインダの割合は、例えば、典型的には1質量%以上であり、5質量%以上が好ましく、8質量%以上や10質量%以上などであってよい。絶縁層36に含まれるバインダは、例えば、典型的には30質量%以下であり、25質量%以下であってよく、20質量%以下や、18質量%以下、15質量%以下であってよい。代表的な一例として、5〜20質量%で適宜調整するとよい。なお、このような絶縁層36は、目付量がおおよそ0.5mg/cm以上、0.7mg/cm以上、1mg/cm以上などであるとよく、1.5mg/cm以下、1.3mg/cm以下、1.2mg/cm以下などであるとよい。
絶縁層36は、例えば、二次電池1が150℃の高温環境に晒された場合であっても、正極集電体32と負極活物質層44との短絡を防止できるように構成されているとよい。かかる観点から、絶縁層36の厚みは、3μm以上が好ましく、例えば4μm以上がより好ましい。ここで、発明者の知見によると、正極30と負極40との間の短絡は、正極集電体32と負極活物質層44との短絡に限定されない。例えば、正極集電体32は一般に軟質のアルミニウム箔を使用することから、その切断時にはバリ発生しにくい。これに対し、負極集電体42として多用されている銅箔は、切断時に、厚み方向に沿って比較的高さの高いバリを発生し得る。そして、この負極集電体42のバリは、過充電時に局所的に電流が集約されて高電位領域を形成し、電解液やセパレータ、近傍の正極活物質などを変質させたり分解し得る。したがって、第2絶縁層36bは、かかる負極集電体42のバリによる悪影響を解消しうるような厚みであることが望ましい。なお、発明者の他の知見によると、この種の負極集電体42のバリは、負極集電体42自体の厚みよりも高く形成されることは殆どない。かかる観点から、第2絶縁層36b(絶縁層36であってよい)の厚みは、負極集電体42の厚み以上であることが好ましい。なお、過剰に厚みの厚い第2絶縁層36b(絶縁層36であってよい)は、直接的にコストの増大や、単位重量あたりの容量密度の低下を招くなどの観点から好ましくない。かかる観点から、絶縁層36の厚みは、典型的には20μm以下、例えば18μm以下、15μm以下、10μm以下(例えば10μm未満)等であってよく、8μm以下としてもよい。
無機フィラーの平均粒子径については特に制限されない。上記の厚みの絶縁層36を好適に形成するとの観点から、典型的には平均粒子径が3μm以下であり、2μm以下が好ましく、例えば1μm以下である。しかしながら、微細すぎる無機フィラーはハンドリング性や均一分散性が劣るために好ましくない。したがって、無機フィラーの平均粒子径は、典型的には0.05μm以上であり、好ましくは0.1μm以上であり、例えば0.2μm以上である。この平均粒子径は、正極活物質等と同様、レーザ回折散乱法によって得られる体積基準の粒度分布における累積50%粒子径である。
負極40は、負極集電体42上に負極活物質層44が備えられることで構成されている。負極集電体42には、集電のために負極活物質層44が形成されず、負極集電体42が露出している非塗工部42Aが設けられている。負極活物質層44は負極活物質を含む。典型的には、粒子状の負極活物質がバインダ(結着剤)により互いに結合されるとともに、負極集電体42に接合された形態であり得る。負極活物質は、充放電に伴い電荷担体であるリチウムイオンを電解液から吸蔵し、また、電解液に放出する。負極活物質としては、従来からリチウムイオン二次電池の負極活物質として用いられる各種の材料を特に制限なく使用することができる。好適例として、人造黒鉛、天然黒鉛、アモルファスカーボンおよびこれらの複合体(例えばアモルファスカーボンコートグラファイト)等に代表される炭素材料、あるいは、シリコン(Si)等のリチウムと合金を形成する材料、これらのリチウム合金(例えば、LiM、Mは、C、Si、Sn、Sb、Al、Mg、Ti、Bi、Ge、PbまたはP等であり、Xは自然数。)、シリコン化合物(SiO等)等のリチウム貯蔵性化合物が挙げられる。この負極40は、例えば、粉体状の負極活物質とバインダ(例えば、スチレンブタジエン共重合体(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)等のゴム類、カルボキシメチルセルロース(CMC)等のセルロース系ポリマー等)とを適当な分散媒(例えば、水やN−メチル−2−ピロリドン、好ましくは水。)に分散させてなる負極ペーストを負極集電体42の表面に供給した後、乾燥して分散媒を除去することにより作製することができる。負極集電体としては、導電性の良好な金属(例えば、銅、ニッケル、チタン、ステンレス鋼等、典型的には銅)からなる導電性部材を好適に使用することができる。
セパレータ50は、正極30と負極40とを絶縁するとともに、正極活物質層34と負極活物質層44との間で電荷担体の移動経路を提供する構成要素である。このようなセパレータ50は、典型的には上記正極活物質層34と負極活物質層44との間に配置される。セパレータ50は、非水電解液の保持機能や、所定の温度において電荷担体の移動経路を閉塞するシャットダウン機能を備えていてもよい。このようなセパレータ50は、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂からなる微多孔質樹脂シートにより好適に構成することができる。なかでも、PEやPP等のポリオレフィン樹脂からなる微多孔質シートは、シャットダウン温度を80℃〜140℃(典型的には110℃〜140℃、例えば120℃〜135℃)の範囲に好適に設定できるために好ましい。シャットダウン温度とは、電池が発熱した際に電池の電気化学反応を停止させる温度であり、シャットダウンは典型的にはこの温度においてセパレータ50が溶融または軟化することで発現される。かかるセパレータ50は、単一の材料から構成される単層構造であってもよく、材質や性状(例えば、平均厚みや空孔率等)の異なる2種以上の微多孔質樹脂シートが積層された構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。
セパレータ50の厚み(平均厚みである。以下同じ。)は特に限定されないが、通常、10μm以上、典型的には15μm以上、例えば17μm以上とすることができる。また、上限については、40μm以下、典型的には30μm以下、例えば25μm以下とすることができる。基材の平均厚みが上記範囲内にあることで、電荷担体の透過性を良好に保つことができ、かつ、微小な短絡(漏れ電流)がより生じ難くなる。このため、入出力密度と安全性とを高いレベルで両立することができる。
非水電解液としては、典型的には、非水溶媒中に電解質としての支持塩(例えば、リチウム塩、ナトリウム塩、マグネシウム塩等であり、リチウムイオン二次電池ではリチウム塩)を溶解または分散させたものを特に制限なく用いることができる。あるいは、液状の非水電解質にポリマーが添加されてゲル状となった、いわゆるポリマー電解質や固体電解質等であってもよい。非水溶媒としては、一般的なリチウムイオン二次電池において電解液として用いられるカーボネート類、エーテル類、エステル類、ニトリル類、スルホン類、ラクトン類等の各種の有機溶媒を特に制限なく用いることができる。例えば、具体的には、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等の鎖状カーボネートや、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等の環状カーボネートが挙げられる。なかでも正極の酸性雰囲気で分解されて水素イオンを発生する溶媒(例えば環状カーボネート)等は一部に含むことが好ましい。このような非水溶媒は、フッ素化されていてもよい。また非水溶媒は、1種を単独で、あるいは2種以上を混合溶媒として用いることができる。支持塩としては、一般的なリチウムイオン二次電池に用いられる各種のものを適宜選択して採用することができる。例えば、LiPF、LiBF、LiClO、LiAsF、Li(CFSON、LiCFSO等のリチウム塩を用いることが例示される。ここに開示される技術では、過充電時の発熱を抑制する効果が得られることから、例えば、過充電時に分解されてフッ化水素(HF)を発生するフッ素を含んだリチウム化合物を支持塩として用いる場合に、本技術の効果が明瞭に発揮されるために好ましい。このような支持塩は、1種を単独で、あるいは2種以上を組み合わせて用いてもよい。かかる支持塩は、非水電解質における濃度が0.7mol/L〜1.3mol/Lの範囲内となるように調製することが好ましい。
また、非水電解質は、本発明のリチウムイオン二次電池の特性を損なわない限り、各種の添加剤等を含んでいても良い。かかる添加剤としては、ガス発生剤、被膜形成剤等として、電池の入出力特性の向上、サイクル特性の向上、初期充放電効率の向上等のうち、1または2以上の目的で使用され得る。かかる添加剤としては、具体的には、フルオロリン酸塩(好ましくはジフルオロリン酸塩。例えば、LiPOで表されるジフルオロリン酸リチウム)、リチウムビス(オキサラト)ボレート(LiBOB)等のオキサラト錯体化合物が挙げられる。非水電解質全体に対するこれらの添加剤の濃度は、通常0.1mol/L以下(典型的には0.005mol/L〜0.1mol/L)とすることが適当である。
なお、図1に示したリチウムイオン二次電池1は、電池ケース10として扁平な角型電池ケースを使用している。しかしながら、電池ケース10は、非扁平の角型電池ケースや円筒型電池ケース、コイン型電池ケース等であってもよい。あるいは、リチウムイオン二次電池1は、金属製の電池ケースシート(典型的にはアルミニウムシート)と樹脂シートが張り合わされて袋状に形成されたラミネートバッグであってもよい。また例えば、電池ケースは、アルミニウム、鉄、およびこれらの金属の合金、高強度プラスチック等により形成されていてもよい。また、図1に示したリチウムイオン二次電池1は、いわゆる捲回型電極体20を備えている。図2に示されるように、正極活物質層34の幅W1と、負極活物質層44の幅W2と、セパレータの幅W3とは、W1<W2<W3の関係を満たす。なおかつ、負極活物質層44は幅方向の両端で正極活物質層34を覆い、セパレータ50は幅方向の両端で負極活物質層44を覆う。しかしながら、ここに開示されるリチウムイオン二次電池1の電極体20は、捲回型電極体に制限されず、例えば、複数枚の正極30と負極40とがそれぞれセパレータ50で絶縁されて積層された形態の、いわゆる平板積層型の電極体20であってもよい。あるいは、正極30と負極40がそれぞれ1枚ずつ電池ケースに収容された単セルであってもよい。
なお、電池ケース10の蓋部材12には、従来のリチウムイオン電池の電池ケースと同様に、電池ケースの内部で発生したガスを外部に排出するための安全弁や、電解液の注入を行う注液口等が備えられてもよい。また、蓋部材12には、外部接続用の正極端子38と負極端子48とが、電池ケース10とは絶縁された状態で配設されている。正極端子38および負極端子48は、それぞれ正極集電端子38aおよび負極集電端子48aを介して正極30および負極40と電気的に接続され、外部負荷に電力を供給できるよう構成されている(図1参照)。
[正極の製造方法]
なお、以上のような正極30は、その製造方法は限定さない。幾つかの形態では、例えば次の手順:
(S1)正極活物質層形成用の正極ペーストの調製;
(S2)絶縁層形成用の絶縁層ペーストの調製;
(S3)ペーストの塗工および乾燥;および、
(S4)スリット;
を包含する製造方法によって作製することができる。なお、ステップ(S1)とステップ(S2)とは順不同であり、いずれを先にしても、同時にしてもよい。また、ステップ(S4)は必須ではなく、他の実施形態において省略することもできる。以下、順に説明する。
ステップ(S1)とステップ(S2)とにおいては、それぞれ正極スラリーおよび絶縁層スラリーを調製する。正極スラリーおよび絶縁層スラリーは、上記の正極活物質層34または絶縁層36を構成する材料を、適切な分散媒(水やNMP等)に分散させ、粘度等を調整することで用意することができる。
ペーストの調製は、例えば、ボールミル、ロールミル、プラネタリミキサー、ディスパー、ニーダ等の攪拌・混合装置を用いて行うことができる。
正極活物質層形成用ペーストの粘度V1は、概ね1000〜20000mPa・s、典型的には5000〜10000mPa・sの範囲に調整するとよい。粘度V1は、例えば、溶媒に対する固形分(例えば構成材やバインダ)や粘度調整剤の添加量、ペーストの混練時間等によって調整可能である。これにより、後述のステップS3を安定的に精度よく行うことができる。なお、本明細書において、「ペーストの粘度」とは、25℃において、レオメーターにより、せん断速度21.5s−1で測定した値をいう。
絶縁層形成用ペーストの粘度V2は、概ね1000〜5000mPa・s、例えば1500〜4500mPa・sの範囲に調整するとよい。粘度V2は、例えば溶媒に対する固形分(例えば構成材やバインダ)や粘度調整剤の添加量、ペーストの混練時間等によって調整可能である。これにより、後述のステップS3を安定的に精度よく行うことができる。
なお、後述するステップS3で、所謂、同時塗工の手法を採用する場合は、絶縁層形成用ペーストの粘度V2を、正極活物質層形成用ペーストの粘度V1よりも低くする(低粘度とする)とよい。これにより、正極集電体32に対する接触角が、絶縁層形成用ペースト<正極活物質層形成用ペーストとなり、正極活物質層形成用ペーストの下に絶縁層形成用ペーストを潜り込ませやすくなる。また、粘度V1に対する粘度V2の比(V2/V1)は、概ね0.01〜0.99、典型的には0.05〜0.95の範囲に調整するとよい。これにより、積重部Bの幅を上記範囲に好適に調整することができる。
ステップ(S3)では、正極集電体22のY2方向の端部をあけて、正極集電体22の上に上記2種類のペーストを付与する。ペーストの付与は、例えば、ダイコーター、スリットコーター、コンマコーター、グラビアコーター等の塗工装置を用いて行うことができる。一例では上記2種類のペーストを3段階で順番に塗工する。すなわち、まず正極集電体32の非塗工部32Aを残すようにして、絶縁層形成用ペーストを、第1絶縁層36aと第2絶縁層36bの塗工領域に塗工する。次いで、正極集電体32および第1絶縁層36aの上に所定の幅Laで正極活物質層形成用ペーストを塗工する。そして、正極活物質層の端部全体を覆うように、所定の幅Lcで絶縁層形成用ペーストを再び塗工する。その後、必要に応じて加熱するなどして、正極活物質層形成用ペーストおよび絶縁層形成用ペーストを乾燥させる。これにより、正極30が塗工される。
なおこのとき、生産性の観点からは、正極30を2倍幅で塗工するとよい。すなわち、まず、正極活物質層を幅2×Laで形成したときの両端に第1絶縁層36aが位置し、そのさらに両端側に離間して第2絶縁層36bが位置するように、絶縁層形成用ペーストを2本ずつ塗工するとよい。次いで、2本の第1絶縁層36aの間に、正極活物質層形成用ペーストを塗工する。乾燥工程は上記と同様でよい。これにより、2倍幅の正極30が塗工される。
あるいは、他の一例では、図5に示すように、工程(S3)は、ダイコーターを用いて、上記2種類のペーストを正極集電体22上に同時塗工するようにしてもよい。ダイコータを用いることで、第1絶縁層36aと第2絶縁層36bとが離間して備えられた上記正極を一度に好適に塗工することができる。
図6(a)は、かかるダイコータ100の構成を概略的に説明する模式図である。図6(b)は、ダイコータ100に組み合わせるシム板のおおよその寸法と配置とを示した模式図である。図6(c)は、このようなダイコータ100によって形成される正極の構成を例示した模式的に示した断面図である。
ダイコータ100の基本的な構成は、この種の二次電池の電極の製造に使用される公知のダイコータと同様であってよい。ダイコータ100は、ダイと呼ばれる上下に分けられた一組の部材を備え、これら一組のダイの間にマニフォールドと呼ばれるスラリー収容部が備えられている。また、ダイの間には、マニフォールドに収容されたスラリーを吐出するためのスリットが形成され、このスリット等にシム板を挟んだり取り付けたりすることで、スリットの形状や間隙を任意に調整できるように構成されている。そしてポンプ等によってダイ中のマニフォールドにスラリーを供給すると共に、スリットからせん断を加えた状態でスラリーを排出することで、スリットの排出口に配置された基材にスラリーを塗工することができる。
幾つかの形態では、ダイコータ100は、2倍幅の電極を製造するように構成されている。例えば図6(a)に示すように、ダイコータ100は、第1のダイ102と、その両脇に供えられた第2のダイ103および第3のダイ104とを備えている。これらのダイ102、103、104の配列方向は、基材の配送方向(例えば、垂直方向)に直交する方向(例えば、水平方向)である。中央の第1のダイ102は、正極活物質層34を塗工するためのダイである。両脇の2つのダイ103、104は、それぞれ絶縁層36を塗工するためのダイである。ダイ102のマニフォールドには、正極活物質層34を形成するための正極スラリーが収容され、ダイ103、104のマニフォールドには、絶縁層36を形成するための絶縁層スラリーが収容される。
ダイ102、103、104には、水平方向(図の横方向)に沿って一直線上にスリットが配置されている。正極スラリーおよび絶縁層スラリーは、各ダイ103、102、104のスリットからそれぞれ滝のように幅方向に連続して吐出され、スリットの吐出口位置で搬送される正極集電体32(基材)上に順次供給される。これにより、基本的には、ダイ103のスリット幅に対応した絶縁層36、ダイ102のスリット幅に対応した正極活物質層34、および、ダイ104のスリット幅に対応した絶縁層36が、この順に隣接して、流れ方向に沿って帯状に、正極集電体32の表面に塗工される。ここで、図6(b)に示す形状のシム板111、112、113、114をダイコータ100に取り付けることができる。シム板111、114は、絶縁層ペーストが集電体32の非塗工部32Aを構成すべき領域に供給されないように規制する邪魔板である。シム板112、113は、絶縁層36を、第1絶縁層36aと第2絶縁層36bとに区分けするとともに、これらを十分に離間させて、絶縁層ペーストが集電体32の非塗工部32Aを構成すべき領域に供給されないように規制する邪魔板である。シム板112、113の幅、厚み等の寸法や設置位置は、所望の寸法の第1絶縁層36aおよび第2絶縁層36bが形成されるよう、適宜調整することができる。乾燥工程は上記と同様でよい。これにより、2倍幅の長尺の正極30が塗工される。
ステップ(S4)では、必要に応じて作製した正極30をスリット(切断)する。2倍幅で形成した正極30については、正極活物質層34の幅方向の中心で2つに切断する。これにより、所定の幅の正極30を得ることができる。また、長尺に形成した正極30については、長さ方向で適切な長さ毎に切断する。これにより、所定の長さの正極30を得ることができる。
以下、具体的な実施例として、ここに開示される非水電解質二次電池を作製した。なお、本発明をかかる具体例に示すものに限定することを意図したものではない。
[参考例]
<正極の作製>
正極活物質としての層状構造のリチウムニッケルコバルトマンガン含有複合酸化物(LiNi1/3Co1/3Mn1/3:NCM)と、導電助剤としてのアセチレンブラック(AB)と、結着剤としてのポリフッ化ビニリデン(PVdF)とを、NCM:AB:PVdF=90:8:2の質量比で配合し、溶媒としてのN−メチル−2−ピロリドン(NMP)と混練することで正極ペーストを調製した。
また、無機フィラー(F)としてのベーマイトと、バインダ(B)としてのPVdFとを、F:B=90:10の質量比で配合し、溶媒としてのNMP中と混練することで絶縁層形成用ペーストを調製した。
そして、用意した正極ペーストと絶縁層形成用ペーストとを、図4に示すダイコータ(前述のダイコータ)の正極ペースト収容部と絶縁層ペースト収容部にそれぞれ収容した。ダイコータには、正極集電体の非塗工部を形成するためのシム板111,114を設置した、他のシム板112,113は設置していない。そして、正極集電体としての厚さ約12μmの長尺のアルミニウム箔に2種類のペーストを同時に塗布し、乾燥させたのち、幅方向の中心でスリット(切断)し、さらに所定の長さに切断することにより正極を作製した。なおこのとき、正極ペーストの粘度V1に対する絶縁層形成用ペーストの粘度V2の比(V2/V1)はおおよそ0.4となるように、両ペーストの粘度を調整した。
得られた正極には、正極集電体の表面に、正極活物質層と絶縁層と非塗工部とが幅方向でこの順に備えられている。また、この正極において、絶縁層は正極活物質層の幅方向の端部に隣接するように、かつその隣接位置において、一部が正極集電体と正極活物質層の端部との間に入り込むとともに正極活物質層の端部を覆うように形成されていることを確認した。正極活物質層の厚み(平坦部)はおおよそ52μmで一定とした。絶縁層の幅方向の寸法は、正極活物質層の端部Eから、後述する負極と対向させたときに負極活物質層の端部が位置する点Xまでの距離を100%としたとき、120%となる長さで一定とした。そして、絶縁層の厚み(平坦部)を下記の表1に示すように1μm〜100μmの間で変化させることで、参考例1〜7の正極とした。なお、絶縁層の厚みは、ダイコータの二つのダイの間に設置するシム板によってギャップを変更することで調整した。参考例7の正極では、絶縁層の厚みが正極活物質層の厚みよりも大幅に厚い。
<負極の作製>
負極活物質としての黒鉛(C)と、バインダとしてのスチレンブタジエンゴム(SBR)と、増粘剤としてのカルボキシメチルセルロース(CMC)とを、C:SBR:CMC=98:1:1の質量比で配合し、イオン交換水と混練することで負極ペーストを調製した。そして用意した負極ペーストを、ダイコータを用いて負極集電体としての厚さ8μmの長尺の銅箔に塗布し、乾燥させたのち、幅方向の中心でスリット(切断)し、さらに所定の長さに切断するることにより、負極活物質層を備える負極を得た。負極には、集電のため、スリット前の幅方向の両方の端部に沿って負極活物質層を形成していない非塗工部を設けた。
<評価用セルの作製>
上記で用意した各例の正極と負極とをセパレータを介して互いに絶縁するように重ね合わせて積層体とし、非水電解液と共にラミネートバッグに収容した。セパレータとしては、PP/PE/PPの三層構造の多孔性シートを用いた。非水電解液としては、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とをEC:EMC:DMC=3:3:4の体積比で含む混合溶媒に、支持塩としてのLiPFを1mol/Lの濃度で溶解させたものを用いた。これにより、参考例1〜7のラミネートセルを構築した。なお、各例のラミネートセルは、製造ばらつきの影響を低減するために、それぞれ10個ずつ用意した。
(過充電試験)
各例のラミネートセルに対し、25℃の温度環境下で、電圧が4.1Vとなるまで約1/3Cのレートで定電流(CC)充電した後、電流が約1/50Cとなるまで定電圧(CV)充電した。これにより、各例のセルに活性化処理を施した。次いで、このセルの充電状態(State of Charge:SOC)をSOC100%と定義し、電圧が3Vとなるまで約1/3CのレートでCC放電し、このときの放電容量を記録して当該電圧3Vのセルの充電状態をSOC0%と規定した。
次いで、各例のラミネートセルの外側(バッグ表面)の中央部に熱電対を取り付け、25℃の温度環境下で、セル電圧が5.1V(過充電状態)となるまで100CのレートでCC充電したときのセルの最高到達温度を記録し、25℃からの温度上昇幅(℃)を算出した。そして、各例のセルの温度上昇幅(算術平均値)を、参考例7のラミネートセルの温度上昇幅(算術平均値)を基準(100%)として規格化し、その結果を表1に示した。
Figure 2021086681
表1に示すように、絶縁層の厚みが8μm以上の参考例4〜7のセルでは、過充電による発熱が殆どなかっため、セルの温度上昇率が99〜101%とほぼ同じであった。これに対し、絶縁層の厚みが8μmに満たない参考例1〜3のセルでは、過充電による温度上昇率は100%を有意に超えて、109〜130%と絶縁層の厚みが薄くなるほど大きくなることがわかった。
参考例7のラミネートセルでは、絶縁層の厚みが正極活物質層の厚みよりも十分に厚いことから、この絶縁層が形成された領域での短絡の発生は考えにくい。このことから、参考例7のセルのみならず、参考例4〜6のセルでも、過充電状態における微少短絡の発生が好適に抑制されていると考えられる。
一方の参考例1〜3のセルでは、絶縁層の厚みが薄いほど温度上昇率が高いことから、絶縁層が設けられているいずれかの位置で微少短絡が発生し、これにより余分な発熱が生じてセル温度が上昇したものと考えられる。ここで、本発明者の検討によると、絶縁層に対向する負極の端部には負極の切断端部が位置しているが、この負極集電体には負極切断時にバリが発生しやすいことが確認されている。金属の展性は、Au>Ag>Cu>Al…の順に高いが、集電体の切断作業においてCuはバリが発生しやすいものの、Alはさほどバリが発生しない。そして、負極集電体のバリは、大きくても負極集電体の厚みと同じ高さにまでは成長しないことが確認されている。これらのことから、参考例1〜3のセルでは、負極の端部における負極集電体の切断に由来するバリが生じており、このバリの存在により物理的な微少短絡が生じたり、あるいは、バリ位置において電位が集中し局所的に高電圧となって活物質の分解等が促進されたものと考えられる。
以上のことから、絶縁層は、少なくとも負極の切断端部(すなわち、負極活物質層の端部の切断位置)と対向する位置に設けることが有効であるといえる。また、絶縁層の厚みは、負極集電体にバリが発生していることを考慮して、負極集電体の厚み以上とすることが望ましいといえる。
[試験例]
<正極の作製>
上記参考例4(絶縁層の厚み:8μm)と下記の点以外は同様にして、例1〜6の正極を作製した。そして例1〜6の正極を用い、上記参考例と同様にして、例1〜6のラミネートセルを作製した。なお、各例のラミネートセルは、製造ばらつきの影響を低減するために、以下の評価試験ごとにそれぞれ10個ずつ用意した。
(例1)
なお、例1の正極では、絶縁層形成用ペーストを用いず、正極ペーストのみを用いて、絶縁層を備えない正極を作製した。
(例2)
例2では、先ずは正極ペーストのみを用いて絶縁層を形成せずに正極活物質層を形成した(例1の正極と同じ)。次いで、ダイコータの正極ペースト収容部と絶縁層ペースト収容部の両方に絶縁層形成用ペーストを収容し、シム板111,114のみを用いて、集電部を非塗工部として残し、その他の正極の全表面に、厚み8μmの絶縁層を形成した。これにより、例1の正極集電体の集電部(溶接部)となる領域を幅方向の端部に沿って非塗工部とし、その他の領域の全面に絶縁層を設けた構造の正極とした。
(例3)
例3では、絶縁層形成用ペーストを吐出するダイコータのスリット部分に、絶縁層形成用ペーストを2条に分割するためのシム板112,113と、正極集電体の非塗工部を形成するためのシム板111,114とを設置し、正極集電体に、正極活物質層と第1絶縁層と非塗工部と第2絶縁層と非塗工部とが、幅方向でこの順に形成されるようにした。各シム板111,112,113,114は、第1絶縁層が正極活物質層に隣接し、かつ、その隣接位置において、一部が正極集電体と正極活物質層の端部との間に入り込むとともに正極活物質層の端部を覆うように形成されるように、位置と寸法とを調整した。また、第2絶縁層が負極活物質層の端部に対向する位置に形成されるように、その位置を調整した。また、シム板は、正極活物質層の端部Eから対向する負極活物質層の端部が位置する点Xまでの距離を100%としたとき、第1絶縁層の幅方向の寸法が端部Eから点Xに向けて20%の長さとなるように、また、第2絶縁層の幅方向の寸法が点Xから端部Eに向けて10%、その反対側(集電体の端部側)に向けて10%(合計20%)となるように、そして厚み(平坦部)が8μmとなるように、位置と寸法とギャップ等を調整した。
(例4)
例4では、正極活物質層および第1絶縁層は例3と同様に形成し、第2絶縁層は、幅方向の寸法が点Xから端部Eに向けて20%、その反対側に向けて20%(合計40%)となるように、各シム板の位置と寸法とを調整した。
(例5)
例5では、正極活物質層および第1絶縁層は例3と同様に形成し、第2絶縁層は、幅方向の寸法が点Xから端部Eに向けて50%、その反対側に向けて50%(合計100%)となるように、各シム板の位置と寸法とを調整した。
(例6)
例6では、正極活物質層および第1絶縁層は例3と同様に形成し、第2絶縁層は、幅方向の寸法が点Xから端部Eに向けて50%、その反対側に向けて20%(合計70%)となるように、各シム板の位置と寸法とを調整した。
(過充電試験)
各例のラミネートセルに対し、参考例と同様にして過充電試験を行ったときのセルの最高到達温度を記録し、25℃からの温度上昇幅(℃)を算出した。そして、各例のセルの温度上昇幅(算術平均値)を、集電部以外の全面に絶縁層を設けた例2のラミネートセルの温度上昇幅(算術平均値)を基準(100%)として規格化し、その値を下記の表2に示した。
(低温抵抗測定)
各例のラミネートセルに対し、まず、25℃の温度環境下にて、4.2Vまで1/3Cでのレートで定電流(CC)充電したのち、電流値が1/50Cとなるまで定電圧(CV)充電を行うことで、充電状態(State of Charge:SOC)を満充電(SOC100%)とした。その後、5分間の休止時間を設け、3.0Vまで1/3CのレートでCC放電することで、初期充電処理を施した。初期充電後の各例のセルに対し、−10℃の環境下で、15Cの定電流で、SOC60%まで充電したときのIV抵抗値(算術平均値)を算出し、その結果を下記の表2に示した。なお、表2には、絶縁層を設けていない例1の電池のIV抵抗値(算術平均値)を基準(100%)として規格化したときの値を示した。
Figure 2021086681
表2に示すように、正極に絶縁層を設けなかった例1のラミネートセルは、抵抗値については全例の中でも2番目に低い値を取ることが確認でき、電極への絶縁層の形成はセルの内部抵抗の上昇を引き起こし得ることがわかった。しかしながら、例1のラミネートセルにおいては、過充電時に微少短絡が発生してしまい、温度上昇率が150%と極めて高温にまで到達してしまうことがわかった。このことから、電池の安全性を考慮すると、絶縁層を設けることが好ましいといえる。
次に、正極の集電部以外の全面を適切な厚みの絶縁層で覆った例2のラミネートセルにおいては、温度上昇率が全例中で2番目に低く、過充電状態において微少短絡の発生が十分に抑制されていることが確認できた。しかしながら、表2に示すように、例2のラミネートセルは抵抗が最も高い。例2のセルは、他の例と比較したときに絶縁層が過剰に設けられており、この絶縁層が内部抵抗となってしまうことが確認できた。このことから、電池の抵抗低減を考慮すると、絶縁層を適切な位置にのみ設けることが好ましいといえる。
例3のラミネートセルでは、絶縁層が第1絶縁層と第2絶縁層とに分けて設けられており、例えば例2のセルと比較して、抵抗が大きく低減されていることが確認できた。このことから、絶縁層は、第1絶縁層と第2絶縁層とに離間させて適切な位置に設けることが好ましいといえる。しかしながら、例3のラミネートセルでは、例1に次いで過充電時に高い温度上昇率を記録することがわかった。これは、過充電時に微少短絡が発生していることを示唆している。例3のラミネートセルでは、第2絶縁層が点Xを中心に幅方向の内側と外側に10%ずつの狭い範囲(幅)にしか形成されていない。そのため、絶縁層や活物質層の塗工精度、電極の寸法精度、正極と負極の重ね合わせ精度のばらつき等によっては、第2絶縁層が、負極集電体の端部に発生するバリの発生位置に十分に対応する位置に配置されない場合があり、内部短絡を安定して抑制することは難しいと予想される。したがって、絶縁層を第1絶縁層と第2絶縁層とに分けて設ける場合は、第2絶縁層の寸法をもう少し幅広く設計することが好ましいといえる。
例4のラミネートセルでは、絶縁層が第1絶縁層と第2絶縁層とに分けて設けられており、かつ、第2絶縁層が点Xを中心に幅方向の内側と外側に20%ずつの範囲(幅)に形成されている。この場合、温度上昇率および抵抗値共に、全例の中で最も低い値となって好ましいことがわかった。このことから、例3で見られた、絶縁層や活物質層の塗工精度、電極の寸法精度、正極と負極の重ね合わせ精度のばらつき等の影響は、第2絶縁層が点Xを中心にして内側と外側に20%ずつの寸法で形成されていることで、フォローできることがわかった。このような製造上のばらつきを上手く緩和させるには、第2絶縁層が点Xを中心にして計40%程度の幅であることが好ましいといえる。また、第1絶縁層の寸法についても同様であるといえる。
例5のラミネートセルでは、絶縁層が第1絶縁層と第2絶縁層とに分けて設けられているものの、その間隙は比較的小さく、また第2絶縁層の点Xから幅方向の外側に向かう寸法が50%と比較的広い。そのため、温度上昇率は、絶縁層を全面に設けた例2のセルとほぼ同じ低い値であるが、抵抗値も例2に匹敵する高い値となってしまうことが確認できた。一方で、例6のラミネートセルは、例5と比較して、第2絶縁層の点Xから幅方向の内側に向かう寸法は同じであって、外側に向かう寸法が20%に狭められている。これにより、例6のセルは、例4のセルと比較すると温度上昇率および抵抗ともに僅かに高いものの、例5のセルと比較して抵抗が大幅に低減されている。このことは、電極の幅方向の端部近くに絶縁層を設けず非塗工部を広く確保することで、集電部近くに抵抗成分となる絶縁層が配置されることを避けて、集電効率が高まることを示唆している。このことから、第2絶縁層は、幅方向の外側に向けて過剰に広く設けないことが好ましいといえる。
以上のことから、絶縁層は、第1絶縁層と第2絶縁層とに離間させて、適切な位置に設けることが好ましいといえる。第2絶縁層は、対向する負極の端部に対応する点Xを中心として、幅方向の内側に10%を超えて(例えば20%以上)50%以下(例えば40%以下)程度とすると良いといえる。第1絶縁層は、この第2絶縁層と離間して、例えば、正極活物質層の端部Eから幅方向の外側(点Xの側)に向けて70%以下、好ましくは50%以下、例えば30%以下とするとよく、製造ばらつきの観点からは20%以上が好ましいといえる。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
1 二次電池
30 正極
32 正極集電体
34 正極活物質層
36a 第1絶縁層
36b 第2絶縁層
40 負極
42 負極集電体
44 負極活物質層
50 セパレータ
100 ダイコータ
102 正極ペースト収容部
103,104 絶縁層ペースト収容部
111,112,113,114 シム板

Claims (4)

  1. 正極と、前記正極と対向している負極と、非水電解質とを備え、
    前記正極は、
    正極集電体と、
    前記正極集電体の表面の一部に備えられ、正極活物質を含む正極活物質層と、
    前記正極集電体の表面の他の一部に備えられ、無機フィラーを含む絶縁層と、
    を備え、
    前記負極は、
    負極集電体と、
    前記負極集電体の表面の一部に備えられ、負極活物質を含む負極活物質層と、
    を備え、
    前記絶縁層は、
    前記正極活物質層の端部に沿って配置された第1絶縁層と、
    前記第1絶縁層とは離間した位置であって、前記負極活物質層の端部と対向する位置に形成された第2絶縁層と、
    を含む、非水電解質二次電池。
  2. 前記第2絶縁層の平均厚みは、負極集電体の厚み以上である、請求項1に記載の非水電解質二次電池。
  3. 前記第1絶縁層は、前記正極集電体と前記正極活物質層の端部との間に入り込むとともに、前記端部を覆うように形成されている、請求項1または2に記載の非水電解質二次電池。
  4. 前記負極の前記第2絶縁層と対向する側の端部は、切断面により構成されている、請求項1〜3のいずれか1項に記載の非水電解質二次電池。
JP2019213200A 2019-11-26 2019-11-26 非水電解質二次電池 Active JP7253147B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019213200A JP7253147B2 (ja) 2019-11-26 2019-11-26 非水電解質二次電池
US17/068,873 US11777101B2 (en) 2019-11-26 2020-10-13 Non-aqueous electrolyte secondary battery
KR1020200132025A KR102506723B1 (ko) 2019-11-26 2020-10-13 비수 전해질 이차 전지
CN202011190820.3A CN112864546B (zh) 2019-11-26 2020-10-30 非水电解质二次电池
DE102020130701.2A DE102020130701B4 (de) 2019-11-26 2020-11-20 Sekundärbatterie mit nichtwässrigem elektrolyt
US18/454,175 US20230395807A1 (en) 2019-11-26 2023-08-23 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019213200A JP7253147B2 (ja) 2019-11-26 2019-11-26 非水電解質二次電池

Publications (2)

Publication Number Publication Date
JP2021086681A true JP2021086681A (ja) 2021-06-03
JP7253147B2 JP7253147B2 (ja) 2023-04-06

Family

ID=75784790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019213200A Active JP7253147B2 (ja) 2019-11-26 2019-11-26 非水電解質二次電池

Country Status (5)

Country Link
US (2) US11777101B2 (ja)
JP (1) JP7253147B2 (ja)
KR (1) KR102506723B1 (ja)
CN (1) CN112864546B (ja)
DE (1) DE102020130701B4 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008953A1 (ko) * 2021-07-30 2023-02-02 주식회사 엘지에너지솔루션 습윤 접착력이 우수한 절연층을 포함하는 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2023096322A1 (ko) * 2021-11-23 2023-06-01 주식회사 엘지에너지솔루션 절연층을 포함하는 리튬 이차전지용 전극 및 이의 제조방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230008975A (ko) * 2021-07-08 2023-01-17 주식회사 엘지에너지솔루션 전극 및 이의 제조 방법
CN116848725A (zh) * 2021-12-29 2023-10-03 宁德时代新能源科技股份有限公司 绝缘浆料及其制备方法、正极极片、二次电池、电池模块、电池包及用电装置
KR20240007555A (ko) * 2022-07-08 2024-01-16 삼성에스디아이 주식회사 리튬 이차 전지용 전극, 이를 포함하는 전극 조립체 및 리튬 이차 전지

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204920A (ja) * 2007-02-22 2008-09-04 Sony Corp 非水電解質二次電池および非水電解質二次電池の製造方法
JP2009134915A (ja) * 2007-11-29 2009-06-18 Panasonic Corp 非水系二次電池
JP2015133178A (ja) * 2014-01-09 2015-07-23 日産自動車株式会社 電極、および電極を有する電池
JP2017004608A (ja) * 2015-06-04 2017-01-05 株式会社Gsユアサ 電極板、蓄電池、電極板の製造方法、及び位置測定方法
WO2017057762A1 (ja) * 2015-09-30 2017-04-06 積水化学工業株式会社 リチウムイオン二次電池の電極部、リチウムイオン二次電池及びリチウムイオン二次電池の製造方法
JP2017143006A (ja) * 2016-02-10 2017-08-17 株式会社Gsユアサ 蓄電素子

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4177612B2 (ja) * 2002-07-30 2008-11-05 株式会社東芝 リチウムイオン二次電池
CN1996643A (zh) 2006-12-26 2007-07-11 天津力神电池股份有限公司 一种具有高绝缘性能的方型锂离子电池及其制备方法
JP5858325B2 (ja) 2010-09-03 2016-02-10 株式会社Gsユアサ 電池
JP5818150B2 (ja) 2010-11-05 2015-11-18 株式会社Gsユアサ 蓄電素子用電極、それを用いた蓄電素子、および蓄電素子用電極の製造方法
US9905838B2 (en) 2011-08-30 2018-02-27 Gs Yuasa International Ltd. Electrode and method of manufacturing the same
WO2013094004A1 (ja) 2011-12-19 2013-06-27 トヨタ自動車株式会社 リチウム二次電池
CN105190952A (zh) * 2013-04-01 2015-12-23 日立汽车系统株式会社 锂离子二次电池及其制造方法
JP6365175B2 (ja) * 2014-09-24 2018-08-01 株式会社Gsユアサ 蓄電素子
CN205050932U (zh) * 2015-10-19 2016-02-24 惠州Tcl金能电池有限公司 正极片及电池
JP6834139B2 (ja) 2016-02-10 2021-02-24 株式会社Gsユアサ 蓄電素子
CN108604664B (zh) * 2016-02-10 2021-11-12 株式会社杰士汤浅国际 蓄电元件以及蓄电元件的制造方法
JP2017157471A (ja) 2016-03-03 2017-09-07 株式会社Gsユアサ 電極、及び電極の製造方法
JPWO2017163846A1 (ja) 2016-03-24 2019-02-07 Necエナジーデバイス株式会社 リチウムイオン二次電池、電極及びその製造方法
JP6587157B2 (ja) 2017-02-07 2019-10-09 エルジー ケム. エルティーディ. 電極組立体及びこれを含む電気化学素子
JP6885309B2 (ja) * 2017-11-22 2021-06-09 トヨタ自動車株式会社 直列積層型全固体電池
CN117476866A (zh) 2018-02-01 2024-01-30 株式会社Lg新能源 用于锂二次电池的电极、其制备方法及锂二次电池
JP2019153434A (ja) 2018-03-01 2019-09-12 株式会社東芝 積層体及び二次電池
JP7160436B2 (ja) 2019-02-21 2022-10-25 三洋電機株式会社 電極、非水電解質二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204920A (ja) * 2007-02-22 2008-09-04 Sony Corp 非水電解質二次電池および非水電解質二次電池の製造方法
JP2009134915A (ja) * 2007-11-29 2009-06-18 Panasonic Corp 非水系二次電池
JP2015133178A (ja) * 2014-01-09 2015-07-23 日産自動車株式会社 電極、および電極を有する電池
JP2017004608A (ja) * 2015-06-04 2017-01-05 株式会社Gsユアサ 電極板、蓄電池、電極板の製造方法、及び位置測定方法
WO2017057762A1 (ja) * 2015-09-30 2017-04-06 積水化学工業株式会社 リチウムイオン二次電池の電極部、リチウムイオン二次電池及びリチウムイオン二次電池の製造方法
JP2017143006A (ja) * 2016-02-10 2017-08-17 株式会社Gsユアサ 蓄電素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008953A1 (ko) * 2021-07-30 2023-02-02 주식회사 엘지에너지솔루션 습윤 접착력이 우수한 절연층을 포함하는 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2023096322A1 (ko) * 2021-11-23 2023-06-01 주식회사 엘지에너지솔루션 절연층을 포함하는 리튬 이차전지용 전극 및 이의 제조방법

Also Published As

Publication number Publication date
US20210159505A1 (en) 2021-05-27
CN112864546A (zh) 2021-05-28
KR102506723B1 (ko) 2023-03-06
CN112864546B (zh) 2023-04-14
DE102020130701A1 (de) 2021-05-27
JP7253147B2 (ja) 2023-04-06
US11777101B2 (en) 2023-10-03
KR20210065033A (ko) 2021-06-03
US20230395807A1 (en) 2023-12-07
DE102020130701B4 (de) 2024-05-29

Similar Documents

Publication Publication Date Title
JP5828346B2 (ja) リチウム二次電池
JP7253147B2 (ja) 非水電解質二次電池
KR101715540B1 (ko) 비수 전해질 2차 전지
JP5761582B2 (ja) 二次電池
CN112582621B (zh) 非水电解质二次电池
JP6176500B2 (ja) 二次電池及びその製造方法ならびに該電池に用いられる負極シートの製造方法
JP7085147B2 (ja) 非水電解質二次電池
JP7096979B2 (ja) リチウムイオン二次電池
CN105934845B (zh) 电器件
JP5765574B2 (ja) 二次電池及びその製造方法ならびに該電池に用いられる負極シートの製造方法
KR101799172B1 (ko) 비수전해질 이차 전지
JP2019021418A (ja) 非水電解質二次電池の制御装置および制御方法、当該制御装置を有する非水電解質二次電池システム、並びに非水電解質二次電池の製造方法
JP2021125300A (ja) 非水電解液蓄電デバイスおよび非水電解液蓄電デバイスの製造方法
JP7108960B2 (ja) 非水電解液二次電池
JP2014120214A (ja) 非水電解液二次電池
JP6735036B2 (ja) リチウムイオン二次電池
JP2019016493A (ja) 電極体のサブユニット、電極ユニット、積層電極体及び蓄電素子
JP5880942B2 (ja) 非水電解液二次電池
JP7353325B2 (ja) 負極および該負極を備える非水電解質二次電池
JP2016149200A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230309

R151 Written notification of patent or utility model registration

Ref document number: 7253147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151