JP2020158832A - Surface-treated copper foil, and copper-clad laminate and printed circuit board using the same - Google Patents

Surface-treated copper foil, and copper-clad laminate and printed circuit board using the same Download PDF

Info

Publication number
JP2020158832A
JP2020158832A JP2019059395A JP2019059395A JP2020158832A JP 2020158832 A JP2020158832 A JP 2020158832A JP 2019059395 A JP2019059395 A JP 2019059395A JP 2019059395 A JP2019059395 A JP 2019059395A JP 2020158832 A JP2020158832 A JP 2020158832A
Authority
JP
Japan
Prior art keywords
copper foil
roughened particles
roughened
particles
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019059395A
Other languages
Japanese (ja)
Other versions
JP6816193B2 (en
Inventor
惇郎 佐野
Junro Sano
惇郎 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2019059395A priority Critical patent/JP6816193B2/en
Priority to CN202080023613.0A priority patent/CN113795614B/en
Priority to PCT/JP2020/012303 priority patent/WO2020196265A1/en
Priority to KR1020217029665A priority patent/KR102706307B1/ko
Priority to TW109109266A priority patent/TWI742575B/en
Publication of JP2020158832A publication Critical patent/JP2020158832A/en
Application granted granted Critical
Publication of JP6816193B2 publication Critical patent/JP6816193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/16Electroplating with layers of varying thickness
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide a surface-treated copper foil, which realizes a good transmission characteristic, adhesion property, heat resistance, and circuit-board moisture proof reliability without powder fall when used especially in a conductor circuit of a printed circuit board, and to provide a copper-clad laminate and a printed circuit board using the surface-treated copper foil.SOLUTION: A surface-treated copper foil comprises a surface-treated film including a rough-treatment layer, in which roughened particles are formed at least on the one surface of a copper-foil base material. When the cross section of the surface-treated copper foil is observed by Scanning Electron Microscope (SEM), the average particle height (h) of the roughened particles is 0.8-2.0 μm and the average ratio (h/w) of the particle height (h) to particle width (w) of the roughened particles is 1.5-4.5 in the domain of crosswise direction 75 μm of the surface-treated film. The surface-treated copper foil has 1-60 roughened particles (P) that meet the factors (I)-(IV) among the roughened particles.SELECTED DRAWING: Figure 1

Description

本発明は、表面処理銅箔、並びにこれを用いた銅張積層板及びプリント配線板に関する。 The present invention relates to a surface-treated copper foil, and a copper-clad laminate and a printed wiring board using the same.

近年、サーバー・ルーターやスマートフォン等の1GHzを超えるような高周波対応機器が増えており、実際に高周波信号が流れる銅箔にも優れた伝送特性が求められている。同時に、従来から信頼性の指標としてピール強度も一定以上の水準が求められており、伝送特性とピール強度(以下、「密着性」という。)との高いレベルでの両立が求められている。 In recent years, the number of high-frequency compatible devices such as servers, routers and smartphones exceeding 1 GHz has increased, and excellent transmission characteristics are required for copper foils through which high-frequency signals actually flow. At the same time, the peel strength has been conventionally required to be at a certain level or higher as an index of reliability, and it is required to achieve both transmission characteristics and peel strength (hereinafter referred to as "adhesion") at a high level.

一般に、樹脂基材と銅箔表面との間の接着力を高める手法としては、電気めっきやエッチング等により、その表面に粗化処理層(粗化粒子を形成させた層)を形成し、樹脂基材との物理的な接着効果(アンカー効果)を得ることで、接着力を高める手法が挙げられる。
しかし、銅箔表面と、樹脂基材との間の接着力(密着性)を効果的に高めるべく、銅箔表面に形成する粗化粒子の粒子サイズを大きくすると、表皮効果により伝送損失が増加してしまう。
このように、銅張積層板において、銅箔と樹脂基材との密着性の向上と、伝送損失の抑制とは、互いにトレードオフの関係にある。
Generally, as a method of increasing the adhesive force between the resin base material and the surface of the copper foil, a roughening treatment layer (a layer on which roughened particles are formed) is formed on the surface by electroplating, etching, or the like, and the resin is used. A method of increasing the adhesive force by obtaining a physical adhesive effect (anchor effect) with the base material can be mentioned.
However, if the particle size of the roughened particles formed on the copper foil surface is increased in order to effectively increase the adhesive force (adhesion) between the copper foil surface and the resin base material, the transmission loss increases due to the skin effect. Resulting in.
As described above, in the copper-clad laminate, the improvement of the adhesion between the copper foil and the resin base material and the suppression of the transmission loss are in a trade-off relationship with each other.

そのため、従来から銅張積層板に用いられる銅箔では、銅箔と樹脂基材との密着性の向上と、伝送損失の抑制との両立が検討されている。例えば、特許文献1〜4では、粗化粒子の形状を適宜制御することにより、主に銅箔と樹脂基材との密着性を向上させる技術が提案されている。 Therefore, in the copper foil conventionally used for the copper-clad laminate, it has been studied to improve the adhesion between the copper foil and the resin base material and to suppress the transmission loss. For example, Patent Documents 1 to 4 propose a technique for improving the adhesion between a copper foil and a resin base material by appropriately controlling the shape of the roughened particles.

しかし、上記のような従来の技術では、粗化面に微細な凹凸を形成することにより、比表面積を増やしているため、樹脂基材と貼り合わせる際に、樹脂基材の種類によっては粗化面への樹脂の充填不良を起こすことがある。このような場合、樹脂基材と銅箔間に隙間が生じ、特に耐熱性と基板耐湿信頼性の悪化を招く問題があった。 However, in the conventional technique as described above, since the specific surface area is increased by forming fine irregularities on the roughened surface, it is roughened depending on the type of the resin base material when it is bonded to the resin base material. Poor filling of resin on the surface may occur. In such a case, there is a problem that a gap is generated between the resin base material and the copper foil, which causes deterioration in heat resistance and moisture resistance and reliability of the substrate.

特開2017−515456号公報Japanese Unexamined Patent Publication No. 2017-515456 特開2017−520558号公報JP-A-2017-520558 特開2015−147978号公報Japanese Unexamined Patent Publication No. 2015-147978 特開2018−172790号公報Japanese Unexamined Patent Publication No. 2018-172790

そこで本発明は、特にプリント配線板の導体回路に用いる場合に優れた伝送特性、密着性、耐熱性及び基板耐湿信頼性を実現でき、且つ粉落ちのない表面処理銅箔、並びにこれを用いた銅張積層板及びプリント配線板を提供することを目的とする。 Therefore, the present invention uses a surface-treated copper foil that can realize excellent transmission characteristics, adhesion, heat resistance, and substrate moisture resistance reliability, especially when used in a conductor circuit of a printed wiring board, and does not cause powder to fall off. It is an object of the present invention to provide a copper-clad laminate and a printed wiring board.

本発明者らは、鋭意検討した結果、銅箔基体の少なくとも一方の面に、粗化粒子が形成されてなる粗化処理層を含む表面処理皮膜を有する表面処理銅箔において、前記表面処理銅箔の断面を、走査型電子顕微鏡(SEM)により観察するとき、前記表面処理皮膜の表面の幅方向75μmの領域において、前記粗化粒子の粒子高さ(h)の平均値が0.8〜2.0μmであり、前記粗化粒子の粒子幅(w)に対する前記粒子高さ(h)の比(h/w)の平均値が1.5〜4.5であり、前記粗化粒子のうち、下記要件(I)〜(IV)を満たす粗化粒子(P)が1〜60個存在する構成とすることによって、特にプリント配線板の導体回路に用いる場合に、優れた伝送特性、密着性、耐熱性及び基板耐湿信頼性を実現し得る表面処理銅箔が得られることを見出し、本発明を完成させるに至った。
・要件(I):粗化粒子の粒子高さ(h)が1.5〜3.5μmである。
・要件(II):粗化粒子の粒子幅(w)に対する前記粒子高さ(h)の比(h/w)が2.5〜15である。
・要件(III):粗化粒子が有する節の数が10〜25個である。
・要件(IV):粗化粒子と、該粗化粒子に最も近接する粒子高さ1.5μm以上の他の粗化粒子との、最短根元間距離が0.7〜10.0μmである。
As a result of diligent studies, the present inventors have made the surface-treated copper in a surface-treated copper foil having a surface-treated film containing a roughened-treated layer in which roughened particles are formed on at least one surface of the copper foil substrate. When the cross section of the foil is observed with a scanning electron microscope (SEM), the average value of the particle heights (h) of the roughened particles is 0.8 to 0.5 in the region of 75 μm in the width direction of the surface of the surface treatment film. The average value of the ratio (h / w) of the particle height (h) to the particle width (w) of the roughened particles is 2.0 μm, and the average value of the roughened particles is 1.5 to 4.5. Of these, by configuring 1 to 60 coarse particles (P) that satisfy the following requirements (I) to (IV), it has excellent transmission characteristics and close contact, especially when used in a conductor circuit of a printed wiring board. We have found that a surface-treated copper foil capable of achieving properties, heat resistance, and substrate moisture resistance reliability can be obtained, and have completed the present invention.
-Requirement (I): The particle height (h) of the roughened particles is 1.5 to 3.5 μm.
-Requirement (II): The ratio (h / w) of the particle height (h) to the particle width (w) of the roughened particles is 2.5 to 15.
-Requirement (III): The number of nodes of the roughened particles is 10 to 25.
-Requirement (IV): The shortest root-to-root distance between the roughened particles and other roughened particles having a particle height of 1.5 μm or more closest to the roughened particles is 0.7 to 10.0 μm.

すなわち、本発明の要旨構成は、以下のとおりである。
[1] 銅箔基体の少なくとも一方の面に、粗化粒子が形成されてなる粗化処理層を含む表面処理皮膜を有する表面処理銅箔であって、
前記表面処理銅箔の断面を、走査型電子顕微鏡(SEM)により観察するとき、前記表面処理皮膜の幅方向75μmの領域において、
前記粗化粒子の粒子高さ(h)の平均値が0.8〜2.0μmであり、
前記粗化粒子の粒子幅(w)に対する前記粒子高さ(h)の比(h/w)の平均値が1.5〜4.5であり、
前記粗化粒子のうち、下記要件(I)〜(IV)を満たす粗化粒子(P)が1〜60個存在する、表面処理銅箔。
・要件(I):粗化粒子の粒子高さ(h)が1.5〜3.5μmである。
・要件(II):粗化粒子の粒子幅(w)に対する前記粒子高さ(h)の比(h/w)が2.5〜15である。
・要件(III):粗化粒子が有する節の数が10〜25個である。
・要件(IV):粗化粒子と、該粗化粒子に最も近接する粒子高さ1.5μm以上の他の粗化粒子との、最短根元間距離が0.7〜10.0μmである。
[2] 前記粗化粒子の線密度(d)が、1.0〜1.8個/μmである、上記[1]に記載の表面処理銅箔。
[3] 前記表面処理皮膜の表面において、3次元白色干渉型顕微鏡で測定した展開面積比(Sdr)が300〜380%である、上記[1]又は[2]に記載の表面処理銅箔。
[4] 上記[1]〜[3]のいずれか1項に記載の表面処理銅箔を用いて形成してなる、銅張積層板。
[5] 上記[4]に記載の銅張積層板を用いて形成してなる、プリント配線板。
That is, the gist structure of the present invention is as follows.
[1] A surface-treated copper foil having a surface-treated film containing a roughened-treated layer in which roughened particles are formed on at least one surface of a copper foil substrate.
When observing the cross section of the surface-treated copper foil with a scanning electron microscope (SEM), in a region of 75 μm in the width direction of the surface-treated film,
The average value of the particle height (h) of the roughened particles is 0.8 to 2.0 μm.
The average value of the ratio (h / w) of the particle height (h) to the particle width (w) of the roughened particles is 1.5 to 4.5.
A surface-treated copper foil in which 1 to 60 roughened particles (P) satisfying the following requirements (I) to (IV) are present among the roughened particles.
-Requirement (I): The particle height (h) of the roughened particles is 1.5 to 3.5 μm.
-Requirement (II): The ratio (h / w) of the particle height (h) to the particle width (w) of the roughened particles is 2.5 to 15.
-Requirement (III): The number of nodes of the roughened particles is 10 to 25.
-Requirement (IV): The shortest root-to-root distance between the roughened particles and other roughened particles having a particle height of 1.5 μm or more closest to the roughened particles is 0.7 to 10.0 μm.
[2] The surface-treated copper foil according to the above [1], wherein the linear density (d) of the roughened particles is 1.0 to 1.8 particles / μm.
[3] The surface-treated copper foil according to the above [1] or [2], wherein the developed area ratio (Sdr) measured by a three-dimensional white interference type microscope is 300 to 380% on the surface of the surface-treated film.
[4] A copper-clad laminate formed by using the surface-treated copper foil according to any one of the above [1] to [3].
[5] A printed wiring board formed by using the copper-clad laminate according to the above [4].

本発明によれば、特にプリント配線板の導体回路に用いる場合に優れた伝送特性、密着性、耐熱性及び基板耐湿信頼性を実現でき、且つ粉落ちのない表面処理銅箔、並びにこれを用いた銅張積層板及びプリント配線板を提供することができる。 According to the present invention, a surface-treated copper foil capable of achieving excellent transmission characteristics, adhesion, heat resistance, and substrate moisture resistance reliability, especially when used in a conductor circuit of a printed wiring board, and using a surface-treated copper foil that does not cause powder to fall off. It is possible to provide a copper-clad laminate and a printed wiring board.

図1は、本発明の表面処理銅箔の表面処理皮膜の表面の様子を、(a)そのままの状態で真上から、(b)そのままの状態で加工断面から、及び(c)樹脂埋め加工後の加工断面から観察したSEM画像の各一例である。FIG. 1 shows the state of the surface of the surface-treated coating film of the surface-treated copper foil of the present invention from directly above (a) as it is, (b) from the processed cross section as it is, and (c) resin filling processing. It is an example of each SEM image observed from the later processed cross section. 図2は、表面処理銅箔の加工断面のSEM画像を画像解析する際の手順の一例である。FIG. 2 is an example of a procedure for image analysis of an SEM image of a processed cross section of a surface-treated copper foil. 図3は、粗化粒子の計測方法の一例を説明するための図である。FIG. 3 is a diagram for explaining an example of a method for measuring coarsened particles. 図4は、特殊な形状を有する粗化粒子等の計測方法を説明するための図である。FIG. 4 is a diagram for explaining a method for measuring roughened particles and the like having a special shape. 図5は、粗化粒子の粗化粒子節の個数の計測方法を説明するための図である。FIG. 5 is a diagram for explaining a method of measuring the number of coarsened particle nodes of the roughened particles. 図6は、粗化粒子と、該粗化粒子に最も近接する粒子高さ1.5μm以上の他の粗化粒子との、最短根元間距離の計測方法の一例を説明するための図である。FIG. 6 is a diagram for explaining an example of a method for measuring the shortest root-to-root distance between the roughened particles and other coarsened particles having a particle height of 1.5 μm or more closest to the roughened particles. ..

本発明に従う表面処理銅箔、並びにこれを用いた銅張積層板及びプリント配線板の実施形態について、以下で詳細に説明する。 An embodiment of a surface-treated copper foil according to the present invention, and a copper-clad laminate and a printed wiring board using the same will be described in detail below.

<表面処理銅箔>
本発明に従う表面処理銅箔は、銅箔基体の少なくとも一方の面に、粗化粒子が形成されてなる粗化処理層を含む表面処理皮膜を有し、前記表面処理銅箔の断面を、走査型電子顕微鏡(SEM)により観察するとき、前記表面処理皮膜の表面の幅方向75μmの領域において、前記粗化粒子の粒子高さ(h)の平均値が0.8〜2.0μmであり、前記粗化粒子の粒子幅(w)に対する前記粒子高さ(h)の比(h/w)の平均値が1.5〜4.5であり、前記粗化粒子のうち、下記要件(I)〜(IV)を満たす粗化粒子(P)が1〜60個存在することを特徴とする。
・要件(I):粗化粒子の粒子高さ(h)が1.5〜3.5μmである。
・要件(II):粗化粒子の粒子幅(w)に対する前記粒子高さ(h)の比(h/w)が2.5〜15である。
・要件(III):粗化粒子が有する節の数が10〜25個である。
・要件(IV):粗化粒子と、該粗化粒子に最も近接する粒子高さ1.5μm以上の他の粗化粒子との、最短根元間距離が0.7〜10.0μmである。
<Surface-treated copper foil>
The surface-treated copper foil according to the present invention has a surface-treated film containing a roughened-treated layer in which roughened particles are formed on at least one surface of the copper foil substrate, and scans a cross section of the surface-treated copper foil. When observed with a type electron microscope (SEM), the average value of the particle height (h) of the roughened particles is 0.8 to 2.0 μm in the region of 75 μm in the width direction of the surface of the surface treatment film. The average value of the ratio (h / w) of the particle height (h) to the particle width (w) of the roughened particles is 1.5 to 4.5, and among the roughened particles, the following requirement (I) )-(IV) are satisfied by 1 to 60 coarse particles (P).
-Requirement (I): The particle height (h) of the roughened particles is 1.5 to 3.5 μm.
-Requirement (II): The ratio (h / w) of the particle height (h) to the particle width (w) of the roughened particles is 2.5 to 15.
-Requirement (III): The number of nodes of the roughened particles is 10 to 25.
-Requirement (IV): The shortest root-to-root distance between the roughened particles and other roughened particles having a particle height of 1.5 μm or more closest to the roughened particles is 0.7 to 10.0 μm.

本発明の表面処理銅箔は、銅箔基体と、該銅箔基体の少なくとも一方の面に、粗化粒子を形成してなる粗化処理層を含む表面処理皮膜とを有する。このような表面処理皮膜の表面は、表面処理銅箔の最表面(表裏面)のうち少なくとも一方の面であり、また、銅箔基体の少なくとも一方の面に形成された粗化粒子の形成状態及び粒子形状等が反映された微細な凹凸表面形状をもつ粗化面である。このような表面処理皮膜の表面(以下、「粗化面」という。)は、例えば、銅箔基体上に形成された粗化処理層の表面であってもよいし、この粗化処理層上に直接形成されたシランカップリング剤層の表面、又は、この粗化処理層上に、Niを含有する下地層、Znを含有する耐熱処理層及びCrを含有する防錆処理層等の中間層を介して形成されたシランカップリング剤層の表面であってもよい。また、本発明の表面処理銅箔が、例えば、プリント配線板の導体回路に用いられる場合には、上記粗化面が、樹脂基材を貼着積層するための表面(貼着面)となる。 The surface-treated copper foil of the present invention has a copper foil substrate and a surface-treated film containing a roughening-treated layer formed by forming roughened particles on at least one surface of the copper foil substrate. The surface of such a surface-treated film is at least one surface of the outermost surface (front and back surfaces) of the surface-treated copper foil, and a state in which roughened particles formed on at least one surface of the copper foil substrate are formed. It is a roughened surface having a fine uneven surface shape that reflects the particle shape and the like. The surface of such a surface-treated film (hereinafter referred to as "roughened surface") may be, for example, the surface of a roughened-treated layer formed on a copper foil substrate, or on the roughened-treated layer. An intermediate layer such as a Ni-containing base layer, a Zn-containing heat-resistant treatment layer, and a Cr-containing rust preventive treatment layer on the surface of the silane coupling agent layer directly formed on the surface or on the roughening treatment layer. It may be the surface of the silane coupling agent layer formed through. Further, when the surface-treated copper foil of the present invention is used, for example, in a conductor circuit of a printed wiring board, the roughened surface becomes a surface (attachment surface) for adhering and laminating a resin base material. ..

ここで、本発明の表面処理銅箔の粗化面の様子を図1(a)、(b)及び(c)に示す。図1(a)は、本発明の表面処理銅箔の粗化面を、そのままの状態で(樹脂埋め等の加工なしで)真上から走査型電子顕微鏡(SEM)により観察したSEM画像の一例であり、図1(b)は、表面処理銅箔をそのままの状態で粗化面に対して垂直に切断し、イオンミリング装置を用いて断面を精密研磨加工し、その加工断面を走査型電子顕微鏡(SEM)により観察したSEM画像の一例である。また、図1(c)は、表面処理銅箔の表面側を樹脂埋め加工した後に粗化面に対して垂直に切断し、イオンミリング装置を用いて断面を精密研磨加工し、その加工断面を走査型電子顕微鏡(SEM)により観察したSEM画像の一例である。
特に図1(b)で明らかように、本発明の表面処理銅箔の粗化面には、側面に突起形状(以下、「節」という。)を持つ粗化粒子が一定数形成されている。
Here, the state of the roughened surface of the surface-treated copper foil of the present invention is shown in FIGS. 1 (a), 1 (b) and 1 (c). FIG. 1A is an example of an SEM image obtained by observing the roughened surface of the surface-treated copper foil of the present invention as it is (without processing such as resin filling) from directly above with a scanning electron microscope (SEM). In FIG. 1B, the surface-treated copper foil is cut perpendicular to the roughened surface as it is, the cross section is precision-polished using an ion milling apparatus, and the processed cross section is scanned electron. This is an example of an SEM image observed with a microscope (SEM). Further, in FIG. 1 (c), the surface side of the surface-treated copper foil is resin-filled, then cut perpendicularly to the roughened surface, and the cross section is precision-polished using an ion milling device to obtain the processed cross section. This is an example of an SEM image observed by a scanning electron microscope (SEM).
In particular, as is clear from FIG. 1 (b), a certain number of roughened particles having a protrusion shape (hereinafter referred to as "knot") are formed on the roughened surface of the surface-treated copper foil of the present invention. ..

このような特殊な粗化面における粗化粒子の形状評価は、接触式粗さ測定器や光学式顕微鏡による粗化面の表面からの観察では、測定原理上、最表面の節しか観察できず、1つ1つの粗化粒子の成長方向全体の形状を観察することはできない。そこで、本発明では、粗化面の評価方法の一手法として、図1(b)のように、表面処理銅箔の断面から、粗化面における粗化粒子の形成状態を分析し、これにより粗化面の特徴を規定し、評価することとした。具体的には、以下の手法により行う。 In the shape evaluation of roughened particles on such a special roughened surface, only the outermost node can be observed in the measurement principle when observing from the surface of the roughened surface with a contact type roughness measuring instrument or an optical microscope. It is not possible to observe the shape of each roughened particle in the entire growth direction. Therefore, in the present invention, as one method of evaluating the roughened surface, as shown in FIG. 1 (b), the formation state of the roughened particles on the roughened surface is analyzed from the cross section of the surface-treated copper foil. It was decided to define and evaluate the characteristics of the roughened surface. Specifically, it is carried out by the following method.

まず、表面処理銅箔を粗化面に対して垂直に切断し、イオンミリング装置を用いて断面を精密研磨加工し、その加工断面をSEMの加速電圧3kVにて、倍率1万倍の二次電子像を観察する。SEM観察の際には、表面処理銅箔を平滑な支持台の上に、表面処理銅箔の反りやたるみが出ないように注意して水平に固定して、断面SEM写真内で表面処理銅箔が水平な状態となるよう調整するものとする。
なお、断面SEM写真を撮影するための観察試料は、表面処理銅箔をそのままの状態で用いてもよいし、必要に応じて観察面を樹脂埋めしたものを用いてもよい。
First, the surface-treated copper foil is cut perpendicular to the roughened surface, and the cross section is precision-polished using an ion milling device. The processed cross section is secondary with a magnification of 10,000 times at an SEM acceleration voltage of 3 kV. Observe the electron image. During SEM observation, the surface-treated copper foil is fixed horizontally on a smooth support so that the surface-treated copper foil does not warp or sag, and the surface-treated copper foil is fixed in the cross-sectional SEM photograph. The foil shall be adjusted to be horizontal.
As the observation sample for taking a cross-sectional SEM photograph, the surface-treated copper foil may be used as it is, or the observation surface may be filled with resin if necessary.

さらに、粗化面における粗化粒子の寸法の計測は、上記SEM観察で得られたSEM写真を画像解析することにより行う。図2に画像解析の手順の一例を示す。まず、図2(a)の様な倍率1万倍の断面SEM写真を得る。次にこの断面SEM写真を画像処理して、図2(b)の様な断面形状の輪郭線を抽出する。そして、最終的に、図2(c)に示すような、同一加工断面における断面形状の輪郭線のみを抽出する。なお、このような画像処理は、一般的な画像編集ソフトウェアである「Photoshop」、「imageJ」、「Real World Paint」等の公知の処理ソフトにより行うことができる。具体的には後述の実施例にて説明する。 Further, the size of the roughened particles on the roughened surface is measured by image analysis of the SEM photograph obtained by the above SEM observation. FIG. 2 shows an example of the image analysis procedure. First, a cross-sectional SEM photograph having a magnification of 10,000 times as shown in FIG. 2A is obtained. Next, this cross-sectional SEM photograph is image-processed to extract a contour line having a cross-sectional shape as shown in FIG. 2 (b). Finally, as shown in FIG. 2C, only the contour line of the cross-sectional shape in the same processed cross section is extracted. It should be noted that such image processing can be performed by known processing software such as "Photoshop", "imageJ", and "Real World Paint", which are general image editing software. Specifically, it will be described in Examples described later.

上記のような画像処理は、表面処理銅箔の断面SEM写真から、最表面の粗化形状を抽出するために行う。そのため、銅箔の表面側に樹脂埋め加工を施した試験片の断面または樹脂基材と張り合わせた回路基板の断面の観察の場合には、以上の処理は必要ない。 The above image processing is performed to extract the roughened shape of the outermost surface from the cross-sectional SEM photograph of the surface-treated copper foil. Therefore, the above processing is not required when observing the cross section of the test piece in which the surface side of the copper foil is resin-filled or the cross section of the circuit board bonded to the resin base material.

次に、上記抽出した断面形状の輪郭線、図2(c)に基づき、粗化粒子を特定し、各種寸法の計測を行う。なお、このような計測は、一般的な画像計測ソフトウェアである「WinROOF」、「Photo Ruler」等の公知の処理ソフトにより行うことができる。具体的には後述の実施例にて説明する。以下、最も単純な粗化粒子の計測方法の一例を図3に示す。 Next, the roughened particles are specified based on the extracted outline of the cross-sectional shape and FIG. 2C, and various dimensions are measured. It should be noted that such measurement can be performed by known processing software such as "WinROOF" and "Photo Ruler", which are general image measurement software. Specifically, it will be described in Examples described later. Hereinafter, an example of the simplest method for measuring coarsened particles is shown in FIG.

始めに、図3(a)の様に、輪郭線上にある計測しようとする凸部(粗化粒子)について、粒子の成長方向に、凸部の頂点Vを通る線Lを引く。次に、図3(b)の様に、この線Lに垂直に交わる上下2辺をもつ長方形(正方形を含む)Sqを描く。この長方形Sqは、上辺が頂点Vと交わり、下辺のいずれか一方の角が、凸部の根元のうち頂点から遠い方と交わる(この角を「R1」とする)。さらに長方形Sqの下辺のもう一方の角(この角を「R2」とする)は、上辺方向から線Lと平行に伸びる一辺と下辺の直交点である。ただし、該一辺は凸部の根元のもう一方(この点を「R2’」とする)を通過するように引く。そして、図3(c)に示すように、このような長方形Sqの辺のうち、線Lと平行な一辺の寸法を粗化粒子の粒子高さ(h)とし、線Lと垂直な一辺の寸法を粗化粒子の粒子幅(w)とする。なお、以下の特殊な例を除き、長方形Sqを描いて計測した全ての凸部を、それぞれ一粗化粒子とみなす。 First, as shown in FIG. 3A, for the convex portion (roughened particles) to be measured on the contour line, a line L passing through the apex V of the convex portion is drawn in the growth direction of the particles. Next, as shown in FIG. 3B, a rectangle (including a square) Sq having two upper and lower sides perpendicularly intersecting the line L is drawn. In this rectangle Sq, the upper side intersects the apex V, and one of the corners of the lower side intersects the root of the convex portion far from the apex (this angle is referred to as "R1"). Further, the other corner of the lower side of the rectangle Sq (this corner is referred to as "R2") is an orthogonal point between one side extending parallel to the line L from the upper side direction and the lower side. However, the one side is drawn so as to pass through the other side of the base of the convex portion (this point is referred to as "R2'"). Then, as shown in FIG. 3C, of the sides of such a rectangle Sq, the dimension of one side parallel to the line L is defined as the particle height (h) of the coarsened particles, and the side perpendicular to the line L. Let the dimension be the particle width (w) of the roughened particles. In addition, except for the following special example, all the convex portions measured by drawing the rectangle Sq are regarded as one roughened particles.

なお、銅箔の表面側に樹脂埋め加工を施した試験片の断面、又は樹脂基材と張り合わせた回路基板の断面を観察する場合、輪郭線の抽出は行わずそのまま断面観察できるが、この場合、切断面よりも奥に斜めに存在している粗化粒子が、部分的に切れて観察断面に映り込む場合がある。このような粗化粒子は、観察断面において、表面処理銅箔から浮いているように見えるが、このような粗化粒子については計測対象としない。 When observing the cross section of the test piece in which the surface side of the copper foil is resin-filled or the cross section of the circuit board bonded to the resin base material, the cross section can be observed as it is without extracting the contour line. , The roughened particles existing diagonally behind the cut surface may be partially cut and reflected in the observation cross section. Such roughened particles appear to float from the surface-treated copper foil in the observed cross section, but such roughened particles are not measured.

更に、粗化粒子として計測しない例と、特殊な形状を有する粗化粒子の計測方法について、必要に応じて図4を参照しながら説明する。
まず、特に図示しないが、上記基準で計測される凸部のうち、粒子高さ(h)が0.2μm未満のものは、本発明で注目する伝送特性や密着性には影響を及ぼさず、また正確な測定も困難であるため、計測対象とはせず、この場合は本発明の「粗化粒子」には含めないものとする。
Further, an example of not measuring as roughened particles and a method of measuring roughened particles having a special shape will be described with reference to FIG. 4 as necessary.
First, although not particularly shown, among the convex portions measured by the above criteria, those having a particle height (h) of less than 0.2 μm do not affect the transmission characteristics and adhesions of interest in the present invention. In addition, since accurate measurement is difficult, it is not included in the measurement target, and in this case, it is not included in the "roughened particles" of the present invention.

また、図4(a)に示されるように、上記基準で計測される凸部のうち、粒子幅(w)に対する粒子高さ(h)の比(h/w)が0.40未満となるものも、本発明で注目する伝送特性や密着性には影響を及ぼさないため、観察対象とはせず、本発明の「粗化粒子」には含めないものとする。 Further, as shown in FIG. 4A, the ratio (h / w) of the particle height (h) to the particle width (w) is less than 0.40 among the convex portions measured by the above criteria. Since the particles do not affect the transmission characteristics and adhesions of interest in the present invention, they are not included in the observation target and are not included in the "roughened particles" of the present invention.

また、図4(b)は、頂点が2つ以上ある凸部の計測例である。この場合は、図4(b)に示されるとおり、上述の定義に基づき各頂点ごとに一粒子とみなして計測すればよい。 Further, FIG. 4B is a measurement example of a convex portion having two or more vertices. In this case, as shown in FIG. 4B, each vertex may be regarded as one particle and measured based on the above definition.

また、図4(c)は、根元付近が2段以上になっている凸部の計測例である。この場合は、根元の判定については、本発明で注目する伝送特性や密着性が、凸部のどの部分まで影響しているか、という観点で判断する。すなわち、凸部の根元のうち頂点から遠い方と交わる角R1については、根元の最も下の段の位置とする。またこの場合は、粒子の成長方向は、粒子全体として判断する。 Further, FIG. 4C is a measurement example of a convex portion having two or more steps near the root. In this case, the root is determined from the viewpoint of to what part of the convex portion the transmission characteristics and adhesions of interest in the present invention affect. That is, the angle R1 that intersects the root of the convex portion that intersects with the one farther from the apex is set to the position of the lowest step of the root. In this case, the growth direction of the particles is determined as the whole particles.

また、図4(d)は、図4(a)のような、寸法比(h/w)が0.40未満の比較的根元が曖昧な凸部の上に、さらに別の凸部がある有る場合の計測例である。この場合は、曖昧な根元は計測対象とはせず、区別できる根元をもつ凸部に着目し、上記定義に基づき計測すればよい。そもそも曖昧な根元をもつなだらかな凸部は、本発明で注目する伝送特性や密着性には影響を及ぼさないためである。 Further, in FIG. 4 (d), there is yet another convex portion on the convex portion having a relatively ambiguous root with a dimensional ratio (h / w) of less than 0.40 as shown in FIG. 4 (a). This is a measurement example when there is. In this case, the ambiguous root is not a measurement target, and the convex portion having a distinguishable root may be focused on and measured based on the above definition. This is because the gentle convex portion having an ambiguous root does not affect the transmission characteristics and adhesions of interest in the present invention.

また、上記以外の形状を有する粗化粒子については、本発明で注目する伝送特性や密着性への効果を考慮して、上述の基準に準じて適宜、粒子高さ(h)及び粒子幅(w)を計測する。 Further, for the roughened particles having a shape other than the above, the particle height (h) and the particle width (h) and the particle width ( w) is measured.

そして、上記のようにして計測された粗化粒子の粒子高さ(h)及び粒子幅(w)、並びに粗化粒子の個数に基づき、観察視野の幅方向75μmの領域における、粒子高さ(h)、粒子幅(w)及び粒子幅(w)に対する粒子高さ(h)の比(h/w)の各平均値、並びに粗化粒子の線密度(d)をそれぞれ算出する。 Then, based on the particle height (h) and particle width (w) of the roughened particles measured as described above, and the number of the roughened particles, the particle height in the region of 75 μm in the width direction of the observation field ( h), the average value of the ratio (h / w) of the particle height (h) to the particle width (w) and the particle width (w), and the linear density (d) of the roughened particles are calculated.

更に、観察視野の幅方向75μmの領域において観察された粗化粒子のうち、下記要件(I)〜(IV)を満たす粗化粒子については、特定粗化粒子(P)として認定し、その個数を計測する。
・要件(I):粗化粒子の粒子高さ(h)が1.5〜3.5μmである。
・要件(II):粗化粒子の粒子幅(w)に対する前記粒子高さ(h)の比(h/w)が2.5〜15である。
・要件(III):粗化粒子が有する節の数が10〜25個である。
・要件(IV):粗化粒子と、該粗化粒子に最も近接する粒子高さ1.5μm以上の他の粗化粒子との、最短根元間距離が0.7〜10.0μmである。
Further, among the roughened particles observed in the region of 75 μm in the width direction of the observation field of view, the roughened particles satisfying the following requirements (I) to (IV) are certified as specific roughened particles (P), and the number thereof. To measure.
-Requirement (I): The particle height (h) of the roughened particles is 1.5 to 3.5 μm.
-Requirement (II): The ratio (h / w) of the particle height (h) to the particle width (w) of the roughened particles is 2.5 to 15.
-Requirement (III): The number of nodes of the roughened particles is 10 to 25.
-Requirement (IV): The shortest root-to-root distance between the roughened particles and other roughened particles having a particle height of 1.5 μm or more closest to the roughened particles is 0.7 to 10.0 μm.

以下、特定粗化粒子(P)の認定方法について、詳しく説明する。
まず、観察視野の幅方向75μmの領域において観察された粗化粒子のうち、上記要件(I)及び(II)を満たしている粗化粒子を、粗化粒子(p)として抽出する。このような粗化粒子(p)は、粉落ちせず、密着性の向上に寄与する。
Hereinafter, the method for certifying the specified roughened particles (P) will be described in detail.
First, among the roughened particles observed in the region of 75 μm in the width direction of the observation field of view, the roughened particles satisfying the above requirements (I) and (II) are extracted as the roughened particles (p). Such roughened particles (p) do not fall off and contribute to the improvement of adhesion.

次に、上記粗化粒子(p)のうち、上記要件(III)を満たしている粗化粒子を、粗化粒子(p’)として抽出する。このような粗化粒子(p’)は、アンカー効果がより効果的に働くため、粒子高さ(h)や粒子高さと粒子幅の比(w)による効果だけでは表現しきれないピール強度の向上をもたらす。
以下、図5を参照しながら、要件(III)で規定する、粗化粒子が有する節(以下、単に「粗化粒子節」ということがある。)の数について、その計測方法を説明する。
まず、図5(a)に示すように、計測対象とする粗化粒子(p)に対し、上述の方法に従い、頂点V、線L、点R1、点R2、点R2’を認定する。次に、図5(b)に示すように、計測対象とする粗化粒子(p)の線Lに垂直な直線k、k、・・・、kを、根元R2’を通る直線kから0.05μm間隔で、頂点Vの方向に、それぞれ引いていく。更に、次に、図5(c)に示すように、直線k、k、・・・、kのそれぞれについて、粗化粒子(p)の輪郭線で囲まれた領域との共通部分を特定し、該共通部分の寸法t、t、・・・、tを計測する。なお、寸法t、t、・・・、tは、1本の連続した線分の寸法である必要はなく、例えばk29のように、直線k29との共通部分が2か所以上ある場合は、それら2つ以上の線分の和を寸法t29として計測する。そして、計測した各寸法tに基づき、下記式(i)を満たすmを求め、mの個数を、粗化粒子(p)の粗化粒子節の数として求める。
(t−tm−1)×(tm+1−t)<0(m=2、3、・・・、n−1である)・・・(i)
上記粗化粒子(p)のうち、粗化粒子節の数が10〜25個である粗化粒子を、粗化粒子(p’)として抽出する。
Next, among the roughened particles (p), the roughened particles satisfying the above requirement (III) are extracted as the roughened particles (p'). Since the anchor effect of such roughened particles (p') works more effectively, the peel strength cannot be expressed only by the effect of the particle height (h) and the ratio of the particle height to the particle width (w). Bring improvement.
Hereinafter, a method for measuring the number of nodes (hereinafter, may be simply referred to as “roughened particle nodes”) of the roughened particles specified in the requirement (III) will be described with reference to FIG.
First, as shown in FIG. 5A, the apex V, the line L, the point R1, the point R2, and the point R2'are identified for the coarsened particles (p) to be measured according to the above method. Next, as shown in FIG. 5 (b), straight lines k 1 , k 2 , ..., K n perpendicular to the line L of the roughened particle (p) to be measured are straight lines passing through the root R2'. Pull in the direction of the apex V at intervals of 0.05 μm from k 1 . Next, as shown in FIG. 5 (c), each of the straight lines k 1 , k 2 , ..., K n has an intersection with the region surrounded by the contour line of the roughened particles (p). Is specified, and the dimensions t 1 , t 2 , ..., T n of the common portion are measured. The dimensions t 1 , t 2 , ..., T n need not be the dimensions of one continuous line segment, and there are two intersections with the straight line k 29 , for example, k 29. If there is more than that, the sum of these two or more line segments is measured as the dimension t 29 . Then, based on each measured dimension t n , m satisfying the following formula (i) is obtained, and the number of m is obtained as the number of roughened particle nodes of the roughened particles (p).
( Tm −t m-1 ) × (t m + 1 −t m ) <0 (m = 2, 3, ..., n-1) ... (i)
Among the roughened particles (p), the roughened particles having 10 to 25 roughened particle nodes are extracted as the roughened particles (p').

更に、上記粗化粒子(p’)のうち、上記要件(IV)を満たしている粗化粒子を、特定粗化粒子(P)として認定する。
以下、図6を参照しながら、要件(IV)で規定する、最も近接する粒子高さ1.5μm以上の他の粗化粒子との、最短根元間距離について、その計測方法を説明する。
まず、図6に示されるように、計測対象とする粗化粒子(p’)の左側に存在する粒子高さ1.5μm以上の粗化粒子のうち、最も近接する他の粗化粒子を粗化粒子(q1)、粗化粒子(p’)の右側に存在する粒子高さ1.5μm以上の粗化粒子のうち、最も近接する他の粗化粒子を粗化粒子(q2)として特定する。次に、粗化粒子(p’)の根元2点R1p’、R2’p’のいずれかと、粗化粒子(q1)の根元2点R1q1、R2’q1のいずれかを結んで出来る4種類の線分のうち、寸法が最小となる組み合わせの線分の寸法(図6の場合、R1p’−R2’q1の寸法)を、左側最短根元間距離(x1)として計測する。同様に、粗化粒子(p’)の根元2点R1p’、R2p’のいずれかと、粗化粒子(q2)の根元2点R1q2、R2’q2のいずれかを結んで出来る4種類の線分のうち、寸法が最小となる組み合わせの線分の寸法(図6の場合、R2’p’−R1q2の寸法)を、右側最短根元間距離(x2)として計測する。そして、x1とx2のうち短い方の寸法を、該粗化粒子(p’)に最も近接する粒子高さ1.5μm以上の他の粗化粒子との最短根元間距離(x)と認定する。但し、観察視野内に粗化粒子(q1)又は粗化粒子(q2)が存在しないときは、x1とx2のうち計測できた方の寸法を、最短根元間距離(x)とする。
なお、図6に示されるように、粗化粒子(p’)と粗化粒子(q1)との間、又は粗化粒子(p’)と粗化粒子(q2)との間には、粒子高さが1.5μm未満の他の粗化粒子が存在してもよい。
Further, among the roughened particles (p'), the roughened particles satisfying the above requirement (IV) are certified as specific roughened particles (P).
Hereinafter, with reference to FIG. 6, a method for measuring the shortest root-to-root distance with the closest coarsened particles having a particle height of 1.5 μm or more, which is defined in the requirement (IV), will be described.
First, as shown in FIG. 6, among the coarse particles having a particle height of 1.5 μm or more existing on the left side of the coarse particles (p') to be measured, the closest other roughened particles are coarsened. Among the roughened particles having a particle height of 1.5 μm or more existing on the right side of the chemicalized particles (q1) and the roughened particles (p'), the other roughened particles closest to each other are specified as the roughened particles (q2). .. Next, roughening particles (p ') roots 2 points R1 p', R2 and one of 'p', by connecting one of the root 2 points R1 q1, R2 'q1 of roughening particles (q1) 4 among types of line segments (in the case of FIG. 6, the dimensions of R1p'-R2 'q1) combination of line segments of dimensions dimensions is minimized and, measured as left shortest root distance (x1). Similarly, four types of line segments formed by connecting one of the two root points R1p'and R2p' of the roughened particle (p') and one of the two root points R1 q2 and R2' q2 of the roughened particle (q2). among min (in the case of FIG. 6, R2 'p' dimensions -R1 q2) a combination of line segments dimension size is minimized to be measured as the right shortest base distance (x2). Then, the shorter dimension of x1 and x2 is recognized as the shortest root-to-root distance (x) with other roughened particles having a particle height of 1.5 μm or more closest to the roughened particles (p'). .. However, when the coarsened particles (q1) or the roughened particles (q2) are not present in the observation field of view, the measurement dimension of x1 and x2 is defined as the shortest root-to-root distance (x).
As shown in FIG. 6, there are particles between the roughened particles (p') and the roughened particles (q1), or between the roughened particles (p') and the roughened particles (q2). Other coarse particles with a height of less than 1.5 μm may be present.

本発明では、上記粗化粒子(p’)のうち、最短根元間距離(x)が0.7〜10.0μmである粗化粒子を、特定粗化粒子(P)として認定する。
上記粗化粒子(p’)は、それ自身も密着性の向上に寄与し得るが、更にその近接距離(根元間距離で10.0μm以内)に粒子高さ1.5μm以上の他の粗化粒子が存在することで、更に密着性を向上できる。しかし、粒子高さ1.5μm以上の他の粗化粒子が、粗化粒子(p’)に対して近接し過ぎていると、銅張積層板を作製する際に、粗化粒子(p’)の周囲に樹脂基材の樹脂が十分に充填されないことにより、樹脂基材と銅箔間に隙間が生じる傾向がある。
したがって、上記要件(I)〜(III)を満たしている粗化粒子(p’)のうち、アンカー効果に特に優れ、且つ樹脂基材と銅箔の間に隙間が生じ難い、上記要件(IV)を満たしている粗化粒子を、本発明における特定粗化粒子(P)として認定する。
In the present invention, among the roughened particles (p'), the roughened particles having the shortest root-to-root distance (x) of 0.7 to 10.0 μm are recognized as specific roughened particles (P).
The roughened particles (p') themselves can contribute to the improvement of adhesion, but other coarsening particles having a particle height of 1.5 μm or more at a close distance (within 10.0 μm in the distance between roots). The presence of particles can further improve adhesion. However, if other roughened particles having a particle height of 1.5 μm or more are too close to the roughened particles (p'), the roughened particles (p') are produced when the copper-clad laminate is produced. ) Is not sufficiently filled with the resin of the resin base material, so that a gap tends to be formed between the resin base material and the copper foil.
Therefore, among the roughened particles (p') that satisfy the above requirements (I) to (III), the anchor effect is particularly excellent, and a gap is unlikely to occur between the resin base material and the copper foil, and the above requirement (IV). ) Satisfying the specified roughened particles (P) in the present invention.

なお、上記各種粗化粒子の認定及び計測は、輪郭線の判断となるため、異なる測定者により多少の誤差が生じ得る。しかし、このような誤差も、幅方向75μmの領域を観察し、多数の粗化粒子の測定結果を平均化することにより十分に最小化できる。 Since the identification and measurement of the various roughened particles are for determining the contour line, some errors may occur depending on different measurers. However, such an error can be sufficiently minimized by observing a region of 75 μm in the width direction and averaging the measurement results of a large number of coarsened particles.

具体的には、断面写真毎に、上記基準に基づき、粗化粒子の粒子高さ(h)及び粒子幅(w)を測定し、並びに観察視野の幅方向75μmのあたりに存在する粗化粒子(観察対象粒子)の個数及び特定粗化粒子(P)の個数を計測する。
断面写真の大きさにもよるが、例えば、断面写真1枚当たりの観察視野が、幅方向12.5μmである場合、任意の6箇所(断面写真6枚)の合計で、幅方向75μmの領域の観察結果とする。また、断面写真の大きさや数にもよるが、観察視野の合計が幅方向75μm以上である場合には、計測値を幅方向75μmあたりに換算した値を観察結果とする。
より具体的な測定方法や算出方法については後述の実施例にて説明する。
Specifically, the particle height (h) and particle width (w) of the roughened particles are measured for each cross-sectional photograph based on the above criteria, and the roughened particles existing around 75 μm in the width direction of the observation field. The number of (observation target particles) and the number of specific roughened particles (P) are measured.
Although it depends on the size of the cross-sectional photograph, for example, when the observation field of view per cross-sectional photograph is 12.5 μm in the width direction, the total of 6 arbitrary points (6 cross-sectional photographs) is an area of 75 μm in the width direction. It is the observation result of. Further, although it depends on the size and number of cross-sectional photographs, when the total observation field of view is 75 μm or more in the width direction, the value obtained by converting the measured value into about 75 μm in the width direction is used as the observation result.
A more specific measurement method and calculation method will be described in Examples described later.

以下、本発明の表面処理銅箔の粗化面における粗化粒子の特徴について、個別に説明する。 Hereinafter, the characteristics of the roughened particles on the roughened surface of the surface-treated copper foil of the present invention will be individually described.

粗化面において、粗化粒子の粒子高さ(h)の平均値は、0.8〜2.0μmであり、好ましくは0.8〜1.4μmであり、より好ましくは1.0〜1.4μmである。上記範囲とすることにより、優れた伝送特性、密着性、耐熱性及び基板耐湿信頼性を実現し得る。粗化粒子の粒子高さ(h)の平均値は、0.8μm未満であると密着性、耐熱性及び基板耐湿信頼性が低下する傾向があり、2.0μm超であると伝送特性が低下する傾向にある。 On the roughened surface, the average value of the particle height (h) of the roughened particles is 0.8 to 2.0 μm, preferably 0.8 to 1.4 μm, and more preferably 1.0 to 1. It is .4 μm. Within the above range, excellent transmission characteristics, adhesion, heat resistance, and substrate moisture resistance reliability can be realized. If the average value of the particle height (h) of the roughened particles is less than 0.8 μm, the adhesion, heat resistance and substrate moisture resistance reliability tend to decrease, and if it exceeds 2.0 μm, the transmission characteristics deteriorate. Tend to do.

また、粗化粒子の幅(w)の平均値は、好ましくは0.2〜1.0μmであり、より好ましくは0.2〜0.6μmであり、更に好ましくは0.3〜0.5μmである。特に、粗化粒子の幅(w)の平均値が0.5μm以下であることにより、耐熱性をさらに向上し得る。 The average value of the width (w) of the roughened particles is preferably 0.2 to 1.0 μm, more preferably 0.2 to 0.6 μm, and further preferably 0.3 to 0.5 μm. Is. In particular, when the average value of the width (w) of the roughened particles is 0.5 μm or less, the heat resistance can be further improved.

また、粗化粒子の粒子幅(w)に対する粒子高さ(h)の比(h/w)の平均値は、1.5〜4.5であり、好ましくは1.6〜4.0であり、より好ましくは2.0〜4.0であり、更に好ましくは2.4〜4.0である。上記範囲とすることにより、粉落ちがなく、優れた密着性、耐熱性及び基板耐湿信頼性を実現し得る。特に、比(h/w)の平均値を2.0以上とすることに密着性を更に向上できる。なお、比(h/w)の平均値は4.5超としても特に意味が無く、むしろ粉落ち不良を生ずる傾向にある。 The average value of the ratio (h / w) of the particle height (h) to the particle width (w) of the roughened particles is 1.5 to 4.5, preferably 1.6 to 4.0. Yes, more preferably 2.0 to 4.0, still more preferably 2.4 to 4.0. Within the above range, excellent adhesion, heat resistance, and substrate moisture resistance reliability can be realized without powder falling. In particular, the adhesion can be further improved by setting the average value of the ratio (h / w) to 2.0 or more. Even if the average value of the ratio (h / w) exceeds 4.5, it is meaningless, and rather tends to cause poor powder removal.

また、粗化面における、粗化粒子の線密度(d)は、好ましくは0.5〜2.5個/μmであり、より好ましくは0.8〜2.1個/μmであり、更に好ましくは1.0〜1.8個/μmである。特に粗化粒子の線密度(d)が0.8個/μm以上であることにより、より優れた密着性及び耐熱性を実現できる。また、粗化粒子の線密度(d)が2.1個/μm以下であることにより、より優れた伝送特性を実現できる。なお、粗化粒子の線密度(d)は、観察視野の幅方向75μmのあたりに存在する粗化粒子(観察対象粒子)の個数から算出される値であり、単位線領域(幅領域)あたりの粒子個数密度を意味する。 The linear density (d) of the roughened particles on the roughened surface is preferably 0.5 to 2.5 particles / μm, more preferably 0.8 to 2.1 particles / μm, and further. It is preferably 1.0 to 1.8 pieces / μm. In particular, when the linear density (d) of the roughened particles is 0.8 particles / μm or more, better adhesion and heat resistance can be realized. Further, when the linear density (d) of the roughened particles is 2.1 particles / μm or less, more excellent transmission characteristics can be realized. The linear density (d) of the roughened particles is a value calculated from the number of roughened particles (observation target particles) existing around 75 μm in the width direction of the observation field, and is per unit line region (width region). Means the particle number density of.

また、粗化面における、特定粗化粒子(P)の個数は、1〜60個であり、好ましくは3〜60個であり、より好ましくは3〜48個であり、更に好ましくは3〜36個である。上記範囲とすることにより、優れた伝送特性、耐熱性及び基板耐湿信頼性を実現し得る。特定粗化粒子(P)の個数が、0個であると耐熱性及び基板耐湿信頼性が低下する傾向があり、60個超であると伝送特性が低下する傾向にある。 The number of specific roughened particles (P) on the roughened surface is 1 to 60, preferably 3 to 60, more preferably 3 to 48, and even more preferably 3 to 36. It is an individual. Within the above range, excellent transmission characteristics, heat resistance, and substrate moisture resistance reliability can be realized. When the number of the specified roughened particles (P) is 0, the heat resistance and the moisture resistance reliability of the substrate tend to decrease, and when the number exceeds 60, the transmission characteristics tend to decrease.

ところで、従来、銅箔の表面形状を表すパラメータとしては、十点平均粗さRzjisを用いるのが一般的であったが、十点平均粗さRzjisでは、表面の二次元断面形状に対する高さ方向の情報しか含まれておらず、十分な評価が行えていなかった。これに対し、展開面積比(Sdr)には、表面の三次元の情報が含まれるため、より適切な特性評価が可能となる。 By the way, conventionally, as a parameter representing the surface shape of a copper foil, ten-point average roughness Rzjis has been generally used, but in ten-point average roughness Rzjis, the height direction with respect to the two-dimensional cross-sectional shape of the surface. Only the information of was included, and sufficient evaluation could not be performed. On the other hand, since the developed area ratio (Sdr) includes three-dimensional information on the surface, more appropriate characteristic evaluation becomes possible.

展開面積比(Sdr)とは、測定領域のサイズを持つ理想面を基準として、表面性状によって加わる面積の割合を意味しており、下記式(iii)で定義される。 The developed area ratio (Sdr) means the ratio of the area added according to the surface texture with reference to the ideal surface having the size of the measurement area, and is defined by the following formula (iii).

上記式(iii)中、x及びyは、平面座標であり、zは高さ方向の座標である。z(x,y)は、ある点の座標を示し、これを微分することで、その座標点における傾きとなる。また、Aは、測定領域の平面積である。 In the above equation (iii), x and y are plane coordinates, and z is the height direction coordinates. z (x, y) indicates the coordinates of a certain point, and by differentiating this, the slope at that coordinate point is obtained. Further, A is a flat area of the measurement area.

また、展開面積比(Sdr)は、例えば3次元白色干渉型顕微鏡、走査型電子顕微鏡(SEM)、電子線3次元粗さ解析装置等により、銅箔表面の凹凸差を測定、評価して、求めることができる。一般に、展開面積比(Sdr)は、表面粗さ(Sa)の変化に関わらず、表面性状の空間的な複雑性が増すと大きくなる傾向にある。
本発明では、粗化面において、多くの粗化粒子の平均情報として展開面積比(Sdr)を測定することにより、更に適切な特性評価が可能となる。
Further, the developed area ratio (Sdr) is measured and evaluated by measuring and evaluating the unevenness difference on the copper foil surface by, for example, a three-dimensional white interference type microscope, a scanning electron microscope (SEM), an electron beam three-dimensional roughness analyzer, or the like. Can be sought. In general, the developed area ratio (Sdr) tends to increase as the spatial complexity of the surface texture increases, regardless of the change in surface roughness (Sa).
In the present invention, by measuring the developed area ratio (Sdr) as the average information of many roughened particles on the roughened surface, more appropriate characteristic evaluation becomes possible.

本発明の表面処理銅箔は、粗化面において、3次元白色干渉型顕微鏡で測定した展開面積比(Sdr)が、好ましくは250〜400%であり、より好ましくは290〜390%であり、更に好ましくは300〜380%である。特に展開面積比(Sdr)が290%以上であることにより、より優れた密着性及び耐熱性を実現できる。また、粗化粒子の展開面積比(Sdr)が390%以下であることにより、より優れた伝送特性を実現できる。 In the surface-treated copper foil of the present invention, the developed area ratio (Sdr) measured by a three-dimensional white interference type microscope is preferably 250 to 400%, more preferably 290 to 390% on the roughened surface. More preferably, it is 300 to 380%. In particular, when the developed area ratio (Sdr) is 290% or more, more excellent adhesion and heat resistance can be realized. Further, when the developed area ratio (Sdr) of the roughened particles is 390% or less, more excellent transmission characteristics can be realized.

また、本発明の表面処理銅箔によれば、これをプリント配線板の導体回路に用いることにより、例えば1GHz以上の周波数の高周波信号を伝送した際の伝送損失を高度に抑制でき、かつ、高温、高湿下においても表面処理銅箔と樹脂基材との密着性を良好に維持でき、過酷条件における耐久性にも優れたプリント配線板を得ることができる。 Further, according to the surface-treated copper foil of the present invention, by using this in the conductor circuit of the printed wiring board, it is possible to highly suppress the transmission loss when transmitting a high frequency signal having a frequency of, for example, 1 GHz or more, and the temperature is high. It is possible to obtain a printed wiring board which can maintain good adhesion between the surface-treated copper foil and the resin base material even under high humidity and has excellent durability under harsh conditions.

<表面処理銅箔の製造方法>
次に、本発明の表面処理銅箔の好ましい製造方法について、その一例を説明する。本発明では、銅箔基体の表面に、粗化粒子を形成する粗化処理を行うことが好ましい。
<Manufacturing method of surface-treated copper foil>
Next, an example of a preferred method for producing the surface-treated copper foil of the present invention will be described. In the present invention, it is preferable to perform a roughening treatment for forming roughened particles on the surface of the copper foil substrate.

(銅箔基体)
銅箔基体としては、粗大な凹凸が存在しない平滑で光沢のある表面をもつ、電解銅箔や圧延銅箔を用いることが好ましい。中でも、生産性やコストの観点で電解銅箔を用いることが好ましく、特に、「両面光沢箔」と一般的に呼称されている両面が平滑な電解銅箔を用いることがより好ましい。
(Copper foil substrate)
As the copper foil substrate, it is preferable to use an electrolytic copper foil or a rolled copper foil having a smooth and glossy surface without coarse irregularities. Above all, it is preferable to use an electrolytic copper foil from the viewpoint of productivity and cost, and in particular, it is more preferable to use an electrolytic copper foil having smooth both sides, which is generally called "double-sided glossy foil".

電解銅箔において、平滑で光沢のある表面としては、例えば通常の電解銅箔ではS(シャイニー)面であり、また両面光沢箔では、S面及びM(マット)面の両面であるが、より平滑で光沢のある面としてはM面である。本発明では、いずれの電解銅箔を用いる場合も、より平滑で光沢のある面に後述する粗化処理を施すことが好ましい。 In the electrolytic copper foil, the smooth and glossy surface is, for example, the S (shiny) surface in the ordinary electrolytic copper foil, and both the S surface and the M (matte) surface in the double-sided glossy foil. The smooth and glossy surface is the M surface. In the present invention, when any electrolytic copper foil is used, it is preferable to perform a roughening treatment described later on a smoother and glossy surface.

ところで、電解銅箔において、上述のような平滑な表面にもわずかな凹凸は存在する。このような凹凸は電解銅箔を作製する際のカソード面の表面形状に由来する。通常、チタン等のカソード面は、バフ研磨により、平滑に保たれているが、わずかに研磨痕が残ってしまう。そのため、カソード面を析出面として形成されるS面は、カソード面の研磨痕が転写されたレプリカ形状となり、また、M面は、カソード面の研磨痕に追従した、あるいはその影響を受けた表面形状となる。このような電解銅箔のS面及びM面には、カソード面の研磨痕に由来するスジ状の凸部又は凹部が形成されている。しかし、S面及びM面のスジ状の凸部又は凹部は、本発明が形成しようとする粗化粒子の粒子サイズと比較すると、非常にマクロであり、スケールが異なる。したがって、このようなスジ状の凸部又は凹部は、粗化面のベースラインにうねりを与えるが、その上に形成される粗化粒子の形状には影響はない。したがって、上述の定義ではあえて説明していないが、本発明において粗化面のうねりのようなマクロな凹凸は、粗化粒子としての計測対象としないことはいうまでもない。 By the way, in the electrolytic copper foil, there are slight irregularities even on the smooth surface as described above. Such unevenness is derived from the surface shape of the cathode surface when the electrolytic copper foil is produced. Normally, the cathode surface of titanium or the like is kept smooth by buffing, but a slight polishing mark remains. Therefore, the S surface formed with the cathode surface as the precipitation surface has a replica shape to which the polishing marks on the cathode surface are transferred, and the M surface is a surface that follows or is affected by the polishing marks on the cathode surface. It becomes a shape. On the S and M surfaces of such an electrolytic copper foil, streak-shaped protrusions or recesses derived from polishing marks on the cathode surface are formed. However, the streaky protrusions or recesses on the S-plane and the M-plane are very macroscopic and have different scales when compared with the particle size of the roughened particles to be formed by the present invention. Therefore, such streaky protrusions or recesses give undulations to the baseline of the roughened surface, but do not affect the shape of the roughened particles formed on it. Therefore, although it is not intentionally explained in the above definition, it goes without saying that macro unevenness such as waviness of the roughened surface is not a measurement target as roughened particles in the present invention.

(粗化処理)
粗化処理は、例えば下記に示すような粗化めっき処理(1)を行うことが好ましい。また、必要に応じて固定めっき処理(2)を組み合せてもよく、粗化めっき処理(1)の後に、下記に示すような固定めっき処理(2)を行うことがより好ましい。
(Roughening process)
As the roughening treatment, for example, it is preferable to perform the roughening plating treatment (1) as shown below. Further, the fixed plating treatment (2) may be combined as needed, and it is more preferable to perform the fixed plating treatment (2) as shown below after the roughening plating treatment (1).

・粗化めっき処理(1)
粗化めっき処理(1)は、銅箔基体の少なくとも一方の面上に粗化粒子を形成する処理である。具体的には硫酸銅浴でめっき処理を行う。このような硫酸銅浴(粗化めっき液基本浴)には、粗化粒子の脱落、即ち「粉落ち」の防止を目的としたモリブデン(Mo)、砒素(As)、アンチモン(Sb)、ビスマス(Bi)、セレン(Se)、テルル(Te)、タングステン(W)等の従来から知られている添加剤の添加が可能である。本発明者は、鋭意研究を行った結果、下記の要因が表面処理銅箔の表面性状に影響を及ぼすことを見出し、精妙にそれらの条件を設定することで、粉落ちを抑制でき、伝送特性、密着性、耐熱性及び基板耐湿信頼性を高い水準で満足させることができることを発見した。
・ Rough plating treatment (1)
The roughening plating treatment (1) is a treatment for forming roughened particles on at least one surface of the copper foil substrate. Specifically, the plating treatment is performed in a copper sulfate bath. In such a copper sulfate bath (basic bath for roughened plating solution), molybdenum (Mo), arsenic (As), antimony (Sb), and bismuth are used for the purpose of preventing roughened particles from falling off, that is, "powder falling off". Conventionally known additives such as (Bi), selenium (Se), tellurium (Te), and tungsten (W) can be added. As a result of diligent research, the present inventor has found that the following factors affect the surface properties of surface-treated copper foil, and by setting these conditions precisely, it is possible to suppress powder falling and transmission characteristics. It was found that the adhesion, heat resistance and moisture resistance and reliability of the substrate can be satisfied at a high level.

まず、粗化めっき処理(1)の硫酸銅浴の銅濃度は、10g/L未満とすると粗化粒子の形状が過度に細くなる、すなわち比(h/w)の値が過度に大きくなってしまい、粉落ちが発生し易くなる傾向にある。また、めっき浴の銅濃度は30g/Lを超えると、結晶成長している粗化粒子の近傍に銅イオンが効率よく供給されてしまうため、成長中の粗化粒子がより多くの銅イオンを求めて遠くまで伸びようとする力、すなわち高さ方向に成長しようとする力が削がれてしまい、粗化粒子の高さ(h)、及び粗化粒子の粒子幅(w)に対する粒子高さ(h)の比(h/w)のそれぞれが小さくなる。また、めっき浴の銅濃度が高くなると、銅イオンの拡散が促進されることにより、粗化粒子が密に形成されてしまい、粗化粒子の線密度(d)が過度に大きくなる傾向もある。その結果、耐熱性が悪化する傾向がある。したがって、銅濃度は10〜30g/Lとすることが好ましい。 First, if the copper concentration of the copper sulfate bath in the rough plating treatment (1) is less than 10 g / L, the shape of the roughened particles becomes excessively thin, that is, the ratio (h / w) value becomes excessively large. Therefore, there is a tendency for powder to fall off easily. Further, when the copper concentration in the plating bath exceeds 30 g / L, copper ions are efficiently supplied in the vicinity of the roughened particles in which the crystals are growing, so that the growing roughened particles generate more copper ions. The force that seeks to extend far, that is, the force that tries to grow in the height direction, is removed, and the particle height relative to the height (h) of the roughened particles and the particle width (w) of the roughened particles. Each of the ratios (h / w) of (h) becomes smaller. Further, when the copper concentration in the plating bath is high, the diffusion of copper ions is promoted, so that the roughened particles are densely formed, and the linear density (d) of the roughened particles tends to be excessively high. .. As a result, heat resistance tends to deteriorate. Therefore, the copper concentration is preferably 10 to 30 g / L.

特に、本発明では、アノード電極として、1つの整流器と接続された、銅箔搬送方向の寸法が段階的に長くなる複数(例えば3個以上)のアノードを、銅箔搬送方向に並べた構造(以下「格子形状のアノード」という。)を採用することが望ましい。
このような格子形状のアノードを用いることにより、粗化処理めっき(1)の粗化処理過程において、アノードの面積が徐々に大きくなる構成となり、電流密度が徐々に小さくなりながら、周期的にめっき処理できるようになる。その結果、粗化めっきの核生成の起点が銅箔基体の表面のみならず、既に生成していた粗化粒子の側面にも生じ易くなるため、側面に複数の突起が形成され、所定の個数の粗化粒子節を有する粗化粒子を形成できる。
例えば、銅箔が通過する順に、アノード1(幅d、銅箔搬送方向の長さd、電流密度J)、アノード2(幅d、銅箔搬送方向の長さd、電流密度J)、アノード3(幅d、銅箔搬送方向の長さd、電流密度J3、)を設置したとする。このとき、各アノードの銅箔搬送方向の長さd、d及びdの比が、d:d:d=1:2:3であるとすると、各アノードの電流密度J、J及びJの比は、J:J:J=3:2:1である。各アノードの具体的な寸法は、実施例にあるような平均電流密度の大きさとなるように適宜調整すればよい。
なお、平均電流密度とは、銅箔搬送方向の寸法が異なる複数のアノードの電流密度の値を、アノードの数で平均化したものである。すなわち、上記例の装置構成の場合、平均電流密度は[(J+J+J)/3]となる。
In particular, in the present invention, as the anode electrode, a structure in which a plurality of (for example, three or more) anodes connected to one rectifier and whose dimensions in the copper foil transport direction are gradually lengthened are arranged in the copper foil transport direction (for example, three or more). Hereinafter, it is desirable to adopt "lattice-shaped anode").
By using such a grid-shaped anode, in the roughening treatment process of the roughening treatment plating (1), the area of the anode gradually increases, and the current density gradually decreases, and the plating is performed periodically. You will be able to process it. As a result, the starting point of nucleation of roughened plating is likely to occur not only on the surface of the copper foil substrate but also on the side surfaces of the roughened particles that have already been generated, so that a plurality of protrusions are formed on the side surfaces and a predetermined number of protrusions are formed. It is possible to form roughened particles having the roughened particle nodes of.
For example, anode 1 (width d 0 , length d 1 in the copper foil transport direction, current density J 1 ), anode 2 (width d 0 , length d 2 in the copper foil transport direction, current) in the order in which the copper foil passes. It is assumed that the density J 2 ) and the anode 3 (width d 0 , length d 3 in the copper foil transport direction, current density J 3, ) are installed. At this time, assuming that the ratio of the lengths d 1 , d 2 and d 3 of each anode in the copper foil transport direction is d 1 : d 2 : d 3 = 1: 2: 3, the current density J of each anode The ratio of 1 , J 2 and J 3 is J 1 : J 2 : J 3 = 3: 2: 1. The specific dimensions of each anode may be appropriately adjusted so as to have a large average current density as in the embodiment.
The average current density is obtained by averaging the current density values of a plurality of anodes having different dimensions in the copper foil transport direction by the number of anodes. That is, in the case of the device configuration of the above example, the average current density is [(J 1 + J 2 + J 3 ) / 3].

次に、粗化めっき処理(1)の電解条件等を説明する。
本発明において、めっき処理の方式は、例えば大量生産及び生産コストの観点で、ロール・ツー・ロール方式でのめっき処理が好ましい。
Next, the electrolytic conditions and the like of the rough plating treatment (1) will be described.
In the present invention, the plating treatment method is preferably a roll-to-roll method, for example, from the viewpoint of mass production and production cost.

また、平均電流密度(A/dm)と処理時間(秒)の積である電荷密度(C/dm)は、65C/dm未満とすると、本発明の求める十分な密着性を得ることが難しくなる。また、上記電荷密度は、220C/dmを超えると、粗化粒子が過度に成長し、本発明の求める良好な伝送特性を得ることが難しくなる。したがって、上記電荷密度は、65〜220C/dmとすることが好ましい。 Further, if the charge density (C / dm 2 ), which is the product of the average current density (A / dm 2 ) and the processing time (seconds), is less than 65 C / dm 2 , the sufficient adhesion required by the present invention can be obtained. Becomes difficult. Further, when the charge density exceeds 220 C / dm 2 , the roughened particles grow excessively, and it becomes difficult to obtain the good transmission characteristics required by the present invention. Therefore, the charge density is preferably 65 to 220 C / dm 2 .

・固定めっき処理(2)
固定めっき処理(2)は、上記粗化めっき処理(1)で表面処理をした銅箔基体に平滑なかぶせめっきを行う処理である。具体的には硫酸銅浴でめっき処理を行う。通常、この処理は、粗化粒子の脱落を防止するため、すなわち粗化粒子を固定化するために行なわれる。
めっき処理の方式は、例えば大量生産及び生産コストの観点で、ロール・ツー・ロール方式でのめっき処理が好ましい。
・ Fixed plating (2)
The fixed plating treatment (2) is a treatment for performing smooth covering plating on the copper foil substrate surface-treated in the roughening plating treatment (1). Specifically, the plating treatment is performed in a copper sulfate bath. Usually, this treatment is performed to prevent the coarsened particles from falling off, that is, to immobilize the roughened particles.
As the plating method, for example, from the viewpoint of mass production and production cost, a roll-to-roll method is preferable.

以下、粗化めっき処理用めっき液の組成及び電解条件の一例を示す。なお、下記条件は好ましい一例であり、本発明の効果を妨げない範囲で、必要に応じて添加剤の種類や量、電解条件を適宜変更、調整することができる。 The composition and electrolytic conditions of the plating solution for rough plating treatment are shown below. The following conditions are a preferable example, and the type and amount of the additive and the electrolytic conditions can be appropriately changed and adjusted as necessary within a range that does not interfere with the effects of the present invention.

<粗化めっき処理(1)の条件>
硫酸銅五水和物・・・銅(原子)換算で、10〜30g/L
硫酸・・・100〜250g/L
アノード:格子形状のアノード
処理速度・・・5〜15m/分
平均電流密度・・・20〜80A/dm
処理時間・・・1.0〜3.0秒
浴温・・・30〜50℃
<Conditions for rough plating (1)>
Copper sulfate pentahydrate: 10 to 30 g / L in terms of copper (atom)
Sulfuric acid: 100-250 g / L
Anode: Lattice-shaped anode Processing speed: 5 to 15 m / min Average current density: 20 to 80 A / dm 2
Treatment time: 1.0 to 3.0 seconds Bath temperature: 30 to 50 ° C

<固定めっき処理(2)の条件>
硫酸銅五水和物・・・銅(原子)換算で、50〜70g/L
硫酸・・・80〜160g/L
処理速度・・・5〜15m/分
電流密度・・・1〜5A/dm
処理時間・・・1.0〜5.0秒
浴温・・・50〜70℃
<Conditions for fixed plating (2)>
Copper sulfate pentahydrate: 50 to 70 g / L in terms of copper (atom)
Sulfuric acid: 80-160 g / L
Processing speed: 5 to 15 m / min Current density: 1 to 5 A / dm 2
Treatment time: 1.0 to 5.0 seconds Bath temperature: 50 to 70 ° C

さらに、本発明の表面処理銅箔は、銅箔基体の少なくとも一方の面に、粗化粒子の電析により形成される、所定の微細な凹凸表面形状をもつ粗化処理層を有し、さらに、該粗化処理層上に、直接又は、ニッケル(Ni)を含有する下地層、亜鉛(Zn)を含有する耐熱処理層及びクロム(Cr)を含有する防錆処理層等の中間層を介してシランカップリング剤層をさらに形成してもよい。なお、上記中間層及びシランカップリング剤層はその厚みが非常に薄いため、表面処理銅箔の粗化面における粗化粒子の粒子形状に影響を与えるものではない。表面処理銅箔の粗化面における粗化粒子の粒子形状は、該粗化面に対応する粗化処理層の表面における粗化粒子の粒子形状で実質的に決定される。 Further, the surface-treated copper foil of the present invention has a roughening-treated layer having a predetermined fine uneven surface shape formed by electrodeposition of roughened particles on at least one surface of the copper foil substrate, and further. On the roughening treatment layer, directly or through an intermediate layer such as a base layer containing nickel (Ni), a heat treatment treatment layer containing zinc (Zn), and a rust prevention treatment layer containing chromium (Cr). The silane coupling agent layer may be further formed. Since the thickness of the intermediate layer and the silane coupling agent layer is very thin, it does not affect the particle shape of the roughened particles on the roughened surface of the surface-treated copper foil. The particle shape of the roughened particles on the roughened surface of the surface-treated copper foil is substantially determined by the particle shape of the roughened particles on the surface of the roughened surface corresponding to the roughened surface.

また、シランカップリング剤層の形成方法としては、例えば、表面処理銅箔の前記粗化処理層の凹凸表面上に、直接又は中間層を介してシランカップリング剤溶液を塗布した後、風乾(自然乾燥)又は加熱乾燥して形成する方法が挙げられる。塗布されたカップリング剤溶液は、溶液中の水が蒸発すれば、シランカップリング剤層が形成されることで本発明の効果が十分に発揮される。50〜180℃で加熱乾燥すると、シランカップリング剤と銅箔の反応が促進される点で好適である。 Further, as a method of forming the silane coupling agent layer, for example, a silane coupling agent solution is applied directly or via an intermediate layer on the uneven surface of the roughened surface of the surface-treated copper foil, and then air-dried ( Examples thereof include a method of forming by natural drying) or heating and drying. When the water in the solution evaporates, the applied coupling agent solution forms a silane coupling agent layer, so that the effect of the present invention is fully exhibited. Heat drying at 50 to 180 ° C. is preferable in that the reaction between the silane coupling agent and the copper foil is promoted.

シランカップリング剤層は、エポキシ系シラン、アミノ系シラン、ビニル系シラン、メタクリル系シラン、アクリル系シラン、スチリル系シラン、ウレイド系シラン、メルカプト系シラン、スルフィド系シラン、イソシアネート系シランのいずれか1種以上を含有することが好ましい。 The silane coupling agent layer is any one of epoxy-based silane, amino-based silane, vinyl-based silane, methacrylic-based silane, acrylic-based silane, styryl-based silane, ureido-based silane, mercapto-based silane, sulfide-based silane, and isocyanate-based silane. It preferably contains more than a seed.

その他の実施形態として、粗化処理層とシランカップリング剤層との間に、Niを含有する下地層、Znを含有する耐熱処理層及びCrを含有する防錆処理層の中から選択される少なくとも1層の中間層を有することが好ましい。 As another embodiment, it is selected from a Ni-containing base layer, a Zn-containing heat-resistant treatment layer, and a Cr-containing rust preventive treatment layer between the roughening treatment layer and the silane coupling agent layer. It is preferable to have at least one intermediate layer.

Niを含有する下地層は、例えば銅箔基体や粗化処理層中の銅(Cu)が、樹脂基材側に拡散し銅害が発生して密着性が低下することがある場合には、粗化処理層とシランカップリング剤層との間に形成することが好ましい。Niを含有する下地層は、ニッケル(Ni)、ニッケル(Ni)−リン(P)、ニッケル(Ni)−亜鉛(Zn)の中から選択される少なくとも1種で形成することが好ましい。 In the base layer containing Ni, for example, when copper (Cu) in the copper foil substrate or the roughening treatment layer diffuses to the resin substrate side, copper damage may occur and the adhesion may decrease. It is preferably formed between the roughening treatment layer and the silane coupling agent layer. The Ni-containing base layer is preferably formed of at least one selected from nickel (Ni), nickel (Ni) -phosphorus (P), and nickel (Ni) -zinc (Zn).

Znを含有する耐熱処理層は、耐熱性をさらに向上させる必要がある場合に形成することが好ましい。Znを含有する耐熱処理層は、例えば亜鉛、又は亜鉛を含有する合金、即ち、亜鉛(Zn)−錫(Sn)、亜鉛(Zn)−ニッケル(Ni)、亜鉛(Zn)−コバルト(Co)、亜鉛(Zn)−銅(Cu)、亜鉛(Zn)−クロム(Cr)及び亜鉛(Zn)−バナジウム(V)の中から選択される少なくとも1種の亜鉛を含有する合金で形成することが好ましい。 The heat-resistant treatment layer containing Zn is preferably formed when it is necessary to further improve the heat resistance. The heat-resistant treatment layer containing Zn is, for example, zinc or an alloy containing zinc, that is, zinc (Zn) -tin (Sn), zinc (Zn) -nickel (Ni), zinc (Zn) -cobalt (Co). , Zinc (Zn) -Copper (Cu), Zinc (Zn) -Chrome (Cr) and Zinc (Zn) -Vanadium (V) can be formed with an alloy containing at least one zinc. preferable.

Crを含有する防錆処理層は、耐食性をさらに向上させる必要がある場合に形成することが好ましい。防錆処理層としては、例えばクロムめっきにより形成されるクロム層、クロメート処理により形成されるクロメート層が挙げられる。 The rust preventive treatment layer containing Cr is preferably formed when it is necessary to further improve the corrosion resistance. Examples of the rust preventive treatment layer include a chrome layer formed by chrome plating and a chromate layer formed by chromate treatment.

上記の下地層、耐熱処理層及び防錆処理層は、これらの三層の全てを形成する場合には、粗化処理層上に、この順序で形成するのが好ましく、また、用途や目的とする特性に応じて、いずれか一層又は二層のみを形成してもよい。 When all of these three layers are formed, the above-mentioned base layer, heat-resistant treatment layer, and rust-prevention treatment layer are preferably formed on the roughening treatment layer in this order, and the application and purpose. Either one layer or only two layers may be formed depending on the characteristics to be applied.

〔表面処理銅箔の作製〕
以下に、本発明の表面処理銅箔の作製方法をまとめる。
本発明では、以下の形成工程(S1)〜(S5)に従い、表面処理銅箔を作製することが好ましい。
(S1)粗化処理層の形成工程
銅箔基体上に、粗化粒子の電析により、微細な凹凸表面をもつ粗化処理層を形成する。
(S2)下地層の形成工程
粗化処理層上に、必要によりNiを含有する下地層を形成する。
(S3)耐熱処理層の形成工程
粗化処理層上又は下地層上に、必要によりZnを含有する耐熱処理層を形成する。
(S4)防錆処理層の形成工程
粗化処理層上、又は必要により粗化処理層上に形成した下地層及び/又は耐熱処理層上に、必要によりCrを含有する防錆処理層を形成する。
(S5)シランカップリング剤層の形成工程
粗化処理層上に、直接シランカップリング剤層を形成するか、又は下地層、耐熱処理層及び防錆処理層の少なくとも1層を形成した中間層を介してシランカップリング剤層を形成する。
[Preparation of surface-treated copper foil]
The method for producing the surface-treated copper foil of the present invention is summarized below.
In the present invention, it is preferable to prepare the surface-treated copper foil according to the following forming steps (S1) to (S5).
(S1) Step of Forming Roughening Treatment Layer A roughening treatment layer having a fine uneven surface is formed on a copper foil substrate by electrodeposition of roughened particles.
(S2) Substrate Formation Step A Ni-containing underlayer is formed on the roughening treatment layer, if necessary.
(S3) Step of Forming Heat-Resistant Treatment Layer A heat-resistant treatment layer containing Zn is formed on the roughening treatment layer or the base layer, if necessary.
(S4) Forming Step of Anti-corrosion Treatment Layer A rust-prevention treatment layer containing Cr is formed on the roughening treatment layer and / or the heat-resistant treatment layer formed on the roughening treatment layer if necessary. To do.
(S5) Step of Forming Silane Coupling Agent Layer An intermediate layer in which a silane coupling agent layer is directly formed on the roughened treatment layer, or at least one layer of a base layer, a heat resistant treatment layer and a rust prevention treatment layer is formed. A silane coupling agent layer is formed through.

<銅張積層板及びプリント配線板>
本発明の表面処理銅箔は、銅張積層板の製造に好適に用いられる。このような銅張積層板は、高密着性及び高周波伝送特性に優れるプリント配線板の製造に好適に用いられ、優れた効果を発揮する。特に、本発明の表面処理銅箔は、例えば1GHz以上、好ましくは10GHz〜40GHz帯の高周波帯域用プリント配線板として使用される場合に好適である。
<Copper laminated board and printed wiring board>
The surface-treated copper foil of the present invention is suitably used for producing a copper-clad laminate. Such a copper-clad laminate is suitably used for manufacturing a printed wiring board having excellent high adhesion and high-frequency transmission characteristics, and exhibits excellent effects. In particular, the surface-treated copper foil of the present invention is suitable when used as a printed wiring board for a high frequency band of, for example, 1 GHz or more, preferably 10 GHz to 40 GHz band.

また、銅張積層板は、本発明の表面処理銅箔を用いて、公知の方法により形成することができる。例えば、銅張積層板は、表面処理銅箔と樹脂基材(絶縁基板)とを、表面処理銅箔の粗化面(貼着面)と樹脂基材とが向かい合うように、積層貼着することにより製造される。樹脂基材としては、例えば、フレキシブル樹脂基板又はリジット樹脂基板等が挙げられる。 Further, the copper-clad laminate can be formed by a known method using the surface-treated copper foil of the present invention. For example, in a copper-clad laminate, a surface-treated copper foil and a resin base material (insulating substrate) are laminated and bonded so that the roughened surface (sticking surface) of the surface-treated copper foil and the resin base material face each other. Manufactured by Examples of the resin base material include a flexible resin substrate and a rigid resin substrate.

また、銅張積層板を製造する場合には、シランカップリング剤層を有する表面処理銅箔と、樹脂基材とを加熱プレスによって貼り合わせることにより製造すればよい。なお、樹脂基材上にシランカップリング剤を塗布し、シランカップリング剤が塗布された樹脂基材と、最表面に防錆処理層を有する表面処理銅箔とを加熱プレスによって貼り合わせることにより作製された銅張積層板も、本発明と同等の効果を有する。 Further, when a copper-clad laminate is manufactured, it may be manufactured by laminating a surface-treated copper foil having a silane coupling agent layer and a resin base material by a heating press. A silane coupling agent is applied onto the resin base material, and the resin base material coated with the silane coupling agent and the surface-treated copper foil having the rust preventive treatment layer on the outermost surface are bonded together by a heat press. The produced copper-clad laminate also has the same effect as that of the present invention.

また、プリント配線板は、上記銅張積層板を用いて、公知の方法により形成することができる。 Further, the printed wiring board can be formed by a known method using the copper-clad laminate.

以上、本発明の実施形態について説明したが、上記実施形態は本発明の一例に過ぎない。本発明は、本発明の概念及び特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。 Although the embodiment of the present invention has been described above, the above embodiment is only an example of the present invention. The present invention includes all aspects included in the concept of the present invention and the scope of claims, and can be variously modified within the scope of the present invention.

以下に、本発明を実施例に基づきさらに詳細に説明するが、以下は本発明の一例である。 Hereinafter, the present invention will be described in more detail based on examples, and the following is an example of the present invention.

(製造例:銅箔基体の準備)
粗化処理を施すための基材となる銅箔基体として、下記カソード及びアノードを用い、下記組成の硫酸銅電解液を使用して下記電解条件により、厚さ12μmである、ロール状の電解銅箔(両面光沢箔)を作製した。
(Manufacturing example: Preparation of copper foil substrate)
A roll-shaped electrolytic copper having a thickness of 12 μm under the following electrolytic conditions using a copper sulfate electrolytic solution having the following composition using the following cathode and anode as the copper foil substrate to be the base material for roughening treatment. A foil (double-sided glossy foil) was produced.

<カソード及びアノード>
カソード:#1000〜#2000のバフ研磨により粗さを調整されたチタン製の回転ドラム
アノード:寸法安定性陽極DSA(登録商標)
<電解液組成>
Cu :80g/L
SO :70g/L
塩素濃度 :25mg/L
(添加剤)
・3−メルカプト−1−プロパンスルホン酸ナトリウム :2mg/L
・ヒドロキシエチルセルロース :10mg/L
・低分子量膠(分子量3000) :50mg/L
<電解条件>
浴温 :55℃
電流密度 :45A/dm
<Cathode and anode>
Cathode: Titanium rotary drum whose roughness has been adjusted by buffing # 1000 to # 2000 Anode: Dimensional stability anode DSA (registered trademark)
<Electrolytic solution composition>
Cu: 80 g / L
H 2 SO 4 : 70 g / L
Chlorine concentration: 25 mg / L
(Additive)
-Sodium 3-mercapto-1-propanesulfonate: 2 mg / L
-Hydroxyethyl cellulose: 10 mg / L
-Low molecular weight glue (molecular weight 3000): 50 mg / L
<Electrolysis conditions>
Bath temperature: 55 ° C
Current density: 45A / dm 2

(実施例1)
実施例1では、以下の工程[1]〜[3]を行い、表面処理銅箔を得た。以下詳しく説明する。
(Example 1)
In Example 1, the following steps [1] to [3] were performed to obtain a surface-treated copper foil. This will be described in detail below.

[1]粗化処理層の形成
上記製造例にて作製した電解銅箔を銅箔基体とし、該銅箔基体のM面に、ロール・ツー・ロール方式で粗化めっき処理を施した。この粗化めっき処理は、2段階の電気めっき処理により行った。粗化めっき処理(1)は、下記の粗化めっき液基本浴組成を用い、銅濃度を下記表1記載の通りとし、かつ、処理速度、銅箔搬送方向の長さ比1:2:3の複数アノードを使用したか否か(格子形状のアノードの使用の有無)、浴温、平均電流密度、処理時間及び電荷密度を下記表1記載の通りとした。また、固定めっき処理(2)は、下記固定めっき液組成を用い、電流密度、処理速度、処理時間及び電荷密度を下記表1記載の通りとして行った。
[1] Formation of Roughening Treatment Layer The electrolytic copper foil produced in the above production example was used as a copper foil substrate, and the M surface of the copper foil substrate was roughened and plated by a roll-to-roll method. This roughening plating treatment was performed by a two-step electroplating treatment. In the rough plating treatment (1), the following rough plating solution basic bath composition is used, the copper concentration is as shown in Table 1 below, and the treatment speed and the length ratio in the copper foil transport direction are 1: 2: 3. Whether or not multiple anodes were used (whether or not a lattice-shaped anode was used), bath temperature, average current density, processing time, and charge density were as shown in Table 1 below. Further, in the fixed plating treatment (2), the following fixed plating solution composition was used, and the current density, treatment speed, treatment time, and charge density were as shown in Table 1 below.

<粗化めっき液基本浴組成>
SO :150g/L
<Basic bath composition of roughened plating solution>
H 2 SO 4 : 150 g / L

<固定めっき液組成、浴温>
Cu :60g/L
SO :120g/L
浴温 :60℃
<Fixed plating solution composition, bath temperature>
Cu: 60 g / L
H 2 SO 4 : 120 g / L
Bath temperature: 60 ° C

[2]金属処理層の形成
続いて、上記[1]で形成した粗化処理層の表面に、下記の条件で、Ni、Zn、Crの順に金属めっきを施して金属処理層(中間層)を形成した。
[2] Formation of metal-treated layer Next, the surface of the roughened-treated layer formed in [1] above is metal-plated in the order of Ni, Zn, and Cr under the following conditions to form a metal-treated layer (intermediate layer). Was formed.

<Niめっき条件>
Ni :40g/L
BO :5g/L
浴温 :20℃
pH :3.6
電流密度 :0.2A/dm
処理時間 :10秒
<Ni plating conditions>
Ni: 40g / L
H 3 BO 3 : 5 g / L
Bath temperature: 20 ° C
pH: 3.6
Current density: 0.2A / dm 2
Processing time: 10 seconds

<Znめっき条件>
Zn :2.5g/L
NaOH :40g/L
浴温 :20℃
電流密度 :0.3A/dm
処理時間 :5秒
<Zn plating conditions>
Zn: 2.5 g / L
NaOH: 40 g / L
Bath temperature: 20 ° C
Current density: 0.3A / dm 2
Processing time: 5 seconds

<Crめっき条件>
Cr :5g/L
浴温 :30℃
pH :2.2
電流密度 :5A/dm
処理時間 :5秒
<Cr plating conditions>
Cr: 5g / L
Bath temperature: 30 ° C
pH: 2.2
Current density: 5A / dm 2
Processing time: 5 seconds

[3]シランカップリング剤層の形成
最後に、上記[2]にて形成した金属処理層(特に、最表面のCrめっき層)の上に、濃度0.2質量%の3−グリシドキシプロピルトリメトキシシラン水溶液を塗布し、100℃で乾燥させ、シランカップリング剤層を形成した。
[3] Formation of silane coupling agent layer Finally, 3-glycidoxy having a concentration of 0.2% by mass is placed on the metal-treated layer (particularly, the outermost Cr plating layer) formed in [2] above. An aqueous solution of propyltrimethoxysilane was applied and dried at 100 ° C. to form a silane coupling agent layer.

(実施例2〜9及び比較例1〜6)
実施例2〜9及び比較例1〜6は、粗化処理層の形成工程[1]において、粗化めっき処理(1)及び固定めっき処理(2)の各条件を、上記表1記載の通りとした以外は、実施例1と同様の方法にて、表面処理銅箔を得た。
(Examples 2 to 9 and Comparative Examples 1 to 6)
In Examples 2 to 9 and Comparative Examples 1 to 6, the conditions of the roughening plating treatment (1) and the fixed plating treatment (2) in the roughening treatment layer forming step [1] are as shown in Table 1 above. A surface-treated copper foil was obtained in the same manner as in Example 1 except that.

[評価]
上記実施例及び比較例に係る表面処理銅箔について、下記に示す特性評価を行った。
各特性の評価条件は下記の通りであり、特に断らない限り、各測定は常温(20℃±5℃)にて行ったものである。結果を表2に示す。
[Evaluation]
The characteristics of the surface-treated copper foils according to the above Examples and Comparative Examples were evaluated as shown below.
The evaluation conditions for each characteristic are as follows, and unless otherwise specified, each measurement was performed at room temperature (20 ° C ± 5 ° C). The results are shown in Table 2.

[断面観察]
表面処理銅箔の断面観察は、以下手順ステップ(i)〜(iii)にて、画像解析により行った。
まず、(i)得られた表面処理銅箔から試験片を5mm角で切出し、表面処理銅箔の粗化面側から、粗化面に対して垂直に切断し、切断面をイオンミリング装置(株式会社日立ハイテクノロジーズ製、「IM4000」)を用いて、ステージモードC1(スイング角度:±15°、スイング速度:6往復/min)、加速電圧6kVの条件で、30分間精密研磨する。作製した測定用試料の表面に露出した表面処理銅箔の加工面を、走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製、「SU8020」)を用いて、加工面の垂直方向から加速電圧3kVにて1万倍の二次電子像を観察し、粗化面付近の断面写真(SEM画像、縦9.5μm×横12.5μm)を準備する。
[Cross section observation]
The cross-sectional observation of the surface-treated copper foil was carried out by image analysis in the following procedure steps (i) to (iii).
First, (i) a test piece is cut out from the obtained surface-treated copper foil at a size of 5 mm square, cut from the roughened surface side of the surface-treated copper foil perpendicular to the roughened surface, and the cut surface is cut by an ion milling apparatus (i). Using "IM4000" manufactured by Hitachi High-Technologies Corporation), precision polishing is performed for 30 minutes under the conditions of stage mode C1 (swing angle: ± 15 °, swing speed: 6 reciprocations / min) and acceleration voltage of 6 kV. Using a scanning electron microscope (“SU8020” manufactured by Hitachi High-Technologies Corporation), the processed surface of the surface-treated copper foil exposed on the surface of the prepared measurement sample is subjected to an acceleration voltage of 3 kV from the direction perpendicular to the processed surface. Observe the secondary electron image of 10,000 times, and prepare a cross-sectional photograph (SEM image, length 9.5 μm × width 12.5 μm) near the roughened surface.

次に、(ii)上記断面写真について、画像編集ソフトウェア(「Real World Paint」)を用いて、粗化粒子の輪郭を強調する画像処理を行い、断面形状の輪郭線を抽出し、最終的に同一加工断面における断面形状の輪郭線のみを抽出する。その後、(iii)画像計測ソフトウェア(Photo Ruler)を用いて、輪郭線における粗化粒子の粒子高さ(h)及び粒子幅(w)、並びに任意の観察視野に存在する粗化粒子(観察対象粒子)の個数を、それぞれ計測する。更に、上記の粗化粒子(p)に当てはまる粗化粒子に関しては、さらに粗化粒子節の個数と最短根元間距離を計測する。 Next, (ii) the cross-sectional photograph is subjected to image processing that emphasizes the contour of the roughened particles using image editing software (“Real World Paint”), the contour line of the cross-sectional shape is extracted, and finally. Only the contour line of the cross-sectional shape in the same processed cross section is extracted. Then, (iii) using image measurement software (PhotoRuler), the particle height (h) and particle width (w) of the coarsened particles in the contour line, and the coarsened particles existing in an arbitrary observation field (observation target). The number of particles) is measured respectively. Further, for the roughened particles that correspond to the above-mentioned roughened particles (p), the number of roughened particle nodes and the shortest distance between roots are further measured.

上記計測値に基づき、粗化粒子の粒子高さ(h)、粒子幅(w)及び粒子幅(w)に対する粒子高さ(h)の比(h/w)の各平均値、並びに、粗化粒子の線密度(d)及び特定粗化粒子(P)の個数を、それぞれ求める。 Based on the above measured values, the average value of the particle height (h), the particle width (w), and the ratio (h / w) of the particle height (h) to the particle width (w) of the roughened particles, and the coarseness. The linear density (d) of the chemical particles and the number of the specific roughened particles (P) are obtained respectively.

ここまでの解析を、同じ表面処理銅箔につき任意の断面6箇所、幅方向の合計で75μm分の視野で行う。そして、合計6枚の断面写真の各測定値に基づき、粗化粒子の粒子高さ(h)の平均値、粒子幅(w)の平均値、粒子幅(w)に対する粒子高さ(h)の比(h/w)の平均値、線密度(d)の各平均値を算出し、この各平均値を、観察対象とした表面処理銅箔の測定値とした。さらに、各断面写真で観察された特定粗化粒子(P)の個数を合計して、この値を、観察対象とした表面処理銅箔の測定値とした。各実施例及び比較例の表面処理銅箔の測定値を、表2に示す。 The analysis up to this point is performed for the same surface-treated copper foil at 6 arbitrary cross sections and a total field of view of 75 μm in the width direction. Then, based on each measured value of a total of 6 cross-sectional photographs, the average value of the particle height (h) of the roughened particles, the average value of the particle width (w), and the particle height (h) with respect to the particle width (w). The average value of the ratio (h / w) and the average value of the linear density (d) were calculated, and each of these average values was used as the measured value of the surface-treated copper foil as the observation target. Further, the number of the specified roughened particles (P) observed in each cross-sectional photograph was totaled, and this value was taken as the measured value of the surface-treated copper foil as the observation target. Table 2 shows the measured values of the surface-treated copper foils of each Example and Comparative Example.

[展開面積比(Sdr)]
展開面積比(Sdr)の測定は、白色光干渉型光学顕微鏡(Wyko ContourGT−K、BRUKER社製)を用いて、表面処理銅箔の粗化面において、表面形状測定し、更に形状解析することにより行った。
表面形状測定は、VSI測定方式で高密度CCDカメラを使用し、ズームレンズ倍率が1倍、対物レンズ倍率が50倍、測定領域が96.1μm×72.1μm、光源が白色光源、LateralSamplingが0.075μm、speedが1倍、Backscanが10μm、Lengthが10μm、Thresholdが3%の条件で行った。
更に、形状解析として、(1)Terms Removal(Cylinder and Tilt)、(2)DataRestore(Method:legacy、iterations :5、RestoreEdge:選択無し)、(3)フーリエ変換によるカットオフ周波数62.5mm−1の高周波パスガウシアンフィルタの順に、フィルタ処理を行った後、データ処理を行った。
なお、上記展開面積比(Sdr)の測定は、1つの表面処理銅箔につき、表面処理銅箔の粗化面の任意の10箇所で行い、求めた値(N=10)を平均して、その表面処理銅箔の展開面積比(Sdr)とした。
[Expanded area ratio (Sdr)]
The developed area ratio (Sdr) is measured by measuring the surface shape of the roughened surface of the surface-treated copper foil using a white light interference type optical microscope (WykoContourGT-K, manufactured by BRUKER), and further analyzing the shape. Was done by.
For surface shape measurement, a high-density CCD camera is used in the VSI measurement method, the zoom lens magnification is 1x, the objective lens magnification is 50x, the measurement area is 96.1 μm × 72.1 μm, the light source is a white light source, and Lateral Sample is 0. The measurement was performed under the conditions of 075 μm, 1 time speed, 10 μm Backscan, 10 μm Lens, and 3% Thrashold.
Further, as shape analysis, (1) Terms Removal (Cylinder and Tilt), (2) DataRestore (Metamode: legacy, iterations: 5, RestoreEdit: not selected), (3) Cutoff frequency by Fourier transform 62.5 mm -1. After filtering in the order of the high-frequency path Gaussian filter, data processing was performed.
The developed area ratio (Sdr) was measured at any 10 points on the roughened surface of the surface-treated copper foil for one surface-treated copper foil, and the obtained values (N = 10) were averaged. The developed area ratio (Sdr) of the surface-treated copper foil was used.

[粉落ちの評価]
まず、表面処理銅箔から試験片を、80mm×50mm角程度で切出し、その粗化面を上にして、表面が平坦なプラスチック製の板の上に固定した。次に、該粗化面の上に、JISP3801−1995にて規定される2種のろ紙(ADVANTEC社製)を重ね、更に該ろ紙上に、重さ250gの重りを載せた。このとき、ろ紙と重りの接触面は、直径30mmの円形であった。
次に、重りを載せたまま、ろ紙を水平方向に5秒で100mm引っ張った。その後、重りを外して、表面処理銅箔上のろ紙を垂直方向に静かに剥がして、ろ紙を回収した。
ろ紙を肉眼で確認し、銅粒子粉の付着が確認されなかった場合は粉落ちがなかった「無」と評価し、銅粒子粉の付着が確認された場合は粉落ちがあった「有」と評価した。
[Evaluation of powder drop]
First, a test piece was cut out from the surface-treated copper foil at a size of about 80 mm × 50 mm square, and fixed on a plastic plate having a flat surface with the roughened surface facing up. Next, two types of filter paper (manufactured by ADVANTEC) specified in JIS P3801-1995 were superposed on the roughened surface, and a weight having a weight of 250 g was further placed on the filter paper. At this time, the contact surface between the filter paper and the weight was circular with a diameter of 30 mm.
Next, the filter paper was pulled horizontally by 100 mm in 5 seconds with the weight on it. Then, the weight was removed, and the filter paper on the surface-treated copper foil was gently peeled off in the vertical direction to collect the filter paper.
The filter paper was checked with the naked eye, and if the adhesion of copper particle powder was not confirmed, it was evaluated as "no", and if the adhesion of copper particle powder was confirmed, it was evaluated as "yes". I evaluated it.

[伝送特性の評価]
伝送特性の評価として、高周波帯域での伝送損失を測定した。詳細を以下に説明する。
ポリフェニレンエーテル系低誘電率樹脂基材(メグトロン6、パナソニック株式会社製、厚さ60μm)と表面処理銅箔を張り合わせて伝送特性測定用の基板を作製した。該基板は構造をストリップライン構造とし、導体長さを400mm、導体厚さを18μm、導体幅を0.14mm、全体の厚さを0.39mmとし、特性インピーダンスが50Ωになる様に調整した。また、表面処理銅箔と樹脂基材との張り合わせは、粗化面が樹脂基材と向かい合うように表面処理銅箔を重ね、面圧3.1MPa、200℃の条件で2時間プレスすることにより実施した。
上記伝送特性測定用の基板について、ベクトルネットワークアナライザE8364C(KEYSIGHT TECHNOLOGIES社)を用いて、40GHzにおける伝送損失を測定した。
伝送損失の測定値は、絶対値が小さいほど伝送損失が少なく、伝送特性が良好であることを意味する。得られた測定値を指標にして、下記評価基準に基づき伝送特性を評価した。
A:40GHzにおける導体長さ400mmでの伝送損失の絶対値が32dB未満
B:40GHzにおける導体長さ400mmでの伝送損失の絶対値が32dB以上36dB以下
C:40GHzにおける導体長さ400mmでの伝送損失の絶対値が36dBより大きい
[Evaluation of transmission characteristics]
As an evaluation of the transmission characteristics, the transmission loss in the high frequency band was measured. Details will be described below.
A substrate for measuring transmission characteristics was prepared by laminating a polyphenylene ether-based low dielectric constant resin base material (Megtron 6, manufactured by Panasonic Corporation, thickness 60 μm) and a surface-treated copper foil. The structure of the substrate was a stripline structure, the conductor length was 400 mm, the conductor thickness was 18 μm, the conductor width was 0.14 mm, the total thickness was 0.39 mm, and the characteristic impedance was adjusted to 50 Ω. Further, the surface-treated copper foil and the resin base material are bonded by stacking the surface-treated copper foil so that the roughened surface faces the resin base material and pressing the surface-treated copper foil at a surface pressure of 3.1 MPa and 200 ° C. for 2 hours. Carried out.
Regarding the substrate for measuring the transmission characteristics, the transmission loss at 40 GHz was measured using a vector network analyzer E8364C (KEYSIGHT TECHNOLOGIES).
The measured value of the transmission loss means that the smaller the absolute value, the smaller the transmission loss and the better the transmission characteristics. Using the obtained measured values as an index, the transmission characteristics were evaluated based on the following evaluation criteria.
A: Absolute value of transmission loss at a conductor length of 400 mm at 40 GHz is less than 32 dB B: Absolute value of transmission loss at a conductor length of 400 mm at 40 GHz is 32 dB or more and 36 dB or less C: Transmission loss at a conductor length of 400 mm at 40 GHz Absolute value is greater than 36 dB

[密着性の評価]
密着性の評価として、JIS C 6481:1996に基づき、剥離試験を行った。詳細を以下に説明する。
表面処理銅箔の粗化面を、ポリフェニレンエーテル系低誘電率樹脂基材(メグトロン7、パナソニック株式会社製、厚さ60μm)を2枚重ねた片面に面圧3.5MPa、200℃の条件で2時間プレスすることにより貼り合わせて、銅張積層板を作製した。得られた銅張積層板の銅箔部分(表面処理銅箔)を10mm巾テープでマスキングした。この銅張積層板に対して塩化銅エッチングを行った後テープを除去し、10mm巾の回路配線板を作製した。株式会社東洋精機製作所製のテンシロンテスターを用いて、この回路配線板の10mm巾の回路配線部分(銅箔部分)を90度方向に50mm/分の速度で樹脂基材から剥離した際の剥離強度を測定した。得られた測定値を指標にして、下記評価基準に基づき密着性(常態密着性)を評価した。
<密着性の評価基準>
A:剥離強度が0.60kN/m以上
B:剥離強度が0.50kN/m以上0.60kN/m未満
C:剥離強度が0.50kN/m未満
[Evaluation of adhesion]
As an evaluation of adhesion, a peeling test was performed based on JIS C 6681: 1996. Details will be described below.
Surface-treated The roughened surface of the copper foil is made by stacking two polyphenylene ether-based low-dielectric-constant resin substrates (Megtron 7, manufactured by Panasonic Corporation, thickness 60 μm) on one side under the conditions of a surface pressure of 3.5 MPa and 200 ° C. A copper-clad laminate was prepared by laminating by pressing for 2 hours. The copper foil portion (surface-treated copper foil) of the obtained copper-clad laminate was masked with a 10 mm width tape. After performing copper chloride etching on this copper-clad laminate, the tape was removed to prepare a circuit wiring board having a width of 10 mm. Peeling strength when the 10 mm wide circuit wiring part (copper foil part) of this circuit wiring board is peeled from the resin substrate at a speed of 50 mm / min in the 90 degree direction using a Tensilon tester manufactured by Toyo Seiki Seisakusho Co., Ltd. Was measured. Adhesion (normal adhesion) was evaluated based on the following evaluation criteria using the obtained measured values as an index.
<Evaluation criteria for adhesion>
A: Peeling strength is 0.60 kN / m or more B: Peeling strength is 0.50 kN / m or more and less than 0.60 kN / m C: Peeling strength is less than 0.50 kN / m

[耐熱性の評価]
耐熱性の評価として、リフロー後の銅箔―樹脂基材界面のフクレの有無を評価した。詳細を以下に説明する。
まず、ポリフェニレンエーテル系低誘電率樹脂基材(メグトロン7、パナソニック株式会社製、厚さ60μm)を2枚重ねた両面に、それぞれ粗化面が樹脂基材と向かい合うように表面処理銅箔を重ね、面圧3.5MPa、200℃の条件で2時間プレスすることにより貼り合わせて、両面銅張積層板を作製した。
得られた銅張積層板を100mm×100mmのサイズで、3枚に切断し、これを試験片とした。
次に作製した試験片を、トップ温度260℃で、10秒間の加熱条件にて、リフロー炉に10回通した。
上記条件で加熱した後の試験片の銅箔側の表面を観察し、フクレの有無を調べた。表面からフクレが確認されたものはフクレの領域の中心部で切断し、断面をマイクロスコープで観察し、銅箔と樹脂基材との間に層間剥離があるかを確認した。層間剥離が認められた試験片については、銅箔―樹脂基材界面のフクレが生じたものと認定した。上記観察結果から、下記評価基準に基づき耐熱性を評価した。
<耐熱性の評価基準>
A:上記3枚の試験片のうち、銅箔―樹脂基材界面のフクレが1枚も生じなかった。
B:上記3枚の試験片のうち、1枚の試験片に銅箔―樹脂基材界面のフクレが生じた。
C:上記3枚の試験片のうち、2枚以上の試験片に銅箔―樹脂基材界面のフクレが生じた。
[Evaluation of heat resistance]
As an evaluation of heat resistance, the presence or absence of blister on the copper foil-resin base material interface after reflow was evaluated. Details will be described below.
First, surface-treated copper foil is laminated on both sides of two polyphenylene ether-based low-dielectric-constant resin base materials (Megtron 7, manufactured by Panasonic Corporation, thickness 60 μm) so that the roughened surfaces face the resin base material. , The surface pressure was 3.5 MPa and the pressure was 200 ° C. for 2 hours to bond them together to prepare a double-sided copper-clad laminate.
The obtained copper-clad laminate was cut into three pieces having a size of 100 mm × 100 mm, and this was used as a test piece.
Next, the prepared test piece was passed through a reflow furnace 10 times at a top temperature of 260 ° C. under heating conditions for 10 seconds.
The surface of the test piece on the copper foil side after heating under the above conditions was observed to check for the presence or absence of blisters. Those with blister confirmed from the surface were cut at the center of the blister region, and the cross section was observed with a microscope to confirm whether there was delamination between the copper foil and the resin substrate. For the test pieces in which delamination was observed, it was determined that blisters at the copper foil-resin base material interface had occurred. From the above observation results, the heat resistance was evaluated based on the following evaluation criteria.
<Evaluation criteria for heat resistance>
A: Of the above three test pieces, no blisters at the copper foil-resin base material interface were generated.
B: Of the above three test pieces, one of the test pieces had blister on the copper foil-resin base material interface.
C: Of the above three test pieces, two or more test pieces had blister on the copper foil-resin base material interface.

[基板耐湿信頼性の評価]
基板耐湿信頼性の評価として、PCT(Pressure Cooker Test)後、半田フロート後の樹脂基材―樹脂基材間のフクレの有無を評価した。詳細を以下に説明する。
まず、上記[耐熱性の評価]に記載の方法と同様の方法で両面銅張積層板を作製した。上記両面銅張積層板の両面の銅箔を、全面エッチングして除去し、エッチング後の両面に、ポリフェニレンエーテル系低誘電率樹脂基材(メグトロン7、パナソニック株式会社製、厚さ60μm)をそれぞれ1枚ずつ重ね、更に重ねた樹脂基材のそれぞれ表面に、粗化面が向かい合うように、表面処理銅箔をそれぞれ1枚ずつ重ね、面圧3.5MPa、200℃の条件で2時間プレスすることにより、樹脂基材同士及び樹脂基材と銅箔とを貼り合わせ、積層体を得た。更に、上記積層体の両面の銅箔を、全面エッチングして除去し、最終的に、樹脂基材が4層重なった樹脂基材積層体を得た。
上記樹脂基材積層体を、100mm×100mmのサイズで、3枚に切断し、これを試験片とした。
次に、作製した試験片を用いて、下記の条件でPCT(Pressure Cooker Test)を行い、取り出してから1時間以内に、以下の条件で半田フロート試験を行った。
PCTは、高加速度寿命試験HAST装置(PC−422R8、株式会社平山製作所製)を用いて、温度121℃、湿度100%RH、48時間の条件で行った。
また、半田フロート試験は、288℃に加熱した半田槽に試験片を10秒間浮かべた後、10秒室温に放置する、という動作を10回繰り返して行った。
半田フロート試験後の試験片の表面を観察し、フクレの有無を肉眼で判定した。観察結果から、下記評価基準に基づき基板耐湿信頼性を評価した。
<基板耐湿信頼性の評価基準>
A:上記3枚の試験片のうち、フクレが1枚も生じなかった。
B:上記3枚の試験片のうち、1枚の試験片にフクレが生じた。
C:上記3枚の試験片のうち、2枚以上の試験片にフクレが生じた。
[Evaluation of substrate moisture resistance reliability]
As an evaluation of the substrate moisture resistance reliability, the presence or absence of blisters between the resin base material and the resin base material after the PCT (Pressure Cooker Test) and the solder float was evaluated. Details will be described below.
First, a double-sided copper-clad laminate was produced by the same method as described in [Evaluation of heat resistance] above. The copper foil on both sides of the double-sided copper-clad laminate is removed by etching the entire surface, and a polyphenylene ether-based low dielectric constant resin base material (Megtron 7, manufactured by Panasonic Corporation, thickness 60 μm) is applied to both sides after etching. Stack one by one, and stack one surface-treated copper foil on each surface of the stacked resin base material so that the roughened surfaces face each other, and press for 2 hours under the conditions of surface pressure of 3.5 MPa and 200 ° C. As a result, the resin base materials and the resin base materials and the copper foil were bonded together to obtain a laminated body. Further, the copper foils on both sides of the laminated body were removed by etching the entire surface, and finally, a resin base material laminated body in which four layers of resin base materials were stacked was obtained.
The resin base material laminate was cut into three pieces having a size of 100 mm × 100 mm, and this was used as a test piece.
Next, using the prepared test piece, PCT (Pressure Cooker Test) was performed under the following conditions, and within 1 hour after taking out, a solder float test was performed under the following conditions.
The PCT was carried out using a high acceleration life test HAST device (PC-422R8, manufactured by Hirayama Seisakusho Co., Ltd.) under the conditions of a temperature of 121 ° C., a humidity of 100% RH, and 48 hours.
Further, in the solder float test, the operation of floating the test piece in a solder bath heated to 288 ° C. for 10 seconds and then leaving it at room temperature for 10 seconds was repeated 10 times.
The surface of the test piece after the solder float test was observed, and the presence or absence of blisters was visually determined. From the observation results, the moisture resistance and reliability of the substrate were evaluated based on the following evaluation criteria.
<Evaluation criteria for substrate moisture resistance reliability>
A: Of the above three test pieces, no blisters were generated.
B: Of the above three test pieces, one of the test pieces had blisters.
C: Of the above three test pieces, two or more test pieces had blisters.

[総合評価]
上記の粉落ち、伝送特性、密着性、耐熱性及び基板耐湿信頼性のすべてを総合し、下記評価基準に基づき総合評価を行った。なお、本実施例では、総合評価でS、A及びBを合格レベルとした。
<総合評価の評価基準>
S(最優):粉落ちがなく、伝送特性、密着性、耐熱性及び基板耐湿信頼性の全ての評価がA評価である。
A(優):粉落ちがなく、伝送特性、密着性、耐熱性及び基板耐湿信頼性の全ての評価でC評価がなく、且つこれらの評価のいずれか1つの評価でB評価である。
B(良):粉落ちがなく、伝送特性、密着性、耐熱性及び基板耐湿信頼性の全ての評価でC評価がなく、且つこれらの評価のいずれか2つ以上の評価でB評価がある。
C(不合格):粉落ちがあるか、伝送特性、密着性、耐熱性及び基板耐湿信頼性のいずれか1つ以上の評価でC評価がある。
[Comprehensive evaluation]
All of the above powder removal, transmission characteristics, adhesion, heat resistance, and substrate moisture resistance reliability were integrated, and a comprehensive evaluation was performed based on the following evaluation criteria. In this example, S, A and B were set as pass levels in the comprehensive evaluation.
<Evaluation criteria for comprehensive evaluation>
S (best): There is no powder falling off, and all evaluations of transmission characteristics, adhesion, heat resistance, and substrate moisture resistance reliability are A evaluations.
A (excellent): There is no powder falling off, there is no C evaluation in all the evaluations of transmission characteristics, adhesion, heat resistance and substrate moisture resistance reliability, and any one of these evaluations is B evaluation.
B (Good): There is no powder falling, there is no C evaluation in all evaluations of transmission characteristics, adhesion, heat resistance and substrate moisture resistance reliability, and there is a B evaluation in any two or more of these evaluations. ..
C (Failure): There is a C rating based on one or more evaluations of transmission characteristics, adhesion, heat resistance, and substrate moisture resistance reliability.

表2に示されるように、実施例1〜9の表面処理銅箔は、その断面をSEM観察したときに、粗化面は、幅方向75μmの領域において、粗化粒子の粒子高さ(h)の平均値が0.8〜2.0μmであり、粗化粒子の粒子幅(w)に対する粒子高さ(h)の比(h/w)の平均値が1.5〜4.5であり、特定粗化粒子(P)が1〜60個存在するように制御されているため、粉落ちがなく、特にプリント配線板の導体回路に用いる場合に優れた伝送特性、密着性、耐熱性及び基板耐湿信頼性を実現し得ることが確認された。 As shown in Table 2, in the surface-treated copper foils of Examples 1 to 9, when the cross section thereof was observed by SEM, the roughened surface was the particle height (h) of the roughened particles in the region of 75 μm in the width direction. ) Is 0.8 to 2.0 μm, and the ratio (h / w) of the particle height (h) to the particle width (w) of the roughened particles is 1.5 to 4.5. Yes, since it is controlled so that 1 to 60 specific roughened particles (P) are present, there is no powder falling off, and excellent transmission characteristics, adhesion, and heat resistance are particularly good when used in a conductor circuit of a printed wiring board. And it was confirmed that the moisture resistance and reliability of the substrate can be realized.

これに対し、比較例1〜6の表面処理銅箔は、粗化面において、幅方向75μmの領域における粗化粒子の粒子高さ(h)の平均値が0.8〜2.0μmである、粗化粒子の粒子幅(w)に対する粒子高さ(h)の比(h/w)の平均値が1.5〜4.5である、特定粗化粒子(P)が1〜60個存在する、のうち少なくとも一つを満たさないため、実施例1〜9の表面処理銅箔に比べて、伝送特性、密着性、耐熱性、基板耐湿信頼性及び粉落ちのいずれか1つ以上の評価で特性が劣っていることが確認された。 On the other hand, in the surface-treated copper foils of Comparative Examples 1 to 6, the average value of the particle heights (h) of the roughened particles in the region of 75 μm in the width direction is 0.8 to 2.0 μm on the roughened surface. , The average value of the ratio (h / w) of the particle height (h) to the particle width (w) of the roughened particles is 1.5 to 4.5, and 1 to 60 specific roughened particles (P). Since it does not satisfy at least one of the existing ones, it has one or more of transmission characteristics, adhesion, heat resistance, substrate moisture resistance reliability, and powder removal as compared with the surface-treated copper foils of Examples 1 to 9. It was confirmed that the characteristics were inferior in the evaluation.

Claims (5)

銅箔基体の少なくとも一方の面に、粗化粒子が形成されてなる粗化処理層を含む表面処理皮膜を有する表面処理銅箔であって、
前記表面処理銅箔の断面を、走査型電子顕微鏡(SEM)により観察するとき、前記表面処理皮膜の幅方向75μmの領域において、
前記粗化粒子の粒子高さ(h)の平均値が0.8〜2.0μmであり、
前記粗化粒子の粒子幅(w)に対する前記粒子高さ(h)の比(h/w)の平均値が1.5〜4.5であり、
前記粗化粒子のうち、下記要件(I)〜(IV)を満たす粗化粒子(P)が1〜60個存在する、表面処理銅箔。
・要件(I):粗化粒子の粒子高さ(h)が1.5〜3.5μmである。
・要件(II):粗化粒子の粒子幅(w)に対する前記粒子高さ(h)の比(h/w)が2.5〜15である。
・要件(III):粗化粒子が有する節の数が10〜25個である。
・要件(IV):粗化粒子と、該粗化粒子に最も近接する粒子高さ1.5μm以上の他の粗化粒子との、最短根元間距離が0.7〜10.0μmである。
A surface-treated copper foil having a surface-treated film containing a roughened-treated layer in which roughened particles are formed on at least one surface of the copper foil substrate.
When observing the cross section of the surface-treated copper foil with a scanning electron microscope (SEM), in a region of 75 μm in the width direction of the surface-treated film,
The average value of the particle height (h) of the roughened particles is 0.8 to 2.0 μm.
The average value of the ratio (h / w) of the particle height (h) to the particle width (w) of the roughened particles is 1.5 to 4.5.
A surface-treated copper foil in which 1 to 60 roughened particles (P) satisfying the following requirements (I) to (IV) are present among the roughened particles.
-Requirement (I): The particle height (h) of the roughened particles is 1.5 to 3.5 μm.
-Requirement (II): The ratio (h / w) of the particle height (h) to the particle width (w) of the roughened particles is 2.5 to 15.
-Requirement (III): The number of nodes of the roughened particles is 10 to 25.
-Requirement (IV): The shortest root-to-root distance between the roughened particles and other roughened particles having a particle height of 1.5 μm or more closest to the roughened particles is 0.7 to 10.0 μm.
前記粗化粒子の線密度(d)が、1.0〜1.8個/μmである、請求項1に記載の表面処理銅箔。 The surface-treated copper foil according to claim 1, wherein the linear density (d) of the roughened particles is 1.0 to 1.8 particles / μm. 前記表面処理皮膜の表面において、3次元白色干渉型顕微鏡で測定した展開面積比(Sdr)が300〜380%である、請求項1又は2に記載の表面処理銅箔。 The surface-treated copper foil according to claim 1 or 2, wherein the developed area ratio (Sdr) measured by a three-dimensional white interference type microscope on the surface of the surface-treated film is 300 to 380%. 請求項1〜3のいずれか1項に記載の表面処理銅箔を用いて形成してなる、銅張積層板。 A copper-clad laminate formed by using the surface-treated copper foil according to any one of claims 1 to 3. 請求項4に記載の銅張積層板を用いて形成してなる、プリント配線板。 A printed wiring board formed by using the copper-clad laminate according to claim 4.
JP2019059395A 2019-03-26 2019-03-26 Surface-treated copper foil, and copper-clad laminates and printed wiring boards using this Active JP6816193B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019059395A JP6816193B2 (en) 2019-03-26 2019-03-26 Surface-treated copper foil, and copper-clad laminates and printed wiring boards using this
CN202080023613.0A CN113795614B (en) 2019-03-26 2020-03-19 Surface-treated copper foil, copper-clad laminate using same, and printed wiring board
PCT/JP2020/012303 WO2020196265A1 (en) 2019-03-26 2020-03-19 Surface-treated copper foil, and copper-cladded laminate sheet and printed wiring board each using same
KR1020217029665A KR102706307B1 (ko) 2019-03-26 2020-03-19 표면 처리 동박, 그리고 이것을 이용한 동클래드 적층판 및 프린트 배선판
TW109109266A TWI742575B (en) 2019-03-26 2020-03-19 Surface-treated copper foil, and copper clad laminate and printed wiring board using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019059395A JP6816193B2 (en) 2019-03-26 2019-03-26 Surface-treated copper foil, and copper-clad laminates and printed wiring boards using this

Publications (2)

Publication Number Publication Date
JP2020158832A true JP2020158832A (en) 2020-10-01
JP6816193B2 JP6816193B2 (en) 2021-01-20

Family

ID=72609848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019059395A Active JP6816193B2 (en) 2019-03-26 2019-03-26 Surface-treated copper foil, and copper-clad laminates and printed wiring boards using this

Country Status (4)

Country Link
JP (1) JP6816193B2 (en)
CN (1) CN113795614B (en)
TW (1) TWI742575B (en)
WO (1) WO2020196265A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202912A1 (en) * 2021-03-26 2022-09-29 三菱マテリアル株式会社 Metal sheet material, layered body, insulated circuit board, and metal sheet material manufacturing method
WO2022210975A1 (en) * 2021-03-31 2022-10-06 古河電気工業株式会社 Ultraviolet absorptive sheet, metal film used in ultraviolet absorptive sheet and interior material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202302919A (en) * 2021-07-09 2023-01-16 日商Jx金屬股份有限公司 Surface-treated copper foil, copper-clad laminate plate, and printed wiring board
CN116745468A (en) * 2021-07-09 2023-09-12 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board
WO2023281775A1 (en) * 2021-07-09 2023-01-12 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board
WO2023281778A1 (en) * 2021-07-09 2023-01-12 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate board, and printed wiring board
TWI802226B (en) * 2021-07-09 2023-05-11 日商Jx金屬股份有限公司 Surface treated copper foil, copper clad laminate and printed wiring board

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158775A1 (en) * 2015-03-31 2016-10-06 三井金属鉱業株式会社 Roughened copper foil, copper foil provided with carrier, copper-clad laminated sheet, and printed wiring board
WO2018181726A1 (en) * 2017-03-30 2018-10-04 古河電気工業株式会社 Surface-treated copper foil, and copper-clad laminate and printed wiring board using same
WO2019021895A1 (en) * 2017-07-24 2019-01-31 古河電気工業株式会社 Surface-treated copper foil, and copper-clad laminate sheet and printed wiring board using same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043182A1 (en) * 2010-09-27 2012-04-05 Jx日鉱日石金属株式会社 Copper foil for printed wiring board, method for producing said copper foil, resin substrate for printed wiring board, and printed wiring board
JP6200042B2 (en) * 2015-08-06 2017-09-20 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
JP2018145519A (en) * 2017-03-03 2018-09-20 Jx金属株式会社 Surface-treated copper foil, copper foil with carrier, laminate, method of producing printed wiring board and method of producing electronic apparatus
JP7492808B2 (en) * 2017-03-31 2024-05-30 Jx金属株式会社 Surface-treated copper foil, surface-treated copper foil with resin layer, copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158775A1 (en) * 2015-03-31 2016-10-06 三井金属鉱業株式会社 Roughened copper foil, copper foil provided with carrier, copper-clad laminated sheet, and printed wiring board
WO2018181726A1 (en) * 2017-03-30 2018-10-04 古河電気工業株式会社 Surface-treated copper foil, and copper-clad laminate and printed wiring board using same
WO2019021895A1 (en) * 2017-07-24 2019-01-31 古河電気工業株式会社 Surface-treated copper foil, and copper-clad laminate sheet and printed wiring board using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202912A1 (en) * 2021-03-26 2022-09-29 三菱マテリアル株式会社 Metal sheet material, layered body, insulated circuit board, and metal sheet material manufacturing method
WO2022210975A1 (en) * 2021-03-31 2022-10-06 古河電気工業株式会社 Ultraviolet absorptive sheet, metal film used in ultraviolet absorptive sheet and interior material
JP2022157676A (en) * 2021-03-31 2022-10-14 古河電気工業株式会社 Ultraviolet ray absorbing sheet, and metallic foil and interior material used for ultraviolet ray absorbing sheet

Also Published As

Publication number Publication date
WO2020196265A1 (en) 2020-10-01
CN113795614B (en) 2024-03-26
TW202100812A (en) 2021-01-01
KR20210143761A (en) 2021-11-29
TWI742575B (en) 2021-10-11
JP6816193B2 (en) 2021-01-20
CN113795614A (en) 2021-12-14

Similar Documents

Publication Publication Date Title
JP6816193B2 (en) Surface-treated copper foil, and copper-clad laminates and printed wiring boards using this
JP6462961B2 (en) Surface treated copper foil and copper clad laminate
TWI630289B (en) Roughened copper foil, copper laminated board and printed circuit board
KR101853519B1 (en) Liquid crystal polymer-copper clad laminate and copper foil used for liquid crystal polymer-copper clad laminate
JP7019876B1 (en) Surface-treated copper foil for printed wiring boards, and copper-clad laminates and printed wiring boards for printed wiring boards using this
JP2020122189A (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
JP6550196B2 (en) Surface-treated copper foil, and copper-clad laminate and printed wiring board using the same
US11622445B2 (en) Surface-treated copper foil, manufacturing method thereof, copper foil laminate including the same, and printed wiring board including the same
JP2020122190A (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
JP2023103401A (en) Print circuit board and manufacturing method thereof
WO2022176648A1 (en) Surface-treated copper foil
TWI746910B (en) Surface-treated copper foil, and copper clad laminate and printed wiring board using it
TWI839903B (en) Surface-treated copper foil with heat resistance, and copper clad laminate and printed wiring board including the same
TWI804323B (en) Roughened copper foil, copper foil with carrier, copper foil laminate and printed wiring board
TWI808701B (en) Coarse treatment of copper foil, copper foil laminates and printed wiring boards
TWI808700B (en) Coarse treatment of copper foil, copper foil laminates and printed wiring boards
TWI805378B (en) Roughened copper foil, copper foil with carrier, copper foil laminate and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200717

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200717

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201223

R151 Written notification of patent or utility model registration

Ref document number: 6816193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350