JP2020199522A - Resistance-welding method for high strength steel sheet - Google Patents

Resistance-welding method for high strength steel sheet Download PDF

Info

Publication number
JP2020199522A
JP2020199522A JP2019107742A JP2019107742A JP2020199522A JP 2020199522 A JP2020199522 A JP 2020199522A JP 2019107742 A JP2019107742 A JP 2019107742A JP 2019107742 A JP2019107742 A JP 2019107742A JP 2020199522 A JP2020199522 A JP 2020199522A
Authority
JP
Japan
Prior art keywords
welding
strength steel
steel sheet
steel plate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019107742A
Other languages
Japanese (ja)
Other versions
JP7247768B2 (en
Inventor
村上 士嘉
Akiyoshi Murakami
士嘉 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2019107742A priority Critical patent/JP7247768B2/en
Publication of JP2020199522A publication Critical patent/JP2020199522A/en
Application granted granted Critical
Publication of JP7247768B2 publication Critical patent/JP7247768B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To solve such a problem that crack sensitivity increases due to HAZ softening in resistance-welding of a high strength steel sheet 3 of which a tensile strength exceeds 1 GPa.SOLUTION: According to this method, a heat treatment process, in which a part of a high strength steel sheet 3 to be welded to other steel sheet and surroundings thereof are pinched by a pair of heating electrodes and are electrically conducted while being heated to generate heat thereby increasing ductility, is performed on the high strength steel sheet alone. and thereafter, the high strength steel sheet 3 is overlapped with other steel sheet, and a weld nugget is formed between those steel sheets by pressurized electric conduction with a pair of welding electrodes.SELECTED DRAWING: Figure 1

Description

本発明は高強度鋼板の抵抗溶接方法に関する。 The present invention relates to a method for resistance welding of high-strength steel sheets.

鋼板の重ね合わせ部のスポット溶接に関し、特許文献1には、通電加熱工程とスポット溶接工程の2工程をとることが記載されている。通電加熱工程では、2枚の鋼板を重ね合わせた状態で、一対の円環状電極による通電によって溶接予定部の周囲に焼き戻しによる軟化部が形成される。続く、スポット溶接工程において、一対の溶接用電極によって溶接予定部のスポット溶接が行なわれる。 Regarding spot welding of overlapped portions of steel sheets, Patent Document 1 describes that two steps, an energization heating step and a spot welding step, are taken. In the energization heating step, in a state where two steel plates are overlapped, a softened portion by tempering is formed around the planned welding portion by energization by a pair of annular electrodes. In the subsequent spot welding step, spot welding of the planned welding portion is performed by a pair of welding electrodes.

また、特許文献2には、アルミめっき鋼板のスポット溶接に関し、一対の溶接用電極による通電制御によって、溶接予定部の鋼板間のめっき層を軟化・溶融させて鋼板間から排出することが記載されている。めっき層を介さずに鋼板同士を直接触させた状態にすることにより、散りの発生なく安定してスポット溶接できるようにされる。 Further, Patent Document 2 describes that, regarding spot welding of aluminum-plated steel sheets, the plating layer between the steel sheets at the planned welding portion is softened and melted by energization control by a pair of welding electrodes and discharged from between the steel sheets. ing. By putting the steel plates in direct contact with each other without going through the plating layer, it is possible to perform spot welding stably without generation of scattering.

特開2017−131916号公報Japanese Unexamined Patent Publication No. 2017-131916 特許5392142号公報Japanese Patent No. 5392142

近年、環境保護等の観点から鋼板の薄肉化及び高強度化が進められている。例えば、自動車にあっては、燃費改善を目的とした軽量化のために、車体部品に高強度鋼板を用いることが検討されている。しかし、高強度鋼板をスポット溶接すると、溶接ナゲットが形成される部分の周囲(HAZ(熱影響部))が焼戻され軟化すると共に、鋼板の溶融・凝固に伴う大きな引張残留応力が残存する。そのHAZ軟化部は、自動車の場合、衝突時に応力の集中起点となるため、破断が生じ易くなる。また、残留応力の増加は水素脆化起因の遅れ割れの発生リスクを増大させる。 In recent years, steel sheets have been made thinner and stronger from the viewpoint of environmental protection. For example, in automobiles, the use of high-strength steel plates for vehicle body parts is being studied in order to reduce the weight for the purpose of improving fuel efficiency. However, when a high-strength steel plate is spot-welded, the periphery (HAZ (heat-affected zone)) where the weld nugget is formed is tempered and softened, and a large tensile residual stress due to melting and solidification of the steel plate remains. In the case of an automobile, the HAZ softened zone serves as a stress concentration starting point at the time of a collision, so that the HAZ softened portion is likely to break. In addition, the increase in residual stress increases the risk of delayed cracking due to hydrogen embrittlement.

本発明は、引張強度が1GPaを超える強度を有する高強度鋼板の抵抗溶接において、HAZ軟化部によって割れ感受性が高くなる問題を解決する。 The present invention solves the problem that the crack sensitivity is increased by the HAZ softened zone in the resistance welding of a high-strength steel plate having a tensile strength exceeding 1 GPa.

本発明は、上記課題を解決するために、溶接前に、高強度鋼板単独で一対の加熱用電極による熱処理を施すようにした。 In the present invention, in order to solve the above problems, the high-strength steel sheet alone is heat-treated with a pair of heating electrodes before welding.

ここに開示する高強度鋼板の抵抗溶接方法は、複数の重ね合わせた鋼板を溶接する方法であって、且つ当該複数の鋼板のうちの少なくとも1枚は引張強度が1GPaを超える強度を有する高強度鋼板であり、
上記高強度鋼板における上記複数の鋼板のうちの他の鋼板と溶接すべき部位及びそのまわりを、一対の加熱用電極によって挟み加圧しながら通電することによって発熱させて、上記部位及びそのまわりの延性を増大させる上記高強度鋼板単独での熱処理工程と、
上記熱処理を施した上記高強度鋼板を含む上記複数の鋼板を重ね合わせ、この複数の鋼板の溶接すべき部位を、一対の溶接用電極によって挟み加圧しながら通電することによって発熱させて当該鋼板間に溶接ナゲットを形成する溶接工程とを備え、
上記加熱用電極の上記鋼板に接触する先端径Dhは、上記溶接用電極の上記鋼板に接触する先端径Dwよりも大きいことを特徴とする。
The resistance welding method for high-strength steel sheets disclosed herein is a method for welding a plurality of stacked steel sheets, and at least one of the plurality of steel sheets has a high strength having a tensile strength exceeding 1 GPa. It is a steel plate
A portion of the high-strength steel plate to be welded to another steel plate among the plurality of steel plates and its surroundings are sandwiched between a pair of heating electrodes and energized while applying pressure to generate heat, and ductility of the portion and its surroundings is generated. The heat treatment process of the above high-strength steel sheet alone and
The plurality of steel plates including the high-strength steel plate subjected to the heat treatment are superposed, and the parts to be welded of the plurality of steel plates are sandwiched between a pair of welding electrodes and energized while applying pressure to generate heat between the steel plates. Equipped with a welding process to form a welding nugget
The tip diameter Dh of the heating electrode in contact with the steel plate is larger than the tip diameter Dw of the welding electrode in contact with the steel plate.

この方法によれば、引張強度が1GPaを超える強度有する高強度鋼板は、一対の加熱用電極を用いた加圧通電による熱処理によって、溶接すべき部位(以下、「溶接部位」という。)及びそのまわりの延性が増大する。加熱用電極の先端径Dhは溶接用電極の先端径Dwよりも大きいから、高強度鋼板には、溶接ナゲットが形成される部分から周囲に拡がる延性増大部が形成される。よって、溶接ナゲットまわりにおいて高強度鋼板に局部的に応力が集中することが緩和され、溶接割れの防止に有利になる。 According to this method, a high-strength steel sheet having a tensile strength of more than 1 GPa is a portion to be welded (hereinafter referred to as a “welded portion”) and a portion thereof by heat treatment by pressurization and energization using a pair of heating electrodes. Increased ductility around. Since the tip diameter Dh of the heating electrode is larger than the tip diameter Dw of the welding electrode, the high-strength steel plate is formed with a ductile increasing portion extending from the portion where the welding nugget is formed to the periphery. Therefore, the concentration of stress locally on the high-strength steel plate around the weld nugget is alleviated, which is advantageous in preventing weld cracks.

加えて、高強度鋼板の溶接部位及びそのまわりには、上記加熱用電極による加圧通電によって軟化した状態で、当該加圧により圧縮応力が付与される。この圧縮応力の付与により、その後の溶接に伴う引張残留応力が低減され、水素脆化に起因する遅れ割れの防止に有利になる。 In addition, compressive stress is applied to the welded portion of the high-strength steel sheet and its surroundings in a state of being softened by pressurization by the heating electrode. By applying this compressive stress, the tensile residual stress associated with the subsequent welding is reduced, which is advantageous in preventing delayed cracking due to hydrogen embrittlement.

一実施形態では、上記高強度鋼板は、溶接される面にめっき層を有し、マルテンサイト組織を主とする鋼板であり、例えば、ホットスタンプにより成形と焼入れとが行なわれた鋼板である。 In one embodiment, the high-strength steel sheet is a steel sheet having a plating layer on the welded surface and mainly having a martensite structure, and is, for example, a steel sheet formed and hardened by hot stamping.

このような高強度鋼板の抵抗溶接において、上記熱処理工程により、その溶接部位及びそのまわりを焼き戻しマルテンサイト組織に変化させて延性を向上させる。或いは、当該熱処理工程により、溶接部位の周囲に軟化領域を形成して、その延性を向上させる。この溶接部位まわりの延性向上により、得られる溶接品は、外部荷重による応力集中が緩和される。同時に、当該溶接部位まわりの軟化・延性向上により、溶接残留応力が低減するため、遅れ割れも避けられる。 In resistance welding of such a high-strength steel plate, the welded portion and its surroundings are changed to a tempered martensite structure by the heat treatment step to improve ductility. Alternatively, the heat treatment step forms a softened region around the welded portion to improve its ductility. By improving the ductility around the welded portion, the stress concentration due to the external load is alleviated in the obtained welded product. At the same time, by improving the softening and ductility around the welded portion, the welding residual stress is reduced, so that delayed cracking can be avoided.

ところで、ホットスタンプ工法は、鋼板を金型で熱間成形した状態で冷媒によって急冷して焼入れするものであり、形状凍結性が高く高強度な部品が得られる。この工法では、安定した焼入れ強度を得るために、鋼板は成形前にAc3変態点以上の高温に加熱される。その際に鋼板表面に酸化スケールが発生することを抑制するために、鋼板表面に例えばアルミ合金めっきが施されている。 By the way, in the hot stamping method, a steel sheet is hot-formed with a mold and then rapidly cooled by a refrigerant and quenched, so that a part having high shape freezing property and high strength can be obtained. In this method, in order to obtain stable quenching strength, the steel sheet is heated to a high temperature equal to or higher than the Ac3 transformation point before forming. At that time, in order to suppress the generation of oxide scale on the surface of the steel sheet, for example, aluminum alloy plating is applied to the surface of the steel sheet.

このようなめっき鋼板は、ホットスタンプにおける昇温速度、到達温度、保持時間等の加熱条件によってアルミめっきの層構造が変化する。その結果、通電抵抗が高いFe−Al合金相を生じてスポット溶接性が悪くなるという問題がある。また、Fe−Al合金相の生成程度が部分的に異なることで、通電抵抗のばらつきも生じ易くなる。 In such a plated steel sheet, the layer structure of aluminum plating changes depending on heating conditions such as the rate of temperature rise in hot stamping, the ultimate temperature, and the holding time. As a result, there is a problem that an Fe—Al alloy phase having high energization resistance is generated and spot weldability is deteriorated. Further, since the degree of formation of the Fe—Al alloy phase is partially different, the conduction resistance is likely to vary.

さらに、このFe−Al合金相は、非常に硬く脆い為 熱間成形時にめっき層にクラックが入ったり、金型との擦過によって剥離したりすることがある。そのため、溶接に適した均質な表面状態を確保することは難しい。鋼板の表面性状が均質でないときは、スポット溶接時の接触抵抗が部分的に異なり(ばらつき)、そのため、発熱量が部分的に異なる結果、良好な溶接ナゲットが得られなくなるという問題が従来あった。 Further, since this Fe—Al alloy phase is very hard and brittle, the plating layer may be cracked during hot forming or may be peeled off by rubbing with a mold. Therefore, it is difficult to secure a uniform surface condition suitable for welding. When the surface texture of the steel sheet is not homogeneous, the contact resistance during spot welding is partially different (variation), and as a result, the calorific value is partially different, resulting in a problem that a good welding nugget cannot be obtained. ..

特許文献1に記載された溶接方法では、円環状電極による焼き戻しによって溶接部周辺に延性が得られるため、HAZ軟化部の応力集中による割れの抑制及び残留応力の低減については効果が得られる。しかし、高強度鋼板のめっき層がスポット溶接に悪影響を及ぼす問題を解決するものではない。 In the welding method described in Patent Document 1, since ductility is obtained around the welded portion by tempering with an annular electrode, it is possible to obtain an effect on suppressing cracks and reducing residual stress due to stress concentration in the HAZ softened portion. However, it does not solve the problem that the plating layer of the high-strength steel sheet adversely affects spot welding.

特許文献2に記載された溶接方法では、鋼板間のアルミ層は排出することができても、Fe−Al合金相をなくすことは難しく、また、鋼板を重ね合わせた状態の通電制御では、その合わせ面の表面性状を均質にすることも実際には難しい。 In the welding method described in Patent Document 2, even if the aluminum layer between the steel plates can be discharged, it is difficult to eliminate the Fe—Al alloy phase, and in the energization control in the state where the steel plates are overlapped, the same. It is actually difficult to make the surface texture of the mating surfaces uniform.

これに対して、本発明に係る方法の重要な特徴は、高強度鋼板に対する上記熱処理を、鋼板同士を重ね合わせた状態ではなく、この高強度鋼板単独で且つ上記加熱用電極による加圧通電によって行なう点である。これにより、高強度鋼板の溶接面のめっき層が均質化される。すなわち、高強度鋼板の溶接部位のめっき層は、通電による発熱で軟化ないしは溶融し、加圧されることにより、押し潰されて均質化する。例えば、めっき層のクラックは、軟化溶融しためっき金属で埋められ、加圧されることで消滅していく。これは、めっき層の表面性状の均質化である。 On the other hand, an important feature of the method according to the present invention is that the heat treatment on the high-strength steel sheet is not performed by superimposing the steel sheets on each other, but by applying pressure to the high-strength steel sheet alone and by the heating electrode. This is the point to do. As a result, the plating layer on the welded surface of the high-strength steel sheet is homogenized. That is, the plating layer at the welded portion of the high-strength steel sheet is softened or melted by heat generated by energization, and is crushed and homogenized by being pressurized. For example, cracks in the plating layer are filled with softened and melted plating metal and disappear when pressed. This is the homogenization of the surface texture of the plating layer.

よって、高強度鋼板の溶接部位の通電抵抗のばらつきが少なくなるため、良好な溶接ナゲットの生成に有利になる。 Therefore, the variation in the current-carrying resistance of the welded portion of the high-strength steel sheet is reduced, which is advantageous for producing a good weld nugget.

一実施形態では、上記加熱用電極の先端径Dhは、上記溶接用電極の先端径Dwの2倍以上4倍以下である、若しくは上記溶接用電極によって上記複数の鋼板間に形成する溶接ナゲットの径の2倍以上4倍以下である。 In one embodiment, the tip diameter Dh of the heating electrode is 2 times or more and 4 times or less the tip diameter Dw of the welding electrode, or the welding nugget formed between the plurality of steel plates by the welding electrode. It is 2 times or more and 4 times or less the diameter.

これにより、上記高強度鋼板の溶接部位のまわりの延性を確実に向上させることができる。 As a result, the ductility around the welded portion of the high-strength steel sheet can be reliably improved.

一実施形態では、上記加熱用電極による熱処理は、上記高強度鋼板における当該熱処理部からその周囲の非熱処理部に向かって硬度が漸次変化した状態になるように、上記通電による発熱量を制御する。例えば、上記加熱用電極による通電電流を漸減するダウンスロープ制御を行なうことによって、当該通電を終了させるようにする。 In one embodiment, the heat treatment using the heating electrode controls the amount of heat generated by the energization so that the hardness of the high-strength steel sheet gradually changes from the heat-treated portion to the non-heat-treated portion around the high-strength steel sheet. .. For example, the energization is terminated by performing downslope control that gradually reduces the energizing current by the heating electrode.

これにより、溶接ナゲットまわりにおいて、溶接品に対して外部荷重が加わったときの応力集中が避けられ、溶接品の破断防止に有利になる。 As a result, stress concentration when an external load is applied to the welded product can be avoided around the weld nugget, which is advantageous in preventing the welded product from breaking.

一実施形態では、上記溶接工程の後に、上記鋼板に接触する先端径が上記溶接用電極の上記鋼板に接触する先端径Dwよりも大きい一対の判定用電極によって上記複数の鋼板の溶接部を挟み、加圧しながら通電して通電抵抗を測定し、該通電抵抗を基準値と比較することによって溶接品質の良否を判定する品質判定工程を備えている。 In one embodiment, after the welding step, the welded portions of the plurality of steel plates are sandwiched by a pair of determination electrodes having a tip diameter in contact with the steel plate larger than the tip diameter Dw in contact with the steel plate of the welding electrode. It is provided with a quality determination step of determining the quality of welding by energizing while pressurizing, measuring the energizing resistance, and comparing the energizing resistance with a reference value.

以下、具体的に説明する。溶接工程では、複数の重ね合わされた鋼板を一対の溶接用電極によって挟み、加圧しながら通電するため、鋼板の表面における溶接用電極が接触した部位に多少の圧痕(凹み)を生ずる。この鋼板の圧痕を生じた部分に判定用電極を当てると、該判定用電極は鋼板の表面における圧痕まわりに接触することになる。 Hereinafter, a specific description will be given. In the welding process, since a plurality of stacked steel plates are sandwiched between a pair of welding electrodes and energized while pressurizing, some indentations (dents) are generated on the surface of the steel plates where the welding electrodes come into contact. When the determination electrode is applied to the indented portion of the steel sheet, the determination electrode comes into contact with the indentation on the surface of the steel sheet.

溶接工程において散りの発生があったときは、鋼板の溶接部位の溶融物が噴出することによって欠肉を生ずる。従って、溶接用電極の鋼板への沈み込みは散りがない場合に比べて大きくなる。すなわち、溶接用電極による鋼板表面の圧痕が大きくなる。この圧痕が大きくなるほど、判定用電極は鋼板表面の圧痕まわりに対する接触面積に小さくなる。また、散りの発生があったときは溶接ナゲットの大きさも小さくなる。 When scattering occurs in the welding process, the melt in the welded portion of the steel sheet is ejected, resulting in a lack of meat. Therefore, the sinking of the welding electrode into the steel plate is larger than that in the case where there is no scattering. That is, the indentation on the surface of the steel sheet due to the welding electrode becomes large. The larger the indentation, the smaller the contact area of the determination electrode with respect to the indentation on the surface of the steel sheet. In addition, the size of the welding nugget becomes smaller when scattering occurs.

従って、溶接工程において散りの発生があったとき、溶接後の判定用電極による通電においては、上記接触面積が小さいため、また、溶接ナゲットが小さいため、通電抵抗が大きくなる。よって、溶接後の判定用電極による通電時の通電抵抗の大きさを測定することによって、溶接品質の良否(通電抵抗が基準値よりも大きいときに溶接不良)を判定することができる。従って、従来のタガネ試験の様に溶接部に衝撃荷重を入力することなく品質判定が行える為、タガネ試験により発生する溶接部周辺のクラック等の欠陥抑制効果をも得ることが可能となる。 Therefore, when scattering occurs in the welding process, the energization resistance is increased because the contact area is small and the welding nugget is small in the energization by the determination electrode after welding. Therefore, by measuring the magnitude of the energization resistance at the time of energization by the determination electrode after welding, it is possible to determine the quality of the welding (welding failure when the energization resistance is larger than the reference value). Therefore, since the quality can be determined without inputting an impact load to the welded portion as in the conventional chisel test, it is possible to obtain the effect of suppressing defects such as cracks around the welded portion generated by the chisel test.

一実施形態では、上記溶接工程の後に、上記一対の判定用電極によって上記複数の鋼板の溶接部を挟み、加圧したときの上記一対の判定用電極の電極間距離の変化量を測定し、該変化量を基準値と比較することによって溶接品質の良否を判定する品質判定工程を備えている。 In one embodiment, after the welding step, the welded portions of the plurality of steel plates are sandwiched between the pair of determination electrodes, and the amount of change in the distance between the electrodes of the pair of determination electrodes when pressurized is measured. It is provided with a quality determination step of determining the quality of welding by comparing the amount of change with a reference value.

上述の如く、溶接工程において散りの発生があったときは欠肉を生ずるため、重ね合わされた複数の鋼板の溶接部分の厚さは、散りがない場合に比べて薄くなる。すなわち、溶接された複数の鋼板の溶接部分を一対の判定用電極で挟んで加圧したときの、両加熱用電極の電極間距離は散りの発生の有無によって異なる。よって、溶接後の判定用電極による通電時の電極間距離の変化量を測定することによって、溶接品質の良否(電極間距離の変化量が基準値よりも大きいときに溶接不良)を判定することができる。 As described above, when scattering occurs in the welding process, thinning occurs, so that the thickness of the welded portion of the plurality of stacked steel sheets becomes thinner than in the case where there is no scattering. That is, when a welded portion of a plurality of welded steel plates is sandwiched between a pair of determination electrodes and pressurized, the distance between the electrodes of both heating electrodes differs depending on the presence or absence of scattering. Therefore, by measuring the amount of change in the distance between the electrodes when energized by the judgment electrode after welding, it is possible to judge whether the welding quality is good or bad (welding failure when the amount of change in the distance between the electrodes is larger than the reference value). Can be done.

一実施形態では、上記品質判定工程において、上記溶接品質の不良が判定されたときに、上記複数の鋼板の溶接部を、上記鋼板に接触する先端径が上記溶接用電極の上記鋼板に接触する先端径Dwよりも大きい一対の手直し用電極によって挟み、加圧しながら通電することによって発熱させて、上記溶接ナゲットを成長させる手直し工程を備えている。 In one embodiment, when a defect in welding quality is determined in the quality determination step, the welded portions of the plurality of steel plates are brought into contact with the steel plates having a tip diameter that contacts the steel plates. It is provided with a repair process in which the welding nugget is grown by sandwiching it between a pair of repair electrodes having a tip diameter larger than Dw and generating heat by energizing while pressurizing.

品質判定工程において溶接不良が判定されたとき、すなわち、溶接ナゲットが小さいときは、通電抵抗が大きくなる。従って、当該手直し用電極による加圧通電において、複数の鋼板間の通電抵抗が大きい溶接ナゲット部位で発熱が大きくなり、鋼板が溶融して溶接ナゲットが成長することになる。 When a welding defect is determined in the quality determination step, that is, when the welding nugget is small, the energization resistance becomes large. Therefore, in the pressurized energization by the retouching electrode, heat generation becomes large at the welding nugget portion where the energization resistance between the plurality of steel plates is large, and the steel plates melt and the welding nugget grows.

一実施形態では、上記加熱用電極は、上記鋼板に接触する面が平坦面になったフラット形電極である。これにより、高強度鋼板の溶接部位及びそのまわりの加熱が容易になる。 In one embodiment, the heating electrode is a flat electrode having a flat surface in contact with the steel plate. This facilitates heating of the welded portion of the high-strength steel sheet and its surroundings.

一実施形態では、上記判定用電極及び上記手直し用電極各々は、上記鋼板に接触する面が平坦面になったフラット形電極である。これにより、品質判定の信頼性向上、溶接不良手直しに有利になる。 In one embodiment, each of the determination electrode and the retouching electrode is a flat electrode having a flat surface in contact with the steel plate. This is advantageous for improving the reliability of quality judgment and repairing welding defects.

上記加熱用電極、上記判定用電極及び上記手直し用電極各々は、フラット形電極に代えて、先端半径が大きなラジアス形電極を用いることもできる。 For each of the heating electrode, the determination electrode, and the retouching electrode, a radius type electrode having a large tip radius can be used instead of the flat type electrode.

また、上記判定用電極及び上記手直し用電極としては、上記加熱用電極を用いるようにしてもよい。 Further, as the determination electrode and the repair electrode, the heating electrode may be used.

上記溶接用電極としては、上記鋼板に接触する面がドーム状に突き出した周知のドームラジアス形電極を用いることが好適であり、或いはコーンフラット形電極など他の形状の電極を用いることもできる。 As the welding electrode, it is preferable to use a well-known dome radius type electrode in which the surface in contact with the steel plate protrudes in a dome shape, or an electrode having another shape such as a cone flat type electrode can also be used.

本発明によれば、抵抗溶接前の一対の加熱用電極による高強度鋼板単独での熱処理(加圧通電)により、高強度鋼板に溶接ナゲットが形成される部分から周囲に拡がる延性増大部が形成されるため、溶接割れの防止に有利になり、また、溶接残留応力が低減されることから、遅れ割れの防止に有利になる。 According to the present invention, a heat treatment (pressurized energization) of a high-strength steel plate by a pair of heating electrodes before resistance welding forms a ductile increasing portion extending from a portion where a welding nugget is formed on the high-strength steel plate to the periphery. Therefore, it is advantageous in preventing weld cracks, and since the welding residual stress is reduced, it is advantageous in preventing delayed cracks.

加熱用電極による高強度鋼板単独での熱処理態様を示す断面図。The cross-sectional view which shows the heat treatment mode of a high strength steel sheet alone by the heating electrode. 溶接用電極による鋼板の重ね合わせ溶接の態様を示す断面図。The cross-sectional view which shows the mode of superposition welding of a steel plate by a welding electrode. 高強度鋼板の熱処理部分を示す断面図。Sectional drawing which shows the heat-treated part of the high-strength steel plate. 加熱用電極と溶接用電極を示す正面図。The front view which shows the electrode for heating and the electrode for welding. 加熱用電極による通電制御例を示すグラフ図。The graph which shows the example of the energization control by the heating electrode. 加熱用電極の電極間抵抗の経時変化を示すグラフ図。The graph which shows the time-dependent change of the resistance between electrodes of a heating electrode. 加熱用電極による通電制御の別の例を示すグラフ図。The graph which shows another example of the energization control by a heating electrode. 加熱用電極による通電制御のさらに別の例を示すグラフ図。The graph which shows still another example of energization control by a heating electrode. 加熱用電極による通電制御のさらに別の例を示すグラフ図。The graph which shows still another example of energization control by a heating electrode. 溶接用電極による鋼板の重ね合わせ溶接の別の例を示す断面図。FIG. 5 is a cross-sectional view showing another example of superposition welding of steel plates using welding electrodes. 溶接用電極による鋼板の重ね合わせ溶接のさらに別の例を示す断面図。FIG. 5 is a cross-sectional view showing still another example of superposition welding of steel plates using welding electrodes. 判定用電極による溶接品質判定の態様(溶接良の例)を示す断面図。The cross-sectional view which shows the aspect of the welding quality judgment by the judgment electrode (example of good welding). 判定用電極による溶接品質判定の態様(溶接不良例)を示す断面図。The cross-sectional view which shows the aspect of the welding quality judgment (weld defect example) by the judgment electrode. 手直し用電極による溶接手直しの態様(手直し開始時)を示す断面図。The cross-sectional view which shows the aspect of welding rework by the rework electrode (at the start of rework). 手直し用電極による溶接手直しの態様(手直し終了時)を示す断面図。The cross-sectional view which shows the aspect of welding rework by the rework electrode (at the end of rework).

以下、本発明を実施するための形態を図面に基づいて説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The following description of preferred embodiments is merely exemplary and is not intended to limit the invention, its applications or its uses.

本実施形態の高強度鋼板の抵抗溶接方法は、複数の重ね合わせた鋼板を溶接する方法である。複数の鋼板のうちの少なくとも1枚は、引張強度が1GPaを超える強度を有するとともに、溶接される面にAl合金めっき層を有する高強度鋼板であり、ホットスタンプ工法で得られたものである。 The resistance welding method for high-strength steel sheets of the present embodiment is a method for welding a plurality of superposed steel sheets. At least one of the plurality of steel sheets is a high-strength steel sheet having a tensile strength of more than 1 GPa and an Al alloy plating layer on the welded surface, and is obtained by a hot stamping method.

本実施形態の抵抗溶接方法では、図1に示す一対の加熱用電極1,1による熱処理工程と、図2に示す一対の溶接用電極2,2による溶接工程とを実行する。さらに、必要に応じて、溶接工程の後に、図12,13に示す一対の判定用電極11,11による溶接品質判定工程を実行し、さらに、必要に応じて、溶接品質判定工程の後に、図14,15に示す一対の手直し用電極12,12による溶接手直し工程を実行する。 In the resistance welding method of the present embodiment, the heat treatment step using the pair of heating electrodes 1 and 1 shown in FIG. 1 and the welding step using the pair of welding electrodes 2 and 2 shown in FIG. 2 are executed. Further, if necessary, after the welding step, the welding quality determination step by the pair of determination electrodes 11 and 11 shown in FIGS. 12 and 13 is executed, and if necessary, after the welding quality determination step, FIG. The welding reworking step using the pair of reworking electrodes 12 and 12 shown in 14 and 15 is executed.

<熱処理工程について>
図1に示すように、鋼母材4の表面にAl合金めっき層5を有する高強度鋼板3に対して、該高強度鋼板1単独で熱処理を施す。具体的には、高強度鋼板3における他の鋼板と溶接すべき部位及びそのまわりを、一対の加熱用電極1,1によって挟み、加圧しながら通電することによって発熱させる。これにより、図3に示すように、高強度鋼板3の溶接部位3a及びそのまわり3bにおいて、鋼母材4に延性が増大した軟化組織部4aを形成するとともに、溶接部位3aの表層部3cを均質化させる。
<About heat treatment process>
As shown in FIG. 1, the high-strength steel sheet 3 having the Al alloy plating layer 5 on the surface of the steel base material 4 is heat-treated by the high-strength steel sheet 1 alone. Specifically, a portion of the high-strength steel sheet 3 to be welded to another steel sheet and its surroundings are sandwiched between a pair of heating electrodes 1 and 1, and heat is generated by energizing while pressurizing. As a result, as shown in FIG. 3, a softened structure portion 4a having increased ductility is formed on the steel base material 4 at the welded portion 3a of the high-strength steel plate 3 and its surroundings 3b, and the surface layer portion 3c of the welded portion 3a is formed. Make it homogenized.

図4に示すように、加熱用電極1は、高強度鋼板3に接触する面1aが平坦面になったフラット形電極であり、溶接用電極2は鋼板に接触する面2aがドーム状に突き出したドームラジアス形電極である。加熱用電極1の鋼板に接触する先端径Dhは溶接用電極の鋼板に接触する先端径Dwよりも大きい。好ましいのは、4×Dw≧Dh≧2×Dwである。 As shown in FIG. 4, the heating electrode 1 is a flat electrode in which the surface 1a in contact with the high-strength steel plate 3 is a flat surface, and the welding electrode 2 has a surface 2a in contact with the steel plate protruding like a dome. It is a dome radius type electrode. The tip diameter Dh of the heating electrode 1 in contact with the steel plate is larger than the tip diameter Dw of the welding electrode 1 in contact with the steel plate. It is preferable that 4 × Dw ≧ Dh ≧ 2 × Dw.

[加熱用電極1,1による通電制御例]
図5は加熱用電極1,1による高強度鋼板3の熱処理における通電制御の一例を示す。この例では、加熱用電極1,1による高強度鋼板3に対する通電に、電源周波数50Hz又は60Hzの直流インバータ式スポット溶接機を利用し、第1通電制御、クーリング及び第2通電制御を行なっている。
[Example of energization control by heating electrodes 1 and 1]
FIG. 5 shows an example of energization control in the heat treatment of the high-strength steel sheet 3 by the heating electrodes 1 and 1. In this example, a DC inverter type spot welder with a power frequency of 50 Hz or 60 Hz is used to energize the high-strength steel sheet 3 by the heating electrodes 1 and 1, and the first energization control, cooling, and second energization control are performed. ..

第1通電制御では、通電電流を漸増させるアップスロープ通電期間USを10サイクル以上とり、これに続く電流値2〜5kAの定電流通電期間Cを10〜20サイクルとり、通電電流を漸減させるダウンスロープはせずに、定電流通電期間Cで通電を終了している。そして、第1通電制御から数サイクルのクーリング期間をおいて、第2通電制御に入っている。 In the first energization control, an upslope energization period US for gradually increasing the energization current is taken for 10 cycles or more, followed by a constant current energization period C of 2 to 5 kA for 10 to 20 cycles, and a downslope for gradually reducing the energization current. The energization is completed in the constant current energization period C without removing the current. Then, after a cooling period of several cycles from the first energization control, the second energization control is started.

第2通電制御では、アップスロープ通電期間USを5〜10サイクルとり、これに続いて電流値5〜10kAの定電流通電期間Cを10〜20サイクルとり、ダウンスロープ期間DSを10サイクル以上とって、通電を終了している。 In the second energization control, the upslope energization period US is 5 to 10 cycles, followed by the constant current energization period C with a current value of 5 to 10 kA for 10 to 20 cycles, and the downslope period DS is 10 cycles or more. , The energization is finished.

第2通電制御終了後、加熱用電極1による鋼板に対する加圧力を保持したまま、熱処理部を冷却するホールド期間を設け、しかる後に、当該加圧力を開放して加熱用電極1を高強度鋼板3から離す。 After the end of the second energization control, a hold period for cooling the heat-treated portion is provided while holding the pressing force on the steel sheet by the heating electrode 1, and after that, the pressing force is released and the heating electrode 1 is used as the high-strength steel sheet 3. Keep away from.

[通電制御の意義]
ここに、ホットスタンプにより成形と焼入れとが行なわれた高強度鋼板3は、その母材4がマルテンサイト組織になっている一方、表層部(めっき層5部分)は、Al−Fe合金相の形成及びクラック等により、通電抵抗にばらつきがある状態である。
[Significance of energization control]
Here, in the high-strength steel plate 3 formed and hardened by hot stamping, the base material 4 has a martensite structure, while the surface layer portion (plating layer 5 portion) has an Al—Fe alloy phase. There are variations in energization resistance due to formation and cracks.

第1通電制御は、加熱用電極1と高強度鋼板3の接触状態を安定にする処理である。従って、高い電流をいきなり印加するのではなく、散りが発生しないように、アップスロープ通電期間USを設け、電流値も低めに抑えている。 The first energization control is a process for stabilizing the contact state between the heating electrode 1 and the high-strength steel plate 3. Therefore, instead of applying a high current suddenly, an upslope energization period US is provided so that scattering does not occur, and the current value is also suppressed to a low level.

第1通電制御と第2通電制御の間のクーリング期間は、高強度鋼板3の状態や処理条件に応じて適宜設定するものであり、必ずしも設けることを要しない。但し、このクーリング期間を設けると、高強度鋼板3に対する電極1,1の接触状態を安定化させる上で有利になる。 The cooling period between the first energization control and the second energization control is appropriately set according to the state of the high-strength steel sheet 3 and the processing conditions, and is not necessarily required to be provided. However, if this cooling period is provided, it is advantageous in stabilizing the contact state of the electrodes 1 and 1 with respect to the high-strength steel plate 3.

第2通電制御は、高強度鋼板3の溶接部位3a及びそのまわり3bの母材4の焼きを戻して焼戻しマルテンサイト組織(軟化組織部4a)にするとともに、めっき層5を軟化・溶融させ、押し潰して、高強度鋼板3の溶接部位3aの表層部3cを均質にする処理である。そのため、定電流制御期間Cの電流値は第1通電制御よりも高くしている。 In the second energization control, the welded portion 3a of the high-strength steel plate 3 and the base metal 4 around it are tempered back to form a tempered martensite structure (softened structure portion 4a), and the plating layer 5 is softened and melted. It is a process of crushing to homogenize the surface layer portion 3c of the welded portion 3a of the high-strength steel plate 3. Therefore, the current value in the constant current control period C is higher than that in the first energization control.

第2通電制御では、溶接部位3a及びそのまわり3bの焼戻しマルテンサイト組織(軟化組織部4a)とその外側の母材4の焼入れマルテンサイト組織の間に急激な硬度変化点を生じないようにする。すなわち、第2通電制御による熱処理部からその周囲の非熱処理部に向かって硬度が漸次変化した状態になるようにする。そのために、上述の如く、通電電流を漸減するダウンスロープ通電期間を設けて通電を終了することが好ましい。 In the second energization control, a sudden hardness change point is prevented from occurring between the tempered martensite structure (softened structure portion 4a) of the welded portion 3a and its surrounding 3b and the hardened martensite structure of the base metal 4 on the outside thereof. .. That is, the hardness is gradually changed from the heat-treated portion by the second energization control to the non-heat-treated portion around the heat-treated portion. Therefore, as described above, it is preferable to provide a downslope energization period in which the energization current is gradually reduced to end the energization.

第2通電制御ではアップスロープ期間は必ずしも設ける必要がないが、設ける方が散り発生の防止に有利になる。 In the second energization control, it is not always necessary to provide the upslope period, but it is advantageous to provide it to prevent the occurrence of scattering.

第1通電制御開始からホールド期間終了までの上記加圧力は、例えば、2.45〜5.88kN程度とすることができる。この加圧力は、上記表層部の均質化を安定して行うための重要な条件の一つであり、ホットスタンプに伴う高強度鋼板3の状態、すなわち、表面の損傷度合、めっき目付量、板厚、Al−Fe合金化度合等を考慮して設定する。高強度鋼板3の状態によってはさらに高い加圧力を設定することもできる。 The pressing force from the start of the first energization control to the end of the hold period can be, for example, about 2.45 to 5.88 kN. This pressing force is one of the important conditions for stably homogenizing the surface layer portion, and is the state of the high-strength steel sheet 3 due to hot stamping, that is, the degree of surface damage, the plating basis weight, and the plate. Set in consideration of the thickness, degree of Al—Fe alloying, etc. A higher pressing force can be set depending on the state of the high-strength steel plate 3.

第1通電制御及び第2通電制御各々の上記電流値及び上記通電時間(サイクル数)は一例であり、上記加圧力と同じく、高強度鋼板3の状態に応じて適宜設定することができる。 The current value and the energization time (number of cycles) of each of the first energization control and the second energization control are examples, and can be appropriately set according to the state of the high-strength steel sheet 3 as in the case of the pressing force.

上記ホールド期間は、めっき層が電極1に凝着ないしは溶着して引き剥がされないように、熱処理部を冷却させて高強度鋼板3の表層部を安定化させるものである。なお、ホールド期間は、溶接時の導電抵抗の安定化の観点からは必ずしも設けることを要しないが(めっき層が剥がれてなくなれば、通電抵抗は低下するため)、耐食性の面では不利になるため、設けることが好ましい。 During the hold period, the heat-treated portion is cooled to stabilize the surface layer portion of the high-strength steel sheet 3 so that the plating layer is not adhered or welded to the electrode 1 and peeled off. The hold period does not necessarily have to be provided from the viewpoint of stabilizing the conductive resistance during welding (because the current-carrying resistance decreases if the plating layer is not peeled off), but it is disadvantageous in terms of corrosion resistance. , It is preferable to provide.

[熱処理工程の効果の確認]
表1の条件で高強度鋼板3の同一部位に繰り返して熱処理を行なったときの加熱用電極1,1間の通電抵抗の波形を図6に示す。高強度鋼板3としては、引張強度1.8GPaのAl合金めっき鋼板(板厚;1.6mm,めっき目付量;70/70(g/m)を使用した。
[Confirmation of effect of heat treatment process]
FIG. 6 shows the waveform of the energization resistance between the heating electrodes 1 and 1 when the same portion of the high-strength steel sheet 3 is repeatedly heat-treated under the conditions shown in Table 1. As the high-strength steel sheet 3, an Al alloy-plated steel sheet having a tensile strength of 1.8 GPa (plate thickness: 1.6 mm, plating amount: 70/70 (g / m 2 )) was used.

Figure 2020199522
Figure 2020199522

図6によれば、1回目と2回目以降の電極間抵抗の波形を比較すると、1回目に比べて2回目は第1通電制御期間(0〜20サイクル)の電極間抵抗が大きく減少している。そして、2回目以降は電極間抵抗の波形が略同じになっている。これは、1回目の熱処理により高強度鋼板3の表層部3cの通電抵抗が低下したことを意味する。すなわち、当該熱処理を1回行なうだけで、高強度鋼板3の溶接部位表面の均質化が達成され、接触抵抗が安定するということである。 According to FIG. 6, when the waveforms of the resistance between the electrodes of the first time and the second and subsequent times are compared, the resistance between the electrodes in the first energization control period (0 to 20 cycles) is greatly reduced in the second time as compared with the first time. There is. Then, from the second time onward, the waveforms of the resistance between the electrodes are substantially the same. This means that the current-carrying resistance of the surface layer portion 3c of the high-strength steel sheet 3 was reduced by the first heat treatment. That is, the homogenization of the surface of the welded portion of the high-strength steel sheet 3 is achieved and the contact resistance is stabilized by performing the heat treatment only once.

軟化組織部4aの形成及び表層部3aの均質化は、接触抵抗が安定した後の第2通電制御による処理となるため、電極間抵抗は鋼板3の固有抵抗に依存し、1回目と2回目以降とに大差はない。しかし、通電による発熱は安定して得られていること、すなわち、熱処理効果が得られることが図6からわかる。 Since the formation of the softened structure portion 4a and the homogenization of the surface layer portion 3a are processed by the second energization control after the contact resistance is stabilized, the resistance between the electrodes depends on the intrinsic resistance of the steel sheet 3, and the first and second times. There is no big difference from the following. However, it can be seen from FIG. 6 that the heat generated by energization is stably obtained, that is, the heat treatment effect is obtained.

[加熱用電極1,1による他の通電制御例]
図7に示す通電制御例は、第1通電制御として、パルセーション制御により、高強度鋼板3の同一部位に加圧を行ないながら複数回以上同一電流を通電するパルセーション通電を採用するケースである。第2通電制御及びその後のホールド期間の設定については先に説明した図5に示す制御と同じである。第1通電制御と第2通電制御の間には必要に応じてクーリング期間を設ける。
[Other energization control examples using heating electrodes 1 and 1]
In the energization control example shown in FIG. 7, as the first energization control, pulsation energization is adopted in which the same current is energized a plurality of times or more while pressurizing the same portion of the high-strength steel sheet 3 by pulsation control. .. The second energization control and the setting of the hold period thereafter are the same as the controls shown in FIG. 5 described above. A cooling period is provided between the first energization control and the second energization control as necessary.

パルセーション通電においても、散りを発生させることなく、加熱用電極1と高強度鋼板3の接触状態を安定にすることができる。 Even when the pulsation is energized, the contact state between the heating electrode 1 and the high-strength steel plate 3 can be stabilized without causing scattering.

図8に示す通電制御例は、図5に示す通電制御例と基本的には同じであるが、第1通電制御における定電流制御期間Cの電流値を図5に示す制御例よりも低くし、第2通電制御における定電流制御期間Cの電流値を図5に示す制御例よりも高くしている。ホールド期間の設定については先に説明した図5に示す制御と同じである。 The energization control example shown in FIG. 8 is basically the same as the energization control example shown in FIG. 5, but the current value of the constant current control period C in the first energization control is made lower than that of the control example shown in FIG. , The current value of the constant current control period C in the second energization control is made higher than that of the control example shown in FIG. The setting of the hold period is the same as the control shown in FIG. 5 described above.

高強度鋼板3の表面状態が比較的均質であるときは第1通電制御における定電流制御期間Cの電流値を低くしても加熱用電極1と高強度鋼板の接触状態を安定化させることができる。高強度鋼板3のめっき目付量が多いとき、或いは高強度鋼板3の板厚が大きいときは、図8に示す制御例のように、第2通電制御における定電流制御期間Cの電流値を高くすればよい。 When the surface state of the high-strength steel sheet 3 is relatively homogeneous, the contact state between the heating electrode 1 and the high-strength steel sheet can be stabilized even if the current value of the constant current control period C in the first energization control is lowered. it can. When the high-strength steel sheet 3 has a large plating basis weight, or when the high-strength steel sheet 3 has a large plate thickness, the current value in the constant current control period C in the second energization control is increased as shown in the control example shown in FIG. do it.

図9に示す制御例は、第1通電制御は図8に示す制御例と同じであるが、第2通電制御ではパルセーション通電を採用している。但し、パルセーション通電の電流値は、第2通電制御の上述の目的(意義)の観点から、図7に示す第1通電制御に係るパルセーション通電の電流値よりも高くしている。ホールド期間の設定については先に説明した図5に示す制御と同じである。 In the control example shown in FIG. 9, the first energization control is the same as the control example shown in FIG. 8, but the pulsation energization is adopted in the second energization control. However, the current value of the pulsation energization is higher than the current value of the pulsation energization related to the first energization control shown in FIG. 7 from the viewpoint of the above-mentioned purpose (significance) of the second energization control. The setting of the hold period is the same as the control shown in FIG. 5 described above.

パルセーション通電は、散りの発生を招くことなく、高強度鋼板3の溶接部位の加熱する上で有用であり、また、ダウンスロープ通電と同じく、熱処理部からその周囲の非熱処理部に向かって硬度が漸次変化した状態にすることができる。 The pulsation energization is useful for heating the welded portion of the high-strength steel sheet 3 without causing scattering, and like the downslope energization, the hardness is from the heat-treated portion toward the non-heat-treated portion around it. Can be gradually changed.

<溶接工程>
図2に示すように、加熱用電極1を用いて熱処理を施した高強度鋼板3を他の鋼板6と重ね合わせる。この両鋼板3,6の溶接すべき部位を一対の溶接用電極2,2によって挟み、加圧しながら通電することによって発熱させて当該鋼板3,6間に溶接ナゲット7を形成する。図2は、高強度鋼板3と普通鋼板6を重ね合わせ溶接する例を示す。
<Welding process>
As shown in FIG. 2, the high-strength steel sheet 3 heat-treated using the heating electrode 1 is superposed on the other steel sheet 6. The parts to be welded of both steel plates 3 and 6 are sandwiched between a pair of welding electrodes 2 and 2, and heat is generated by energizing while pressurizing to form a welding nugget 7 between the steel plates 3 and 6. FIG. 2 shows an example in which the high-strength steel plate 3 and the ordinary steel plate 6 are overlapped and welded.

溶接には、例えば、電源周波数50Hz又は60Hzの直流インバータ式スポット溶接機を利用する。一例を説明すると、まず、両鋼板3,6を溶接用電極2,2によって挟んで加圧を開始し、電極2と鋼板3,6の接触状態及び加圧状態を安定にする(スクイズ期間)。スクイズ期間に続いて、通電制御に入る。すなわち、散りその他の欠陥を防止するためのアップスロープ通電期間、定電流通電期間及びダウンスロープ通電期間をとって、通電を終了する。しかる後、所定のホールド期間を経た後、加圧力を開放して、電極2を鋼板3,6から離す。 For welding, for example, a DC inverter type spot welder having a power frequency of 50 Hz or 60 Hz is used. To explain an example, first, both steel plates 3 and 6 are sandwiched between welding electrodes 2 and 2 to start pressurization, and the contact state and pressurization state between the electrodes 2 and the steel plates 3 and 6 are stabilized (squeeze period). .. Following the squeeze period, energization control is started. That is, the energization is terminated after the upslope energization period, the constant current energization period, and the downslope energization period for preventing scattering and other defects. Then, after a predetermined hold period elapses, the pressing force is released to separate the electrode 2 from the steel plates 3 and 6.

高強度鋼板3の溶接部位3aは、加熱用電極1による加圧熱処理により、その表層部3cが表面性状を含めて均質化されている。また、当該加圧によって、表層部3cのAl−Fe合金相は押し潰されて周囲に拡がり、その厚さが薄くなっている。つまり、表層部3cの通電抵抗が熱処理前に比べて低下している。 The surface layer portion 3c of the welded portion 3a of the high-strength steel sheet 3 is homogenized including the surface texture by the pressure heat treatment by the heating electrode 1. Further, due to the pressurization, the Al—Fe alloy phase of the surface layer portion 3c is crushed and spreads to the surroundings, and the thickness thereof is reduced. That is, the energization resistance of the surface layer portion 3c is lower than that before the heat treatment.

従って、溶接用電極2による加圧通電において、集中抵抗(電流が局部的に集中して流れて抵抗が大きくなること)を生ずることが緩和され、また、皮膜抵抗のばらつきも少なくなくなる。よって、散りを生ずることなく、溶接ナゲット7が成長し易く、安定した均一な溶接が図れる。 Therefore, in the pressurized energization by the welding electrode 2, the occurrence of concentrated resistance (current is locally concentrated and flows to increase the resistance) is alleviated, and the variation in film resistance is not small. Therefore, the welding nugget 7 is easy to grow without causing scattering, and stable and uniform welding can be achieved.

次に、高強度鋼板3は、加熱用電極1による加圧熱処理により、溶接部位3a及びそのまわり3bにおいて母材4に軟化組織部(焼戻しマルテンサイト組織)4aが形成されて延性が向上している。さらに、軟化組織部4aが溶接部位3aからその周囲に向かって硬度の急激な変化点を生じないように広がっている。従って、溶接ナゲット7の周囲にHAZ軟化による応力集中を招き易い部分を生ずることがなくなり、溶接品の外力による破壊防止に有利になる。 Next, in the high-strength steel plate 3, the softened structure portion (tempered martensite structure) 4a is formed in the base metal 4 at the welded portion 3a and the surrounding 3b by the pressure heat treatment by the heating electrode 1, and the ductility is improved. There is. Further, the softened structure portion 4a extends from the welded portion 3a toward the periphery thereof so as not to cause a sudden change point in hardness. Therefore, a portion that easily causes stress concentration due to HAZ softening is not generated around the weld nugget 7, which is advantageous in preventing the welded product from being destroyed by an external force.

また、高強度鋼板3の溶接部位3a及びそのまわり3bには、加熱用電極1による加圧熱処理により、圧縮応力が付与される。従って、この圧縮応力の付与により、溶接に伴って生ずる引張残留応力が低減されるから、水素脆化に起因する遅れ割れの防止に有利になる。 Further, compressive stress is applied to the welded portion 3a of the high-strength steel sheet 3 and its surroundings 3b by pressure heat treatment by the heating electrode 1. Therefore, by applying this compressive stress, the tensile residual stress generated by welding is reduced, which is advantageous in preventing delayed cracking due to hydrogen embrittlement.

[他の溶接例]
図2に示す溶接例は、ホットスタンプで得られた高強度鋼板3と普通鋼板6の溶接であるが、図10に示すように、高強度鋼板3同士の重ね合わせ溶接であっても、この両高強度鋼板3各々の溶接部位に上記熱処理工程を実行した後、両者を上記溶接工程の実行によって溶接することができる。或いは、図11に示すように、2枚の高強度鋼板3,3と1枚の普通鋼板6aとを重ね合わせ溶接するケースにおいても、両高強度鋼板3各々の溶接部位に上記熱処理工程を実行した後、当該3枚の鋼板3,6aを重ね合わせ上記溶接工程の実行によって溶接することができる。
[Other welding examples]
The welding example shown in FIG. 2 is the welding of the high-strength steel plate 3 and the ordinary steel plate 6 obtained by hot stamping, but as shown in FIG. 10, even in the case of the superposition welding of the high-strength steel plates 3 to each other. After performing the above heat treatment step on each welded portion of both high-strength steel plates 3, both can be welded by executing the above welding step. Alternatively, as shown in FIG. 11, even in the case where two high-strength steel plates 3 and 3 and one ordinary steel plate 6a are overlapped and welded, the heat treatment step is executed on each welded portion of both high-strength steel plates 3. After that, the three steel plates 3, 6a can be overlapped and welded by executing the above welding step.

図2、図10及び図11に示す溶接例に限らず、本発明が、少なくとも1枚の高強度鋼板3を含む複数の鋼板を重ね合わせ溶接するケースに利用できることは勿論である。 It goes without saying that the present invention is not limited to the welding examples shown in FIGS. 2, 10 and 11, and can be used in cases where a plurality of steel plates including at least one high-strength steel plate 3 are laminated and welded.

<溶接品質判定工程>
図12に示すように、溶接品(上記熱処理工程及び上記溶接工程を経た、複数の鋼板3,6の重ね合わせ溶接品)の溶接部を上記一対の判定用電極11,11で挟み、加圧しながら通電して通電抵抗を測定する。本例の判定用電極11は、上記加熱用電極1と同じく、鋼板3,6に接触する先端径が溶接用電極2の先端径Dwよりも大きいフラット形電極である。なお、判定用電極11としては、上記加熱用電極1を用いてもよい。
<Welding quality judgment process>
As shown in FIG. 12, a welded portion of a welded product (a laminated welded product of a plurality of steel plates 3 and 6 that has undergone the heat treatment step and the welding step) is sandwiched between the pair of determination electrodes 11 and 11 and pressed. While energizing, measure the energization resistance. The determination electrode 11 of this example is a flat electrode having a tip diameter in contact with the steel plates 3 and 6 larger than the tip diameter Dw of the welding electrode 2, similar to the heating electrode 1. The heating electrode 1 may be used as the determination electrode 11.

先の溶接工程では、溶接用電極2,2によって鋼板3,6に加圧しながら通電するため、鋼板3,6の表面の溶接用電極2が接触した部位に圧痕(凹み)8を生ずる。鋼板3,6の圧痕8を生じた部分に判定用電極11を当てると、判定用電極11は鋼板3,6の表面における圧痕8まわりに接触する。一方、溶接工程において散りがあったときは、鋼板3,6の溶接部位の溶融物が噴出することによって欠肉を生ずる。従って、溶接用電極2の鋼板3,6への沈み込みは散りがない場合に比べて大きくなる。 In the previous welding step, since the steel plates 3 and 6 are energized while being pressurized by the welding electrodes 2 and 2, indentations (dents) 8 are generated on the surfaces of the steel plates 3 and 6 where the welding electrodes 2 come into contact. When the determination electrode 11 is applied to the portion of the steel plates 3 and 6 where the indentation 8 is generated, the determination electrode 11 comes into contact with the indentation 8 on the surface of the steel plates 3 and 6. On the other hand, when there is scattering in the welding process, the melt in the welded portion of the steel plates 3 and 6 is ejected, resulting in a lack of meat. Therefore, the sinking of the welding electrode 2 into the steel plates 3 and 6 is larger than that in the case where there is no scattering.

図12は散りがなかったケースであり、図13は散りがあったケースである。溶接用電極2の鋼板3,6への沈み込みの大きさに対応して、散りが発生した図13のケースでは、散りがない図12のケースに比べて、圧痕11が大きく(深く)なる。その結果、判定用電極11の圧痕8まわりに対する接触面積は、散りが発生した図13のケースでは、散りがない図12のケースに比べて、小さくなる。また、散りを生じたとき(図13)は、溶接ナゲット7の大きさも、散りがないとき(図12)に比べて小さくなる。 FIG. 12 shows a case where there was no scattering, and FIG. 13 shows a case where there was scattering. In the case of FIG. 13 in which scattering occurs, the indentation 11 becomes larger (deeper) than in the case of FIG. 12 in which there is no scattering, corresponding to the size of the sinking of the welding electrode 2 into the steel plates 3 and 6. .. As a result, the contact area of the determination electrode 11 with respect to the indentation 8 is smaller in the case of FIG. 13 in which scattering occurs than in the case of FIG. 12 in which there is no scattering. Further, when scattering occurs (FIG. 13), the size of the welding nugget 7 is also smaller than when there is no scattering (FIG. 12).

従って、溶接後の判定用電極11による通電においては、散りを生じたとき(図13)は、判定用電極11の鋼板に対する接触面積が小さいため、また、溶接ナゲット7が小さいため、通電抵抗が大きくなる。よって、溶接後の加熱用電極による通電時の抵抗の大きさを測定することによって、溶接品質の良否(通電抵抗が基準値よりも大きいときに溶接不良)を判定することができる。 Therefore, in the energization by the determination electrode 11 after welding, when scattering occurs (FIG. 13), the contact area of the determination electrode 11 with the steel plate is small, and the welding nugget 7 is small, so that the energization resistance is high. growing. Therefore, by measuring the magnitude of the resistance when energized by the heating electrode after welding, it is possible to determine whether the welding quality is good or bad (welding failure when the energization resistance is larger than the reference value).

また、溶接工程において散りが発生したときは欠肉を生ずるため、重ね合わされた鋼板3,6の溶接部の厚さは、散りがない場合に比べて薄くなる。すなわち、鋼板3,6の溶接部を一対の判定用電極11,11で挟んで加圧したときの、両判定用電極11,11の電極間距離は散りの発生の有無によって異なる。よって、溶接後の判定用電極11による通電時の電極間距離の変化量を測定することによって、溶接品質の良否(電極間距離の変化量が基準値よりも大きいときに溶接不良)を判定することができる。 Further, when scattering occurs in the welding process, thinning occurs, so that the thickness of the welded portion of the laminated steel plates 3 and 6 is thinner than that in the case where there is no scattering. That is, when the welded portions of the steel plates 3 and 6 are sandwiched between the pair of determination electrodes 11 and 11 and pressurized, the distance between the electrodes of both determination electrodes 11 and 11 differs depending on the presence or absence of scattering. Therefore, by measuring the amount of change in the distance between the electrodes when energized by the determination electrode 11 after welding, the quality of welding (welding failure when the amount of change in the distance between electrodes is larger than the reference value) is judged. be able to.

図12,13は高強度鋼板3と普通鋼板6の溶接例であるが、上記溶接品質判定は、図10に示す高強度鋼板3,3同士の溶接例や、図11に示す2枚の高強度鋼板3,3と1枚の普通鋼板6aの重ね合わせ溶接など、少なくとも1枚の高強度鋼板3を含む複数の鋼板の重ね合わせ溶接品において実行することができる。 12 and 13 show welding examples of the high-strength steel plate 3 and the ordinary steel plate 6, but the welding quality determination is based on the welding example of the high-strength steel plates 3 and 3 shown in FIG. 10 and the height of the two sheets shown in FIG. It can be carried out in a lap welded product of a plurality of steel plates including at least one high-strength steel plate 3, such as lap welding of high-strength steel plates 3 and 3 and one ordinary steel plate 6a.

<溶接手直し工程>
品質判定工程において溶接不良が判定されたときは、図14に示すように、一対の手直し用電極12,12による溶接手直しを行なうことができる。本例の手直し用電極12は、上記加熱用電極1と同じく、鋼板3,6に接触する先端径が溶接用電極2の先端径Dwよりも大きいフラット形電極である。なお、手直し用電極12としては、上記加熱用電極1を用いてもよい。
<Welding repair process>
When a welding defect is determined in the quality determination step, welding can be repaired by a pair of repair electrodes 12 and 12, as shown in FIG. The retouching electrode 12 of this example is a flat electrode having a tip diameter in contact with the steel plates 3 and 6 larger than the tip diameter Dw of the welding electrode 2, similar to the heating electrode 1. As the retouching electrode 12, the heating electrode 1 may be used.

溶接手直し工程では、複数の鋼板の重ね合わせ溶接品の溶接部を一対の手直し用電極12,12によって挟み、加圧しながら通電することによって発熱させて、溶接ナゲット7を成長させる。図14は、2枚の高強度鋼板3,3と1枚の薄い普通鋼板6aの重ね合わせ溶接において、高強度鋼板3と普通鋼板6の間の溶接ナゲット7が予定よりも小さくなったケースである。 In the welding reworking step, the welded portion of the laminated welded product of a plurality of steel plates is sandwiched between a pair of reworking electrodes 12 and 12, and heat is generated by energizing while pressurizing to grow the welding nugget 7. FIG. 14 shows a case where the welding nugget 7 between the high-strength steel plate 3 and the ordinary steel plate 6 is smaller than planned in the superposition welding of two high-strength steel plates 3 and 3 and one thin ordinary steel plate 6a. is there.

先に説明したように、溶接ナゲット7が小さいときは、通電抵抗が大きくなる。従って、当該手直し用電極12による加圧通電において、当該小径の溶接ナゲット7の部位で発熱が大きくなり、図15に示すように、鋼板3,6aが溶融して当該溶接ナゲット7の成長が促進される。 As described above, when the welding nugget 7 is small, the energization resistance is large. Therefore, in the pressurized energization by the repair electrode 12, heat generation increases at the portion of the welding nugget 7 having a small diameter, and as shown in FIG. 15, the steel plates 3 and 6a melt and the growth of the welding nugget 7 is promoted. Will be done.

当該溶接手直し工程は、図14に示すケースに限らず、図2や図10に示す溶接例など、少なくとも1枚の高強度鋼板3を含む複数の鋼板の重ね合わせ溶接品において実行することができる。 The welding repair step is not limited to the case shown in FIG. 14, and can be executed in a laminated welded product of a plurality of steel plates including at least one high-strength steel plate 3, such as the welding example shown in FIGS. 2 and 10. ..

1 加熱用電極
2 溶接用電極
3 高強度鋼板
3a 溶接部位
3b 溶接部位のまわり
4 母材
4a 軟化組織部
5 めっき層
6 普通鋼板
7 溶接ナゲット
8 圧痕(凹み)
11 判定用電極
12 手直し用電極
1 Heating electrode 2 Welding electrode 3 High-strength steel plate 3a Welding part 3b Around the welding part 4 Base material 4a Softened structure part 5 Plating layer 6 Ordinary steel plate 7 Welding nugget 8 Indentation (dent)
11 Judgment electrode 12 Rework electrode

Claims (11)

複数の重ね合わせた鋼板を溶接する方法であって、且つ当該複数の鋼板のうちの少なくとも1枚は引張強度が1GPaを超える強度を有する高強度鋼板であり、
上記高強度鋼板における上記複数の鋼板のうちの他の鋼板と溶接すべき部位及びそのまわりを、一対の加熱用電極によって挟み加圧しながら通電することによって発熱させて、上記部位及びそのまわりの延性を増大させる上記高強度鋼板単独での熱処理工程と、
上記熱処理を施した上記高強度鋼板を含む上記複数の鋼板を重ね合わせ、この複数の鋼板の溶接すべき部位を、一対の溶接用電極によって挟み加圧しながら通電することによって発熱させて、当該鋼板間に溶接ナゲットを形成する溶接工程とを備え、
上記加熱用電極の上記鋼板に接触する先端径Dhは、上記溶接用電極の上記鋼板に接触する先端径Dwよりも大きいことを特徴とする高強度鋼板の抵抗溶接方法。
It is a method of welding a plurality of stacked steel sheets, and at least one of the plurality of steel sheets is a high-strength steel sheet having a tensile strength exceeding 1 GPa.
A portion of the high-strength steel plate to be welded to another steel plate among the plurality of steel plates and its surroundings are sandwiched between a pair of heating electrodes and energized while applying pressure to generate heat, and ductility of the portion and its surroundings is generated. The heat treatment process of the above high-strength steel sheet alone and
The plurality of steel plates including the high-strength steel plate subjected to the heat treatment are superposed, and the parts to be welded of the plurality of steel plates are sandwiched between a pair of welding electrodes and energized while applying pressure to generate heat. It has a welding process to form a welding nugget between them.
A resistance welding method for a high-strength steel sheet, wherein the tip diameter Dh of the heating electrode in contact with the steel sheet is larger than the tip diameter Dw of the welding electrode in contact with the steel sheet.
請求項1において、
上記高強度鋼板は、溶接される面にめっき層を有し、マルテンサイト組織を主とする鋼板であることを特徴とする高強度鋼板の抵抗溶接方法。
In claim 1,
The high-strength steel sheet is a resistance welding method for a high-strength steel sheet, which has a plating layer on the surface to be welded and is a steel sheet mainly having a martensite structure.
請求項2において、
上記高強度鋼板は、ホットスタンプにより成形と焼入れとが行なわれた鋼板であることを特徴とする高強度鋼板の抵抗溶接方法。
In claim 2,
The high-strength steel sheet is a resistance welding method for high-strength steel sheets, which is a steel sheet that has been formed and hardened by hot stamping.
請求項2又は請求項3において、
上記熱処理工程において、上記高強度鋼板における上記溶接すべき部位及びそのまわりを焼き戻しマルテンサイト組織とすることを特徴とする高強度鋼板の抵抗溶接方法。
In claim 2 or 3,
A method for resistance welding of a high-strength steel plate, characterized in that, in the heat treatment step, the portion to be welded and the periphery thereof of the high-strength steel plate are tempered to form a martensite structure.
請求項1乃至請求項4のいずれか一において、
上記加熱用電極の先端径Dhは、上記溶接用電極の先端径Dwの2倍以上4倍以下である、若しくは上記溶接用電極によって上記複数の鋼板間に形成する溶接ナゲットの径の2倍以上4倍以下であることを特徴とする高強度鋼板の抵抗溶接方法。
In any one of claims 1 to 4,
The tip diameter Dh of the heating electrode is twice or more and four times or less the tip diameter Dw of the welding electrode, or twice or more the diameter of the welding nugget formed between the plurality of steel plates by the welding electrode. A resistance welding method for high-strength steel sheets, which is characterized by being four times or less.
請求項1乃至請求項5のいずれか一において、
上記加熱用電極による熱処理は、上記高強度鋼板における当該熱処理部からその周囲の非熱処理部に向かって硬度が漸次変化した状態になるように、上記通電による発熱量を制御することを特徴とする高強度鋼板の抵抗溶接方法。
In any one of claims 1 to 5,
The heat treatment using the heating electrode is characterized in that the amount of heat generated by energization is controlled so that the hardness of the high-strength steel plate gradually changes from the heat-treated portion to the non-heat-treated portion around the high-strength steel plate. Resistance welding method for high-strength steel sheets.
請求項6において、
上記加熱用電極による熱処理は、上記高強度鋼板における当該熱処理部からその周囲の非熱処理部に向かって硬度が漸次変化した状態になるように、通電電流を漸減するダウンスロープ制御を行なうことによって、当該通電を終了させることを特徴とする高強度鋼板の抵抗溶接方法。
In claim 6,
The heat treatment using the heating electrode is performed by performing a downslope control that gradually reduces the energizing current so that the hardness gradually changes from the heat-treated portion of the high-strength steel plate to the non-heat-treated portion around the high-strength steel plate. A resistance welding method for a high-strength steel plate, characterized in that the energization is terminated.
請求項1乃至請求項7のいずれか一において、
上記溶接工程の後に、上記鋼板に接触する先端径が上記溶接用電極の上記鋼板に接触する先端径Dwよりも大きい一対の判定用電極によって上記複数の鋼板の溶接部を挟み、加圧しながら通電して通電抵抗を測定し、該通電抵抗が基準値と比較することによって溶接品質の良否を判定する品質判定工程を備えていることを特徴とする高強度鋼板の抵抗溶接方法。
In any one of claims 1 to 7,
After the welding step, the welded portions of the plurality of steel plates are sandwiched by a pair of determination electrodes having a tip diameter in contact with the steel plate larger than the tip diameter Dw in contact with the steel plate of the welding electrode, and energization is performed while pressurizing. A resistance welding method for a high-strength steel plate, which comprises a quality determination step of measuring the current-carrying resistance and determining the quality of welding by comparing the current-carrying resistance with a reference value.
請求項1乃至請求項7のいずれか一において、
上記溶接工程の後に、一対の判定用電極によって上記複数の鋼板の溶接部を挟み、加圧したときの当該一対の電極の電極間距離の変化量を測定し、該変化量を基準値と比較することによって溶接品質の良否を判定する品質判定工程を備えていることを特徴とする高強度鋼板の抵抗溶接方法。
In any one of claims 1 to 7,
After the welding step, the welded portions of the plurality of steel plates are sandwiched between the pair of determination electrodes, the amount of change in the distance between the electrodes of the pair of electrodes when pressurized is measured, and the amount of change is compared with the reference value. A resistance welding method for high-strength steel sheets, which comprises a quality judgment process for judging the quality of welding by performing resistance welding.
請求項8又は請求項9において、
上記品質判定工程において、上記溶接品質の不良が判定されたときに、上記複数の鋼板の溶接部を、上記鋼板に接触する先端径が上記溶接用電極の上記鋼板に接触する先端径Dwよりも大きい一対の手直し用電極によって挟み、加圧しながら通電することによって発熱させて、上記溶接ナゲットを成長させる手直し工程を備えていることを特徴とする高強度鋼板の抵抗溶接方法。
In claim 8 or 9,
In the quality determination step, when a defect in the welding quality is determined, the tip diameter of the welded portion of the plurality of steel plates in contact with the steel plate is larger than the tip diameter Dw in contact with the steel plate of the welding electrode. A resistance welding method for a high-strength steel plate, which comprises a repair process in which the welding nugget is grown by sandwiching it between a large pair of repair electrodes and generating heat by energizing while pressurizing.
請求項1乃至請求項10のいずれか一において、
上記加熱用電極は、上記鋼板に接触する面が平坦面であることを特徴とする高強度鋼板の抵抗溶接方法。
In any one of claims 1 to 10.
The heating electrode is a resistance welding method for a high-strength steel sheet, characterized in that the surface in contact with the steel sheet is a flat surface.
JP2019107742A 2019-06-10 2019-06-10 Resistance welding method for high-strength steel plates Active JP7247768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019107742A JP7247768B2 (en) 2019-06-10 2019-06-10 Resistance welding method for high-strength steel plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019107742A JP7247768B2 (en) 2019-06-10 2019-06-10 Resistance welding method for high-strength steel plates

Publications (2)

Publication Number Publication Date
JP2020199522A true JP2020199522A (en) 2020-12-17
JP7247768B2 JP7247768B2 (en) 2023-03-29

Family

ID=73742306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019107742A Active JP7247768B2 (en) 2019-06-10 2019-06-10 Resistance welding method for high-strength steel plates

Country Status (1)

Country Link
JP (1) JP7247768B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010082666A (en) * 2008-09-30 2010-04-15 Neturen Co Ltd Method of welding metallic material
JP2011031277A (en) * 2009-08-01 2011-02-17 Toyota Central R&D Labs Inc Resistance welding method, resistance welded member, resistance welder, method, program, and device for controlling resistance welder, and method, program, and device for evaluating resistance welding
JP2015000422A (en) * 2013-06-17 2015-01-05 新日鐵住金株式会社 Lap weld member, and manufacturing method thereof
US20150083693A1 (en) * 2013-09-20 2015-03-26 GM Global Technology Operations LLC Resistance spot welding steel and aluminum workpieces with hot welding electrode at aluminum workpiece
JP2016055337A (en) * 2014-09-11 2016-04-21 高周波熱錬株式会社 Welding method and welded structure
JP2017131916A (en) * 2016-01-27 2017-08-03 アイシン高丘株式会社 Manufacturing method of vehicle body part and its manufacturing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010082666A (en) * 2008-09-30 2010-04-15 Neturen Co Ltd Method of welding metallic material
JP2011031277A (en) * 2009-08-01 2011-02-17 Toyota Central R&D Labs Inc Resistance welding method, resistance welded member, resistance welder, method, program, and device for controlling resistance welder, and method, program, and device for evaluating resistance welding
JP2015000422A (en) * 2013-06-17 2015-01-05 新日鐵住金株式会社 Lap weld member, and manufacturing method thereof
US20150083693A1 (en) * 2013-09-20 2015-03-26 GM Global Technology Operations LLC Resistance spot welding steel and aluminum workpieces with hot welding electrode at aluminum workpiece
JP2016055337A (en) * 2014-09-11 2016-04-21 高周波熱錬株式会社 Welding method and welded structure
JP2017131916A (en) * 2016-01-27 2017-08-03 アイシン高丘株式会社 Manufacturing method of vehicle body part and its manufacturing device

Also Published As

Publication number Publication date
JP7247768B2 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
TWI601588B (en) Resistance point welding method
JP5713147B2 (en) Overlap welding member, automotive part, overlapping portion welding method, and overlap welding member manufacturing method
JP5293227B2 (en) Resistance spot welding method for high strength thin steel sheet
JP6226083B2 (en) Resistance spot welding method
JP5640410B2 (en) Method of manufacturing resistance spot welded joint
JP2003236674A (en) Method and equipment of spot welding of high tensile steel
JP6438880B2 (en) Welded structural member and welding method
JP5708350B2 (en) Projection welded joint and manufacturing method thereof
JP2007268604A (en) Resistance spot welding method
JP2009001839A (en) High strength spot welded joint
KR100722130B1 (en) Spot welding method for high strength steel sheet
JP6052480B1 (en) Resistance spot welding method
JP6168246B1 (en) Resistance spot welding method and manufacturing method of welded member
JP5206448B2 (en) Resistance spot welding method for high strength thin steel sheet
JP5640409B2 (en) Method of manufacturing resistance spot welded joint
JP7247768B2 (en) Resistance welding method for high-strength steel plates
JP6958765B1 (en) Resistance spot welding method and resistance spot welding joint manufacturing method
EP2487004B1 (en) Method of producing a welded article of dispersion strengthened Platinum based alloy with two steps welding
JP7399360B1 (en) Projection welding joint manufacturing method, projection welding joint, and automobile parts
JP7368716B2 (en) Manufacturing method of resistance spot welding joints
JP7296985B2 (en) Resistance spot welding method and method for manufacturing resistance spot welded joints

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220517

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230227

R150 Certificate of patent or registration of utility model

Ref document number: 7247768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150