JP2020188531A - Motor operation system, motor, and driving method for motor - Google Patents

Motor operation system, motor, and driving method for motor Download PDF

Info

Publication number
JP2020188531A
JP2020188531A JP2019089570A JP2019089570A JP2020188531A JP 2020188531 A JP2020188531 A JP 2020188531A JP 2019089570 A JP2019089570 A JP 2019089570A JP 2019089570 A JP2019089570 A JP 2019089570A JP 2020188531 A JP2020188531 A JP 2020188531A
Authority
JP
Japan
Prior art keywords
phase
electric motor
windings
winding
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019089570A
Other languages
Japanese (ja)
Other versions
JP7085260B2 (en
Inventor
鈴木 秀明
Hideaki Suzuki
秀明 鈴木
田中 直樹
Naoki Tanaka
直樹 田中
小坂 卓
Suguru Kosaka
卓 小坂
太郎 志垣
Taro SHIGAKI
太郎 志垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Nagoya Institute of Technology NUC
Original Assignee
Denso Corp
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nagoya Institute of Technology NUC filed Critical Denso Corp
Priority to JP2019089570A priority Critical patent/JP7085260B2/en
Priority to PCT/JP2020/017807 priority patent/WO2020230595A1/en
Publication of JP2020188531A publication Critical patent/JP2020188531A/en
Application granted granted Critical
Publication of JP7085260B2 publication Critical patent/JP7085260B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • H02P25/20Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays for pole-changing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases

Abstract

To switch an electrification degree (pole number) in a motor of which the number of slots on a pole and phase basis is 2 or more.SOLUTION: In a motor 30, an average θ of mechanical phase angle differences between coils to be mechanical phase angles adjacent in phases of an m-phase coil (m is an odd integer equal to or greater than 5) satisfies the relation of θ=360°/(m*p) in a case that a parameter (p) indicating the number of sets of the m-phase coils in the motor is defined as any integer of which the value is equal to or greater than 1, and the coils of the phases are connected in a star ring shape in which the coils of phases to be separated by L*θ with a mechanical phase angle difference with respect to a value of a span L (L is a positive integer equal to or smaller than m/2) are connected. An electrification degree (h) (any integer of h≥1) is used to make an electrical phase difference δ of an electrification current between adjacent coils in the phases at mechanical phase angles satisfy δ=h*360°/m. A number (q) of slots on a pole and phase basis based on a pole number at the time of electrification degree h=1 is made lead 6≥q≥2, thereby suppressing reduction of efficiency in a case that a driver 60 switches the electrification degree.SELECTED DRAWING: Figure 13A

Description

本開示は、多相の電動機を運転する電動機運転システムおよびその電動機、並びに電動機駆動方法に関する。 The present disclosure relates to an electric motor operation system for operating a multi-phase electric motor, the electric motor thereof, and a method for driving the electric motor.

多相の電動機において、運転可能なトルクと回転数の範囲を拡げることを目的として、極数を切換え可能とするものが提案されている(例えば、特許文献1参照)。特許文献1に記載のモータでは、巻線ピッチγを値1より小さくして、電動機に通電される電流の高調波次数hが値2の場合に対する特性を改善する試みがなされている。 A multi-phase electric motor has been proposed in which the number of poles can be switched for the purpose of expanding the range of operable torque and rotation speed (see, for example, Patent Document 1). In the motor described in Patent Document 1, an attempt has been made to make the winding pitch γ smaller than the value 1 to improve the characteristics for the case where the harmonic order h of the current energized in the electric motor is the value 2.

米国特許公報第7,928,683号公報U.S. Patent Publication No. 7,928,683

しかしながら、特許文献1では、毎極毎相のスロット数qが値1の場合しか考慮しておらず、極数切換えを行なった場合、高調波磁束によりモータの特性が悪化してしまうことがあり得た。 However, in Patent Document 1, only the case where the number of slots q of each pole and each phase is a value 1 is considered, and when the number of poles is switched, the characteristics of the motor may deteriorate due to the harmonic magnetic flux. Obtained.

本開示は、以下の形態又は適用例として実現することが可能である。 The present disclosure can be realized as the following forms or application examples.

本開示の実現態様として、電動機(30)と電動機を運転する駆動部(60)とからなる電動機運転システム(20)が提供される。この電動機運転システムにおいて、前記電動機は、m相巻線(mは5以上の奇数の整数)の各相で隣接する機械的位相角度となる巻線間の機械的位相角度差の平均θが、電動機におけるm相巻線のセット数を示す変数pを値1以上の任意の正の整数として、
θ=360°/(m・p)
の関係を満たし、前記各相の巻線の結線はスパンL(Lはm/2以下の正の整数)の値に対して、L・θ離れた機械的位相角度差となる相の巻線同士を結線した星形環状結線され、通電次数h(h≧1の任意の整数)が値1の時の極数を基にした毎極毎相のスロット数qが、6≧q≧2であり、前記駆動部は、前記各相で隣接する機械的位相角度となる巻線間に流れる電流の電気的位相差δが、
δ=h・360°/m
となるよう前記m相巻線への通電を行なうものとすることができる。この電動機運転システムは、電動機における正相磁束密度と逆相磁束密度との差分を大きくすることができる。このため、前記毎極毎相のスロット数q=1の電動機と比べて、電動機の特性を改善することができる。
As an embodiment of the present disclosure, an electric motor operation system (20) including an electric motor (30) and a drive unit (60) for operating the electric motor is provided. In this motor operation system, the motor has an average θ of mechanical phase angle differences between windings having adjacent mechanical phase angles in each phase of m-phase windings (m is an odd integer of 5 or more). A variable p indicating the number of sets of m-phase windings in an electric motor is set as an arbitrary positive integer having a value of 1 or more.
θ = 360 ° / (m · p)
Satisfying the above relationship, the connection of the windings of each phase is a phase winding having a mechanical phase angle difference L · θ away from the value of span L (L is a positive integer of m / 2 or less). The number of slots q for each phase of each pole based on the number of poles when the energization order h (any integer of h ≧ 1) is 1 is 6 ≧ q ≧ 2, which is a star-shaped annular connection connecting the two. In the driving unit, the electrical phase difference δ of the current flowing between the windings having the mechanical phase angles adjacent to each other in each phase is set.
δ = h · 360 ° / m
It is possible to energize the m-phase winding so as to be. This electric motor operation system can increase the difference between the positive phase magnetic flux density and the negative phase magnetic flux density in the electric motor. Therefore, the characteristics of the electric motor can be improved as compared with the electric motor having the number of slots q = 1 for each pole and each phase.

実施形態の電動機運転システムを示す概略構成図。The schematic block diagram which shows the electric motor operation system of an embodiment. 電動機の軸方向に沿った断面図。Sectional view along the axial direction of the electric motor. 図2における電動機の3−3断面図。3-3 sectional view of the electric motor in FIG. 5相の巻線をスパンL=2で星形環状結線した様子を示す説明図。Explanatory drawing which shows the appearance of the star-shaped annular connection of the winding of 5 phases with span L = 2. 5相の巻線をスパンL=1で星形環状結線した様子を示す説明図。Explanatory drawing which shows the appearance of the star-shaped annular connection of the winding of 5 phases with span L = 1. 極数切換を伴うモータ制御ルーチンを示すフローチャート。The flowchart which shows the motor control routine with the pole number switching. 通電次数を切換えることによる電動機の運転領域を示す説明図。Explanatory drawing which shows the operating area of an electric motor by switching the energization order. 端子T1からの電流を例示する説明図。Explanatory drawing which illustrates the current from terminal T1. 4極の場合と8極の場合での線電流とコイル電流との関係を示す模式図。The schematic diagram which shows the relationship between the line current and the coil current in the case of 4 poles and the case of 8 poles. 4極(通電次数h=1)と8極(通電次数h=2)での各相コイルの電流分布を示すグラフ。The graph which shows the current distribution of each phase coil in 4 poles (energization order h = 1) and 8 poles (energization order h = 2). 磁束密度が正相成分となる次数と逆相成分となる次数とを相数m毎に例示する説明図。Explanatory drawing which illustrates the order which the magnetic flux density becomes a positive phase component and the order which becomes a negative phase component for each phase number m. 通電次数h=2の場合の毎極毎相のスロット数ごとの正逆相磁束密度の実効値の差分を示すグラフ。The graph which shows the difference of the effective value of the forward / reverse phase magnetic flux density for each number of slots of each pole and phase when the energization order h = 2. 通電次数h=1の場合の毎極毎相のスロット数ごとの正逆相磁束密度の実効値の差分を示すグラフ。The graph which shows the difference of the effective value of the forward / reverse phase magnetic flux density for each number of slots of each pole and phase when the energization order h = 1. 通電次数h=2の場合の毎極毎相のスロット数ごとの正逆相磁束密度の実効値の正規化済の差分を示すグラフ。The graph which shows the normalized difference of the effective value of the forward / reverse phase magnetic flux density for each number of slots of each pole and phase when the energization order h = 2. 通電次数h=1の場合の毎極毎相のスロット数ごとの正逆相磁束密度の実効値の正規化済の差分を示すグラフ。The graph which shows the normalized difference of the effective value of the forward / reverse phase magnetic flux density for every number of slots of each pole and phase when the energization order h = 1. 5相巻線において、毎極毎相のスロット数を値2とした場合の電動機の構成を示す説明図。The explanatory view which shows the structure of the electric motor when the number of slots of each pole and each phase is set to a value 2 in a 5-phase winding. 5相巻線において、毎極毎相のスロット数を値3とした場合の電動機の構成を示す説明図。The explanatory view which shows the structure of the electric motor when the number of slots of each pole and each phase is set to the value 3 in a 5-phase winding. 5相巻線をγ=3/5で短節巻きとした電動機の構成を示す説明図。Explanatory drawing which shows the structure of the electric motor which made the 5-phase winding a short section winding with γ = 3/5. 第2実施形態としての13相分の巻線を備えた電動機の構成を示す説明図。The explanatory view which shows the structure of the electric motor provided with the winding for 13 phases as a 2nd Embodiment. 13相の巻線をスパン5で星形環状結線した様子を示す説明図。Explanatory drawing which shows the appearance of a star-shaped annular connection of 13-phase windings with a span 5. 2極の場合と6極の場合での線電流とコイル電流との関係を示す模式図。The schematic diagram which shows the relationship between the line current and the coil current in the case of 2 poles and the case of 6 poles. 2極(通電次数h=1)と6極(通電次数h=3)での各相コイルの電流分布を示すグラフ。The graph which shows the current distribution of each phase coil in 2 poles (energization order h = 1) and 6 poles (energization order h = 3). 13相の巻線を各スパンで星形環状結線した例を示す説明図。Explanatory drawing which shows an example in which a 13-phase winding is connected in a star shape ring in each span. 他の実施形態としてアウタロータタイプの電動機の構成を示す説明図。Explanatory drawing which shows the structure of the outer rotor type electric motor as another embodiment. 電動機の他の形態であるコンシクエント型SPMモータの構成を例示する説明図。Explanatory drawing which illustrates the structure of the sequential type SPM motor which is another form of an electric motor. 電動機の他の形態であるコンシクエント型IPMモータの構成を例示する説明図。Explanatory drawing which illustrates the structure of the sequential type IPM motor which is another form of an electric motor.

A.第1実施形態の装置構成:
第1実施形態の電動機運転システム20は、図1に示すように、m相巻線(m=5)の電動機30と、この電動機30への通電を制御する駆動装置60とを備える。駆動装置60は、m相のインバータ70、インバータ70に電力を供給するバッテリ72、バッテリ72からの供給電圧Vinを測定する電圧センサ74、インバータ70のm相の電流を測定する5個の電流センサ81,82,83,84,85、インバータ70の動作を制御するコントローラ88、を備える。コントローラ88は、電動機30の出力軸32に設けられた回転角度センサ35からの角度信号αと、電圧センサ74からの供給電圧Vinの信号、電流センサ81から85からの各巻線を流れる線電流It1,It2,It3,It4,It5 の信号を入力し、上位のECU90からの指示に基づき、インバータ70の各スイッチング素子のオン・オフを制御する。インバータ70の各スイッチング素子のオフ・オフにより、電動機30の各相の巻線には、所望の電流が流れ、電動機30は、ECU90より求められたトルクNqおよび回転数Rtで運転され、出力軸32に結合された負荷LDを駆動する。インバータ70と電動機30の各相巻線との接続については、後述する。
A. Device configuration of the first embodiment:
As shown in FIG. 1, the electric motor operation system 20 of the first embodiment includes an electric motor 30 having an m-phase winding (m = 5) and a drive device 60 that controls energization of the electric motor 30. The drive device 60 includes an m-phase inverter 70, a battery 72 that supplies power to the inverter 70, a voltage sensor 74 that measures the supply voltage Vin from the battery 72, and five current sensors that measure the m-phase current of the inverter 70. It includes 81, 82, 83, 84, 85, and a controller 88 that controls the operation of the inverter 70. The controller 88 includes an angle signal α from the rotation angle sensor 35 provided on the output shaft 32 of the electric motor 30, a signal of the supply voltage Vin from the voltage sensor 74, and a line current It1 flowing through each winding from the current sensors 81 to 85. , It2, It3, It4, It5 signals are input, and on / off of each switching element of the inverter 70 is controlled based on the instruction from the upper ECU 90. By turning off / off each switching element of the inverter 70, a desired current flows in the winding of each phase of the electric motor 30, and the electric motor 30 is operated with the torque Nq and the rotation speed Rt obtained from the ECU 90, and the output shaft. Drives the load LD coupled to 32. The connection between the inverter 70 and each phase winding of the electric motor 30 will be described later.

第1実施形態の電動機30は、誘導機であり、出力軸32の軸方向に沿った断面図である図2、および図2において出力軸32に垂直な平面で破断した3−3矢視図である図3に示すように、ケース36に収容されており、その出力軸32は、ケース36に固定された2つの軸受37,38により回転自在に支持されている。電動機30は、この出力軸32に固定されたロータ40と、ケース36に固定されたステータ50とを備える。ロータ40は、円盤形状のロータコア41と、このロータコア41の外周に所定の間隔で設けられた複数の2次導体43と、複数の2次導体43をロータコア41の軸方向両面で短絡する短絡環45とを備える。他方、ステータ50は、ロータコア41を僅かなエアギャップを介して取り囲むステータコア51と、このステータコア51の内側に設けられた複数のティース53と、ティース53の間に収容されたコイル55とを備える。 The electric motor 30 of the first embodiment is an induction machine, and is a sectional view taken along the axial direction of the output shaft 32. FIG. 2, and a 3-3 arrow view taken along a plane perpendicular to the output shaft 32 in FIG. As shown in FIG. 3, the case 36 is housed, and the output shaft 32 thereof is rotatably supported by two bearings 37 and 38 fixed to the case 36. The electric motor 30 includes a rotor 40 fixed to the output shaft 32 and a stator 50 fixed to the case 36. The rotor 40 is a short-circuit ring that short-circuits a disk-shaped rotor core 41, a plurality of secondary conductors 43 provided on the outer circumference of the rotor core 41 at predetermined intervals, and a plurality of secondary conductors 43 on both axial sides of the rotor core 41. It includes 45. On the other hand, the stator 50 includes a stator core 51 that surrounds the rotor core 41 with a slight air gap, a plurality of teeth 53 provided inside the stator core 51, and a coil 55 housed between the teeth 53.

第1実施形態の電動機30は、m=5相の誘導機であり、図3には、5相の巻線(コイルとも呼ぶ)の区別を符号A,B,C,D,Eにより示し、各巻線の巻き始めと巻き終わりを、「A」および「−A」のように、符号なしとマイナス符号付きとで示すものとした。第1実施形態の電動機30は、5相の巻線を1セット備えることから、電動機におけるm相巻線のセット数を示す変数pは値1である。このため、各相で隣接する機械的位相角度となる巻線間の機械的位相角度差の平均θが、次式(1)
θ=360°/(m・p) …(1))
で表わされることから、第1実施形態では、
θ=72°
となる。また、巻線のピッチγは、図示するように、3/5(0.6)である。更に、毎極毎相のスロット数qは値2である。
The electric motor 30 of the first embodiment is a m = 5-phase induction machine, and in FIG. 3, the distinction between the 5-phase windings (also referred to as a coil) is indicated by reference numerals A, B, C, D, and E. The winding start and winding end of each winding are indicated by unsigned and minus-signed, such as "A" and "-A". Since the electric motor 30 of the first embodiment includes one set of five-phase windings, the variable p indicating the number of sets of m-phase windings in the electric motor is a value of 1. Therefore, the average θ of the mechanical phase angle difference between the windings, which is the adjacent mechanical phase angle in each phase, is calculated by the following equation (1).
θ = 360 ° / (m · p)… (1))
In the first embodiment, since it is represented by
θ = 72 °
Will be. The winding pitch γ is 3/5 (0.6) as shown in the figure. Further, the number of slots q for each pole and each phase is a value of 2.

電動機30の巻線の接続の様子を図4に示した。各巻線A,B,C,D,EはスパンL(Lはm/2以下の正の整数)の値に対して、L・θ離れた機械的位相差角度となる相の巻線同士を結線した星形環状結線され、本実施形態では、接続のスパンLはL=2とされている。これは、図1に示したインバータ70の5本の出力端子T1,T2,T3,T4,T5の各々から見て、各巻線AからEの接続が、一つおきになっていることを意味する。スパンLが値1の場合の接続例を図5に示した。5相の場合は、スパンLは、値1か値2に限られる。L=3は、L=2と実質的に同じだからである。相数が増えるにつれて取り得るスパンLは増えていくこととなり、m=13相の場合、スパンL=6まで取り得る。なお、後述する図21ではL=1〜4までを例示した。 FIG. 4 shows how the windings of the electric motor 30 are connected. The windings A, B, C, D, and E are the windings of the phase having a mechanical phase difference angle L · θ apart from the value of the span L (L is a positive integer of m / 2 or less). It is connected in a star-shaped annular connection, and in this embodiment, the span L of the connection is L = 2. This means that the connections of the windings A to E are every other when viewed from each of the five output terminals T1, T2, T3, T4, and T5 of the inverter 70 shown in FIG. To do. An example of connection when the span L is a value of 1 is shown in FIG. In the case of 5 phases, the span L is limited to value 1 or value 2. This is because L = 3 is substantially the same as L = 2. As the number of phases increases, the span L that can be taken increases, and in the case of m = 13 phases, the span L can be taken up to 6. In FIG. 21, which will be described later, L = 1 to 4 are illustrated.

B.駆動装置60による運転:
上記電動機30を駆動する駆動装置60のコントローラ88は、CPUを内蔵しており、図6に示した極数の切り替えを伴うモータ制御ルーチンを実行する。この処理は、駆動装置60に電源が投入された時から繰り返し実行される。コントローラ88は、図6に示した処理を開始すると、まで上位のECU90からの指令を入力する(ステップS100)。ECU90は、負荷LDの状態に基づき、電動機30が出力すべきトルクNqと回転数Rtを求め、このトルクNqおよび回転数Rtを出力可能な極数に電動機30を切換えるかを指令する。
B. Operation by drive device 60:
The controller 88 of the drive device 60 that drives the electric motor 30 has a built-in CPU and executes a motor control routine that involves switching the number of poles shown in FIG. This process is repeatedly executed from the time when the power is turned on to the drive device 60. When the controller 88 starts the process shown in FIG. 6, it inputs a command from the upper ECU 90 (step S100). The ECU 90 obtains the torque Nq and the rotation speed Rt to be output by the electric motor 30 based on the state of the load LD, and instructs whether to switch the electric motor 30 to the number of poles capable of outputting the torque Nq and the rotation speed Rt.

この指令を受けて、コントローラ88は、極数の切り替えが必要かを判断する(ステップS110)。電動機30の極数とトルクNqおよび回転数Rtとの関係を図7に示した。図7において、実線J8は、電動機30を8極とした場合のトルク−回転数の関係を示し、実線J4は、電動機30を4極とした場合のトルク−回転数の関係を示す。図示するように、第1実施形態の電動機30は、8極で運転する場合には低回転数域で高トルクを出力でき、4極で運転する場合には、低トルク域で高回転数とすることができる。 In response to this command, the controller 88 determines whether it is necessary to switch the number of poles (step S110). The relationship between the number of poles of the electric motor 30, the torque Nq, and the rotation speed Rt is shown in FIG. In FIG. 7, the solid line J8 shows the torque-rotation speed relationship when the motor 30 has eight poles, and the solid line J4 shows the torque-rotation speed relationship when the motor 30 has four poles. As shown in the figure, the electric motor 30 of the first embodiment can output a high torque in a low rotation speed range when operating with 8 poles, and has a high rotation speed in a low torque range when operating with 4 poles. can do.

ECU90から極数の切り替えの指示がなければ、何も行なわず、本ルーチンを一旦終了する。他方、4極での運転が指示されていれば、通電次数hは値1であり、電動機30を4極で運転するものとし、各相で隣接する機械的位相角度となる巻線間に流れる電流の電気的位相差δが、次式(2)
δ=h・θ・p=h・360°/m …(2)
となるようm相巻線への通電を制御する(ステップS120)。この場合は、h=1、m=5なので、δ=72°である。
If there is no instruction from the ECU 90 to switch the number of poles, nothing is performed and this routine is temporarily terminated. On the other hand, if the operation with four poles is instructed, the energization order h is a value 1, and the electric motor 30 is operated with four poles, and flows between windings having a mechanical phase angle adjacent to each other in each phase. The electrical phase difference δ of the current is given by the following equation (2).
δ = h ・ θ ・ p = h ・ 360 ° / m… (2)
The energization of the m-phase winding is controlled so as to be (step S120). In this case, since h = 1 and m = 5, δ = 72 °.

また、8極での運転が指示されていれば、通電次数hは値2であり、電動機30を8極で運転する(ステップS130)。このとき、各相で隣接する機械的位相角度となる巻線間に流れる電流の電気的位相差δは、h=2、m=5であることから、位相差δ=144°となる。 Further, if the operation with 8 poles is instructed, the energization order h is a value 2, and the electric motor 30 is operated with 8 poles (step S130). At this time, the electrical phase difference δ of the current flowing between the windings having the mechanical phase angles adjacent to each other in each phase is h = 2 and m = 5, so that the phase difference δ = 144 °.

この制御の様子を図8から図10を用いて説明する。図8に示すように、インバータ70からの出力のうちの1つが、電動機30の端子T1に接続されているとする。本実施形態では、電動機30の5相の巻線はスパンL=2で星形環状結線されているので、この端子T1には、コイルAおよびDが接続されている。このときの位相差δと線電流Itの振幅との関係を図9に示した。この場合、インバータ70から端子T1に流れ込む電流を線電流It1と呼び、コイルA,Dに流れる電流をコイル電流IA 、ID と呼ぶと、線電流It1は、コイルAおよびDに流れ、コイル電流IA 、ID を合成したものが、線電流It1と等しくなる。端子T1からの電流が流れる巻線間の機械的位相角度差は、最小の機械的位相角度差θに対して、スパンLにより変わるので、2つのコイルA,Dの機械的位相角度差は、(m−L)・θ=216°である。図9に示したように、4極(h=1)の場合には、コイル電流IA 、IDの電気的位相差は、h・(m−L)・θ・p=216°となり、8極(h=2)の場合には、コイル電流IA 、IDの電気的位相差はh・(m−L)・θ・p=432°=72°となる。また、この場合の巻線Aを流れるコイル電流の電流振幅|IA |は、次式(3)、
|IA |=|{It1/sin(h・(m−L)・θ・p・2π/360°/2)}/2| …(3)
として求められる。具体的にコイル電流IA の電流振幅を求めると、
通電次数h=1の場合、
|IA |=|{It1/sin(144°・2π/360°/2)}/2|
=0.52573・|It1|
通電次数h=2の場合、
|IA |=|{It1/sin(432°・2π/360°/2)}/2|
=0.85065・|It1|
となる。このため、同じ線電流It1に対するコイル電流IA 、IDの電流振幅、つまりモータのトルクは、通電次数h=1の時の方が小さい。この結果、通電次数h=1、つまり4極の場合の方が、トルクNqが小さく、回転数Rtが高い特性(図7)となる。
The state of this control will be described with reference to FIGS. 8 to 10. As shown in FIG. 8, it is assumed that one of the outputs from the inverter 70 is connected to the terminal T1 of the electric motor 30. In the present embodiment, since the five-phase windings of the electric motor 30 are connected in a star shape with a span L = 2, coils A and D are connected to the terminals T1. The relationship between the phase difference δ and the amplitude of the linear current It at this time is shown in FIG. In this case, if the current flowing from the inverter 70 to the terminal T1 is called the line current It1 and the currents flowing through the coils A and D are called the coil currents IA and ID, the line current It1 flows through the coils A and D and the coil current IA. , The composite of ID is equal to the line current It1. Since the mechanical phase angle difference between the windings through which the current flows from the terminal T1 changes depending on the span L with respect to the minimum mechanical phase angle difference θ, the mechanical phase angle difference between the two coils A and D is (ML) · θ = 216 °. As shown in FIG. 9, in the case of 4 poles (h = 1), the electrical phase difference between the coil currents IA and ID is h · (mL) · θ · p = 216 °, and 8 poles. In the case of (h = 2), the electrical phase difference between the coil currents IA and ID is h · (mL) · θ · p = 432 ° = 72 °. Further, the current amplitude | IA | of the coil current flowing through the winding A in this case is given by the following equation (3).
| IA | = | {It1 / sin (h ・ (mL) ・ θ ・ p ・ 2π / 360 ° / 2)} / 2 |… (3)
Is required as. Specifically, when the current amplitude of the coil current IA is obtained,
When the energization order h = 1,
| IA | = | {It1 / sin (144 ° ・ 2π / 360 ° / 2)} / 2 |
= 0.52573 · | It1 |
When the energization order h = 2,
| IA | = | {It1 / sin (432 ° ・ 2π / 360 ° / 2)} / 2 |
= 0.85065 · | It1 |
Will be. Therefore, the current amplitudes of the coil currents IA and ID for the same line current It1, that is, the torque of the motor is smaller when the energization order h = 1. As a result, when the energization order h = 1, that is, when there are four poles, the torque Nq is smaller and the rotation speed Rt is higher (FIG. 7).

各相で隣接する機械的位相角度となる巻線間に流れる電流の位相差δが、72
°の場合(h=1)と、144°の場合(h=2)とのコイル電流の振幅を、図10に示した。図において、横軸は、巻線AからEの配列を示す。図において、「○」に「×」のマークは巻線の始まりを示し、「○」に「・」のマークは巻線の終わりを示す。図示するように、第1実施形態の電動機運転システム20では、駆動装置60は、極数の切換え(4極,8極)を行なうと、通電次数hを切換え(h=1,2)、各相で隣接する機械的位相角度となる巻線間、例えば、コイルAとコイルBとに流れる電流の電気的位相差δが、
δ=h・360°/m
となるようm相巻線への通電を行なう。
The phase difference δ of the current flowing between the windings having the adjacent mechanical phase angles in each phase is 72.
The amplitude of the coil current in the case of ° (h = 1) and the case of 144 ° (h = 2) is shown in FIG. In the figure, the horizontal axis shows the arrangement of windings A to E. In the figure, "○" indicates the beginning of the winding, and "○" indicates the end of the winding. As shown in the figure, in the electric motor operation system 20 of the first embodiment, when the drive device 60 switches the number of poles (4 poles, 8 poles), the energization order h is switched (h = 1, 2), respectively. The electrical phase difference δ of the current flowing between the windings, for example, the coil A and the coil B, which are the mechanical phase angles adjacent to each other in the phase,
δ = h · 360 ° / m
The m-phase winding is energized so as to be.

かかる通電を行なったときに、電動機30のロータ40を回転させる力(トルク)について検討する。インバータ70から通電次数hの電流を通電したときに電動機30のロータ40とステータ50とのエアギャップ部に発生する磁束密度の理論式に基づいて、磁束密度Bの振幅を決める係数項のみを取り出すと、磁束密度Bの中のn次の磁束密度振幅Bnは、以下の関係(4)
Bn∝sin{(1−γ/2)n・π}・cos{(1/(2・m・q))n・π}/n …(4)
の関係にある。ここで、
γ:相巻線の巻線ピッチと磁極ピッチの比
m:巻線の相数
q:h=1の時の極数を基にした毎極毎相のスロット数(q>1)
n:起磁力分布の次数(極対数)
である。上記式の右辺は、n以外は、電動機30において確定しているから、関係(4)の右辺を、表示を簡略にするために、関数fを用いた表現に改め、
Bn∝f(n)
と表わすことにする。
The force (torque) that rotates the rotor 40 of the electric motor 30 when such energization is performed will be examined. Based on the theoretical formula of the magnetic flux density generated in the air gap between the rotor 40 and the stator 50 of the electric motor 30 when a current of the energization order h is energized from the inverter 70, only the coefficient term that determines the amplitude of the magnetic flux density B is extracted. And the nth-order magnetic flux density amplitude Bn in the magnetic flux density B have the following relationship (4).
Bn∝sin {(1-γ / 2) n ・ π} ・ cos {(1 / (2 ・ m ・ q)) n ・ π} / n… (4)
There is a relationship of. here,
γ: Ratio of winding pitch of phase winding to magnetic pole pitch m: Number of phases of winding q: Number of slots for each pole and phase based on the number of poles when h = 1 (q> 1)
n: Order of magnetomotive force distribution (pole logarithm)
Is. Since the right-hand side of the above equation is fixed in the motor 30 except for n, the right-hand side of the relationship (4) is changed to an expression using the function f in order to simplify the display.
Bn∝f (n)
I will express it as.

ロータ40とステータ50とのエアギャップに働くn次成分の磁束密度Bnは、lを任意の整数(0を含む)として、
n+h=l・m
が成り立つときには逆相成分の磁束が支配的となり、n次の磁束密度Bnによる電動機30のトルクは負トルクとなる。他方、
n−h=l・m
が成り立つときには正相成分の磁束が支配的となり、n次の磁束密度Bnによる電動機30のトルクは正トルクとなる。
The magnetic flux density Bn of the nth-order component acting on the air gap between the rotor 40 and the stator 50 is such that l is an arbitrary integer (including 0).
n + h = l ・ m
When is satisfied, the magnetic flux of the opposite phase component becomes dominant, and the torque of the motor 30 due to the nth order magnetic flux density Bn becomes a negative torque. On the other hand
n−h = l · m
When is satisfied, the magnetic flux of the positive phase component becomes dominant, and the torque of the motor 30 due to the nth-order magnetic flux density Bn becomes positive torque.

ロータ40とステータ50とのエアギャップに働くn次成分の磁束密度Bnは、lを任意の整数(0を含む)として、
n+h≠l・m またはn−h≠l・m
となる場合、回転磁場成分を含まないので、そのn次成分の磁束密度Bnは、無視することができる。例えば相数m=5、通電次数h=1であれば、n=2、3などの場合の磁束密度Bnは無視することができる。
The magnetic flux density Bn of the nth-order component acting on the air gap between the rotor 40 and the stator 50 is such that l is an arbitrary integer (including 0).
n + h ≠ l ・ m or n−h ≠ l ・ m
In the case of, since the rotating magnetic field component is not included, the magnetic flux density Bn of the nth-order component can be ignored. For example, if the phase number m = 5 and the energization order h = 1, the magnetic flux density Bn in the case of n = 2, 3 or the like can be ignored.

図11に、m相誘導機において、磁束密度Bが正相成分となる次数をn1 として、磁束密度Bが逆相成分となる次数をn2 として、通電次数h=1およびh=2の場合に分けて、それぞれ示した。通電次数h=1または2の一方において、ロータ40に加わる力、つまりトルクを考えると、電動機30が5相モータであれば、正トルクは、n1=1、6、11、16、21、26・・・の場合の磁束密度の実効値に比例し、負トルクは、n2=4、9、14、19、24、29・・・の場合の磁束密度の実効値に比例する。従って、正のトルクを生じる正相磁束の実効値BPと逆相磁束の実効値BNとの差分ΔBが、その通電次数におけるトルクの大きさに比例する。図11に示した次数n1,n2を用いて表わせば、正相磁束の実効値Bpは、次の関係(5)、
BP∝√[Σ{f(n1)} ] …(5)
として表わすことができ、逆相磁束の実効値Bnは、次の関係(6)、
BN∝√[Σ{f(n2)} ] …(6)
で表わすことができる。ここで式(5)における「Σ」は、図11に示した該当相数でのn1 における磁束の実効値の和を取る演算を示す。具体的には、相数m=5、つまり5相電動機30であれば、n1 =1、6、11、16、21、26、31・・・の場合の磁束の実効値の累積値を求めることになる。他方、式(6)における「Σ」は、図11に示した該当相数でのn2 における磁束の実効値の和を取る演算を示す。具体的には、5相電動機30であれば、n1 =4、9、14、19、24、29、34・・・の場合の磁束の実効値の累積値を求めることになる。
FIG. 11 shows the case where the energization order h = 1 and h = 2 in the m-phase inducer, where the order in which the magnetic flux density B is a positive phase component is n1 and the order in which the magnetic flux density B is a negative phase component is n2. It is shown separately. Considering the force applied to the rotor 40, that is, the torque when the energization order h = 1 or 2, if the motor 30 is a 5-phase motor, the positive torque is n1 = 1, 6, 11, 16, 21, 26. The negative torque is proportional to the effective value of the magnetic flux density in the case of ..., And the negative torque is proportional to the effective value of the magnetic flux density in the case of n2 = 4, 9, 14, 19, 24, 29 ... Therefore, the difference ΔB between the effective value BP of the positive phase magnetic flux and the effective value BN of the negative phase magnetic flux that generate the positive torque is proportional to the magnitude of the torque at the energization order. Expressed using the orders n1 and n2 shown in FIG. 11, the effective value Bp of the positive phase magnetic flux has the following relationship (5).
BP ∝ √ [Σ {f (n1)} 2 ]… (5)
The effective value Bn of the reverse phase magnetic flux can be expressed as the following relationship (6),
BN∝√ [Σ {f (n2)} 2 ]… (6)
Can be represented by. Here, “Σ” in the equation (5) indicates an operation of summing the effective values of the magnetic fluxes at n1 with the corresponding number of phases shown in FIG. Specifically, if the number of phases m = 5, that is, the 5-phase electric motor 30, the cumulative value of the effective value of the magnetic flux when n1 = 1, 6, 11, 16, 21, 26, 31 ... Is obtained. It will be. On the other hand, "Σ" in the equation (6) indicates an operation of summing the effective values of the magnetic fluxes at n2 with the corresponding number of phases shown in FIG. Specifically, in the case of the 5-phase electric motor 30, the cumulative value of the effective value of the magnetic flux in the case of n1 = 4, 9, 14, 19, 24, 29, 34 ... Is obtained.

このため、ロータ40に加わるトルクNqは、
Nq∝ΔB=BP−BN
として求めることができる。図11には、上記条件を満たす全ての次数nを掲載したが、実際には、このうちの一部の次数nについて、求めればよい、演算に用いられる次数nは、正相成分、逆相成分のいずれにおいても、各通電次数h=1または2において発生する磁極数Qは、Q=2×p×nであり、ステータ50の総スロット数S=2・n・m・p・qより多い磁極は生じないので、Q≦Sの条件となるn≦m・qを満たすn(図11では、n1 ,n2 )が演算の対象となる。この次数nについての正相および逆相磁束の実効値BP,BNの差分ΔBを求めれば、電動機30において、通電次数h=1または2におけるトルクを求めることができる。
Therefore, the torque Nq applied to the rotor 40 is
Nq∝ΔB = BP-BN
Can be obtained as. Although all the orders n satisfying the above conditions are shown in FIG. 11, in reality, some of the orders n may be obtained. The order n used in the calculation is a positive phase component or a negative phase component. In any of the components, the number of magnetic poles Q generated at each energization order h = 1 or 2 is Q = 2 × p × n, and is based on the total number of slots S = 2 · n · m · p · q of the stator 50. Since a large number of magnetic poles are not generated, n (n1 and n2 in FIG. 11) satisfying n ≦ m · q, which is a condition of Q ≦ S, is the target of calculation. By obtaining the difference ΔB between the effective values BP and BN of the positive and negative phase magnetic fluxes with respect to the order n, the torque at the energization order h = 1 or 2 can be obtained in the electric motor 30.

実際に第1実施形態の電動機30において、通電次数h=2とh=1において、正逆相磁束密度の実効値BP,BNの差分ΔBを求めたグラフを図12A,図12Bとして示した。図において、横軸は、毎極毎相のスロット数qである。またグラフは、電動機30の相数、5相、7相、9相、11相、13相、15相をパラメータとしている。相数によらず、通電次数2の場合、毎極毎相のスロット数q=2である場合に、正逆相磁束密度の実効値BP,BNの差分ΔBが最大になっていることが理解できる。この点を、更に理解し易くするために、毎極毎相のスロット数qが値1である場合を基準として、図12A,図12Bの内容を正規化したのが、図13A,図13Bである。図13Aによれば、5相電動機では、毎極毎相のスロット数qが値2から値6の間では、通電次数h=2において、毎極毎相のスロット数qが値1の場合より、正逆相磁束密度の実効値BP,BNの差分ΔBが大きくなる、つまり電動機30の出力するトルクが大きくなることが分かる。 Actually, in the electric motor 30 of the first embodiment, graphs showing the difference ΔB between the effective values BP and BN of the forward and reverse phase magnetic flux densities at the energization orders h = 2 and h = 1 are shown as FIGS. 12A and 12B. In the figure, the horizontal axis is the number of slots q for each pole and each phase. Further, in the graph, the number of phases of the electric motor 30, 5 phases, 7 phases, 9 phases, 11 phases, 13 phases and 15 phases are used as parameters. It is understood that the difference ΔB between the effective values BP and BN of the forward / reverse phase magnetic flux density is the maximum when the energization order is 2 regardless of the number of phases and the number of slots q = 2 for each phase of each pole. it can. In order to make this point easier to understand, the contents of FIGS. 12A and 12B are normalized based on the case where the number of slots q of each pole and each phase is a value 1, as shown in FIGS. 13A and 13B. is there. According to FIG. 13A, in the 5-phase motor, when the number of slots q of each phase of each pole is between the value 2 and the value 6, the number of slots q of each phase of each pole is the value 1 at the energization order h = 2. It can be seen that the difference ΔB between the effective values BP and BN of the forward and reverse phase magnetic flux densities increases, that is, the torque output by the motor 30 increases.

以上説明した様に、第1実施形態の電動機運転システム20によれば、電動機30として5相の誘導機を用い、5相の各相で隣接する機械的位相角度となる巻線間の機械的位相角度差θを、θ=360°/5=72°、とし、インバータ70による通電次数hが値1の場合の毎極毎相のスロット数qを2とし、コントローラ88がインバータ70を介して、各相で隣接する機械的位相角度となる巻線間に流れる電流の電気角位相差δが、通電次数h=1または2において、δ=h・360°/5、つまり通電次数h=1で72°、通電次数h=2で144°となるよう5相巻線への通電を行なっている。この結果、図13A,図13Bに示したように、特に通電次数h=2の場合、5相巻線の電動機30では、正逆相磁束密度の実効値BP,BNの差分ΔBが、毎極毎相のスロット数qが値1の場合より、10%程度大きくできる。このため、毎極毎相のスロット数qが値2以上6以下であっても、通電次数の切換えによる効率の低下を招くことがない。従って、通電次数hを切換えることで、図7に示したように、高トルク低回転の運転領域から、低トルク高回転の運転領域までの運転領域を拡大することができる。特に、通電次数hを値2に切換えた場合の8極運転時の最大トルクを、毎極毎相のスロット数qが値1の場合より、高くすることができる。なお、上述したように、この効果は、毎極毎相のスロット数qが値2に限定されず、5相巻線の電動機30では、毎極毎相のスロット数qが値2から6の範囲で、通電次数hが値2の場合に、得ることができる。また、本実施形態では、相巻線の巻線ピッチと磁極ピッチの比γを0.6としている。従って、関係(4)において、ピッチの比γが小さくなると、磁束密度の実効値を大きくでき、この結果、正相磁束密度と逆相磁束密度の差分ΔBを大きくすることができる。 As described above, according to the electric motor operation system 20 of the first embodiment, a five-phase induction machine is used as the electric motor 30, and the mechanical phase angles between the windings are mechanically adjacent to each of the five phases. The phase angle difference θ is set to θ = 360 ° / 5 = 72 °, the number of slots q for each pole and each phase when the energization order h by the inverter 70 is a value of 1, and the controller 88 passes through the inverter 70. , The electric angle phase difference δ of the current flowing between the windings which is the adjacent mechanical phase angle in each phase is δ = h · 360 ° / 5, that is, the energization order h = 1 when the energization order h = 1 or 2. The 5-phase winding is energized so that the temperature is 72 ° and the energization order h = 2 is 144 °. As a result, as shown in FIGS. 13A and 13B, especially when the energization order h = 2, in the motor 30 with a 5-phase winding, the difference ΔB between the effective values BP and BN of the forward and reverse phase magnetic flux densities is different for each pole. The number of slots q in each phase can be increased by about 10% from the case where the value is 1. Therefore, even if the number of slots q for each pole and each phase is 2 or more and 6 or less, the efficiency does not decrease due to the switching of the energization order. Therefore, by switching the energization order h, as shown in FIG. 7, the operating region from the operating region of high torque and low rotation to the operating region of low torque and high rotation can be expanded. In particular, the maximum torque during 8-pole operation when the energization order h is switched to the value 2 can be made higher than when the number of slots q for each pole and each phase is a value 1. As described above, this effect is not limited to the value 2 of the number of slots q of each phase of each pole, and in the motor 30 with 5-phase winding, the number of slots q of each phase of each pole has a value of 2 to 6. In the range, it can be obtained when the energization order h is a value 2. Further, in the present embodiment, the ratio γ of the winding pitch of the phase winding to the magnetic pole pitch is set to 0.6. Therefore, in the relationship (4), when the pitch ratio γ becomes smaller, the effective value of the magnetic flux density can be increased, and as a result, the difference ΔB between the positive phase magnetic flux density and the negative phase magnetic flux density can be increased.

C.第1実施形態のバリエーション:
上述した第1実施形態では、電動機30として5相の誘導機を用いたが、巻線の相数は5相に限らず、5相以上の奇数相であれば、採用することができる。また、スパンLも、1以上、いずれの値にすることも可能である。更に、各相で隣接する機械的位相角度となる巻線間の機械的位相角度差の平均θが、電動機におけるm相巻線のセット数を示す変数pを値1以上の任意の正の整数として、
θ=360°/(m・p)
と定めるに当たって、p=1以外の正の整数とすることも可能である。例えば、図14は、この電動機30のロータ40は、第1実施形態と同様、ロータコア41と2次導体43とが設けられている。また、ステータ50には、ステータコア51と40個のティース53と5相2組のコイル55とが設けられている。相巻線の巻線ピッチと磁極ピッチの比γは、3/5(0.6)、毎極毎相のスロット数qは値2である。
C. Variations of the first embodiment:
In the first embodiment described above, a five-phase induction machine is used as the electric motor 30, but the number of winding phases is not limited to five, and any odd-numbered phase of five or more can be adopted. Further, the span L can be set to any value of 1 or more. Further, an arbitrary positive integer in which the average θ of the mechanical phase angle difference between the windings, which is the adjacent mechanical phase angle in each phase, has a variable p having a value of 1 or more indicating the number of sets of m-phase windings in the electric motor. As,
θ = 360 ° / (m · p)
It is also possible to set it as a positive integer other than p = 1. For example, in FIG. 14, the rotor 40 of the electric motor 30 is provided with a rotor core 41 and a secondary conductor 43 as in the first embodiment. Further, the stator 50 is provided with a stator core 51, 40 teeth 53, and two sets of 5-phase coils 55. The ratio γ of the winding pitch of the phase winding to the magnetic pole pitch is 3/5 (0.6), and the number of slots q for each pole and each phase is a value of 2.

この電動機30では、5相の各相で隣接する機械的位相角度となる巻線間の機械的位相角度差の平均θは、pが値2であることから、θ=360°/(5・2)=36°であり、通電次数h(h≧1の任意の整数)が値1の場合の毎極毎相のスロット数qが値2であり、インバータ70は、各相で隣接する機械的位相角度となる巻線間に流れる電流の電気的位相差δが、通電次数h=1では、δ=1・360°/5=72°であり、通電次数h=2では、δ=2・360°/5=144°であるように、5相巻線への通電を行なう。こうしても上記第1実施形態とほぼ同様の効果を奏する。 In this electric motor 30, the average θ of the mechanical phase angle difference between the windings, which is the adjacent mechanical phase angle in each of the five phases, is θ = 360 ° / (5. 2) = 36 °, the number of slots q for each pole and each phase is a value 2 when the energization order h (any integer with h ≧ 1) is a value 1, and the inverter 70 is a machine adjacent to each phase. The electrical phase difference δ of the current flowing between the windings, which is the target phase angle, is δ = 1.360 ° / 5 = 72 ° when the energization order h = 1, and δ = 2 when the energization order h = 2. -Energize the 5-phase winding so that 360 ° / 5 = 144 °. Even in this way, almost the same effect as that of the first embodiment is obtained.

また、図15に示すように、毎極毎相のスロット数qを値3としてもよい。図15に示した電動機30では、相数m=5、p=1、γ=5/5、q=3である。あるいは、図16に示すように、図15とほぼ同様の構成で、γ=3/5で短節巻きとして、電動機30を構成することも可能である。この電動機30でも、上述した第1実施形態とほぼ同様の作用効果を奏する。 Further, as shown in FIG. 15, the number q of slots for each pole and each phase may be set to a value of 3. In the electric motor 30 shown in FIG. 15, the number of phases m = 5, p = 1, γ = 5/5, and q = 3. Alternatively, as shown in FIG. 16, it is also possible to configure the electric motor 30 with a configuration substantially the same as that of FIG. 15 with γ = 3/5 and a short section winding. The electric motor 30 also has almost the same effect as that of the first embodiment described above.

D.第2実施形態:
次に、第2実施形態について説明する。第2実施形態の電動機運転システム20は、第1実施形態とほぼ同様に構成を備えるが、電動機30が相数13の誘導機であること、インバータ70の出力が電動機30の相数に合わせて、13相分の出力を有する点で相違する。電動機30の端子数も、これに応じて13となっていること、インバータ70やコントローラ88も13相分の用意されていることなどで相違するが、これらは相数が単にスケールアップされただけなので、図1に対応する図面は省略した。
D. Second embodiment:
Next, the second embodiment will be described. The electric motor operation system 20 of the second embodiment has almost the same configuration as that of the first embodiment, but the electric motor 30 is an induction machine having 13 phases, and the output of the inverter 70 is matched with the number of phases of the electric motor 30. , The difference is that it has the output of 13 phases. The number of terminals of the electric motor 30 is also 13 accordingly, and the inverter 70 and the controller 88 are also prepared for 13 phases, but these are simply scaled up in the number of phases. Therefore, the drawing corresponding to FIG. 1 is omitted.

図17は、13相分の巻線AないしMを備えた電動機30の構成を示す。この電動機30の各パラメータは、相数m=13、p=1、γ=7/13、q=2である。また巻線AないしMの結線は、図18に示すように、スパンL=5である。この電動機30では、13相の各相で隣接する機械的位相角度となる巻線間の機械的位相角度差の平均θは、pが値1であることから、θ=360°/(13・1)=360°/13であり、通電次数h(h≧1の任意の整数)が値1の場合の毎極毎相のスロット数qが値2であり、インバータ70は、各相で隣接する機械的位相角度となる巻線間に流れる電流の電気角位相差δが、通電次数h=1では、δ=360°/13であり、通電次数h=3では、δ=1080°/13であるように、13相巻線への通電を行なう。 FIG. 17 shows the configuration of the electric motor 30 provided with windings A to M for 13 phases. Each parameter of the electric motor 30 has the number of phases m = 13, p = 1, γ = 7/13, and q = 2. Further, as shown in FIG. 18, the connection of the windings A to M has a span L = 5. In the electric motor 30, the average θ of the mechanical phase angle difference between the windings, which is the adjacent mechanical phase angle in each of the 13 phases, is θ = 360 ° / (13. 1) = 360 ° / 13, the number of slots q for each pole and each phase is a value 2 when the energization order h (an arbitrary integer with h ≧ 1) is a value 1, and the inverter 70 is adjacent to each phase. The electric angle phase difference δ of the current flowing between the windings, which is the mechanical phase angle, is δ = 360 ° / 13 when the energization order h = 1, and δ = 1080 ° / 13 when the energization order h = 3. The 13-phase winding is energized so as to be.

この電動機30では、例えば端子T1を例に取ると、図19に示すように、スパンLが値5であることから、端子T1における線電流It1は、コイルAとコイルIとに流れる。コイルIに流れる電流の振幅は、式(3)として記載した式に従う。この結果、通電次数h=3、つまり6極の場合の方が、通電次数h=1、つまり2極の場合より、コイル電流IA の振幅は大きくなる。通電次数hが値1の場合と、値3の場合の相電流の一例を図20に示した。第1実施形態で示した図10と同様に、図20において、横軸は、巻線AからMの配列を示す。図において、○に×のマークは巻線の始まりを示し、○に・のマークは巻線の終わりを示す。図示するように、第2実施形態の電動機運転システム20では、駆動装置60は、極数の切換え(2極/6極)を行なうと、通電次数hを切換え(h=1,3)、各相で隣接する機械的位相角度となる巻線間、例えば、コイルAとコイルBとに流れる電流の電気角位相差δが、
δ=h・360°/m
となるようm相巻線への通電を行なう。
In the electric motor 30, for example, taking the terminal T1 as an example, as shown in FIG. 19, since the span L has a value of 5, the line current It1 at the terminal T1 flows through the coil A and the coil I. The amplitude of the current flowing through the coil I follows the equation described as the equation (3). As a result, the amplitude of the coil current IA is larger in the case of energization order h = 3, that is, 6 poles than in the case of energization order h = 1, that is, 2 poles. FIG. 20 shows an example of the phase current when the energization order h is a value 1 and when the energization order h is a value 3. Similar to FIG. 10 shown in the first embodiment, in FIG. 20, the horizontal axis shows the arrangement of windings A to M. In the figure, the x mark indicates the beginning of the winding, and the ○ mark indicates the end of the winding. As shown in the figure, in the electric motor operation system 20 of the second embodiment, when the drive device 60 switches the number of poles (2 poles / 6 poles), the energization order h is switched (h = 1, 3). The electric angle phase difference δ of the current flowing between the windings having the mechanical phase angle adjacent to each other in the phase, for example, the coil A and the coil B,
δ = h · 360 ° / m
The m-phase winding is energized so as to be.

各相コイルに流れる電流を用いて、正相および逆相磁束密度の差分ΔBを求めてトルクを演算できることは、第1実施形態と同様である。第2実施形態の電動機運転システム20によれば、電動機30として13相の誘導機を用い、13相の各相で隣接する機械的位相角度となる巻線間の機械的位相角度差θを、θ=360°/13とし、インバータ70による通電次数hが値1の場合の毎極毎相のスロット数qを2とし、コントローラ88がインバータ70を介して、各相で隣接する機械的位相角度となる巻線間に流れる電流の電気角位相差δが、通電次数h=1または3において、δ=h・360°/13、つまり通電次数h=1で約41.5°、通電次数h=3で約83°となるよう13相巻線への通電を行なっている。この結果、通電次数h=3の場合、13相巻線の電動機30では、正逆相磁束密度の実効値BP,BNの差分ΔBが、毎極毎相のスロット数qが値1の場合より、僅かだが大きくできる(図13A参照)。このため、通電次数hを切換えることで、図7に示したように、高トルク低回転の運転領域から、低トルク高回転の運転領域までの運転領域を拡大することができる。 It is the same as the first embodiment that the torque can be calculated by obtaining the difference ΔB between the positive phase and the negative phase magnetic flux densities by using the current flowing through each phase coil. According to the electric motor operation system 20 of the second embodiment, a 13-phase induction machine is used as the electric motor 30, and the mechanical phase angle difference θ between the windings, which is the adjacent mechanical phase angle in each of the 13 phases, is determined. When θ = 360 ° / 13 and the energization order h by the inverter 70 is a value 1, the number of slots q of each pole and each phase is set to 2, and the controller 88 passes through the inverter 70 and the mechanical phase angle adjacent to each phase. The electric angle phase difference δ of the current flowing between the windings is δ = h · 360 ° / 13, when the energization order h = 1 or 3, that is, about 41.5 ° when the energization order h = 1, and the energization order h. The 13-phase winding is energized so that the temperature is about 83 ° at = 3. As a result, when the energization order h = 3, in the motor 30 with 13-phase winding, the difference ΔB between the effective values BP and BN of the forward / reverse phase magnetic flux density is larger than the case where the number of slots q of each pole and each phase is 1. , Slightly larger (see Figure 13A). Therefore, by switching the energization order h, as shown in FIG. 7, the operating region from the operating region of high torque and low rotation to the operating region of low torque and high rotation can be expanded.

E.第2実施形態のバリエーション:
上述した第2実施形態では、電動機30として13相、スパン5の誘導機を用いたが、巻線の相数は13相に限らず、13相以上の奇数相であれば、採用することができる。また、スパンLも、1以上、いずれの値にすることも可能である。図21は、13相巻線のスパンLを、値1、2、3、4とした場合の星形環状結線を示す模式図である。スパンL=2以上では、図示の都合上、コイルの形状を省略している。いずれの場合も、各相で隣接する機械的位相角度となる巻線間の機械的位相角度差の平均θは、
θ=360°度/13
である。もとより、こうしたm相巻線を、2セット以上(p≧2)設けることも可能である。また、各コイルのピッチγも7/13に限定されず、他の値の短節巻きとしてもよい。更に、毎極毎相のスロット数qを値3〜6の値としてもよい。こうした構成を採用しても、上述した第2実施形態とほぼ同様の作用効果を奏する。
E. Variations of the second embodiment:
In the second embodiment described above, an induction machine having 13 phases and a span 5 is used as the electric motor 30, but the number of winding phases is not limited to 13 phases, and any odd-numbered phase of 13 or more can be adopted. it can. Further, the span L can be set to any value of 1 or more. FIG. 21 is a schematic view showing a star-shaped annular connection when the span L of the 13-phase winding is set to the values 1, 2, 3, and 4. When the span L = 2 or more, the shape of the coil is omitted for convenience of illustration. In either case, the average θ of the mechanical phase angle difference between the windings, which is the adjacent mechanical phase angle in each phase, is
θ = 360 ° / 13
Is. Of course, it is also possible to provide two or more sets (p ≧ 2) of such m-phase windings. Further, the pitch γ of each coil is not limited to 7/13, and other values may be used for short section winding. Further, the number of slots q for each pole and each phase may be set to a value of 3 to 6. Even if such a configuration is adopted, almost the same effect as that of the second embodiment described above can be obtained.

F.その他の実施形態:
(1)本開示の電動機30および電動機運転システム20は、上記の実施形態の他、種々の形態で実施可能である。例えば、アウタロータタイプの電動機として実施することも可能である。こうした電動機130の構成例を図22に示した。図示するように、この電動機130は、中心にステータ150を備え、その外周に回転自在にロータ140が配置されている。ステータ150は、ステータコア151の外周に放射線状に52個のティース153が設けられ、ティース153が形成する空間に、13相分のコイル55が巻き取られている。他方、このステータ150の外周に配置されたロータ140は、アウターロータコア141と、その内周に等間隔に配置された複数の2次導体143とを備える。この電動機130の各パラメータは、相数m=13、p=1、γ=7/13、q=2である。こうしたアウタロータタイプの電動機130において、巻線の相数mなどは、他の実施形態として示したように、m=13以外であっても差し付かないことは勿論である。これは、他のパラメータについても同様である。
F. Other embodiments:
(1) The electric motor 30 and the electric motor operation system 20 of the present disclosure can be implemented in various forms other than the above-described embodiment. For example, it can be implemented as an outer rotor type electric motor. A configuration example of such an electric motor 130 is shown in FIG. As shown in the figure, the electric motor 130 has a stator 150 in the center, and a rotor 140 is rotatably arranged on the outer periphery thereof. In the stator 150, 52 teeth 153 are radially provided on the outer circumference of the stator core 151, and coils 55 for 13 phases are wound in the space formed by the teeth 153. On the other hand, the rotor 140 arranged on the outer circumference of the stator 150 includes an outer rotor core 141 and a plurality of secondary conductors 143 arranged at equal intervals on the inner circumference thereof. Each parameter of the electric motor 130 has the number of phases m = 13, p = 1, γ = 7/13, and q = 2. In such an outer rotor type electric motor 130, it goes without saying that the number of phases m of the windings may be other than m = 13, as shown in other embodiments. This also applies to other parameters.

また、電動機は誘導機に限る必要はない。電動機は、例えばコンシクエント型SPMモータであっても、差し支えない。このコンシクエント型SPMモータは、図23に例示した様に、ロータコア241の外周表面に、径方向に着磁された複数の永久磁石247を備える。図23にロータコア241を示したコンシクエント型SPMモータの場合、通電次数h=2での極数は8極である。 Moreover, the electric motor does not have to be limited to the induction machine. The electric motor may be, for example, a sequential type SPM motor. As illustrated in FIG. 23, this sequential type SPM motor includes a plurality of permanent magnets 247 magnetized in the radial direction on the outer peripheral surface of the rotor core 241. In the case of the sequential type SPM motor in which the rotor core 241 is shown in FIG. 23, the number of poles at the energization order h = 2 is eight poles.

あるいは、図24ら示すように、ロータコア341の内部に径方向に着磁された複数の永久磁石347を埋め込んだコンシクエント型IPMモータとして実施することも可能である。ロータコア341の内部に埋め込まれた永久磁石347の両側方には、フラックスバリア348が設けられる。フラックスバリア348は、空気または非磁性体から構成される。 Alternatively, as shown in FIG. 24, it can be implemented as a sequential IPM motor in which a plurality of permanent magnets 347 magnetized in the radial direction are embedded in the rotor core 341. Flux barriers 348 are provided on both sides of the permanent magnets 347 embedded inside the rotor core 341. The flux barrier 348 is composed of air or a non-magnetic material.

こうしたコンシクエント型モータでも、誘導機と同様に、毎極毎相のスロット数q=2とし、通電次数hを切換えることにより、図7に示したように、高トルク低回転の運転領域から、低トルク高回転の運転領域までの運転領域を拡大することができる。 Even in such a sequential type motor, as in the induction machine, the number of slots for each phase of each pole is set to q = 2, and the energization order h is switched, so that the operating range of high torque and low rotation is low as shown in FIG. The operating range up to the operating range of high torque rotation can be expanded.

(2)電動機と電動機を運転する駆動部とからなる電動機運転システムであって、
前記電動機は、m相巻線(mは5以上の奇数の整数)の各相で隣接する機械的位相角度となる巻線間の機械的位相角度差の平均θが、電動機におけるm相巻線のセット数を示す変数pを値1以上の任意の正の整数として、
θ=360°/(m・p)
の関係を満たし、前記各相の巻線の結線はスパンL(Lはm/2以下の正の整数)の値に対して、L・θ離れた機械的位相角度差となる相の巻線同士を結線した星形環状結線であり、通電次数h(h≧1の任意の整数)が値1の場合の毎極毎相のスロット数qが、6≧q≧2であり、前記駆動部は、前記各相で隣接する機械的位相角度となる巻線間に流れる電流の電気的位相差δが、
δ=h・360°/m
となるよう前記m相巻線への通電を行なうものとし、更に、この電動機運転システムにおいて、前記電動機の前記m相巻線は、各相巻線の巻線ピッチと磁極ピッチの比γが、0<γ<1となる短節巻きとし、前記駆動部は、前記各相巻線に、前記通電次数h=1またはh=2の電流を切換えて通電するものとしてもよい。
(2) An electric motor operation system consisting of an electric motor and a drive unit for operating the electric motor.
In the motor, the average θ of the mechanical phase angle difference between the windings having the adjacent mechanical phase angles in each phase of the m-phase winding (m is an odd integer of 5 or more) is the m-phase winding in the motor. Let the variable p indicating the number of sets of be an arbitrary positive integer having a value of 1 or more.
θ = 360 ° / (m · p)
Satisfying the above relationship, the connection of the windings of each phase is a phase winding having a mechanical phase angle difference L · θ away from the value of span L (L is a positive integer of m / 2 or less). It is a star-shaped annular connection connecting each other, and when the energization order h (an arbitrary integer of h ≧ 1) is a value 1, the number of slots q of each pole and each phase is 6 ≧ q ≧ 2, and the driving unit Is the electrical phase difference δ of the current flowing between the windings, which is the mechanical phase angle adjacent to each other in each phase.
δ = h · 360 ° / m
In addition, in this motor operation system, the m-phase winding of the motor has a ratio γ of the winding pitch of each phase winding to the magnetic pole pitch. The short winding with 0 <γ <1 may be used, and the drive unit may energize each phase winding by switching the current of the energization order h = 1 or h = 2.

こうすれば、通電次数hを切換えることで、毎極毎相のスロット数が6≧q≧2の電動機において、通電次数h=2の場合の正相磁束の実効値を大きくでき、電動機の出力を高めることができる。従って、通電次数の切換えによる効率の低下を招くことなく、高トルク低回転の運転領域から、低トルク高回転の運転領域までの運転領域を拡大することができる。 By doing so, by switching the energization order h, the effective value of the positive phase magnetic flux when the energization order h = 2 can be increased in the motor in which the number of slots for each phase of each pole is 6 ≧ q ≧ 2, and the output of the motor can be increased. Can be enhanced. Therefore, it is possible to expand the operating region from the operating region of high torque and low rotation to the operating region of low torque and high rotation without causing a decrease in efficiency due to switching of the energization order.

(3)こうした電動機運転システムにおいて、前記電動機の前記m相巻線は、各相巻線の巻線ピッチγが、1>γ>0となる短節巻きであり、前記駆動部は、前記各相巻線に、前記通電次数h=1およびh=2の電流を通電するものとしてもよい。こうすれば、通電次数h=2の場合の正相磁束の実効値を大きくでき、電動機の出力を高めることができる。 (3) In such an electric motor operation system, the m-phase winding of the electric motor is a short-section winding in which the winding pitch γ of each phase winding is 1> γ> 0, and the drive unit is the respective drive unit. The phase windings may be energized with currents of the energization order h = 1 and h = 2. By doing so, the effective value of the positive phase magnetic flux when the energization order h = 2 can be increased, and the output of the electric motor can be increased.

(4)こうした電動機運転システムにおいて、前記電動機の前記巻線ピッチγを値0.4〜0.6としてもよい。こうすれば、通電次数hをh=1とh=2との間で切換えたとき、通電次数h=2の場合の正相磁束の実効値を最大値またはこれに近い値にすることができる。 (4) In such an electric motor operation system, the winding pitch γ of the electric motor may be set to a value of 0.4 to 0.6. In this way, when the energization order h is switched between h = 1 and h = 2, the effective value of the positive phase magnetic flux when the energization order h = 2 can be set to the maximum value or a value close to this. ..

(5)こうした電動機運転システムにおいて、電動機が、5相巻線(m=5)を備えるものとしてもよい。通電次数の切換えを行なうためには、巻線の相数mは、5以上の奇数の整数である必要があるが、相数が少ないほど、毎極毎相のスロット数qが値1の時の逆相磁束の実効値が大きいため、相数mが最も小さい5相巻線とすれば、毎極毎相のスロット数qを値2以上としやすいという効果が得られる。 (5) In such an electric motor operation system, the electric motor may be provided with a 5-phase winding (m = 5). In order to switch the energization order, the number of phases m of the winding needs to be an odd integer of 5 or more, but the smaller the number of phases, the more the number of slots q of each pole and each phase is 1. Since the effective value of the anti-phase magnetic flux is large, if a 5-phase winding having the smallest number of phases m is used, the effect that the number of slots q of each pole and each phase can be easily set to a value of 2 or more can be obtained.

(6)こうした電動機運転システムにおいて、前記電動機が、前記通電次数h=1のときの毎極毎相のスロット数q=2としてもよい。こうすれば、正相磁束密度と逆相磁束密度との差分が最も大きくなり、電動機の特性を改善することができる。 (6) In such an electric motor operation system, the number of slots q = 2 for each pole and each phase when the electric motor has the energization order h = 1. By doing so, the difference between the positive phase magnetic flux density and the negative phase magnetic flux density becomes the largest, and the characteristics of the electric motor can be improved.

(7)こうした電動機運転システムにおいて、前記電動機は誘導機としてもよい。誘導機の場合、高周波磁束の影響が大きいため、逆相磁束による影響を減らすことによる効果は大きい。もとより、電動機は誘導機に限らず、コンシクエント型SPMモータやコンシクエント型IPMモータなどを用いた電動機運転システムも可能である。 (7) In such an electric motor operation system, the electric motor may be an induction machine. In the case of an induction machine, the influence of high-frequency magnetic flux is large, so the effect of reducing the influence of reverse-phase magnetic flux is large. Of course, the electric motor is not limited to the induction machine, and an electric motor operation system using a sequential type SPM motor, a sequential type IPM motor, or the like is also possible.

(8)m相巻線(mは5以上の奇数の整数)の各相の巻線が星形環状結線された電動機の態様を採用してもよい。この電動機は、前記各相で隣接する機械的位相角度となる巻線間の機械的位相角度差の平均θが、電動機におけるm相巻線のセット数を示す変数pを値1以上の任意の整数として、
θ=360°/(m・p)
の関係を満たし、前記各相の巻線の結線はスパンL(Lはm/2以下の正の整数)の値に対して、L・θ離れた機械的位相角度差となる相の巻線同士を結線した星形環状結線であり、前記各相で隣接する機械的位相角度となる巻線間の電流の電気的位相差δが、通電次数h(h≧1の任意の整数)を用いて、
δ=h・360°/m
を満たし、h=1の場合の毎極毎相のスロット数qが、6≧q≧2である。
(8) A mode of an electric motor in which the windings of each phase of the m-phase windings (m is an odd integer of 5 or more) are connected in a star shape may be adopted. In this motor, the average θ of the mechanical phase angle difference between the windings, which is the mechanical phase angle adjacent to each other in each phase, has a variable p indicating the number of sets of m-phase windings in the motor, and the value is 1 or more. As an integer
θ = 360 ° / (m · p)
Satisfying the above relationship, the connection of the windings of each phase is a phase winding having a mechanical phase angle difference L · θ away from the value of span L (L is a positive integer of m / 2 or less). It is a star-shaped annular connection that connects the two, and the electrical phase difference δ of the current between the windings, which is the mechanical phase angle adjacent to each other in each phase, uses the energization order h (any integer with h ≧ 1). hand,
δ = h · 360 ° / m
The number of slots q for each pole and each phase when h = 1 is 6 ≧ q ≧ 2.

この電動機は、正相磁束密度と逆相磁束密度との差分を大きくすることができる。このため、毎極毎相のスロット数q=1の電動機と比べて、電動機の特性を改善することができる。 This electric motor can increase the difference between the positive phase magnetic flux density and the negative phase magnetic flux density. Therefore, the characteristics of the electric motor can be improved as compared with the electric motor having the number of slots q = 1 for each pole and each phase.

(9)電動機の駆動方法としての態様も可能である。この電動機の駆動方法は、
(a)m相巻線(mは5以上の奇数の整数)の各相で隣接する機械的位相角度となる巻線間の機械的位相角度差の平均θが、電動機におけるm相巻線のセット数を示す変数pを値1以上の任意の整数として
θ=360°/(m・p)
の関係を満たし、 (b)前記各相の巻線の結線はスパンL(Lはm/2以下の正の整数)の値に対して、L・θ離れた機械的位相角度差となる相の巻線同士を結線した星形環状結線であり、かつ
(c)通電次数h(h≧1の任意の整数)が値1の場合の毎極毎相のスロット数qが、6≧q≧2となる
電動機の前記各相の巻線に、前記電動機に対する要求に従って、前記電動機の前記通電次数hを切換え、前記通電次数hを切換えた場合に、前記各相で隣接する機械的位相角度となる巻線間に流れる電流の電気的位相差δが、
δ=h・360°/m
となるように、前記各相の巻線への通電を行なう。
(9) A mode as a driving method of the electric motor is also possible. The driving method of this electric motor is
(A) The average θ of the mechanical phase angle difference between the windings having the adjacent mechanical phase angles in each phase of the m-phase winding (m is an odd integer of 5 or more) is that of the m-phase winding in the electric motor. Θ = 360 ° / (m · p) with the variable p indicating the number of sets as an arbitrary integer with a value of 1 or more.
(B) The connection of the windings of each phase has a mechanical phase angle difference L · θ away from the value of span L (L is a positive integer of m / 2 or less). The number of slots q for each pole and each phase is 6 ≧ q ≧ when (c) the energization order h (any integer of h ≧ 1) is a value 1 and the windings are connected to each other. When the energization order h of the electric motor is switched and the energization order h is switched in accordance with the request for the electric motor, the winding of each phase of the electric motor becomes 2. The electrical phase difference δ of the current flowing between the windings
δ = h · 360 ° / m
The windings of each of the phases are energized so as to be.

こうすれば、電動機の正相磁束密度と逆相磁束密度との差分を大きくすることができので、毎極毎相のスロット数q=1の電動機と比べて、電動機の特性を改善することができ、通電次数を切換えることで、高トルク低回転数の運転領域から、低トルク高回転数の運転領域まで、電動機を駆動することができる。 By doing so, the difference between the positive-phase magnetic flux density and the negative-phase magnetic flux density of the motor can be increased, so that the characteristics of the motor can be improved as compared with the motor having the number of slots q = 1 for each pole and each phase. By switching the energization order, the electric motor can be driven from the operating region of high torque and low rotation speed to the operating region of low torque and high rotation speed.

(10)上記各実施形態において、ハードウェアによって実現されていた構成の一部をソフトウェアに置き換えるようにしてもよい。ソフトウェアによって実現されていた構成の少なくとも一部は、ディスクリートな回路構成により実現することも可能である。また、本開示の機能の一部または全部がソフトウェアで実現される場合には、そのソフトウェア(コンピュータプログラム)は、コンピュータ読み取り可能な記録媒体に格納された形で提供することができる。「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスクやCD−ROMのような携帯型の記録媒体に限らず、各種のRAMやROM等のコンピュータ内の内部記憶装置や、ハードディスク等のコンピュータに固定されている外部記憶装置も含んでいる。すなわち、「コンピュータ読み取り可能な記録媒体」とは、データパケットを一時的ではなく固定可能な任意の記録媒体を含む広い意味を有している。 (10) In each of the above embodiments, a part of the configuration realized by the hardware may be replaced with software. At least a part of the configuration realized by software can also be realized by a discrete circuit configuration. Further, when a part or all of the functions of the present disclosure are realized by software, the software (computer program) can be provided in a form stored in a computer-readable recording medium. "Computer readable recording medium" is not limited to portable recording media such as flexible disks and CD-ROMs, but is fixed to internal storage devices in computers such as various RAMs and ROMs, and computers such as hard disks. It also includes external storage devices that have been installed. That is, the term "computer-readable recording medium" has a broad meaning including any recording medium in which data packets can be fixed rather than temporarily.

本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。 The present disclosure is not limited to the above-described embodiment, and can be realized by various configurations within a range not deviating from the gist thereof. For example, the technical features in the embodiments corresponding to the technical features in each form described in the column of the outline of the invention may be used to solve some or all of the above-mentioned problems, or one of the above-mentioned effects. It is possible to replace or combine as appropriate to achieve a part or all. Further, if the technical feature is not described as essential in the present specification, it can be appropriately deleted.

20 電動機運転システム、30 電動機、32 出力軸、35 回転角度センサ、36 ケース、37 軸受、40 ロータ、41 ロータコア、43 2次導体、45 短絡環、50 ステータ、51 ステータコア、53 ティース、55 コイル、60 駆動装置、70 インバータ、72 バッテリ、74 電圧センサ、81−85 電流センサ、88 コントローラ、130 電動機、140 ロータ、141 アウターロータコア、150 ステータ、151 ステータコア、153 ティース、241 ロータコア、247 永久磁石、341 ロータコア、347 永久磁石、348 フラックスバリア、A−M コイル(巻線)、LD 負荷、T1−T5 端子 20 motor operation system, 30 motor, 32 output shaft, 35 rotation angle sensor, 36 case, 37 bearing, 40 rotor, 41 rotor core, 43 secondary conductor, 45 short circuit ring, 50 stator, 51 stator core, 53 teeth, 55 coil, 60 Drive, 70 Inverter, 72 Battery, 74 Voltage Sensor, 81-85 Current Sensor, 88 Controller, 130 Motor, 140 Rotor, 141 Outer Rotor Core, 150 Stator, 151 Stator Core, 153 Teeth, 241 Rotor Core, 247 Permanent Magnet, 341 Rotor core, 347 permanent magnet, 348 flux barrier, AM coil (winding), LD load, T1-T5 terminal

Claims (9)

電動機(30)と電動機を運転する駆動部(60)とからなる電動機運転システム(20)であって、
前記電動機は、
m相巻線(mは5以上の奇数の整数)の各相で隣接する機械的位相角度となる巻線間の機械的位相角度差の平均θが、電動機におけるm相巻線のセット数を示す変数pを値1以上の任意の正の整数として、
θ=360°/(m・p)
の関係を満たし、
前記各相の巻線の結線は、スパンL(Lはm/2以下の正の整数)の値に対して、L・θ離れた機械的位相差角度となる相の巻線同士を結線した星形環状結線であり、
通電次数h(h≧1の任意の整数)が値1のときの極数を基にした毎極毎相のスロット数qが、6≧q≧2であり、
前記駆動部は、各相で隣接する機械的位相角度となる巻線間に流れる電流の電気角位相差δが、
δ=h・360°/m
となるよう前記m相巻線への通電を行なう、
電動機運転システム。
An electric motor operation system (20) including an electric motor (30) and a drive unit (60) for operating the electric motor.
The electric motor
The average θ of the mechanical phase angle difference between the windings that are adjacent mechanical phase angles in each phase of the m-phase winding (m is an odd integer of 5 or more) determines the number of sets of m-phase windings in the motor. Let the indicated variable p be any positive integer greater than or equal to the value 1.
θ = 360 ° / (m · p)
Satisfy the relationship,
The windings of each phase were connected to each other with a mechanical phase difference angle L · θ apart from the value of the span L (L is a positive integer of m / 2 or less). It is a star-shaped ring connection,
The number of slots q for each pole and phase based on the number of poles when the energization order h (any integer with h ≧ 1) is value 1 is 6 ≧ q ≧ 2.
In the drive unit, the electric angle phase difference δ of the current flowing between the windings, which is the mechanical phase angle adjacent to each other in each phase, is
δ = h · 360 ° / m
Energize the m-phase winding so that
Electric motor operation system.
請求項1記載の電動機運転システムであって、
前記電動機の前記m相巻線は、各相巻線の巻線ピッチと磁極ピッチの比γが、0<γ<1となる短節巻きであり、
前記駆動部は、前記各相巻線に、前記通電次数h=1またはh=2の電流を切換えて通電する
電動機運転システム。
The electric motor operation system according to claim 1.
The m-phase winding of the electric motor is a short-section winding in which the ratio γ of the winding pitch and the magnetic pole pitch of each phase winding is 0 <γ <1.
The drive unit is an electric motor operation system that energizes each phase winding by switching a current of the energization order h = 1 or h = 2.
請求項1記載の電動機運転システムであって、
前記電動機の前記m相巻線は、各相巻線の巻線ピッチγが、1>γ>0となる短節巻きであり、
前記駆動部は、前記各相巻線に、前記通電次数h=1およびh=2の電流を通電する
電動機運転システム。
The electric motor operation system according to claim 1.
The m-phase winding of the electric motor is a short-section winding in which the winding pitch γ of each phase winding is 1>γ> 0.
The drive unit is an electric motor operation system that energizes each of the phase windings with currents of the energization orders h = 1 and h = 2.
前記電動機の前記巻線ピッチγが値0.4〜0.6である、請求項2または請求項3に記載の電動機運転システム。 The electric motor operation system according to claim 2 or 3, wherein the winding pitch γ of the electric motor has a value of 0.4 to 0.6. 前記電動機が、5相巻線(m=5)を備える、請求項1から請求項4のいずれか一項に記載の電動機運転システム。 The electric motor operation system according to any one of claims 1 to 4, wherein the electric motor includes a 5-phase winding (m = 5). 前記電動機が、前記通電次数h=1のときの極数を基にした毎極毎相のスロット数q=2である、請求項1から請求項5のいずれか一項に記載の電動機運転システム。 The electric motor operation system according to any one of claims 1 to 5, wherein the electric motor has a number of slots q = 2 for each pole and each phase based on the number of poles when the energization order h = 1. .. 前記電動機が誘導機である、請求項1から請求項6のいずれか一項に記載の電動機運転システム。 The electric motor operation system according to any one of claims 1 to 6, wherein the electric motor is an induction machine. m相巻線(mは5以上の奇数の整数)の各相で隣接する機械的位相角度となる巻線間の機械的位相角度差の平均θが、電動機におけるm相巻線のセット数を示す変数pを値1以上の任意の正の整数として、
θ=360°/(m・p)
の関係を満たし、
前記各相の巻線の結線が、スパンL(Lはm/2以下の正の整数)の値に対して、L・θ離れた機械的位相差角度となる相の巻線同士を結線した星形環状結線の電動機であり、
前記各相で隣接する機械的位相角度となる巻線間の電流の電気的位相差δが、通電次数h(h≧1の任意の整数)を用いて、
δ=h・360°/m
を満たし、
h=1のときの極数を基にした毎極毎相のスロット数qが、6≧q≧2である
電動機。
The average θ of the mechanical phase angle difference between the windings that are adjacent mechanical phase angles in each phase of the m-phase winding (m is an odd integer of 5 or more) determines the number of sets of m-phase windings in the motor. Let the indicated variable p be any positive integer greater than or equal to the value 1.
θ = 360 ° / (m · p)
Satisfy the relationship,
The windings of the respective phases are connected to each other with a mechanical phase difference angle L · θ apart from the value of the span L (L is a positive integer of m / 2 or less). It is an electric motor with a star-shaped ring connection,
The electrical phase difference δ of the current between the windings, which is the mechanical phase angle adjacent to each other in each phase, is the energization order h (an arbitrary integer of h ≧ 1).
δ = h · 360 ° / m
The filling,
An electric motor in which the number of slots q for each pole and each phase based on the number of poles when h = 1 is 6 ≧ q ≧ 2.
電動機の駆動方法であって、
(a)m相巻線(mは5以上の奇数の整数)の各相で隣接する機械的位相角度となる巻線間の機械的位相角度差の平均θが、電動機におけるm相巻線のセット数を示す変数pを値1以上の任意の整数として、次式(1)、
θ=360°/(m・p)
の関係を満たし、
(b)前記各相の巻線の結線がスパンL(Lはm/2以下の正の整数)の値に対して、L・θ離れた機械的位相角度差となる相の巻線同士を結線した星形環状結線であり、かつ
(c)通電次数h(h≧1の任意の整数)が値1の時の極数を基にした毎極毎相のスロット数qが、6≧q≧2となる
電動機の前記各相の巻線に、
前記電動機に対する要求に従って、前記電動機の前記通電次数hを切換え、
前記通電次数hを切換えた場合に、前記各相で隣接する機械的位相角度となる巻線間に流れる電流の電気的位相差δが、
δ=h・360°/m
となるように、前記各相の巻線への通電を行なう、
電動機の駆動方法。
It ’s a way to drive an electric motor.
(A) The average θ of the mechanical phase angle difference between the windings having the adjacent mechanical phase angles in each phase of the m-phase winding (m is an odd integer of 5 or more) is that of the m-phase winding in the electric motor. The following equation (1), where the variable p indicating the number of sets is an arbitrary integer having a value of 1 or more,
θ = 360 ° / (m · p)
Satisfy the relationship,
(B) The windings of the phases in which the connection of the windings of each phase has a mechanical phase angle difference of L · θ with respect to the value of the span L (L is a positive integer of m / 2 or less) are separated from each other. It is a connected star-shaped annular connection, and (c) the number of slots q for each pole and phase based on the number of poles when the energization order h (any integer of h ≧ 1) is 1 is 6 ≧ q. In the winding of each phase of the motor in which ≧ 2
The energization order h of the electric motor is switched according to the request for the electric motor.
When the energization order h is switched, the electrical phase difference δ of the current flowing between the windings having the mechanical phase angle adjacent to each other in each phase becomes
δ = h · 360 ° / m
The windings of each phase are energized so as to be.
How to drive an electric motor.
JP2019089570A 2019-05-10 2019-05-10 Motor operation system and its motor and how to drive the motor Active JP7085260B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019089570A JP7085260B2 (en) 2019-05-10 2019-05-10 Motor operation system and its motor and how to drive the motor
PCT/JP2020/017807 WO2020230595A1 (en) 2019-05-10 2020-04-24 Electric motor operation system, electric motor for same, and method for driving electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019089570A JP7085260B2 (en) 2019-05-10 2019-05-10 Motor operation system and its motor and how to drive the motor

Publications (2)

Publication Number Publication Date
JP2020188531A true JP2020188531A (en) 2020-11-19
JP7085260B2 JP7085260B2 (en) 2022-06-16

Family

ID=73223034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019089570A Active JP7085260B2 (en) 2019-05-10 2019-05-10 Motor operation system and its motor and how to drive the motor

Country Status (2)

Country Link
JP (1) JP7085260B2 (en)
WO (1) WO2020230595A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112910144A (en) * 2021-01-26 2021-06-04 华中科技大学 Multiphase winding series phase sequence with minimum bridge arm current stress and modulation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113270960B (en) * 2021-05-18 2023-03-28 潍柴动力股份有限公司 Stator, motor and coil winding arrangement method, device, equipment and medium thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7928683B2 (en) * 2000-10-23 2011-04-19 Borealis Technical Limited High phase order AC machine with short pitch winding
JP2012085533A (en) * 2005-05-20 2012-04-26 Robert Bosch Gmbh Five-phase generator
WO2012057069A1 (en) * 2010-10-27 2012-05-03 日立オートモティブシステムズ株式会社 Rotating electric machine
WO2015182659A1 (en) * 2014-05-30 2015-12-03 三菱電機株式会社 Multigroup polyphase driver system and method for driving dynamo-electric machine
JP2018182868A (en) * 2017-04-10 2018-11-15 株式会社Soken Rotary electric machine and rotary electric machine system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7928683B2 (en) * 2000-10-23 2011-04-19 Borealis Technical Limited High phase order AC machine with short pitch winding
JP2012085533A (en) * 2005-05-20 2012-04-26 Robert Bosch Gmbh Five-phase generator
WO2012057069A1 (en) * 2010-10-27 2012-05-03 日立オートモティブシステムズ株式会社 Rotating electric machine
WO2015182659A1 (en) * 2014-05-30 2015-12-03 三菱電機株式会社 Multigroup polyphase driver system and method for driving dynamo-electric machine
JP2018182868A (en) * 2017-04-10 2018-11-15 株式会社Soken Rotary electric machine and rotary electric machine system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112910144A (en) * 2021-01-26 2021-06-04 华中科技大学 Multiphase winding series phase sequence with minimum bridge arm current stress and modulation method
CN112910144B (en) * 2021-01-26 2022-02-15 华中科技大学 Multiphase winding series phase sequence with minimum bridge arm current stress and modulation method

Also Published As

Publication number Publication date
JP7085260B2 (en) 2022-06-16
WO2020230595A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
JP5576145B2 (en) Motor control device
JP2008141803A (en) Brushless motor
WO2020230595A1 (en) Electric motor operation system, electric motor for same, and method for driving electric motor
US20130134818A1 (en) Three-phase axial flux motor and magnetic path adjusting method thereof
JP2013207980A (en) Motor driving system and motor driving method
US20130062985A1 (en) Brushless dc motor
JP6958478B2 (en) Rotating machine
JP2004088905A (en) Permanent magnet type motor and motor-operated power steering apparatus having the same
JP5985119B1 (en) Permanent magnet rotating electric machine
JP5885423B2 (en) Permanent magnet rotating electric machine
JP6823318B2 (en) Rotating electromechanical equipment
JP6018927B2 (en) Motor drive device and motor drive system
JP2016077052A (en) Magnetless rotary electric machine and rotary electric machine control system
JP6497231B2 (en) Motor control device
JP2005117863A (en) Ac rotating electric machine device
JP2018019528A (en) Controller for switched reluctance motor
JP2017005987A (en) Drive control method for synchronous reluctance motor, and drive control device for synchronous reluctance motor
JP2002191157A (en) Synchronous rotating electric machine with combined use of permanent magnet
JP2010166761A (en) Switched reluctance motor
JP2007209197A (en) Ipm motor
Wang et al. Optimal Designs of Wound Field Switched Flux Machines with Different DC Windings Configurations
JP2007166798A (en) Dynamo-electric machine, compressor, blower, and air conditioner
JP7267487B1 (en) Control device for rotating electrical machine and method for controlling rotating electrical machine
KR101086135B1 (en) ?igh speed switched reluctance motor, and Method for controlling shape of rotor in switched reluctance motor
JP4967375B2 (en) Current control device and current control method for synchronous machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220602

R150 Certificate of patent or registration of utility model

Ref document number: 7085260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150