JP2021051462A - 情報処理装置及びプログラム - Google Patents

情報処理装置及びプログラム Download PDF

Info

Publication number
JP2021051462A
JP2021051462A JP2019173165A JP2019173165A JP2021051462A JP 2021051462 A JP2021051462 A JP 2021051462A JP 2019173165 A JP2019173165 A JP 2019173165A JP 2019173165 A JP2019173165 A JP 2019173165A JP 2021051462 A JP2021051462 A JP 2021051462A
Authority
JP
Japan
Prior art keywords
time
series data
output
controller
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019173165A
Other languages
English (en)
Inventor
修一 矢作
Shuichi Yahagi
修一 矢作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2019173165A priority Critical patent/JP2021051462A/ja
Publication of JP2021051462A publication Critical patent/JP2021051462A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Feedback Control In General (AREA)

Abstract

【課題】FRITにおいて制御器パラメータを用いた制御の安定性を向上させる。【解決手段】制御器Cと、制御器Cの出力を入力とする制御対象Pとを備える閉ループ系の制御システムSにおける制御器Cのパラメータを算出する情報処理装置1は、制御システムの入力信号を相補感度関数に印加したときの出力と、制御対象の入力に対する所定の応答を実現するモデルである参照モデルに入力信号を入力した場合の出力との誤差に関する評価関数の評価値に基づいて参照モデルのむだ時間を含む制御パラメータを推定する。そして、情報処理装置1は、所定の適正化アルゴリズムを用いて、参照モデルの応答性のパラメータ(1次遅れの参照モデルの場合は時定数)を適正化する。【選択図】図6

Description

本発明は情報処理装置及びプログラムに関し、特に、閉ループ系の制御器の制御パラメータを設定する技術に関する。
閉ループ系における制御対象のモデルを用いない制御手法が種々提案されている。このようなモデルを用いない制御器パラメータの自動調整手法の一つとしてFRIT(Fictitious Reference Iterative Tuning)が知られている(特許文献1参照)。
特開2017−182624号公報
FRIT等のデータ駆動制御により得られた制御パラメータを用いて閉ループ系を制御すると、系が不安定となる場合がある。特に、FRITで用いられる参照モデルの応答を実現する制御パラメータが存在しない場合に系が不安定となりやすいことが知られている。
本発明はこれらの点に鑑みてなされたものであり、FRITにおいて制御器パラメータを用いた制御の安定性を向上させるための技術を提供することを目的とする。
本発明の第1の態様の情報処理装置は、制御器と、前記制御器の出力を入力とする制御対象と、を備え、前記制御対象の出力が前記制御器の入力にフィードバックされる制御システムにおいて、前記制御器のパラメータを算出する情報処理装置であって、前記制御器の出力の時系列データである第1時系列データと、前記制御対象の出力の時系列データである第2時系列データとを取得する時系列データ取得部と、前記制御器のパラメータ、前記第1時系列データ、及び前記第2時系列データから、前記制御器に入力する入力信号の時系列データの推定値である第3時系列データを推定する入力信号推定部と、前記第2時系列データと前記第3時系列データとに基づいて、前記制御器に対する相補感度関数を算出する相補感度関数算出部と、前記制御システムの入力信号を前記相補感度関数に印加したときの出力である第4時系列データを算出するプラント出力算出部と、前記制御対象の入力に対する所定の応答を実現するモデルである参照モデルに前記入力信号を入力した場合の出力の時系列データである第5時系列データを取得するモデル出力取得部と、前記第4時系列データと前記第5時系列データとの誤差に関する評価関数の評価値に基づいて前記参照モデルのむだ時間であるモデルむだ時間および制御器のパラメータを決定し、決定した前記モデルむだ時間および前記制御器のパラメータを用いる適正化アルゴリズムを実行することにより前記参照モデルの応答性のパラメータを決定するパラメータ決定部と、を備える。
前記パラメータ決定部は、例えば、前記評価値が最小になるように前記モデルむだ時間を推定し、前記制御対象にデータを入力してから当該データが出力されるまでの遅延時間に対応する制御対象むだ時間を取得し、推定した前記モデルむだ時間と取得した前記制御対象むだ時間とを前記適正化アルゴリズムに適用することにより前記応答性のパラメータを適正化する。応答性のパラメータは、1次遅れ系の場合には時定数とよばれるが、他システムの応答性に関するパラメータを対象としてもよい。
前記パラメータ決定部は、前記参照モデルの推定むだ時間が前記制御対象むだ時間よりも大きい場合に、前記参照モデルの時定数を大きくしてもよい。
前記パラメータ決定部は、前記参照モデルの推定むだ時間が前記制御対象むだ時間よりも大きい場合に、前記制御器の次数を大きくしてもよい。
本発明の第2の態様のプログラムは、制御器と、前記制御器の出力を入力とする制御対象と、を備え、前記制御対象の出力が前記制御器の入力にフィードバックされる制御システムにおいて、前記制御器のパラメータを算出するコンピュータに、前記制御器の出力の時系列データである第1時系列データを取得する機能と、前記制御対象の出力の時系列データである第2時系列データを取得する機能と、前記制御器のパラメータ、前記第1時系列データ、及び前記第2時系列データから、前記制御器に入力する入力信号の時系列データの推定値である第3時系列データを推定する機能と、前記第2時系列データと前記第3時系列データとに基づいて、前記制御器に対する相補感度関数を算出する機能と、前記制御システムの入力信号を前記相補感度関数に印加したときの出力である第4時系列データを算出する機能と、前記制御対象の入力に対する所定の応答を実現するモデルである参照モデルに前記入力信号を入力した場合の出力の時系列データである第5時系列データを取得する機能と、前記第4時系列データと前記第5時系列データとの誤差に関する評価関数の評価値に基づいて前記参照モデルのむだ時間であるモデルむだ時間を決定する機能と、決定した前記モデルむだ時間および前記制御器のパラメータを用いる適正化アルゴリズムを実行することにより前記参照モデルの応答性のパラメータを適正化する機能と、を実現させる。
本発明によれば、FRITにおいて制御器パラメータを用いた制御の安定性を向上させることができる。
標準的なFRITを説明するための図である。 安定性を考慮したFRITの構成を模式的に示す図である。 制御システムが応答性パラメータを決定する処理のフローチャートである。 制御システムにステップ入力を印加したときのシミュレーションの結果を示す図である。 制御システムSがむだ時間を有する制御対象に対してモデルむだ時間を含む制御パラメータを自動調整したパラメータを用いた場合の閉ループ系の時間履歴を示す図である。 実施の形態に係る情報処理装置の機能構成を模式的に示す図である。 実施の形態に係る情報処理装置が実行する情報処理の流れを説明するためのフローチャートである。
[1.概略]
FRITや非反証制御等のデータ駆動制御により得られた制御パラメータを用いて制御を行うと、閉ループ系が不安定化する場合がある。特に、制御器の構造上、参照モデルの応答を実現する制御パラメータが存在しない場合に不安定化が生じやすいことが知られている。この問題はSafonovが提案した擬似参照入力を使用する場合に生じる。
Engellらは、上記の問題が発生する原因として、プラント出力から擬似誤差(擬似参照信号とプラント出力の誤差)の伝達関数を求める際に不安定極が相殺されてしまうため、閉ループ系の不安定化を検知できないことを示している。そこで、Engellらは、擬似参照入力と擬似誤差に関する感度関数を入出力データから求めた後、得られた感度関数に目標値を印加し感度関数の出力である誤差を求めることを提案した。これにより、不安定極を相殺することなく感度関数の出力である誤差を求めることができ、閉ループ系の不安定化を検知することができる。Engellらの手法において、感度関数はFIR(Finite Impulse Response)モデルに基づいて同定される。このため、感度関数の同定にプラントモデルの構造は不要である。さらに、時間領域で計算していることからオンライン計算への展開が可能となる。
Engellらは感度関数の出力である誤差を最小にする評価関数を設定した。これに対し、実施の形態に係る手法は、閉ループ系と設計者が設定した参照モデルとが一致するような評価関数を設定する。具体的には、本実施の形態では、まず、擬似参照入力を利用し、調整する制御器に対する相補感度関数を求める。すなわち相補感度関数の出力は制御パラメータの関数となる。次に、設計者が与えたい目標値を相補感度関数に印加しその出力を求める。相補感度関数の出力はプラントからの出力である。すなわち、相補感度関数の出力を見ることにより、FRITにおいて制御器パラメータを用いた制御の安定性を評価することができる。
実施の形態に係る手法では、相補感度関数から得られた出力と設計者が設定した参照モデルの出力の二乗誤差が最小になる制御器パラメータを粒子群最適化等の最適化手法により求める。これにより、標準的なFRITでは閉ループ系が不安定になる場合であっても、本実施の形態では安定な制御パラメータが得られる。これにより、実施の形態は標準FRITの利点を活かしたまま不安定化を軽減することができる。
[2.安定性を考慮したFRITの導出]
[2.1.標準FRIT]
図1は、標準的なFRITを説明するための図である。図1に示す閉ループ系の制御システムSにおいて、制御器Cは制御に用いるパラメータθを引数とする関数C(θ)で表現されている。図1に示す制御システムSは、制御対象Pの出力yと後述する参照モデルMの出力とを一致させることが目的である。具体的には、この目的を達成するために制御対象Pに入力すべき制御量uを出力するようなパラメータθを特定することが目的である。なお、図1において、θは自由に調整できるパラメータであり、u及びyは観測により取得可能なデータである。また、dは制御システムSの目標値である。
FRITは1組の入出力データと参照モデルMとから、制御システムSの制御器Cのパラメータθを自動調整する手法である。初期のパラメータθを用いて1組の閉ループ実験を行い、そのときの入出力データu及びyをサンプリングして計測する。このとき、制御システムSは安定であるとする。図1より、C(θ)(r−y)=uであるから、制御システムSの目標値dの推定値である擬似参照信号rはu及びyを用いて以下の式(1)で表せる。
r(θ,k)=C-1(θ)u(k)+y(k) (1)
図1に示す一般的なフィードバック制御の応答と、参照モデルM(z)及び擬似参照信号r(θ,k)から得られる目標応答との誤差に関する評価関数Jθは次式(2)で表される。
Figure 2021051462
この評価関数Jθを最小にする制御器Cのパラメータθは、制御対象Pの出力であるプラント出力y(k)と参照モデルMの出力M(z)r(θ,k)との二乗誤差を最小化するという意味において、制御器Cの最適なパラメータθである。一般的なFRITでは、オフライン計算で最適なパラメータθが計算される。なお、評価関数は式(2)に示す形に限られず、制御入力等の制約を考慮したものであってもよい。
式(1)から明らかなように、FRITは閉ループ系の制御システムSの伝達関数と参照モデルがマッチングする最適な制御器パラメータを求めることを目的としている。すなわち、FRITは、以下の式(2)で表される評価関数を最小にする最適パラメータを求める。FRITは擬似参照信号r(θ,k)を利用して、閉ループ試験を繰り返すことなく実験により取得した1組の入出力データを用いてオフラインで最適制御パラメータを求めるデータ駆動制御の1つであるともいえる。
FRITの評価関数Jθ、擬似参照信号r(θ,k)、及び擬似誤差e(θ,k)は次式で表される。
Figure 2021051462
[2.2.安定性を考慮したFRIT]
擬似参照信号r(θ,k)を用いる場合にはFRITの閉ループ系の不安定化を検知できない。そこで、まず、擬似参照信号r(θ,k)とプラント出力yを用いて時間領域における相補感度関数を求める。求めた相補感度関数に目標値dを印加し、その応答yを求める。この応答yが参照モデルMの応答M(z)r(θ,k)と一致するような制御器パラメータを求める。なお、相補感度関数の同定はFIRモデルを用いる。これにより、制御対象Pの構造を知る必要はなく、取得したデータのみを用いて相補感度関数を同定することができる。
まず、ラプラス領域における感度関数と相補感度関数とについて説明する。
パラメータθの調整対象とする制御器Cの感度関数Sは次式(6)で表される。
Figure 2021051462
調整対象とする制御器Cの相補感度関数Tは次式(7)で表される。
Figure 2021051462
なお、感度関数Sと相補感度関数Tとの関係は次式(8)となる。
S(s)+T(s)=1 (8)
続いて、時間領域における擬似参照信号r(θ,k)とプラント出力yとの関係について説明する。時間領域における擬似参照信号r(θ,k)とプラント出力yとの関係は次式(9)となる。
Figure 2021051462
式(9)において、記号*は畳み込みを表し、t(k)は相補感度関数Tのインパルス応答を表す。擬似参照信号r(θ,k)とプラント出力yとは観測可能であるが、相補感度関数Tのインパルス応答t(k)は未知である。
式(9)は行列を用いて表すと以下の式(10)となる。
Figure 2021051462
式(10)の左辺をベクトルy、右辺第1項を行列Rθ、右辺第2項をベクトルtとすると、相補感度関数Tのインパルス応答t(k)は、以下の式(11)で表される。
Figure 2021051462
式(11)は、式(9)のデコンボリューションともいえる。tは、パラメータθに依存する。
制御システムSの入力信号d(目標値)を相補感度関数Tに印加した場合の出力yを時間領域で表すと、次式(12)となる。
Figure 2021051462
式(12)は行列を用いて表すと以下の式(13)となる。
Figure 2021051462
式(13)の左辺をベクトルy、右辺第1項を行列D、右辺第2項をベクトルtとし、式(11)を用いてtを消去すると、式(13)は式(14)に変形できる。
Figure 2021051462
式(14)の右辺は全て観測により取得可能であるから、制御器Cを用いたときの目標値dを閉ループ系の制御システムSに印加したときの出力ベクトルyを演算により取得することができる。この出力ベクトルyと参照モデルMの出力y(k)=M(z)d(k)との誤差eの二乗和を、次式(15)で表される評価関数J(θ)とする。
Figure 2021051462
式(15)において、
(θ,k)=y(θ,k)−y(k) (16)
である。
標準的なFRITでは、取得したプラント出力yに一致するようにパラメータθの関数である擬似参照信号r(θ,k)を調整する。これに対し、実施の形態に係る手法では、参照モデルMの出力M(z)d(k)にプラント出力yが一致するように、パラメータθを調整してプラント出力yを変更する。すなわち、標準的なFRITは実験によりあらかじめ取得したプラント出力に合うようにパラメータθを求めているのに対し、実施の形態に係る手法は参照モデルの出力M(z)d(k)に合うように、パラメータθを求める。
[2.3.安定性を考慮したFRITの構成]
図2は、安定性を考慮したFRITの構成を模式的に示す図である。まず、パラメータθが初期値θのときの制御システムSの入出力データから擬似参照信号r(θ)が算出される。算出された擬似参照入力とプラント出力yとを用いて相補感度関数tを上記式(11)を用いて求められ、制御システムSの入力信号である目標値dを相補感度関数tに入力される。相補感度関数tの出力である出力yと、参照モデルの出力M(z)dとの誤差を最小にする制御器Cのパラメータθが、最適化手法により求められる。
[2.4.むだ時間を利用した参照モデルの自動調整]
参照モデルが適切でない場合には、FRITの性能が劣化することが知られている。そこで、制御システムSは、参照モデルMのむだ時間を評価関数に含め、評価関数を最小とする参照モデルMの推定むだ時間を制御対象の実際のむだ時間と比較することにより、参照モデルMを適正化する。
具体的には、制御システムSは、まず制御対象にデータを入力してから出力されるまでの遅延時間に基づいて、制御対象の実際のむだ時間(以下、「制御対象むだ時間」という。)を特定する。制御システムSにおいては、可変参照モデルを導入することで、むだ時間Lestも制御パラメータとして扱うことができる。また、制御システムSは、従来の参照モデルと同様に、設計値である時定数τを決定する。
Figure 2021051462
制御システムSは、参照モデルMを用いた以下の評価関数を最小化することができるPIDゲイン及びむだ時間を推定する。
Figure 2021051462
ここで、むだ時間が大きく推定されることにより評価関数が最小化されてしまう場合がある。この場合、制御システムSは、所望の応答特性を得ることができない。そこで、制御システムSは、推定されたむだ時間が制御対象の制御対象むだ時間とほぼ等しいということを条件としてPIDゲインを決定する。具体的には、制御システムSは以下の手順により、推定されたむだ時間と制御対象のむだ時間とを比較した結果に基づいて、時定数を適正化する。それによりむだ時間及びPIDゲインを自動調整され、高い制御性能が得られる。
まず、制御システムSは、推定されたむだ時間を制御対象の制御対象むだ時間と比較する。推定したむだ時間が制御対象むだ時間よりも大きい場合、制御器Cの次数を大きくすることにより、より高精度に制御できるようにしたり、目標参照応答をより遅くしたりする必要がある。
図3は、制御システムSが応答性パラメータを決定する処理のフローチャートである。以下、図3を参照しながら、制御システムSが実行する処理の詳細を説明する。
(第1ステップ)事前に取得した入出力データに基づいて制御対象むだ時間を特定する(S101)。制御システムSは、例えばFRITの初期の処理において初期のパラメータθを用いて1組の入出力データu及びyを計測した結果に基づいて制御対象むだ時間を特定することができる。
(第2ステップ)参照モデルMを含めた安定性を考慮したFRITの評価関数を最小化するパラメータを特定する。
(第3ステップ)PIDゲイン及び参照モデルMのむだ時間を推定する(S102)。
(第4ステップ)推定したむだ時間と制御対象むだ時間とを比較することにより(S103)、参照モデルMの時定数を調整するパラメータ適正化アルゴリズムを実行する。
制御システムSは、参照モデルMの時定数を調整する際、推定したむだ時間が制御対象むだ時間よりも大きい場合(S103においてNO)、以下のいずれかの処理(S104)を実施した後に第2ステップに戻る。
(1)参照モデルMの時定数を大きくする。
(2)制御器Cの次数を大きくする。
制御器CがPID制御である場合、制御システムSは制御器Cの次数を変化させずに参照モデルMの時定数を大きくする。
一方、制御システムSは、推定したむだ時間が制御対象むだ時間以下である場合には(S103においてYES)、むだ時間が最適な値になっている(すなわち参照モデルMの時定数が適正化できた)と判定し、参照モデルMの時定数及び制御器Cの次数を変化させないで処理を終了する。
[3.シミュレーションによる検証]
[3.1.システムの定式化]
本願の発明者は、安定性を考慮したFRITについてシミュレーションを用いて検証した。そこで、まず、シミュレーションで用いる制御対象P、参照モデルM、制御器Cの定式化を行う。
制御対象Pは次式(17)に示すように、ばね質量系とする。ここで、m、c、k、及びLは、それぞれ質量、粘性係数、ばね剛性、及びむだ時間を表す。
Figure 2021051462
参照モデルMは、次式(18)に示すように1次遅れ系とする。ここで、τはシステムの応答に関するパラメータであり、設計者が設定する。
Figure 2021051462
制御器Cとしては次式(19)に示すPID(Proportional-Integral-Differential)制御器を用いる。ここで、K、K、及びKはそれぞれ、Pゲイン、Iゲイン、及びDゲインである。
Figure 2021051462
[3.2.シミュレーション]
シミュレーションにおいてサンプリング周期は4ミリ秒とし、制御器Cの離散化はゼロ次ホールドを用いた。なお、最適化計算には粒子群最適化を用いた。
図4は、制御システムにステップ入力を印加したときのシミュレーションの結果を示す図である。具体的には、図4(a)−(b)は、従来のFRITと実施の形態に係る手法とのそれぞれにより調整したパラメータθによる制御システムSの入出力データの時間履歴を示す図である。具体的には、図4(a)において、破線は参照応答、実線は実施の形態に係る手法における制御システムSの出力、一点鎖線は従来のFRITにおける制御システムSの出力を示している。図4(a)より、標準FRITでは制御システムSの出力が発散してグラフの枠内に収まっていないのに対し、実施の形態に係る手法は、制御の構造上モデルマッチングが実現できない場合においても閉ループ系である制御システムSが安定となる制御器Cのパラメータθが得られていることがわかる。
図4(b)は、図4(a)に対応する入力信号を示す図である。図4(a)と同様に、実線は実施の形態に係る手法における入力、一点鎖線は従来のFRITにおける入力を示している。図4(b)より、標準FRITでは入力も不安定となっている。一方、実施の形態に係る手法では、入力も安定している。
図5は、制御システムSがむだ時間を有する制御対象に対してモデルむだ時間を含む制御パラメータを自動調整したパラメータを用いた場合の閉ループ系の時間履歴を示す図である。図5(a)は、参照モデルMの時定数を5msとしたときの結果を示しており、図5(b)は、時定数を300msとしたときの結果を示している。図5における横軸は時間であり、縦軸は入出力である。図5における破線は参照応答を示しており、実線は実施の形態に係る手法における制御システムSの出力を示している。
図5(a)において破線で示す参照応答が立ち上がり始めるまでの時間が、推定されたむだ時間である。図5(a)から、指定した次数の制御器C(PID制御器)で実現できない応答を要求した場合には、むだ時間が実際より大きく推定されることがわかる。これは誤差の二乗和をより小さくするためであると考えられる。
また、図5(b)より、上記の手順で参照モデルMの時定数を調整していくことで、式(13)を最小化したときに得られるむだ時間Lestが適切になり、指定された次数の制御器Cで参照応答に実応答が追従できていることがわかる。また、むだ時間の推定精度も高いことが確認できる。
以上のとおり、制御システムSが、参照モデルMの自動調整を実現できることを確認できた。図5(a)と図5(b)の結果を比較すると、図5(b)の結果においては、実応答がオーバシュートすることなく、ほぼ同時間に定常目標値に到達している。この結果から、制御システムSは、むだ時間の推定値と実値に着目し、参照モデルMの時定数を適正化することにより、より良い制御性能が得られることがわかる。
[4.小括]
従来のFRITでは、制御器Cのパラメータθの最適解を用いて制御しても、閉ループ系の挙動が不安定になるという問題があった。実施の形態に係る手法では、時間領域で擬似参照信号r(θ,k)とプラント出力yとの伝達関数である相補感度関数Tを同定することで、誤差を正しく検知することを可能にした。実施の形態に係る手法により、閉ループ系が安定である制御器Cのパラメータθを求められる。また、むだ時間を利用して参照モデルMを自動調整することで、閉ループ系の安定性をさらに向上させることができる。
[5.参考文献]
(FRIT)
・相馬 将太郎, 金子 修, 藤井 隆雄, 一回の実験データに基づく制御器パラメータチューニングの新しいアプローチ Fictitious Reference Iterative Tuning の提案, システム制御情報学会論文誌, Vol. 17, No.12 (2004), pp. 528-536
・奥谷 明大, 金子 修, 山本 茂, FRITを用いた多入出力むだ時間系に対するスミス補償器のチューニング, システム制御情報学会論文誌, Vol. 28, No 2 (2015), pp. 58-65
・データを直接用いた制御器のパラメータチューニング, 金子修, 計測と制御, Vol.43, No.11 (2008), pp903-908
(非反証制御)
・M. G. Safonov and T. C. Tsao, The unfalsified control, concept and learning, IEEE Trans. on Automat.Contr., Vol. 42, No. 6, pp. 843-847 (1997)
(安定性の考慮)
・弓場井 一裕, 藤井 宏樹, 平井 淳之, パラメータ更新時の閉ループシステムの安定性を考慮したFCbTの提案, 電気学会論文誌D(産業応用部門誌), Vol.132, No.6 (2011),pp. 607-615
・Kazuhiro Yubai, Hiroki Fujii, Junji Hirai, Fictitious Correlation-based Tuning Integrating the Data-Based Stability Test at Each Parameter Update, Electrical Power Systems and Computers, LNEE 99, pp. 511-518.
(擬似参照信号の問題と安定性)
・S. Engell, T. Tometzki and T. Wonghong, A New Approach to Adaptive Unfalsified Control. In Proc. European Control Conf., Kos, 2007, 1328-1333.
・T. Wonghong and S. Engell, Application of a New Scheme for Adaptive Unfalsified Control to a CSTR. Proc. IFAC World Congress, Korea, 13247-13252, 2008.
[6.実施の形態]
以上を踏まえ、本発明の実施の形態について説明する。
図6は、実施の形態に係る情報処理装置1の機能構成を模式的に示す図である。情報処理装置1は、記憶部2と制御部3とを備える。図6において、矢印は主なデータの流れを示しており、図6に示していないデータの流れがあってもよい。図6において、各機能ブロックはハードウェア(装置)単位の構成ではなく、機能単位の構成を示している。そのため、図6に示す機能ブロックは単一の装置内に実装されてもよく、あるいは複数の装置内に分かれて実装されてもよい。機能ブロック間のデータの授受は、データバス、ネットワーク、可搬記憶媒体等、任意の手段を介して行われてもよい。
記憶部2は、情報処理装置1を実現するコンピュータのBIOS(Basic Input Output System)等を格納するROM(Read Only Memory)や情報処理装置1の作業領域となるRAM(Random Access Memory)、OS(Operating System)やアプリケーションプログラム、当該アプリケーションプログラムの実行時に参照される種々の情報を格納するHDD(Hard Disk Drive)やSSD(Solid State Drive)等の大容量記憶装置である。
制御部3は、情報処理装置1のCPU(Central Processing Unit)やGPU(Graphics Processing Unit)等のプロセッサであり、記憶部2に記憶されたプログラムを実行することによって時系列データ取得部30、入力信号推定部31、相補感度関数算出部32、プラント出力算出部33、モデル出力取得部34、及びパラメータ決定部35として機能する。
なお、図6は、情報処理装置1が単一の装置で構成されている場合の例を示している。しかしながら、情報処理装置1は、例えばクラウドコンピューティングシステムのように複数のプロセッサやメモリ等の計算リソースによって実現されてもよい。この場合、制御部3を構成する各部は、複数の異なるプロセッサの中の少なくともいずれかのプロセッサがプログラムを実行することによって実現される。
情報処理装置1は、制御器Cと制御器Cの出力を入力とする制御対象Pとを備える制御システムSにおいて、制御器Cのパラメータθを算出するための装置である。図6に示すように、制御システムSは、制御対象Pの出力が制御器Cの入力にフィードバックされる閉ループ系である。
時系列データ取得部30は、制御器Cの出力の時系列データである第1時系列データと、制御対象Pの出力の時系列データである第2時系列データとを取得する。ここで、第1時系列データは上述した制御対象Pに入力すべき制御量uに対応し、第2時系列データは上述した制御対象Pの出力yに対応する。したがって、以下本明細書において、「第1時系列データu」、「第2時系列データy」と記載することがある。
入力信号推定部31は、制御器Cのパラメータθ、第1時系列データu、及び第2時系列データyから、制御器Cに入力する入力信号の時系列データの推定値である第3時系列データを推定する。第3時系列データは、上述した擬似参照信号r(θ,k)に対応する。したがって、以下、「第3時系列データr(θ)」と記載することがある。
相補感度関数算出部32は、第2時系列データuと第3時系列データr(θ)とに基づいて、上述した式(11)を用いて制御器Cに対する相補感度関数tを算出する。プラント出力算出部33は、上述した式(12)又は式(13)を用いて、制御システムSの入力信号dを相補感度関数tに印加したときの出力である第4時系列データを算出する。第4時系列データは、制御システムSの入力信号d(目標値)を相補感度関数Tに印加した場合の出力yに対応する。したがって、以下、「第4時系列データy」と記載することがある。
制御対象Pに入力すべき制御量である第1時系列データu、制御対象Pの出力である第2時系列データy、及び制御システムSの入力信号である第4時系列データdは、いずれも観測により取得可能な量である。情報処理装置1は、観測により取得した第1時系列データu、第2時系列データy、及び入力信号dを用いることで、制御システムSに入力信号dを入力したときの出力yを算出することができる。出力yは、プラント(制御対象P)からの出力である。情報処理装置1は、この出力yの振る舞い(例えば、発散するか否か、振動するか否か、収束するか否か等)を解析することで、FRITにおいて制御器Cのパラメータθを用いたプラントの制御の安定性を評価することができる。
図2及び図6に示すように、制御システムSは制御対象Pの入力信号dに対する出力を所定の出力とすることを実現する参照モデルMを備えている。なお、参照モデルMは、制御対象Pの出力が設計者が希望する出力となるように、設計者が決定する。モデル出力取得部34は、参照モデルMに入力信号dを入力した場合の出力の時系列データである第5時系列データを取得する。第5時系列データは、上述した参照モデルの出力M(z)dに対応する。以下、第5時系列データを「第5時系列データy」と記載することがある。
ここで、情報処理装置1がFRITにおける制御器Cのパラメータθを用いた制御の安定性を評価することができるのであれば、情報処理装置1は、制御が安定化するようにパラメータθを最適化することもできる。これを実現するために、パラメータ決定部35は、第4時系列データyと第5時系列データyとの誤差に関する評価関数J(θ)の評価値に基づいて、制御器Cのパラメータθを更新する。
より具体的には、上述した式(15)及び式(16)に示すように、パラメータ決定部35が用いる評価関数J(θ)は、第4時系列データyと第5時系列データyとの誤差の二乗和である。パラメータ決定部35は、評価関数J(θ)の評価値が小さくなるように、反復処理によって制御器Cのパラメータθを更新する。すなわち、パラメータ決定部35は、第4時系列データyと第5時系列データyとの誤差の二乗和が小さくなるという意味において最適なパラメータθを反復によって求める。
一般に、第4時系列データyが発散したり振動したりすると、第4時系列データyと第5時系列データyとの誤差の二乗和は大きくなる。パラメータ決定部35が第4時系列データyと第5時系列データyとの誤差の二乗和が小さくなるように制御器Cのパラメータθを更新することにより、情報処理装置1は、FRITにおいて制御器Cのパラメータθを用いたプラントの制御を安定化させることができる。
また、パラメータ決定部35は、評価関数の評価値に基づいて参照モデルMのむだ時間であるモデルむだ時間を推定する。パラメータ決定部35は、例えば、評価値が最小になるようにモデルむだ時間を推定する。パラメータ決定部35は、制御対象にデータを入力してから当該データが出力されるまでの遅延時間に対応する制御対象むだ時間を取得し、推定したモデルむだ時間と取得した制御対象むだ時間とを所定のパラメータ適正化アルゴリズムに適用することで、参照モデルMの応答性のパラメータを決定する。具体的には、パラメータ決定部35は、参照モデルMの推定むだ時間が制御対象むだ時間よりも大きい場合に、参照モデルMの時定数を大きくする。パラメータ決定部35は、参照モデルMの推定むだ時間が制御対象むだ時間よりも大きい場合に、制御器Cの次数を大きくしてもよい。
なお、パラメータ決定部35は、評価関数の評価値が小さくなるように制御器Cのパラメータθを更新できるのであればどのような最適化手法を用いてもよい。一例としてパラメータ決定部35は、あらかじめ定められた所定の回数を反復回数の上限として、粒子群最適化の手法を用いて制御器Cのパラメータθを更新してもよい。
<情報処理装置1が実行する情報処理方法の処理フロー>
図7は、実施の形態に係る情報処理装置1が実行する情報処理の流れを説明するためのフローチャートである。本フローチャートにおける処理は、例えば情報処理装置1が起動したときに開始する。
時系列データ取得部30は、制御器Cの出力の時系列データである第1時系列データuを取得する(S2)。また、時系列データ取得部30は、制御対象Pの出力の時系列データである第2時系列データyを取得する(S4)。
入力信号推定部31は、制御器Cのパラメータθ、第1時系列データu、及び第2時系列データyから、式(1)を用いて、制御器Cに入力する入力信号dの時系列データの推定値である第3時系列データr(θ)を推定する(S6)。
相補感度関数算出部32は、第2時系列データyと第3時系列データr(θ)とに基づいて、式(11)を用いて制御器Cに対する相補感度関数t(すなわち、擬似参照信号r(θ,k)に対する相補感度関数t)を算出する(S8)。プラント出力算出部33は、式(14)を用いて、制御システムSの入力信号dを相補感度関数tに印加したときの出力である第4時系列データy(すなわち、入力信号dに対する制御対象Pの出力)を算出する(S10)。
モデル出力取得部34は、参照モデルMに入力信号dを入力した場合の出力の時系列データである第5時系列データyを取得する(S12)。パラメータ決定部35は、式(15)及び式(16)を用いて、第4時系列データyと第5時系列データyとの誤差に関する評価関数J(θ)の評価値を算出する(S14)。パラメータ決定部35は、評価関数J(θ)の評価値が小さくなるように、制御器Cの制御パラメータθを更新する(S16)。
ステップS16の処理において、パラメータ決定部35は、ステップS2で第1時系列データuを取得したタイミングとステップS4で第2時系列データyを取得したタイミングとの時間差に基づいて、制御対象の実際のむだ時間を特定する。パラメータ決定部35は、評価値が小さくなるようにパラメータθを決定した状態で参照モデルMのむだ時間を推定し、推定したむだ時間が制御対象の実際のむだ時間よりも大きい場合に、参照モデルMの時定数を大きくしたり、制御器Cの実数を大きくしたりする。パラメータ決定部35は、推定したむだ時間が制御対象の実際のむだ時間以下になるまでこの処理を反復することにより、むだ時間が最適な値になるように調整する。
パラメータ決定部35は、制御器Cのパラメータθを更新すると、図3を参照して説明したパラメータ適正化アルゴリズムを実行する。具体的には、パラメータ決定部35は、推定したむだ時間が制御対象むだ時間よりも大きい場合(S18においてNO)、参照モデルMの時定数を大きくしたり、制御器Cの次数を大きくしたりする(S20)。その後、情報処理装置1は、処理をS2に戻す。一方、パラメータ決定部35は、推定したむだ時間が制御対象むだ時間以下である場合には(S18においてYES)、むだ時間が最適な値になっていると判定し、参照モデルMの時定数及び制御器Cの次数を変化させないでパラメータ適正化アルゴリズムを終了する。情報処理装置1は、上記の処理をオンラインで繰り返すことにより、制御器Cのパラメータθの更新を継続する。
<実施の形態に係る情報処理装置1が奏する効果>
以上説明したように、実施の形態に係る情報処理装置1によれば、FRITにおいて制御器Cのパラメータθを用いたプラントの制御の安定性を向上させることができる。また、情報処理装置1は、閉ループ系の制御が安定化するようにFRITにおける制御器Cのパラメータθを最適化することもできる。また、情報処理装置1は、参照モデルのむだ時間を最適化することにより、制御器Cのパラメータθをさらに改善することができる。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、装置の全部又は一部は、任意の単位で機能的又は物理的に分散・統合して構成することができる。また、複数の実施の形態の任意の組み合わせによって生じる新たな実施の形態も、本発明の実施の形態に含まれる。組み合わせによって生じる新たな実施の形態の効果は、もとの実施の形態の効果を併せ持つ。
1・・・情報処理装置
2・・・記憶部
3・・・制御部
30・・・時系列データ取得部
31・・・入力信号推定部
32・・・相補感度関数算出部
33・・・プラント出力算出部
34・・・モデル出力取得部
35・・・パラメータ決定部
C・・・制御器
M・・・参照モデル
P・・・制御対象
S・・・制御システム

Claims (5)

  1. 制御器と、前記制御器の出力を入力とする制御対象と、を備え、前記制御対象の出力が前記制御器の入力にフィードバックされる制御システムにおいて、前記制御器のパラメータを算出する情報処理装置であって、
    前記制御器の出力の時系列データである第1時系列データと、前記制御対象の出力の時系列データである第2時系列データとを取得する時系列データ取得部と、
    前記制御器のパラメータ、前記第1時系列データ、及び前記第2時系列データから、前記制御器に入力する入力信号の時系列データの推定値である第3時系列データを推定する入力信号推定部と、
    前記第2時系列データと前記第3時系列データとに基づいて、前記制御器に対する相補感度関数を算出する相補感度関数算出部と、
    前記制御システムの入力信号を前記相補感度関数に印加したときの出力である第4時系列データを算出するプラント出力算出部と、
    前記制御対象の入力に対する所定の応答を実現するモデルである参照モデルに前記入力信号を入力した場合の出力の時系列データである第5時系列データを取得するモデル出力取得部と、
    前記第4時系列データと前記第5時系列データとの誤差に関する評価関数の評価値に基づいて前記参照モデルのむだ時間であるモデルむだ時間および制御器のパラメータを決定し、決定した前記モデルむだ時間および前記制御器のパラメータを用いる適正化アルゴリズムを実行することにより前記参照モデルの応答性のパラメータを決定するパラメータ決定部と、
    を備える情報処理装置。
  2. 前記パラメータ決定部は、前記評価値が最小になるように前記モデルむだ時間を推定し、前記制御対象にデータを入力してから当該データが出力されるまでの遅延時間に対応する制御対象むだ時間を取得し、推定した前記モデルむだ時間と取得した前記制御対象むだ時間とを前記適正化アルゴリズムに適用することにより前記応答性のパラメータを適正化する、
    請求項1に記載の情報処理装置。
  3. 前記パラメータ決定部は、前記参照モデルの推定むだ時間が前記制御対象むだ時間よりも大きい場合に、前記参照モデルの時定数を大きくする、
    請求項2に記載の情報処理装置。
  4. 前記パラメータ決定部は、前記参照モデルの推定むだ時間が前記制御対象むだ時間よりも大きい場合に、前記制御器の次数を大きくする、
    請求項2に記載の情報処理装置。
  5. 制御器と、前記制御器の出力を入力とする制御対象と、を備え、前記制御対象の出力が前記制御器の入力にフィードバックされる制御システムにおいて、前記制御器のパラメータを算出するコンピュータに、
    前記制御器の出力の時系列データである第1時系列データを取得する機能と、
    前記制御対象の出力の時系列データである第2時系列データを取得する機能と、
    前記制御器のパラメータ、前記第1時系列データ、及び前記第2時系列データから、前記制御器に入力する入力信号の時系列データの推定値である第3時系列データを推定する機能と、
    前記第2時系列データと前記第3時系列データとに基づいて、前記制御器に対する相補感度関数を算出する機能と、
    前記制御システムの入力信号を前記相補感度関数に印加したときの出力である第4時系列データを算出する機能と、
    前記制御対象の入力に対する所定の応答を実現するモデルである参照モデルに前記入力信号を入力した場合の出力の時系列データである第5時系列データを取得する機能と、
    前記第4時系列データと前記第5時系列データとの誤差に関する評価関数の評価値に基づいて前記参照モデルのむだ時間であるモデルむだ時間を決定する機能と、
    決定した前記モデルむだ時間および前記制御器のパラメータを用いる適正化アルゴリズムを実行することにより前記参照モデルの応答性のパラメータを適正化する機能と、
    を実現させるプログラム。
JP2019173165A 2019-09-24 2019-09-24 情報処理装置及びプログラム Pending JP2021051462A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019173165A JP2021051462A (ja) 2019-09-24 2019-09-24 情報処理装置及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019173165A JP2021051462A (ja) 2019-09-24 2019-09-24 情報処理装置及びプログラム

Publications (1)

Publication Number Publication Date
JP2021051462A true JP2021051462A (ja) 2021-04-01

Family

ID=75157910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019173165A Pending JP2021051462A (ja) 2019-09-24 2019-09-24 情報処理装置及びプログラム

Country Status (1)

Country Link
JP (1) JP2021051462A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023032320A (ja) * 2021-08-26 2023-03-09 いすゞ自動車株式会社 情報処理装置
JP2023032317A (ja) * 2021-08-26 2023-03-09 いすゞ自動車株式会社 情報処理装置
JP7359265B1 (ja) 2022-08-25 2023-10-11 いすゞ自動車株式会社 パラメータ更新装置及びパラメータ更新方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023032320A (ja) * 2021-08-26 2023-03-09 いすゞ自動車株式会社 情報処理装置
JP2023032317A (ja) * 2021-08-26 2023-03-09 いすゞ自動車株式会社 情報処理装置
JP7359265B1 (ja) 2022-08-25 2023-10-11 いすゞ自動車株式会社 パラメータ更新装置及びパラメータ更新方法
JP2024031032A (ja) * 2022-08-25 2024-03-07 いすゞ自動車株式会社 パラメータ更新装置及びパラメータ更新方法

Similar Documents

Publication Publication Date Title
JP2021051462A (ja) 情報処理装置及びプログラム
CN107784364B (zh) 机器学习模型的异步训练
JP2017528848A (ja) 機械の動作を制御するための方法およびシステム
Matisko et al. Noise covariance estimation for Kalman filter tuning using Bayesian approach and Monte Carlo
JP2015170361A (ja) システムの連続モデル予測制御のための方法およびシステムを制御するための連続モデル予測コントローラー
JP2013525910A (ja) 制御装置及び制御のための出力変数を計算する方法
CN113874865A (zh) 借助于贝叶斯优化方法确定技术系统的调节策略的模型参数的方法和装置
JP6718500B2 (ja) 生産システムにおける出力効率の最適化
WO2016092872A1 (ja) 制御装置、そのプログラム、プラント制御方法
JP7014330B1 (ja) 制御装置、制御方法、及びプログラム
JP2017084343A5 (ja)
JP6901037B1 (ja) 制御装置、制御方法及びプログラム
JP7416267B2 (ja) 調整システム、調整方法および調整プログラム
CN110095981A (zh) 一种自抗扰控制器参数的整定方法、装置和电子设备
JP2021149988A (ja) 情報処理装置及び情報処理方法
WO2020246531A1 (ja) 情報処理装置、プログラム、及び算出方法
KR20210013971A (ko) Pso를 이용한 모터 제어기의 자동 학습 튜닝 시스템
WO2021006332A1 (ja) 情報処理装置、プログラム、及び算出方法
CN111240201B (zh) 一种扰动抑制控制方法
JP2021051538A (ja) 情報処理装置
JP7275492B2 (ja) 制御装置、制御方法及びプログラム
CN104345637B (zh) 用于自适应基于数据的函数模型的方法和设备
JP7115654B1 (ja) 制御装置、制御方法及びプログラム
CN115066658B (zh) 用于高级模型预测控制的深度因果学习
JP2023031898A (ja) 情報処理装置