JP2020197396A - Current detection device - Google Patents

Current detection device Download PDF

Info

Publication number
JP2020197396A
JP2020197396A JP2019102069A JP2019102069A JP2020197396A JP 2020197396 A JP2020197396 A JP 2020197396A JP 2019102069 A JP2019102069 A JP 2019102069A JP 2019102069 A JP2019102069 A JP 2019102069A JP 2020197396 A JP2020197396 A JP 2020197396A
Authority
JP
Japan
Prior art keywords
current
current transformer
electric wire
winding
current detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019102069A
Other languages
Japanese (ja)
Inventor
翔太 五十嵐
Shota Igarashi
翔太 五十嵐
安藤 泰明
Yasuaki Ando
泰明 安藤
喜代実 山下
Kiyomi Yamashita
喜代実 山下
克典 矢井
Katsunori Yai
克典 矢井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2019102069A priority Critical patent/JP2020197396A/en
Publication of JP2020197396A publication Critical patent/JP2020197396A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

To detect abnormality in a current transformer by a simple configuration.SOLUTION: A current detection device includes: a current transformer mounted on a wire to which load can be electrically connected and disconnected; a measurement circuit which is connected between terminals of a coil of the current transformer and has a voltage dividing resistor connected in parallel with the coil with respect to a voltage source; a switch which is connected in series with the voltage dividing resistor and connected in parallel with the coil with respect to the voltage source; and a control device which performs a current detection operation for detecting a current flowing through the wire based on a measurement value measured by the measurement circuit while the switch is on, and performs an abnormality determination operation for determining the presence/absence of disconnection of the current transformer based on a measurement value measured by the measurement circuit while the switch is off.SELECTED DRAWING: Figure 3

Description

本発明は、負荷が接続および接続解除可能な電線を流れる電流を検出する電流検出装置に関する。 The present invention relates to a current detection device that detects a current flowing through an electric wire to which a load can be connected and disconnected.

従来より、単相3線式の電力系統に連系する分散型発電装置の第1の電線(U相)の連系点に接続される第1の電流センサと第2の電線(V相)の連系点に接続される第2の電流センサのそれぞれの異常(断線等)を検出するものが提案されている(例えば、特許文献1参照)。分散型発電装置は、電力負荷と、第1の電線(U相)−第3の電線(N相)間への電力負荷の接続と接続解除とが可能な第1のリレーと、第2の電線(V相)−第3の電線(N相)間への電力負荷の接続と接続解除とが可能な第2のリレーと、を備える。分散型発電装置の制御手段は、第1のリレーにより電力負荷を第1の電線−第3の電線間に接続する直前と直後とに第1の電流センサにより検出される電流値をそれぞれ取得し、取得した電流値の変化量が所定範囲内にあるときに第1の電流センサが故障していると判定する。また、第2のリレーにより電力負荷を第2の電線−第3の電線間に接続する直前と直後とに第2の電流センサにより検出される電流値をそれぞれ取得し、取得した電流値の変化量が所定範囲内にあるときに第2の電流センサが故障していると判定する。 Conventionally, the first current sensor and the second electric wire (V phase) connected to the interconnection point of the first electric wire (U phase) of the distributed power generation device connected to the single-phase three-wire power system. It has been proposed to detect an abnormality (disconnection, etc.) of each of the second current sensors connected to the interconnection point of the above (see, for example, Patent Document 1). The distributed power generation device includes a first relay capable of connecting and disconnecting the power load and the power load between the first electric wire (U phase) and the third electric wire (N phase), and a second relay. It is provided with a second relay capable of connecting and disconnecting a power load between the electric wire (V phase) and the third electric wire (N phase). The control means of the distributed power generation device acquires the current value detected by the first current sensor immediately before and immediately after connecting the power load between the first electric wire and the third electric wire by the first relay. , It is determined that the first current sensor has failed when the amount of change in the acquired current value is within a predetermined range. Further, the current value detected by the second current sensor is acquired immediately before and immediately after the power load is connected between the second electric wire and the third electric wire by the second relay, and the change of the acquired current value is obtained. When the amount is within the predetermined range, it is determined that the second current sensor has failed.

特開2011−160562号公報Japanese Unexamined Patent Publication No. 2011-160562

しかしながら、特許文献1記載の判定手法では、電線に取り付けられた変流器(CT)の断線等の異常を適切に判定できない場合が生じる。例えば、第1および第2の電線(U相およびV相)のうち一方の電線(例えばU相)と第3の電線(N相)とに連系する分散型電源システムにおいては、当該分散型電源システムが備える内部負荷を第1および第2の電線のうち他方の電線(例えばV相)に接続することができないのが通常であるから、当該他方の電線に取り付けられる変流器の異常を判定することができない。 However, the determination method described in Patent Document 1 may not be able to appropriately determine an abnormality such as a disconnection of a current transformer (CT) attached to an electric wire. For example, in a distributed power supply system in which one of the first and second electric wires (U phase and V phase) (for example, U phase) and the third electric wire (N phase) are connected, the distributed type is used. Since it is usually not possible to connect the internal load of the power supply system to the other wire (for example, V phase) of the first and second wires, the current transformer attached to the other wire may be abnormal. Cannot be determined.

ところで、変流器の巻き線に接続される計測回路により当該変流器が取り付けられた電線に電流が流れていないことが計測されると、巻き線が断線していると判定することも考えられる。しかしながら、変流器が取り付けられている電線に外部負荷が接続されていないときにも、当該電線には電流が流れないため、上述した分散型発電システムのように、電線に外部負荷が接続されているか否かを認識することができないシステムにおいては、変流器の巻き線が断線しているのか外部負荷が接続されていないのかを区別することができず、異常を誤判定するおそれがある。 By the way, if it is measured by the measuring circuit connected to the winding of the current transformer that no current is flowing through the electric wire to which the current transformer is attached, it may be determined that the winding is broken. Be done. However, even when the external load is not connected to the electric wire to which the current transformer is attached, no current flows through the electric wire, so that the external load is connected to the electric wire as in the above-mentioned distributed power generation system. In a system that cannot recognize whether or not the current transformer is installed, it is not possible to distinguish whether the current transformer winding is broken or an external load is not connected, and there is a risk of erroneously determining an abnormality. ..

本発明の電流検出装置は、簡易な構成により変流器の異常を適切に検出することができる電流検出装置を提供することを主目的とする。 An object of the current detection device of the present invention is to provide a current detection device capable of appropriately detecting an abnormality of a current transformer with a simple configuration.

本発明の電流検出装置は、上述の主目的を達成するために以下の手段を採った。 The current detector of the present invention has adopted the following means in order to achieve the above-mentioned main object.

本発明の電流検出装置は、
負荷が電気的に接続および接続解除可能な電線を流れる電流を検出する電流検出装置であって、
前記電線に取り付けられた変流器と、
前記変流器の巻き線の端子間に接続され、電圧源に対して前記巻き線と並列に接続された分圧抵抗を有する計測回路と、
前記電圧源に対して前記分圧抵抗と直列に接続されると共に前記巻き線と並列に接続されたスイッチと、
前記スイッチをオンとした状態で前記計測回路により計測される計測値に基づいて前記電線を流れる電流を検出する電流検出動作を行なうと共に前記スイッチをオフとした状態で前記計測回路により計測される計測値に基づいて前記変流器の断線の有無を判定する異常判定動作を行なう制御装置と、
を備えることを要旨とする。
The current detector of the present invention
A current detector that detects the current flowing through an electric wire whose load can be electrically connected and disconnected.
The current transformer attached to the electric wire and
A measuring circuit having a voltage dividing resistor connected between the terminals of the winding of the current transformer and connected in parallel with the winding with respect to the voltage source.
A switch connected in series with the voltage dividing resistor to the voltage source and connected in parallel with the winding.
A current detection operation for detecting the current flowing through the electric wire based on the measured value measured by the measuring circuit with the switch turned on is performed, and the measurement measured by the measuring circuit with the switch turned off. A control device that performs an abnormality determination operation to determine the presence or absence of disconnection of the current transformer based on the value, and
The gist is to prepare.

この本発明の電流検出装置では、電線に取り付けられる変流器と、変流器の巻き線の端子間に接続され電圧源に対して変流器の巻き線と並列に接続された分圧抵抗を有する計測回路と、に加えて、電圧源に対して分圧抵抗と直列に接続されると共に巻き線と並列に接続されたスイッチを設ける。そして、スイッチをオンとした状態で計測回路により計測される計測値に基づいて電線を流れる電流を検出する電流検出動作を行なうと共にスイッチをオフとした状態で計測回路により計測される計測値に基づいて変流器の断線の有無を判定する異常判定動作を行なう。スイッチをオフとしたとき、変流器の巻き線に断線が生じていない場合には電圧源に対して巻き線が接続され分圧抵抗が切り離された状態となり、変流器の巻き線に断線が生じている場合には電圧源に対して巻き線および分圧抵抗が共に切り離された状態となるから、巻き線が断線している場合と断線していない場合とで巻き線の端子に作用する電位に大きな変化を生じさせることができる。したがって、変流器の巻き線の端子間に接続される計測回路によって端子間に作用する電圧を計測することで、巻き線の断線の有無を判定することができる。しかも、スイッチを設けるだけでよいから、巻き線の断線の有無を判定するために必要な構成をより簡易な構成とすることができる。なお、変流器の巻き線に断線が生じている場合と断線が生じていない場合とで当該変流器の端子間の合成インピーダンスは変化するから、巻き線の端子間の合成インピーダンスの変化に応じて生じる電圧変化を計測回路によって計測することにより巻き線の断線の有無を判定することを考えることもできる。しかしながら、巻き線の抵抗値は分圧抵抗の抵抗値より大幅に大きいのが一般的であるため、合成インピーダンスの変化の程度は微小であり、計測回路により計測される計測値によって断線の有無を判断するのは困難である。 In the current detection device of the present invention, a current transformer attached to an electric wire and a voltage dividing resistor connected between the terminals of the current transformer winding and connected in parallel with the current transformer winding to the voltage source. In addition to the measurement circuit having the above, a switch connected in series with the voltage dividing resistor and connected in parallel with the winding is provided for the voltage source. Then, the current detection operation for detecting the current flowing through the electric wire is performed based on the measured value measured by the measuring circuit with the switch turned on, and based on the measured value measured by the measuring circuit with the switch turned off. The abnormality determination operation for determining the presence or absence of disconnection of the current transformer is performed. When the switch is turned off, if the winding of the current transformer is not broken, the winding is connected to the voltage source and the voltage dividing resistor is disconnected, and the winding of the current transformer is broken. When is occurring, both the winding and the voltage dividing resistor are disconnected from the voltage source, so it acts on the winding terminals depending on whether the winding is broken or not. It is possible to cause a large change in the potential. Therefore, the presence or absence of disconnection of the winding can be determined by measuring the voltage acting between the terminals by the measuring circuit connected between the terminals of the winding of the current transformer. Moreover, since it is only necessary to provide a switch, the configuration required for determining the presence or absence of disconnection of the winding can be made simpler. Since the combined impedance between the terminals of the current transformer changes depending on whether the winding of the current transformer has a disconnection or not, the combined impedance between the terminals of the current transformer changes. It is also conceivable to determine the presence or absence of disconnection of the winding by measuring the voltage change that occurs in response with the measurement circuit. However, since the resistance value of the winding is generally much larger than the resistance value of the voltage dividing resistor, the degree of change in the combined impedance is small, and the presence or absence of disconnection is determined by the measured value measured by the measurement circuit. It is difficult to judge.

こうした本発明の電流検出装置において、前記制御装置は、前記電流検出動作を行なっている最中に前記計測回路により前記電線に流れる電流を値0とみなすことができる計測値が第1所定時間以上に亘って継続して計測されたときに、前記スイッチをオフとして前記異常判定動作を行なうものとしてもよい。電流検出動作において変流器の巻き線が断線しているおそれがある場合に異常判定動作を行なうことで、電流検出動作を実行しつつ巻き線の断線を早期に発見することができる。 In such a current detection device of the present invention, in the control device, the measured value at which the current flowing through the electric wire by the measurement circuit can be regarded as a value 0 during the current detection operation is the first predetermined time or longer. The abnormality determination operation may be performed by turning off the switch when the measurement is continuously performed. By performing the abnormality determination operation when there is a possibility that the winding of the current transformer is broken in the current detection operation, it is possible to detect the disconnection of the winding at an early stage while executing the current detection operation.

また、本発明の電流検出装置において、前記制御装置は、前記異常判定動作として、前記スイッチをオフとした状態で前記計測回路により前記電線に前記負荷が電気的に接続されていない状態では通常取り得ない計測値が第2所定時間以上に亘って継続して計測されたときに、前記変流器に断線が生じていると判定するものとしてもよい。 Further, in the current detection device of the present invention, the control device can usually be used as the abnormality determination operation in a state where the switch is turned off and the load is not electrically connected to the electric wire by the measurement circuit. When no measured value is continuously measured for a second predetermined time or longer, it may be determined that the current transformer is disconnected.

さらに、本発明の電流検出装置において、2つの電圧線と1つの中性線とを有する3相単線式の電力系統における前記2つの電圧線のうちの一方の電圧線と前記中性線とに連系される分散型電源システムに用いられ、前記変流器は、前記2つの電圧線にそれぞれ取り付けられるものとしてもよい。本発明の電流検出装置では、分散型電源システムが備える内部負荷を当該分散型電源システムが連系していない電圧線に接続できない場合でも、連系していない電圧線に取り付けられた変流器の異常の有無を判定することができる。 Further, in the current detector of the present invention, one of the two voltage lines in the three-phase single-wire power system having two voltage lines and one neutral line and the neutral line Used in an interconnected distributed generation system, the current transformer may be attached to each of the two voltage lines. In the current detection device of the present invention, even if the internal load of the distributed power supply system cannot be connected to the voltage line not connected to the distributed power supply system, the current transformer attached to the voltage line not connected to the distributed power supply system. It is possible to determine the presence or absence of an abnormality in.

また、本発明の電流検出装置において、前記制御装置は、前記異常判定動作において前記変流器に断線が生じていると判定すると、前記変流器に異常が発生した旨を報知するものとしてもよい。こうすれば、異常の発生に素早く対処することが可能となる。 Further, in the current detection device of the present invention, when the control device determines that the current transformer has a disconnection in the abnormality determination operation, it may notify that an abnormality has occurred in the current transformer. Good. In this way, it is possible to quickly deal with the occurrence of an abnormality.

本実施形態の電流検出装置30を含む分散型発電システム20の構成の概略を示す構成図である。It is a block diagram which shows the outline of the structure of the distributed power generation system 20 including the current detection device 30 of this embodiment. 電流検出装置30の構成の概略を示す構成図である。It is a block diagram which shows the outline of the structure of the current detection device 30. 制御装置50により実行されるCT断線検出処理の一例を示すフローチャートである。It is a flowchart which shows an example of the CT disconnection detection process executed by the control device 50.

本発明を実施するための形態について図面を参照しながら説明する。 A mode for carrying out the present invention will be described with reference to the drawings.

図1は、本実施形態の電流検出装置30を含む分散型発電システム20の構成の概略を示す構成図である。分散型発電システム20は、単相3線式の商用電力系統10の3つの電線のうち1つの電圧線と中性線との2線に連系するシステムとして構成される。例えば、分散型発電システム20を屋外設置する場合、屋外コンセントを利用して分散型発電システム20を商用電力系統10に連系することができ、屋外に単相3線を引き込むための工事などが不要である。以下、商用電力系統10の3つの電線のうち中性線はN相12nとも呼び、2つの電圧線の一方はU相(電圧相)12uとも呼び、2つの電圧線の他方はV相(電圧相)12vとも呼ぶ。N相12nはポールトランス(図示せず)で接地されている。なお、図1では、U相−N相間には家庭内負荷(外部負荷)14uが接続され、V相−N相間には家庭内負荷(外部負荷)14vが接続されている。 FIG. 1 is a configuration diagram showing an outline of the configuration of a distributed power generation system 20 including the current detection device 30 of the present embodiment. The distributed power generation system 20 is configured as a system connected to two wires, one voltage line and a neutral wire, out of three electric wires of the single-phase three-wire commercial power system 10. For example, when the distributed power generation system 20 is installed outdoors, the distributed power generation system 20 can be connected to the commercial power system 10 by using an outdoor outlet, and work for drawing a single-phase three-wire outdoors can be performed. Not needed. Hereinafter, of the three electric wires of the commercial power system 10, the neutral wire is also referred to as N phase 12n, one of the two voltage wires is also referred to as U phase (voltage phase) 12u, and the other of the two voltage wires is V phase (voltage). Phase) Also called 12v. The N-phase 12n is grounded by a pole transformer (not shown). In FIG. 1, a home load (external load) 14u is connected between the U phase and the N phase, and a home load (external load) 14v is connected between the V phase and the N phase.

分散型発電システム20は、本実施形態では、商用電力系統10に対する逆潮流が許容されていないシステムであり、図1に示すように、直流電力を発電する発電装置22と、発電装置22の発電電力を交流電力に変換するパワーコンディショナ24と、商用電力系統10に対して連系/解列を行なう解列リレー26と、潮流監視のために商用電力系統10の2つの電圧線(U相12u,V相12v)に流れる電流を検出する電流検出装置30と、システム全体を制御する制御装置50と、を備える。 In the present embodiment, the distributed power generation system 20 is a system in which a reverse current to the commercial power system 10 is not allowed. As shown in FIG. 1, the power generation device 22 for generating DC power and the power generation of the power generation device 22 Two voltage lines (U phase): a power conditioner 24 that converts power into AC power, a disconnection relay 26 that interconnects / disconnects the commercial power system 10, and a commercial power system 10 for power flow monitoring. A current detection device 30 for detecting the current flowing through the 12u, V-phase 12v) and a control device 50 for controlling the entire system are provided.

発電装置22は、例えば、固体酸化物形の燃料電池や蒸発器、改質器等を含み、原燃料ガスを改質して生成される改質ガス(水素ガス)と酸化剤ガスとにより発電する燃料電池装置として構成される。なお、発電装置22は、原動機(ガスエンジンやガスタービンなど)とこの原動機からの動力により発電する発電機との組み合わせにより構成されてもよい。 The power generation device 22 includes, for example, a solid oxide fuel cell, an evaporator, a reformer, and the like, and generates power by reforming gas (hydrogen gas) generated by reforming the raw material fuel gas and oxidant gas. It is configured as a fuel cell device. The power generation device 22 may be configured by a combination of a prime mover (gas engine, gas turbine, etc.) and a generator that generates electricity by power from the prime mover.

パワーコンディショナ24は、発電装置22で発電された直流電力の電圧を変換するDC/DCコンバータや、DC/DCコンバータから出力される直流電力を交流電力に変換するインバータを備える。インバータの2つの出力線は、解列リレー26を介して商用電力系統10のU相12u,V相12vのいずれかとN相12nとに接続される。 The power conditioner 24 includes a DC / DC converter that converts the voltage of the DC power generated by the power generation device 22, and an inverter that converts the DC power output from the DC / DC converter into AC power. The two output lines of the inverter are connected to either the U phase 12u or the V phase 12v of the commercial power system 10 and the N phase 12n via the disconnection relay 26.

電流検出装置30は、商用電力系統10の2つの電圧線(U相12u,V相12v)にそれぞれ取り付けられるCT(Current Transformer)31と、CT31の巻き線の端子間に接続されるCT計測回路40と、を備える。図2は、電流検出装置30の構成の概略を示す構成図である。CT計測回路40は、図2に示すように、電圧源Vcc1(例えば5V電圧源)と電圧源Vcc2(例えば2.5V電圧源)とに対して直列に接続された分圧抵抗R1,R2,R3,R4と、分圧抵抗R1と分圧抵抗R2との間に介在するスイッチとしてのトランジスタ42と、反転入力端子が入力抵抗R5を介して分圧抵抗R1とトランジスタ42との接続点に接続されると共に非反転入力端子が分圧抵抗R3と分圧抵抗R4との接続点に接続されたオペアンプ41と、オペアンプ41の出力端子と反転入力端子とに接続された帰還抵抗R6と、帰還抵抗R6と並列に接続された帰還コンデンサCと、を備える。 The current detection device 30 is a CT measurement circuit connected between a CT (Current Transformer) 31 attached to two voltage lines (U phase 12u, V phase 12v) of the commercial power system 10 and a winding terminal of the CT 31, respectively. 40 and. FIG. 2 is a configuration diagram showing an outline of the configuration of the current detection device 30. As shown in FIG. 2, the CT measurement circuit 40 has voltage dividing resistors R1, R2, which are connected in series to the voltage source Vcc1 (for example, 5V voltage source) and the voltage source Vcc2 (for example, 2.5V voltage source). A transistor 42 as a switch interposed between R3 and R4, a voltage dividing resistor R1 and a voltage dividing resistor R2, and an inverting input terminal are connected to a connection point between the voltage dividing resistor R1 and the transistor 42 via an input resistor R5. The operational amplifier 41 whose non-inverting input terminal is connected to the connection point between the voltage dividing resistor R3 and the voltage dividing resistor R4, the feedback resistor R6 connected to the output terminal and the inverting input terminal of the operational amplifier 41, and the feedback resistor A feedback capacitor C connected in parallel with R6 is provided.

CT31は、本実施形態では、貫通形の変流器として構成されており、巻き線の一方の端子P1は、分圧抵抗R1とトランジスタ42との接続点に接続され、巻き線の他方の端子P2は、分圧抵抗R2と分圧抵抗R3との接続点に接続されている。 The CT31 is configured as a through-type current transformer in the present embodiment, and one terminal P1 of the winding is connected to a connection point between the voltage dividing resistor R1 and the transistor 42, and the other terminal of the winding is connected. P2 is connected to the connection point between the voltage dividing resistor R2 and the voltage dividing resistor R3.

制御装置50は、図示しないが、CPUを中心としたマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROM,ワークメモリとしてのRAM、入出力ポートなどを備える。この制御装置50には、CT計測回路40(オペアンプ41)の出力端子からの計測信号(系統電流計測値Ict)が内蔵するADコンバータ(ADC)51を介して入力されている。一方、制御装置50からは、発電装置22への制御信号やパワーコンディショナ24への制御信号、解列リレー26へのオンオフ信号、各CT計測回路40のトランジスタ42へのオンオフ信号などが出力されている。 Although not shown, the control device 50 is configured as a microprocessor centered on a CPU, and includes a ROM for storing a processing program, a RAM as a work memory, an input / output port, and the like, in addition to the CPU. A measurement signal (system current measurement value Ict) from the output terminal of the CT measurement circuit 40 (op amp 41) is input to the control device 50 via an AD converter (ADC) 51. On the other hand, the control device 50 outputs a control signal to the power generation device 22, a control signal to the power conditioner 24, an on / off signal to the disconnection relay 26, an on / off signal to the transistor 42 of each CT measurement circuit 40, and the like. ing.

次に、こうして構成された分散型発電システム20が備える電流検出装置30の動作について説明する。 Next, the operation of the current detection device 30 included in the distributed power generation system 20 configured in this way will be described.

制御装置50は、商用電力系統10のU相12uとV相12vとにCT31がそれぞれ取り付けられた状態において、CT31の巻き線間に接続されたCT計測回路40のトランジスタ42をオンとし、その状態でCT計測回路40により計測される系統電流計測値Ictに基づいてU相12uとV相12vとを流れる電流を検出する電流検出動作を行ない、検出した各電流に基づいて潮流方向を監視する。そして、逆潮流(分散型発電システム20から商用電力系統10へ向かう有効電力の流れ)が発生したと判定すると、解列リレー26をオフして分散型発電システム20を商用電力系統10から切り離す。これにより、逆潮流が許容されていない分散型発電システム20において、逆潮流を防止することができる。 The control device 50 turns on the transistor 42 of the CT measurement circuit 40 connected between the windings of the CT 31 in a state where the CT 31 is attached to the U phase 12u and the V phase 12v of the commercial power system 10, respectively, and the state thereof. A current detection operation for detecting the current flowing through the U-phase 12u and the V-phase 12v is performed based on the system current measurement value Ict measured by the CT measurement circuit 40, and the power flow direction is monitored based on each detected current. Then, when it is determined that reverse power flow (flow of active power from the distributed power generation system 20 to the commercial power system 10) has occurred, the disconnection relay 26 is turned off to disconnect the distributed power generation system 20 from the commercial power system 10. This makes it possible to prevent reverse power flow in the distributed power generation system 20 in which reverse power flow is not allowed.

次に、CT31(巻き線)の断線の有無を検出する際の動作(異常検出動作)について説明する。図3は、制御装置50により実行されるCT断線検出処理の一例を示すフローチャートである。この処理は、上述した電流検出動作を実行している最中にCT31がU相12uに取り付けられた電流検出装置30とCT31がV相12vに取り付けられた電流検出装置30のそれぞれにおいて、所定時間毎に繰り返し実行される。 Next, an operation (abnormality detection operation) for detecting the presence or absence of disconnection of the CT31 (winding wire) will be described. FIG. 3 is a flowchart showing an example of CT disconnection detection processing executed by the control device 50. This process is performed for a predetermined time in each of the current detection device 30 in which the CT 31 is attached to the U phase 12u and the current detection device 30 in which the CT 31 is attached to the V phase 12v while the above-mentioned current detection operation is being executed. It is executed repeatedly every time.

CT断線検出処理が実行されると、CT計測回路40により計測される系統電流計測値Ictを入力し(ステップS100)、入力した系統電流計測値Ictが第1閾値Iref1以下であるか否かを判定する(ステップS110)。ここで、第1閾値Iref1は、CT31が取り付けられている電線(電圧線)に流れる電流値が値0とみなすことができる計測値であり、予め実験的あるいは計算により求めた値が定められている。ここで、CT31が電流を検出することができない場合としては、CT31が取り付けられている電線に家庭内負荷が電気的に接続されていない場合とCT31が断線している場合とが考えられる。 When the CT disconnection detection process is executed, the system current measurement value Ict measured by the CT measurement circuit 40 is input (step S100), and whether or not the input system current measurement value Ict is equal to or less than the first threshold value Iref1 is determined. Determine (step S110). Here, the first threshold value Iref1 is a measured value in which the current value flowing through the electric wire (voltage line) to which the CT31 is attached can be regarded as a value 0, and a value obtained in advance experimentally or by calculation is determined. There is. Here, the case where the CT 31 cannot detect the current is considered to be a case where the household load is not electrically connected to the electric wire to which the CT 31 is attached and a case where the CT 31 is disconnected.

系統電流計測値Ictが第1閾値Iref1以下でなく第1閾値Iref1よりも大きいと判定すると、CT31が取り付けられた電線に電流が流れており、CT31は正常であると判断し、第1カウンタCnt1を値0にリセットして(ステップS120)、本処理を終了する。一方、系統電流計測値Ictが第1閾値Iref1以下であると判定すると、次に、第1カウンタCnt1が第1閾値Cref1以上であるか否かを判定する(ステップS130)。ここで、第1閾値Cref1は、CT31が取り付けられた電線に電流が流れていないことを確定するための所要時間に相当する値として予め定められている。第1カウンタCnt1が第1閾値Cref1以上でないと判定すると、第1カウンタCnt1を値1だけインクリメントし(ステップS140)、ステップS100に戻って、処理を繰り返す。そして、処理の繰り返しの過程において、ステップS130で第1カウンタCnt1が第1閾値Cref1以上であると判定すると、CT31が断線しているのかCT31が取り付けられている電線に家庭内負荷が電気的に接続されていないのか(無負荷状態なのか)を判別するために以下の処理を実行する。 If it is determined that the system current measured value Ict is not equal to or less than the first threshold value Reset 1 but larger than the first threshold value Reset 1, a current is flowing through the electric wire to which the CT 31 is attached, and it is determined that the CT 31 is normal, and the first counter Cnt1 Is reset to the value 0 (step S120), and this process ends. On the other hand, if it is determined that the system current measured value Ict is equal to or less than the first threshold value Iref1, then it is determined whether or not the first counter Cnt1 is equal to or greater than the first threshold value Clef1 (step S130). Here, the first threshold value Clef1 is predetermined as a value corresponding to the time required for determining that no current is flowing through the electric wire to which the CT31 is attached. If it is determined that the first counter Cnt1 is not equal to or higher than the first threshold value Clef1, the first counter Cnt1 is incremented by a value of 1 (step S140), the process returns to step S100, and the process is repeated. Then, in the process of repeating the process, if it is determined in step S130 that the first counter Cnt1 is equal to or higher than the first threshold value Clef1, the household load is electrically applied to the electric wire to which the CT31 is attached, whether the CT31 is broken or not. Execute the following processing to determine whether it is not connected (whether it is in a no-load state).

すなわち、まず、トランジスタ42をオフとして(ステップS160)、CT計測回路40により計測される系統電流計測値Ictを入力し(ステップS170)、入力した系統電流計測値Ictが第2閾値Iref2以上であるか否かを判定する(ステップS180)。ここで、第2閾値Iref2は、CT31が断線しているのか無負荷状態なのかを判別するための閾値であり、予め実験的あるいは計算により求めた値が定められている。 That is, first, the transistor 42 is turned off (step S160), the system current measurement value Ict measured by the CT measurement circuit 40 is input (step S170), and the input system current measurement value Ict is equal to or higher than the second threshold value Iref2. Whether or not it is determined (step S180). Here, the second threshold value Iref2 is a threshold value for determining whether the CT 31 is disconnected or in a no-load state, and a value obtained in advance experimentally or by calculation is determined.

系統電流計測値Ictが第2閾値Iref2以上でないと判定すると、CT31が取り付けられている電線には家庭内負荷が電気的に接続されておらず、CT31には断線が生じていないと判断し、第2カウンタCnt2を値0にリセットすると共に(ステップS190)、トランジスタ42をオンとして(ステップS200)、本処理を終了する。一方、系統電流計測値Ictが第2閾値Iref2以上であると判定すると、次に、第2カウンタCnt2が第2閾値Cref2以上であるか否かを判定する(ステップS210)。ここで、第2閾値Cref2は、CT31の巻き線が断線していることを確定するための所要時間に相当する値として予め定められている。第2カウンタCnt2が第2閾値Cref2以上でないと判定すると、第2カウンタCnt2を値1だけインクリメントし(ステップS220)、ステップS170に戻って、処理を繰り返す。そして、処理の繰り返しの過程において、ステップS210で第2カウンタCnt2が第2閾値Cref2以上であると判定すると、CT31が断線していると判断し、第2カウンタCnt2を値0にリセットすると共に(ステップS230)、表示器52に警告表示を行ない(ステップS240)、トランジスタ42をオンとして(ステップS250)、本処理を終了する。 If it is determined that the system current measured value Ict is not equal to or higher than the second threshold value Reset2, it is determined that the household load is not electrically connected to the electric wire to which the CT31 is attached, and the CT31 is not disconnected. The second counter Cnt2 is reset to a value of 0 (step S190), the transistor 42 is turned on (step S200), and this process ends. On the other hand, if it is determined that the system current measured value Ict is equal to or greater than the second threshold Iref2, then it is determined whether or not the second counter Cnt2 is equal to or greater than the second threshold Cref2 (step S210). Here, the second threshold value Clef2 is predetermined as a value corresponding to the time required to determine that the winding of the CT31 is broken. If it is determined that the second counter Cnt2 is not equal to or higher than the second threshold value Clef2, the second counter Cnt2 is incremented by a value of 1 (step S220), the process returns to step S170, and the process is repeated. Then, in the process of repeating the process, if it is determined in step S210 that the second counter Cnt2 is equal to or higher than the second threshold value Clef2, it is determined that the CT31 is disconnected, and the second counter Cnt2 is reset to a value of 0 ( Step S230), a warning is displayed on the display 52 (step S240), the transistor 42 is turned on (step S250), and this process ends.

いま、図2に示す構成のうちトランジスタ42を備えない比較例の電流検出装置を用いてCT31の断線の有無を判定する場合を考える。上述したように、CT31が電流を検出することができない場合としては、CT31が取り付けられている電線に家庭内負荷が電気的に接続されていない場合とCT31の巻き線が断線している場合とが考えられる。このため、CT31の巻き線の端子間に接続されたCT計測回路40により計測される系統電流計測値Ictに基づいて巻き線が断線しているか否かを判定するに当たっては、両者を区別する必要が生じる。CT31の巻き線は電圧源Vcc1,Vcc2に対して分圧抵抗R2と並列に接続されており、巻き線抵抗R0を考慮すると、CT31に断線が生じている場合と断線が生じていない場合とで当該CT31の巻き線の端子間の合成インピーダンスが変化するから、比較例の電流検出装置では、合成抵抗の変化に応じて生じる電圧変化をCT計測回路で計測することにより巻き線の断線の有無を判定することを考えることができる。しかしながら、巻き線抵抗R0の抵抗値は分圧抵抗R2の抵抗値より大幅に大きいのが一般的であるため、合成インピーダンスの変化の程度は微小であり、CT計測回路40により計測される系統電流計測値IctによってCT31の巻き線の断線の有無を判断するのは困難である。 Now, consider a case where the presence or absence of disconnection of the CT 31 is determined by using the current detection device of the comparative example which does not include the transistor 42 in the configuration shown in FIG. As described above, the cases where the CT31 cannot detect the current include the case where the household load is not electrically connected to the electric wire to which the CT31 is attached and the case where the winding of the CT31 is broken. Can be considered. Therefore, in determining whether or not the winding is broken based on the system current measurement value Ict measured by the CT measurement circuit 40 connected between the terminals of the winding of the CT 31, it is necessary to distinguish between the two. Occurs. The winding of the CT31 is connected in parallel with the voltage dividing resistor R2 to the voltage sources Vcc1 and Vcc2, and considering the winding resistance R0, there are cases where the CT31 is disconnected and cases where the disconnection is not generated. Since the combined impedance between the terminals of the winding of the CT31 changes, in the current detection device of the comparative example, the presence or absence of disconnection of the winding is determined by measuring the voltage change generated in response to the change of the combined resistance with the CT measurement circuit. You can think of making a decision. However, since the resistance value of the winding resistance R0 is generally significantly larger than the resistance value of the voltage dividing resistor R2, the degree of change in the combined impedance is small, and the system current measured by the CT measurement circuit 40. It is difficult to determine whether or not the winding of the CT31 is broken by the measured value Ict.

これに対して、本実施形態の電流検出装置30では、トランジスタ42をオフとしてCT31の巻き線の端子間に接続される分圧抵抗R2を切り離した状態とするから、巻き線が断線している場合と断線していない場合とでオペアンプ41の入力端子に入力される電位に大きな変化を生じさせることができる。すなわち、図2に示すように、トランジスタ42をオフとした状態では、CT31の巻き線に断線が生じていない場合には、電圧源Vcc1,Vcc2に対して巻き線抵抗R0と分圧抵抗R1,R3,R4とによって分圧された電圧がオペアンプ41の非反転入力端子に作用するのに対して、CT31の巻き線に断線が生じている場合には、電圧源Vcc2の電圧がオペアンプ41の非反転入力端子に直接に作用するため、これらの状態をCT計測回路40によって計測することで、CT31の巻き線の断線の有無を検出することができる。 On the other hand, in the current detection device 30 of the present embodiment, the transistor 42 is turned off and the voltage dividing resistor R2 connected between the terminals of the windings of the CT 31 is disconnected, so that the windings are broken. It is possible to cause a large change in the potential input to the input terminal of the operational amplifier 41 depending on whether the wire is broken or not. That is, as shown in FIG. 2, in the state where the transistor 42 is turned off, if the winding of the CT 31 is not broken, the winding resistance R0 and the voltage dividing resistance R1 with respect to the voltage sources Vcc1 and Vcc2. The voltage divided by R3 and R4 acts on the non-inverting input terminal of the operational amplifier 41, whereas when the winding of the CT 31 is broken, the voltage of the voltage source Vcc2 is the non-inverting input terminal of the operational amplifier 41. Since it acts directly on the inverting input terminal, it is possible to detect the presence or absence of disconnection of the winding of the CT 31 by measuring these states with the CT measuring circuit 40.

以上説明した実施形態の電流検出装置30では、CT計測回路40において電圧源Vcc1,Vcc2に対して直列に接続された分圧抵抗R1〜R4の分圧抵抗R1と分圧抵抗R2との間に介在するようにトランジスタ42を設ける。そして、トランジスタ42をオンとした状態でCT計測回路40により計測される系統電流計測値Ictに基づいてCT31が取り付けられた電線(U相12uまたはV相12v)を流れる電流を検出する電流検出動作を行ない、トランジスタ42をオフとした状態でCT計測回路40により計測される系統電流計測値Ictに基づいてCT31の断線の有無を判定する異常判定動作を行なう。これにより、従来の電流検出装置に対してスイッチを設けるだけの簡易な構成により、CT31の断線の有無を適切に判定することができる。 In the current detection device 30 of the embodiment described above, in the CT measurement circuit 40, between the voltage dividing resistors R1 and the voltage dividing resistors R2 of the voltage dividing resistors R1 to R4 connected in series with the voltage sources Vcc1 and Vcc2. The transistor 42 is provided so as to intervene. Then, a current detection operation that detects the current flowing through the electric wire (U phase 12u or V phase 12v) to which the CT 31 is attached based on the system current measurement value Ict measured by the CT measurement circuit 40 with the transistor 42 turned on. With the transistor 42 turned off, an abnormality determination operation for determining the presence or absence of disconnection of the CT 31 is performed based on the system current measurement value Ict measured by the CT measurement circuit 40. As a result, the presence or absence of disconnection of the CT 31 can be appropriately determined by a simple configuration in which a switch is provided for the conventional current detection device.

実施形態では、CT31の巻き線に断線が生じたと判定すると、表示器52に警告表示を行なうものとしたが、分散型発電システム20がネットワークを介して管理会社のサーバに接続されている場合には、CT31に異常が発生した旨を当該サーバへ送信するものとしてもよい。 In the embodiment, when it is determined that the winding of the CT 31 is broken, a warning is displayed on the display 52, but when the distributed power generation system 20 is connected to the server of the management company via the network. May transmit to the server that an abnormality has occurred in CT31.

実施形態では、本発明の電流検出装置を、逆潮流が許容されていない分散型発電システム20に適用して説明したが、逆潮流が許容されている分散型発電システムに適用するものとしてもよく、負荷が接続および接続解除可能な電線を流れる電流を検出するものであれば、如何なる装置にも適用するものとしてもよい。 In the embodiment, the current detection device of the present invention has been described by applying it to the distributed power generation system 20 in which reverse power flow is not allowed, but it may be applied to the distributed power generation system in which reverse power flow is allowed. The load may be applied to any device as long as it detects the current flowing through the connectable and disconnectable wires.

実施形態の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施形態では、家庭内負荷14u,14vが「負荷」に相当し、U相12u,V相12vが「電線」に相当し、CT31が「変流器」に相当し、電圧源Vcc1,Vcc2が「電圧源」に相当し、分圧抵抗R2が「分圧抵抗」に相当し、CT計測回路40が「計測回路」に相当し、トランジスタ42が「スイッチ」に相当し、制御装置50が「制御装置」に相当する。 The correspondence between the main elements of the embodiment and the main elements of the invention described in the column of means for solving the problem will be described. In the embodiment, the domestic loads 14u and 14v correspond to the "load", the U-phase 12u and V-phase 12v correspond to the "electric wire", the CT31 corresponds to the "current transformer", and the voltage sources Vcc1 and Vcc2 correspond to each other. The voltage source corresponds to the voltage dividing resistor R2, the voltage dividing resistor R2 corresponds to the voltage dividing resistor, the CT measurement circuit 40 corresponds to the "measurement circuit", the transistor 42 corresponds to the "switch", and the control device 50 corresponds to the "switch". Corresponds to "control device".

なお、実施形態の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施形態が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施形態は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。 Regarding the correspondence between the main elements of the embodiment and the main elements of the invention described in the column of means for solving the problem, the invention described in the column of means for the embodiment to solve the problem is carried out. Since it is an example for specifically explaining the form for solving the problem, the elements of the invention described in the column of means for solving the problem are not limited. That is, the interpretation of the invention described in the column of means for solving the problem should be performed based on the description in the column, and the embodiment is the invention described in the column of means for solving the problem. It is just a concrete example.

以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。 Although the embodiments for carrying out the present invention have been described above using the embodiments, the present invention is not limited to these embodiments, and various embodiments are used without departing from the gist of the present invention. Of course, it can be done.

本発明は、電流検出装置や分散型発電システムの製造産業などに利用可能である。 The present invention can be used in the manufacturing industry of current detectors and distributed power generation systems.

10 商用電力系統、12u U相、12v V相、12n N相、14u,14v 家庭内負荷、20 分散型発電システム、22 発電装置、24 パワーコンディショナ、26 解列リレー、30 電流検出装置、31 CT、40 CT計測回路、41 オペアンプ、42 トランジスタ、50 制御装置、51 ADC(ADコンバータ)52 表示器、R0 巻き線抵抗、R1,R2,R3,R4 分圧抵抗、R5 入力抵抗、R6 帰還抵抗、C 帰還コンデンサ,Vcc1,Vcc2 電圧源。 10 Commercial power system, 12u U phase, 12v V phase, 12n N phase, 14u, 14v domestic load, 20 distributed power generation system, 22 power generation equipment, 24 power conditioner, 26 disconnection relay, 30 current detector, 31 CT, 40 CT measurement circuit, 41 operational amplifier, 42 transistor, 50 controller, 51 ADC (AD converter) 52 display, R0 winding resistor, R1, R2, R3, R4 voltage dividing resistor, R5 input resistor, R6 feedback resistor , C feedback capacitor, Vcc1, Vcc2 voltage source.

Claims (5)

負荷が電気的に接続および接続解除可能な電線を流れる電流を検出する電流検出装置であって、
前記電線に取り付けられた変流器と、
前記変流器の巻き線の端子間に接続され、電圧源に対して前記巻き線と並列に接続された分圧抵抗を有する計測回路と、
前記電圧源に対して前記分圧抵抗と直列に接続されると共に前記巻き線と並列に接続されたスイッチと、
前記スイッチをオンとした状態で前記計測回路により計測される計測値に基づいて前記電線を流れる電流を検出する電流検出動作を行なうと共に前記スイッチをオフとした状態で前記計測回路により計測される計測値に基づいて前記変流器の断線の有無を判定する異常判定動作を行なう制御装置と、
を備える電流検出装置。
A current detector that detects the current flowing through an electric wire whose load can be electrically connected and disconnected.
The current transformer attached to the electric wire and
A measuring circuit having a voltage dividing resistor connected between the terminals of the winding of the current transformer and connected in parallel with the winding with respect to the voltage source.
A switch connected in series with the voltage dividing resistor to the voltage source and connected in parallel with the winding.
A current detection operation for detecting the current flowing through the electric wire based on the measured value measured by the measuring circuit with the switch turned on is performed, and the measurement measured by the measuring circuit with the switch turned off. A control device that performs an abnormality determination operation to determine the presence or absence of disconnection of the current transformer based on the value, and
A current detector equipped with.
請求項1に記載の電流検出装置であって、
前記制御装置は、前記電流検出動作を行なっている最中に前記計測回路により前記電線に流れる電流を値0とみなすことができる計測値が第1所定時間以上に亘って継続して計測されたときに、前記スイッチをオフとして前記異常判定動作を行なう、
電流検出装置。
The current detection device according to claim 1.
While the control device is performing the current detection operation, a measured value that can be regarded as a value 0 of the current flowing through the electric wire by the measuring circuit is continuously measured for a first predetermined time or more. Occasionally, the switch is turned off to perform the abnormality determination operation.
Current detector.
請求項1または2に記載の電流検出装置であって、
前記制御装置は、前記異常判定動作として、前記スイッチをオフとした状態で前記計測回路により前記電線に前記負荷が電気的に接続されていない状態では通常取り得ない計測値が第2所定時間以上に亘って継続して計測されたときに、前記変流器に断線が生じていると判定する、
電流検出装置。
The current detection device according to claim 1 or 2.
In the control device, as the abnormality determination operation, a measured value that cannot normally be obtained when the load is not electrically connected to the electric wire by the measuring circuit with the switch turned off becomes a second predetermined time or more. It is determined that the current transformer has a disconnection when continuously measured over a period of time.
Current detector.
請求項1ないし3いずれか1項に記載の電流検出装置であって、
2つの電圧線と1つの中性線とを有する3相単線式の電力系統における前記2つの電圧線のうちの一方の電圧線と前記中性線とに連系される分散型電源システムに用いられ、
前記変流器は、前記2つの電圧線にそれぞれ取り付けられる、
電流検出装置。
The current detection device according to any one of claims 1 to 3.
Used in a distributed power system connected to one of the two voltage lines and the neutral line in a three-phase single-wire power system having two voltage lines and one neutral line. Be,
The current transformer is attached to each of the two voltage lines.
Current detector.
請求項1ないし4いずれか1項に記載の電流検出装置であって、
前記制御装置は、前記異常判定動作において前記変流器に断線が生じていると判定すると、前記変流器に異常が発生した旨を報知する、
電流検出装置。
The current detection device according to any one of claims 1 to 4.
When the control device determines that the current transformer has a disconnection in the abnormality determination operation, it notifies that an abnormality has occurred in the current transformer.
Current detector.
JP2019102069A 2019-05-31 2019-05-31 Current detection device Pending JP2020197396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019102069A JP2020197396A (en) 2019-05-31 2019-05-31 Current detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019102069A JP2020197396A (en) 2019-05-31 2019-05-31 Current detection device

Publications (1)

Publication Number Publication Date
JP2020197396A true JP2020197396A (en) 2020-12-10

Family

ID=73649033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019102069A Pending JP2020197396A (en) 2019-05-31 2019-05-31 Current detection device

Country Status (1)

Country Link
JP (1) JP2020197396A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066920A (en) * 1989-05-22 1991-11-19 Merlin Gerin Correction procedure of the phase difference introduced by a zero sequence toroid of leakage current and isolation monitor this procedure
JPH08162332A (en) * 1994-12-07 1996-06-21 Meidensha Corp Wiring breaking test circuit for instrument current transformer
JPH1114691A (en) * 1997-06-27 1999-01-22 Denso Corp Disconnection detector for sensor
JP2002044856A (en) * 2000-07-25 2002-02-08 Mitsubishi Electric Corp Leakage current relay
JP2009025055A (en) * 2007-07-18 2009-02-05 Kawamura Electric Inc Output converting circuit for current transformer
JP2014511474A (en) * 2010-12-10 2014-05-15 ラリタン アメリカズ,インコーポレイテッド Method and apparatus for detecting ground faults and automated self-diagnosis thereof
JP2015015845A (en) * 2013-07-05 2015-01-22 アイシン精機株式会社 Power generation system
JP2018179787A (en) * 2017-04-14 2018-11-15 アイシン精機株式会社 Attached state determination device of current sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066920A (en) * 1989-05-22 1991-11-19 Merlin Gerin Correction procedure of the phase difference introduced by a zero sequence toroid of leakage current and isolation monitor this procedure
JPH08162332A (en) * 1994-12-07 1996-06-21 Meidensha Corp Wiring breaking test circuit for instrument current transformer
JPH1114691A (en) * 1997-06-27 1999-01-22 Denso Corp Disconnection detector for sensor
JP2002044856A (en) * 2000-07-25 2002-02-08 Mitsubishi Electric Corp Leakage current relay
JP2009025055A (en) * 2007-07-18 2009-02-05 Kawamura Electric Inc Output converting circuit for current transformer
JP2014511474A (en) * 2010-12-10 2014-05-15 ラリタン アメリカズ,インコーポレイテッド Method and apparatus for detecting ground faults and automated self-diagnosis thereof
JP2015015845A (en) * 2013-07-05 2015-01-22 アイシン精機株式会社 Power generation system
JP2018179787A (en) * 2017-04-14 2018-11-15 アイシン精機株式会社 Attached state determination device of current sensor

Similar Documents

Publication Publication Date Title
JP6870449B2 (en) Current sensor mounting status determination device
US11408922B2 (en) Method and system for detecting miswiring of a power supply for a domestic appliance
JP5369833B2 (en) Electric vehicle charger and ground fault detection method
JP5823057B2 (en) Power converter and fault diagnosis method thereof
JP2006517781A (en) Arc fault detection for SSPC power distribution system
US9692314B2 (en) Detection circuit and three-phase AC-to-AC power converting apparatus incorporating the same
US20100008006A1 (en) Power device and safety control method thereof
JP2014217258A (en) Power supply device, power supply system and control method for power supply device
JP3908203B2 (en) Anomaly detector for current transformer in distributed power system
JP2020197396A (en) Current detection device
US11394218B2 (en) Controller, electricity storage system, and recording medium
JP6456115B2 (en) Fault detection device for ground fault detection circuit
JP6965564B2 (en) Current sensor mounting status determination device
JP6176573B2 (en) Reverse power detection device
CN110596529A (en) Flexible direct current power grid ground insulation fault detection device and system
KR102018235B1 (en) DC power automatic switcher
JP7326915B2 (en) Distributed power system
JP2016123140A (en) Composite power generation system
JP2020092532A (en) Power storage system and abnormality determination method of current sensor
JP7238638B2 (en) How to determine the mounting state of the current sensor
JP2021005938A (en) Power storage device and power storage system having the same
JP7487455B2 (en) Load Status Monitoring Device
JP6784508B2 (en) Abnormality detection method for fuel cell device and current sensor
CN108112278A (en) Safety circuit, safe circuit operation method and the electro-motor including safety circuit
JP2016070799A (en) Fuel cell system, and control method of fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230822