JP2020139101A - Pigment for electrophotography and method for producing the same - Google Patents

Pigment for electrophotography and method for producing the same Download PDF

Info

Publication number
JP2020139101A
JP2020139101A JP2019037421A JP2019037421A JP2020139101A JP 2020139101 A JP2020139101 A JP 2020139101A JP 2019037421 A JP2019037421 A JP 2019037421A JP 2019037421 A JP2019037421 A JP 2019037421A JP 2020139101 A JP2020139101 A JP 2020139101A
Authority
JP
Japan
Prior art keywords
slurry
pigment
butyltrimethoxysilane
less
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019037421A
Other languages
Japanese (ja)
Other versions
JP7229814B2 (en
Inventor
浩二 神田
Koji Kanda
浩二 神田
晃彦 ▲高▼田
晃彦 ▲高▼田
Akihiko Takada
徹 熊谷
Toru Kumagai
徹 熊谷
曜平 日向
Yohei Hyuga
曜平 日向
ちひろ 灘
Chihiro Nada
ちひろ 灘
英二 貞永
Eiji Sadanaga
英二 貞永
浩昭 内田
Hiroaki Uchida
浩昭 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Titan Kogyo KK
Original Assignee
Titan Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Titan Kogyo KK filed Critical Titan Kogyo KK
Priority to JP2019037421A priority Critical patent/JP7229814B2/en
Publication of JP2020139101A publication Critical patent/JP2020139101A/en
Application granted granted Critical
Publication of JP7229814B2 publication Critical patent/JP7229814B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Compounds Of Iron (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

To provide a pigment that can be used as materials for an electrophotographic developer by a polymerization method, has a high degree of hydrophobicity, and causes only a small amount of generation of VOCs (volatile organic compounds), which have adverse effect on human bodies, when a developer is used.SOLUTION: A pigment has an alkyl silane compound layer on the surface of a magnetic material having ferrosoferric oxide as the main component. The alkyl silane compound layer comprises a hydrolysate of i-butyl trimethoxysilane of 8.5 g/kg or more to 40.0 g/kg or less on the basis of the weight of coating particles. The pigment has a degree of hydrophobicity of 575 g/kg or more to 800 g/kg or less.SELECTED DRAWING: None

Description

本発明は、四酸化三鉄を主成分とする磁性体の表面にi−ブチルトリメトキシシランの加水分解物を被覆した顔料に関する。より詳細には、疎水化度が大きく、かつ揮発性有機化合物(以下「VOC」と記す)発生量が小さいことを特徴とし、重合法による磁性一成分トナーをはじめとする電子写真の現像剤の材料として用いるのに適した疎水性磁性顔料に関する。 The present invention relates to a pigment in which the surface of a magnetic material containing triiron tetroxide as a main component is coated with a hydrolyzate of i-butyltrimethoxysilane. More specifically, it is characterized by a large degree of hydrophobicity and a small amount of volatile organic compounds (hereinafter referred to as "VOC") generated, and is used in electrophotographic developing agents such as magnetic one-component toners produced by a polymerization method. The present invention relates to a hydrophobic magnetic pigment suitable for use as a material.

近年、電子写真方式による複写機、プリンター、FAX、その他複合機等(以下、代表で「プリンタ−」と略記する)の機器の機能向上に伴い、使用する現像剤(以下、トナーとの表記も現像剤と同義)についても高い品質が要求されるようになっている。正確に、速く、大量に印刷が可能で、またコストとのバランスのとれたトナーが求められている。このため、画像品質の向上と製造コストの低減を目的として、従来の粉砕法トナーに代わり重合法トナーが用いられるようになった。特許文献1は、重合法トナーの製造方法を示す。四酸化三鉄を重合法トナーの材料として用いる場合は、元来親水性である表面を疎水性に改質し、疎水化度を高めることが重要となる。 In recent years, with the improvement of the functions of devices such as copiers, printers, fax machines, and other multifunction devices (hereinafter, abbreviated as "printer" as a representative) by electrophotographic method, the developer used (hereinafter, also referred to as toner) High quality is also required for (synonymous with developer). There is a demand for toner that can be printed accurately, quickly, in large quantities, and that is well-balanced with cost. Therefore, for the purpose of improving image quality and reducing manufacturing cost, polymerization method toner has come to be used instead of the conventional pulverization method toner. Patent Document 1 shows a method for producing a polymerization method toner. When triiron tetroxide is used as a material for a polymerization method toner, it is important to modify the originally hydrophilic surface to be hydrophobic to increase the degree of hydrophobicity.

換言すると、表面改質が十分ではなく、親水性の表面が多数残存していると、重合法トナーの製造過程において、四酸化三鉄を含む磁性顔料を樹脂モノマー中に分散させて水中に懸濁した際に顔料が水相に移行し、トナー母体粒子中での顔料の分散性が悪化する。またトナー母体粒子間で顔料の含有量に差が生じ、最悪の場合には顔料を全く含有しないトナー母体粒子が生成するなどの問題を生じる。 In other words, if the surface modification is not sufficient and a large number of hydrophilic surfaces remain, a magnetic pigment containing triiron tetroxide is dispersed in the resin monomer and suspended in water during the manufacturing process of the polymerization method toner. When it becomes turbid, the pigment shifts to the aqueous phase, and the dispersibility of the pigment in the toner matrix particles deteriorates. In addition, there is a difference in the pigment content between the toner matrix particles, and in the worst case, problems such as generation of toner matrix particles containing no pigment at all occur.

特許文献2は四酸化三鉄(マグネタイト)などの磁性酸化鉄粒子をn−デシルトリメトキシシランなどで被覆する製法を示す。特許文献2の実施例の中で最も疎水化度が高いn−ヘキサデシルトリメトキシシランを用いて被覆された実施例14の疎水性磁性酸化鉄粒子は、メタノール濡れ性試験による疎水化度が83%(換算すると771g/kg)であったことが記載されている。特許文献3はマグネタイトのコア粒子の表面にアルキルシラン化合物層を設ける製法を示す。特許文献3の実施例の中で最も疎水化度が高いn−オクチルトリメトキシシランを用いて被覆された実施例3の被覆マグネタイト粒子は、メタノール濡れ性試験による疎水化度が70%(換算すると649g/kg)であったことが示されている。これらの疎水化度の大きい磁性顔料は重合法トナーの材料として好適であった。 Patent Document 2 shows a production method in which magnetic iron oxide particles such as triiron tetroxide (magnetite) are coated with n-decyltrimethoxysilane or the like. The hydrophobic magnetic iron oxide particles of Example 14 coated with n-hexadecyltrimethoxysilane having the highest degree of hydrophobicity among the examples of Patent Document 2 have a degree of hydrophobicity of 83 in the methanol wettability test. It is stated that it was% (771 g / kg when converted). Patent Document 3 shows a manufacturing method in which an alkylsilane compound layer is provided on the surface of magnetite core particles. The coated magnetite particles of Example 3 coated with n-octyltrimethoxysilane, which has the highest degree of hydrophobicity among the examples of Patent Document 3, have a degree of hydrophobicity of 70% (converted) by a methanol wettability test. It is shown that it was 649 g / kg). These magnetic pigments having a high degree of hydrophobization were suitable as materials for polymerization method toners.

一方で、近年では健康への関心の高まりから、プリンターの使用時に発生する化学物質が問題視されるようになった。その一つとして、印刷時に現像剤を加熱することによって発生するVOCがあり、このVOC発生量の抑制が課題となっている。例えば、ドイツにおける環境ラベルであるブルーエンジェルでは、商品の製造から使用、廃棄に至るまでの環境負荷の低減を求めており、プリンターにおいては印刷時のVOC発生量の低減を求めている。 On the other hand, in recent years, due to growing interest in health, chemical substances generated when using printers have become a problem. One of them is VOC generated by heating the developer during printing, and suppressing the amount of VOC generated is an issue. For example, Blue Angel, which is an environmental label in Germany, requires reduction of the environmental load from manufacturing to use and disposal of products, and printers are required to reduce the amount of VOC generated during printing.

重合法トナーについても、加熱時のVOC発生量の低減が求められている。特許文献2及び特許文献3で得られた疎水化度の大きい磁性顔料を材料とした重合法トナーについて調査した結果、加熱時に顔料から発生するVOCの量が大きいことが明らかになった。一般的に、炭素数の大きいアルキル基が含まれる製品は、加熱時のVOC発生量が大きい。重合法トナーの場合は、顔料のコア粒子の被覆に使用するアルコキシシラン中のアルキル基の炭素数が大きい場合、加熱時のVOC発生量が大きい傾向が見られる。 The polymerization method toner is also required to reduce the amount of VOC generated during heating. As a result of investigating the polymerization method toner using the magnetic pigment having a high degree of hydrophobicity obtained in Patent Document 2 and Patent Document 3, it was clarified that the amount of VOC generated from the pigment at the time of heating is large. In general, a product containing an alkyl group having a large number of carbon atoms generates a large amount of VOC during heating. In the case of the polymerization method toner, when the number of carbon atoms of the alkyl group in the alkoxysilane used for coating the core particles of the pigment is large, the amount of VOC generated during heating tends to be large.

アルコキシシランを含有する磁性顔料に由来するVOC発生量を低減するには、アルキル基の炭素数が少ないアルコキシシランを使用することが極めて有効である。しかしながら、炭素数の少ないアルキル基を有するアルコキシシランを四酸化三鉄粒子に被覆した場合、疎水化度の大きな磁性顔料を得ることは難しい、という課題があった。特許文献4には、実施例4においてマグネタイトのコア粒子の被覆にアルキル基の炭素数が4のアルコキシシランであるi−ブチルトリメトキシシランを使用した例が記載されているが、メタノール濡れ性試験による疎水化度は60%(換算すると543g/kg)であり、n−ヘキシルまたはn−オクチルのような炭素数の大きいアルコキシシランを用いた実施例1から実施例3及び実施例5から実施例8に比べて、疎水化度が小さくなったことが記載されている。特許文献4の実施例4の被覆マグネタイト粒子は、特許文献2及び3で得られた顔料と比較して疎水化度が小さく、重合法トナーの材料としては不適であった。 In order to reduce the amount of VOC generated from the magnetic pigment containing alkoxysilane, it is extremely effective to use alkoxysilane having a small number of carbon atoms in the alkyl group. However, when the alkoxysilane having an alkyl group having a small number of carbon atoms is coated on the triiron tetroxide particles, there is a problem that it is difficult to obtain a magnetic pigment having a large degree of hydrophobicity. Patent Document 4 describes an example in which i-butyltrimethoxysilane, which is an alkoxysilane having an alkyl group having 4 carbon atoms, is used for coating the core particles of magnetite in Example 4, but a methanol wettability test is described. The degree of hydrophobicity according to the above is 60% (converted to 543 g / kg), and Examples 1 to 3 and Examples 5 to Examples using an alkoxysilane having a large carbon number such as n-hexyl or n-octyl. It is described that the degree of hydrophobicity was smaller than that of 8. The coated magnetite particles of Example 4 of Patent Document 4 have a smaller degree of hydrophobicity than the pigments obtained in Patent Documents 2 and 3, and are not suitable as a material for a polymerization method toner.

アルコキシシラン以外の表面処理剤を用いた事例として、特許文献5には、直鎖状オルガノポリシロキサン若しくはシラザンを用いて磁性酸化鉄粒子の表面を被覆する製法が示されている。特許文献5の発明はVOC発生量を低減することに成功しており、疎水化度は最も大きい実施例5で66%(換算すると606g/kg)であった。特許文献5で得られた被覆後の磁性酸化鉄粒子は、重合法トナーに使用することは可能であるが、トナーの品質を安定させるために、更に疎水化度を高めることは望ましい。また、多様なトナーの要求に適合するために、VOC発生量の低減と高い疎水化度との両立ができる多様な構成の磁性体を提供できることは望ましい。 As an example of using a surface treatment agent other than alkoxysilane, Patent Document 5 discloses a production method of coating the surface of magnetic iron oxide particles with a linear organopolysiloxane or silazane. The invention of Patent Document 5 has succeeded in reducing the amount of VOC generated, and the degree of hydrophobicity was 66% (converted to 606 g / kg) in Example 5 having the largest degree of hydrophobicity. The coated magnetic iron oxide particles obtained in Patent Document 5 can be used for a polymerization method toner, but it is desirable to further increase the degree of hydrophobicity in order to stabilize the quality of the toner. Further, in order to meet the requirements of various toners, it is desirable to be able to provide a magnetic material having various configurations capable of achieving both a reduction in the amount of VOC generated and a high degree of hydrophobicity.

特開2003−131422公報JP-A-2003-131422 特開2005−263619公報JP-A-2005-236319 特開2014−148425公報JP-A-2014-148425 特開2013−193890公報Japanese Unexamined Patent Publication No. 2013-193890 特開2016−210629公報JP-A-2016-210629

本発明の目的は、重合法による電子写真現像剤用の材料として、樹脂モノマー中で安定した分散状態を保持するために必要となる大きい疎水化度を有し、現像剤の実使用時に人体に有害なVOCの発生量が小さい磁性顔料及びその製造方法を提供することにある。 An object of the present invention is to have a large degree of hydrophobicity required to maintain a stable dispersed state in a resin monomer as a material for an electrophotographic developer by a polymerization method, and to the human body when the developer is actually used. An object of the present invention is to provide a magnetic pigment having a small amount of harmful VOC generated and a method for producing the same.

本発明者等は、重合法トナーの材料となる磁性顔料に関して鋭意検討を重ねた結果、四酸化三鉄を主成分とする磁性体の表面にアルコキシシランであるi−ブチルトリメトキシシランの加水分解物を特定の方法で特定の量の範囲となるように被覆することにより、重合法トナーの製造に好適な大きい疎水化度を有し、なおかつ加熱によるVOC発生量が小さい磁性顔料が得られることを見いだした。 As a result of diligent studies on magnetic pigments used as materials for polymerization method toners, the present inventors have hydrolyzed i-butyltrimethoxysilane, which is an alkoxysilane, on the surface of a magnetic material containing triiron tetroxide as a main component. By coating the material in a specific amount range by a specific method, a magnetic pigment having a large degree of hydrophobicity suitable for producing a polymerization method toner and a small amount of VOC generated by heating can be obtained. I found it.

本発明は以下を含む。
[1]四酸化三鉄を主成分とする磁性体の表面にアルキルシラン化合物層を有する顔料であって、アルキルシラン化合物層が、前記顔料の重量に基づいて、8.5g/kg以上40.0g/kg以下の量のi−ブチルトリメトキシシランの加水分解物からなり、前記顔料の疎水化度が575g/kg以上800g/kg以下である、前記顔料。
[2]透過型電子顕微鏡を用いた画像解析から求めた一次粒子のメディアン径が0.20μm以上0.35μm以下である[1]に記載の顔料。
[3]外部磁場が79.6kA/mの際の磁化が64.0Am/kg以上72.0Am/kg以下であり、かつ外部磁場が79.6kA/mで着磁した後の残留磁化が2.8Am/kg以上4.2Am/kg以下である[1]又は[2]に記載の顔料。
[4]四酸化三鉄を主成分とする磁性体を水中に分散したスラリーに、i−ブチルトリメトキシシランを添加して、i−ブチルトリメトキシシランの加水分解物を生じさせ、この加水分解物を前記磁性体の表面に被着させる工程、及びi−ブチルトリメトキシシランの加水分解物が被着した磁性体を固液分離により得て、乾燥する工程
を含む、[1]から[3]までのいずれか1項に記載の顔料の製造方法
[5](1)四酸化三鉄を主成分とする磁性体を水中に0.18kg/L以上0.60kg/L以下の量で含むスラリーを準備し、前記スラリーのpHを7.0以上11.5以下に、かつ、温度を35℃以上90℃以下に調整する工程、
(2)i−ブチルトリメトキシシランを(1)のスラリーに添加し、スラリーの温度を(1)に記載の温度範囲に保ったまま2時間以上かく拌することで前記磁性体表面にi−ブチルトリメトキシシランの加水分解物を被着させる工程、
(3)(2)のスラリーから前記加水分解物が被着した磁性体を含むケーキを固液分離する工程、及び
(4)(3)のケーキを空気中で60℃以上100℃以下の温度で乾燥させる工程
を含む、[4]に記載の製造方法。
The present invention includes:
[1] A pigment having an alkylsilane compound layer on the surface of a magnetic material containing triiron tetroxide as a main component, wherein the alkylsilane compound layer is 8.5 g / kg or more based on the weight of the pigment. The pigment comprising a hydrolyzate of i-butyltrimethoxysilane in an amount of 0 g / kg or less and having a degree of hydrophobicity of the pigment of 575 g / kg or more and 800 g / kg or less.
[2] The pigment according to [1], wherein the median diameter of the primary particles obtained from image analysis using a transmission electron microscope is 0.20 μm or more and 0.35 μm or less.
[3] When the external magnetic field is 79.6 kA / m, the magnetization is 64.0 Am 2 / kg or more and 72.0 Am 2 / kg or less, and the residual magnetization after magnetizing at the external magnetic field of 79.6 kA / m. The pigment according to [1] or [2], wherein is 2.8 Am 2 / kg or more and 4.2 Am 2 / kg or less.
[4] i-Butyltrimethoxysilane is added to a slurry in which a magnetic substance containing triiron tetroxide as a main component is dispersed in water to generate a hydrolyzate of i-butyltrimethoxysilane, and this hydrolysis is produced. [1] to [3] include a step of adhering the substance to the surface of the magnetic substance and a step of obtaining the magnetic substance adhered with the hydrolyzate of i-butyltrimethoxysilane by solid-liquid separation and drying it. ]. The method for producing a pigment according to any one of items up to [5] (1) A magnetic substance containing triiron tetroxide as a main component is contained in water in an amount of 0.18 kg / L or more and 0.60 kg / L or less. A step of preparing a slurry and adjusting the pH of the slurry to 7.0 or more and 11.5 or less and the temperature to 35 ° C. or more and 90 ° C. or less.
(2) i-Butyltrimethoxysilane is added to the slurry of (1), and the slurry is stirred for 2 hours or more while maintaining the temperature of the slurry in the temperature range described in (1), thereby causing i- on the surface of the magnetic material. Step of depositing a hydrolyzate of butyltrimethoxysilane,
(3) A step of solid-liquid separating the cake containing the magnetic substance adhered to the hydrolyzate from the slurry of (2), and a temperature of 60 ° C. or higher and 100 ° C. or lower in the air of the cake of (4) and (3). The production method according to [4], which comprises a step of drying with.

本発明によれば、四酸化三鉄を主成分とする磁性体を特定の量の範囲のi−ブチルトリメトキシシランの加水分解物で特定の方法を用いて被覆することにより、疎水化度が大きく、かつ電子写真現像剤の実使用時のVOC発生量が小さい磁性顔料を提供することができる。 According to the present invention, a magnetic substance containing triiron tetroxide as a main component is coated with a hydrolyzate of i-butyltrimethoxysilane in a specific amount range by a specific method to increase the degree of hydrophobicity. It is possible to provide a magnetic pigment having a large amount and a small amount of VOC generated during actual use of the electrophotographic developer.

以下、本発明を、その好ましい実施形態に基づき説明する。本発明の顔料は、四酸化三鉄を主成分とする磁性体であるコアの表面に、アルキルシラン化合物層を有しており、アルキルシラン化合物層は、顔料の重量に基づいて、8.5g/kg以上40.0g/kg以下の範囲の量のi−ブチルトリメトキシシランの加水分化物からなる。上記の量はより好ましくは10.0g/kg以上30.0g/kg以下であり、さらに好ましくは12.0g/kg以上25.0g/kg以下である。 Hereinafter, the present invention will be described based on its preferred embodiment. The pigment of the present invention has an alkylsilane compound layer on the surface of a core which is a magnetic material containing triiron tetroxide as a main component, and the alkylsilane compound layer is 8.5 g based on the weight of the pigment. It consists of a hydrolyzate of i-butyltrimethoxysilane in an amount in the range of / kg or more and 40.0 g / kg or less. The above amount is more preferably 10.0 g / kg or more and 30.0 g / kg or less, and further preferably 12.0 g / kg or more and 25.0 g / kg or less.

i−ブチルトリメトキシシランの加水分解物の量が8.5g/kgよりも小さい場合、コアとなる四酸化三鉄を主成分とする磁性体の比表面積を考慮するとコアの表面を十分に覆うことができないので、親水性表面が残留し、疎水化度が大きい顔料が得られない。一方でi−ブチルトリメトキシシランの加水分解物の量が40.0g/kgよりも大きい場合は、顔料中の非磁性成分の割合が大きくなり、顔料の磁化が低下する。また、i−ブチルトリメトキシシランは酸化鉄と比較して高価であることから、得られる顔料の疎水化度が重合法トナーの製造に支障のない範囲である限り、顔料中のi−ブチルトリメトキシシランの加水分解物の量は小さい方が好ましい。 When the amount of the hydrolyzate of i-butyltrimethoxysilane is less than 8.5 g / kg, the surface area of the core is sufficiently covered in consideration of the specific surface area of the magnetic material containing triiron tetroxide as the main component. Therefore, a hydrophilic surface remains and a pigment having a high degree of hydrophobicity cannot be obtained. On the other hand, when the amount of the hydrolyzate of i-butyltrimethoxysilane is larger than 40.0 g / kg, the proportion of the non-magnetic component in the pigment becomes large, and the magnetization of the pigment decreases. Further, since i-butyltrimethoxysilane is more expensive than iron oxide, i-butyltri in the pigment is contained as long as the degree of hydrophobicity of the obtained pigment does not interfere with the production of the polymerization method toner. It is preferable that the amount of the hydrolyzate of methoxysilane is small.

なお、本発明において、顔料におけるi−ブチルトリメトキシシランの加水分解物の量は、以下の方法により測定する:
LECO製CS−230型炭素(C)・硫黄(S)分析装置を用いて顔料における炭素(C)含有量を分析する。i−ブチルトリメトキシシランが完全に加水分解したと仮定して、i−ブチルトリメトキシシランの加水分解物含有量(g/kg)を該炭素(C)測定値を用いて、以下の式により、算出する:
加水分解物含有量(g/kg)=炭素(C)測定値(wt%)×2.773×10
本発明の顔料は、疎水化度が575g/kg以上である。より好ましくは625g/kg以上である。疎水化度が575g/kg未満である場合、重合法トナーの製造時に顔料が水相に移行しやすくなり、トナー母体粒子中での顔料の分散性が悪化する。またトナー母体粒子間で顔料の含有量に差が生じ、最悪の場合には顔料を全く含有しないトナー母体粒子が生成するなどの問題を生じ得る。疎水化度の上限値は特に限定されないが、現実的には800g/kg以下程度、あるいは750g/kg以下程度であると考えられる。
In the present invention, the amount of the hydrolyzate of i-butyltrimethoxysilane in the pigment is measured by the following method:
The carbon (C) content in the pigment is analyzed using a CS-230 type carbon (C) / sulfur (S) analyzer manufactured by LECO. Assuming that i-butyltrimethoxysilane is completely hydrolyzed, the hydrolyzate content (g / kg) of i-butyltrimethoxysilane is determined by the following formula using the carbon (C) measurement value. ,calculate:
Hydrolyzate content (g / kg) = carbon (C) measured value (wt%) x 2.773 x 10
The pigment of the present invention has a degree of hydrophobicity of 575 g / kg or more. More preferably, it is 625 g / kg or more. When the degree of hydrophobization is less than 575 g / kg, the pigment is likely to move to the aqueous phase during the production of the polymerization method toner, and the dispersibility of the pigment in the toner matrix particles is deteriorated. In addition, there may be a difference in the pigment content between the toner matrix particles, and in the worst case, problems such as generation of toner matrix particles containing no pigment at all may occur. The upper limit of the degree of hydrophobicity is not particularly limited, but in reality, it is considered to be about 800 g / kg or less, or about 750 g / kg or less.

本発明において、疎水化度は、以下の方法により測定する:
目開き1mmのふるいを通過した顔料を測定試料として用いることとし、ふるい通過から5分以内に測定を実施することとする。メタノール含有量が25g/kgずつ異なる複数のメタノール水溶液を用意し(例えば、・・・500g/kg、525g/kg、550g/kg、575g/kg、600g/kg、625g/kg、650g/kg、675g/kg、700g/kg、725g/kg・・・)、それぞれ約2mLずつ別々の試験管に入れておく。各試験管に20mg以上40mg以下の試料を静かに投入し、沈降の有無を目視確認する。試料を投入してから5秒経過時点で、投入した試料が全く沈降しない場合は「沈降しない」、一部でも沈降した場合は「沈降する」と判定する。なお、まれにふるいを通したにもかかわらず試料が小さなダマを形成し、ダマが少量沈降(最大でも全体の10%以内、目測で20粒以内程度)する場合もあるが、そのような例外的なダマの沈降は除いて判定することとする。試料が沈降する最もメタノール濃度の小さい水溶液のメタノール含有量を、疎水化度(g/kg)とする。
In the present invention, the degree of hydrophobicity is measured by the following method:
A pigment that has passed through a sieve with a mesh opening of 1 mm is used as a measurement sample, and the measurement is performed within 5 minutes after passing through the sieve. A plurality of methanol aqueous solutions having different methanol contents of 25 g / kg are prepared (for example, ... 500 g / kg, 525 g / kg, 550 g / kg, 575 g / kg, 600 g / kg, 625 g / kg, 650 g / kg, 675 g / kg, 700 g / kg, 725 g / kg ...), about 2 mL each in separate test tubes. Gently put a sample of 20 mg or more and 40 mg or less into each test tube, and visually check for sedimentation. At 5 seconds after the sample is charged, if the charged sample does not settle at all, it is determined to be "not settled", and if even a part of the sample is settled, it is determined to "settle". In rare cases, the sample may form small lumps even though it has been sieved, and a small amount of lumps may settle (up to 10% of the total, or about 20 grains by eye measurement), but such an exception. It is decided to exclude the sedimentation of the sample. The methanol content of the aqueous solution having the lowest methanol concentration at which the sample precipitates is defined as the degree of hydrophobicity (g / kg).

本発明の顔料は、透過型電子顕微鏡を用いた画像解析から求めた一次粒子のメディアン径が0.20μm以上0.35μm以下であることが好ましい。一次粒子のメディアン径が、0.35μmよりも大きいと、顔料による着色力が低下し、顔料を用いたトナーの着色力も低下するおそれがある。一方で、一次粒子のメディアン径が0.20μmより小さい場合、顔料の凝集力が増大し、トナー中での顔料の分散性が悪化する可能性がある。 In the pigment of the present invention, the median diameter of the primary particles determined by image analysis using a transmission electron microscope is preferably 0.20 μm or more and 0.35 μm or less. If the median diameter of the primary particles is larger than 0.35 μm, the coloring power of the pigment may decrease, and the coloring power of the toner using the pigment may also decrease. On the other hand, when the median diameter of the primary particles is smaller than 0.20 μm, the cohesive force of the pigment may increase and the dispersibility of the pigment in the toner may deteriorate.

本発明の顔料の一次粒子のメディアン径は、透過型電子顕微鏡像の画像解析から求めることができる。例えば、後述する実施例に記載の方法で測定することができる。
本発明の顔料は、外部磁場が79.6kA/mの際の磁化が64.0Am/kg以上72.0Am/kg以下であり、かつ外部磁場が79.6kA/mで着磁した後の残留磁化が2.8Am/kg以上4.2Am/kg以下であることが好ましい。より好ましくは外部磁場が79.6kA/mの際の磁化は65.0Am/kg以上である。外部磁場が79.6kA/mの際の磁化が64.0Am/kg未満あるいは残留磁化が2.8Am/kg未満になると、帯電後のトナー母体粒子の磁化が低下し、トナーの挙動を制御することが難しくなり、画像のかすれが発生しやすくなるおそれがある。外部磁場が79.6kA/mの際の磁化が72.0Am/kg以上、あるいは残留磁化が4.2Am/kgを超えると、トナー母体粒子が磁気によって凝集しやすくなり、かぶりや画像のにじみが生じるおそれがある。
The median diameter of the primary particles of the pigment of the present invention can be obtained from the image analysis of the transmission electron microscope image. For example, it can be measured by the method described in Examples described later.
The pigment of the present invention has a magnetization of 64.0 Am 2 / kg or more and 72.0 Am 2 / kg or less when the external magnetic field is 79.6 kA / m, and after magnetizing at an external magnetic field of 79.6 kA / m. The residual magnetization of is preferably 2.8 Am 2 / kg or more and 4.2 Am 2 / kg or less. More preferably, when the external magnetic field is 79.6 kA / m, the magnetization is 65.0 Am 2 / kg or more. When the magnetization is less than 64.0Am 2 / kg or residual magnetization when the external magnetic field is 79.6 kA / m is less than 2.8Am 2 / kg, the magnetization decreases the toner base particles after charging, the behavior of the toner It becomes difficult to control, and there is a possibility that the image is easily blurred. When the magnetization is 72.0 Am 2 / kg or more when the external magnetic field is 79.6 kA / m, or when the residual magnetization exceeds 4.2 Am 2 / kg, the toner matrix particles tend to aggregate due to magnetism, resulting in fog and images. Bleeding may occur.

本発明の顔料の磁化及び残留磁化は、23℃前後の室温で振動試料型磁力計を用いて測定することができる。例えば、後述する実施例に記載の方法で測定することができる。
本発明の顔料は、VOC(揮発性有機化合物)発生量が、n−ヘキシルトリメトキシシランを用いてマグネタイト(四酸化三鉄)粒子を被覆した、特許文献2(特開2005−263619号公報)の実施例8で得られる疎水性磁性酸化鉄粒子(以下、「n−ヘキシルトリメトキシシラン被覆粒子」と記す)のVOC発生量の、30%以下であることが好ましい。
The magnetization and remanent magnetization of the pigment of the present invention can be measured using a vibrating sample magnetometer at room temperature of around 23 ° C. For example, it can be measured by the method described in Examples described later.
The pigment of the present invention has a VOC (volatile organic compound) generation amount of which magnetite (triiron tetroxide) particles are coated with n-hexyltrimethoxysilane (Japanese Patent Laid-Open No. 2005-263619). It is preferable that the amount of VOC generated by the hydrophobic magnetic iron oxide particles (hereinafter referred to as “n-hexyltrimethoxysilane-coated particles”) obtained in Example 8 of the above is 30% or less.

VOCの発生量は、例えば、ガスクロマトグラフィーを用いて、ノルマルヘキサンのピークとn−ヘキサデカンのピークの間に検出されたピーク面積を求め、対照物質であるn−ヘキシルトリメトキシシラン被覆粒子の上記ピーク面積と比較することにより、計算することができる。より詳細には、後述する実施例に記載の方法で測定することができる。 For the amount of VOC generated, for example, gas chromatography was used to determine the peak area detected between the peak of normal hexane and the peak of n-hexadecane, and the above-mentioned n-hexyltrimethoxysilane-coated particles as a control substance were obtained. It can be calculated by comparing with the peak area. More specifically, it can be measured by the method described in Examples described later.

本発明の顔料は、代表的には以下の方法で製造される。まず、基体(コア)となる四酸化三鉄を主成分とする磁性体の製造法を、湿式法の四酸化三鉄の製造を例にとって説明する。 The pigment of the present invention is typically produced by the following method. First, a method for producing a magnetic material containing triiron tetroxide as a main body as a substrate (core) will be described by taking the wet method for producing triiron tetroxide as an example.

湿式法の四酸化三鉄は、第一鉄塩水溶液と水酸化アルカリの中和反応により水酸化第一鉄沈殿を生成させ、必要に応じて生成前、生成中若しくは生成後にケイ素、リン等を添加し、pH及び温度を管理しながら空気を吹き込んで酸化することにより得られる。pHや空気酸化の時間を制御することで、組成や粒子径を制御することができる。 In the wet method, triiron tetroxide produces ferrous hydroxide precipitate by neutralization reaction of ferrous salt aqueous solution and alkali hydroxide, and if necessary, silicon, phosphorus, etc. are added before, during, or after production. It is obtained by adding and oxidizing by blowing air while controlling the pH and temperature. The composition and particle size can be controlled by controlling the pH and the time of air oxidation.

第一鉄塩水溶液としては、硫酸第一鉄、塩化第一鉄、硝酸第一鉄等が挙げられるが、一般的には硫酸法酸化チタン製造の副生成物である硫酸第一鉄、スクラップの洗浄に伴って生成する硫酸第一鉄を使用する。また水酸化アルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリ金属、アルカリ土類金属の水酸化物並びに水酸化アンモニウム、アンモニアガスを用いることができる。 Examples of the ferrous salt aqueous solution include ferrous sulfate, ferrous chloride, ferrous nitrate, etc., but in general, ferrous sulfate, which is a by-product of the sulfuric acid method titanium oxide production, and scrap iron Use ferrous sulfate produced during washing. As the alkali hydroxide, alkali metals such as sodium hydroxide, potassium hydroxide and calcium hydroxide, hydroxides of alkaline earth metals, ammonium hydroxide and ammonia gas can be used.

最初に第一鉄塩水溶液と水酸化アルカリとの中和反応をすることにより水酸化第一鉄沈殿を生成させるが、その際、第一鉄塩水溶液中の鉄イオン(II)1.0molに対し、水酸化物イオン(OH)が1.8mol以上2.0mol以下であることが好ましい。鉄イオン1molに対して水酸化物イオンが1.8mol未満ではオキシ水酸化鉄が生成しやすくなり、好ましくない。また鉄イオン1.0molに対して水酸化物イオンが2.0molを超えると、立方体、八面体等の多面体粒子が生成し、残留磁化が大きくなって粒子が凝集しやすくなるため、やはり好ましくない。 First, a ferrous hydroxide precipitate is formed by neutralizing the ferrous salt aqueous solution with an alkali hydroxide, and at that time, the iron ions (II) in the ferrous salt aqueous solution are reduced to 1.0 mol. On the other hand, the hydroxide ion (OH ) is preferably 1.8 mol or more and 2.0 mol or less. If the amount of hydroxide ion is less than 1.8 mol with respect to 1 mol of iron ion, iron oxyhydroxide is likely to be produced, which is not preferable. Further, if the hydroxide ion exceeds 2.0 mol with respect to 1.0 mol of iron ion, polyhedral particles such as cuboctahedron and octahedron are generated, the residual magnetization becomes large, and the particles tend to aggregate, which is also not preferable. ..

本発明における水酸化第一鉄を酸化する際の温度としては、60℃以上100℃以下が適しており、より好ましくは85℃以上90℃以下である。酸化する際の温度が60℃より低いと磁化及び残留磁化が小さくなり、それを含有するトナー母体の磁化及び残留磁化が過度に小さくなると、トナーの挙動を制御することが難しくなり、画像のかすれが発生しやすくなる。一方で100℃より高い温度に加熱しながら酸化するのは、工業的には難しい。 The temperature for oxidizing ferrous hydroxide in the present invention is preferably 60 ° C. or higher and 100 ° C. or lower, and more preferably 85 ° C. or higher and 90 ° C. or lower. If the temperature at the time of oxidation is lower than 60 ° C., the magnetization and residual magnetization become small, and if the magnetization and residual magnetization of the toner matrix containing it become excessively small, it becomes difficult to control the behavior of the toner and the image is blurred. Is likely to occur. On the other hand, it is industrially difficult to oxidize while heating to a temperature higher than 100 ° C.

基体の酸化率は、68%以上74%以下が適しており、より好ましくは70%以上71%以下である。酸化率が小さい場合、磁化及び残留磁化が目標に達しないことがあり、酸化率が大きい場合、得られる基体が暗赤色となるため、トナーとしての使用に適さないことがある。基体の酸化率とは、四酸化三鉄を主成分とする磁性体の製造において、全ての鉄イオンに対する、鉄イオン(III)のmol量を指す。基体の酸化率は、以下の方法で測定することができる:
基体スラリーに濃硫酸を加えて加熱し、基体を溶解する。過マンガン酸カリウム水溶液を用いて、溶液中の鉄(II)イオンを滴定し、この時の滴定量を「滴定量A」とする。次に水銀アマルガムを用いて、溶液中の全ての鉄(III)イオンを鉄(II)イオンに還元した後、再度過マンガン酸カリウム水溶液を用いて、溶液中の鉄(II)イオンを滴定し、この時の滴定量を「滴定量B」とする。以下の式を用いて酸化率を算出する:
酸化率(mol%)=100×(滴定量B−滴定量A)/滴定量B
本発明の基体となる四酸化三鉄を主成分とする磁性体においては、ケイ素やリンの化合物を添加することで四酸化三鉄中にシリカなどの成分を導入することができる。本発明において、四酸化三鉄を主成分とする磁性体には、実質的に四酸化三鉄のみからなる粒子、及び四酸化三鉄を主成分とするがケイ素またはリンのような鉄以外の他の元素を微量に添加した粒子が含まれる。なお、四酸化三鉄を主成分とする磁性体には、マンガンは導入しなくても良い。後述する本発明の表面処理工程では、磁性体表面のマンガンの存在量に関わらずアルキルシラン化合物層を薄くかつ均一に被覆することができる。四酸化三鉄を主成分とする磁性体における鉄以外の元素の含有量は、トナーの含有化学物質量に関する規制に応じて変更してもよい。四酸化三鉄を主成分とする磁性体は、磁性体の重量に基づいて、950g/kgを超える四酸化三鉄を含み、より好ましくは980g/kgを超える四酸化三鉄を含む。磁性体中の四酸化三鉄の割合は、磁性体(四酸化三鉄)の製造時に添加した鉄以外の他の元素を含む化合物の量を測定し、その割合を減じることにより求めることができる。
The oxidation rate of the substrate is preferably 68% or more and 74% or less, and more preferably 70% or more and 71% or less. If the oxidation rate is small, the magnetization and remanent magnetization may not reach the target, and if the oxidation rate is large, the obtained substrate becomes dark red, which may not be suitable for use as a toner. The oxidation rate of the substrate refers to the mol amount of iron ions (III) with respect to all iron ions in the production of a magnetic material containing triiron tetroxide as a main component. The oxidation rate of the substrate can be measured by the following methods:
Concentrated sulfuric acid is added to the substrate slurry and heated to dissolve the substrate. The iron (II) ion in the solution is titrated using an aqueous solution of potassium permanganate, and the titration amount at this time is referred to as "titration amount A". Next, all the iron (III) ions in the solution were reduced to iron (II) ions using mercury amalgam, and then the iron (II) ions in the solution were titrated again using an aqueous potassium permanganate solution. The titration amount at this time is referred to as "titration amount B". Calculate the oxidation rate using the following formula:
Oxidation rate (mol%) = 100 × (titration B-titration A) / titration B
In the magnetic material containing triiron tetroxide as the main component, which is the substrate of the present invention, a component such as silica can be introduced into triiron tetroxide by adding a compound of silicon or phosphorus. In the present invention, the magnetic material containing triiron tetroxide as a main component includes particles substantially composed of triiron tetroxide only, and triiron tetroxide as a main component but other than iron such as silicon or phosphorus. It contains particles to which a small amount of other elements are added. It is not necessary to introduce manganese into the magnetic material containing triiron tetroxide as the main component. In the surface treatment step of the present invention described later, the alkylsilane compound layer can be thinly and uniformly coated regardless of the abundance of manganese on the surface of the magnetic material. The content of elements other than iron in the magnetic material containing triiron tetroxide as the main component may be changed according to the regulation regarding the amount of chemical substances contained in the toner. The magnetic material containing triiron tetroxide as a main component contains more than 950 g / kg of triiron tetroxide, and more preferably more than 980 g / kg of triiron tetroxide, based on the weight of the magnetic material. The ratio of triiron tetroxide in the magnetic material can be determined by measuring the amount of a compound containing an element other than iron added during the production of the magnetic material (triiron tetroxide) and reducing the ratio. ..

ケイ素化合物としては、水ガラス、ケイ酸ナトリウム、ケイ酸カリウム等の水溶性のケイ素化合物が用いられる。その添加量は四酸化三鉄に対してシリカ換算で7g/kg以上20g/kg以下であり、より好ましくは9g/kg以上15g/kg以下である。添加量が少ない場合は粒子形状が多面体状になりやすく、残留磁化が大きくなり凝集しやすくなることがある。一方で20g/kgより添加量が大きいと四酸化三鉄の表面にシリカが析出し、後の工程でアルコキシシランの被着が阻害される。 As the silicon compound, water-soluble silicon compounds such as water glass, sodium silicate, and potassium silicate are used. The amount added is 7 g / kg or more and 20 g / kg or less in terms of silica with respect to triiron tetroxide, and more preferably 9 g / kg or more and 15 g / kg or less. When the amount added is small, the particle shape tends to be polyhedral, and the residual magnetization becomes large, which may cause aggregation. On the other hand, if the addition amount is larger than 20 g / kg, silica is precipitated on the surface of triiron tetroxide, and the adhesion of alkoxysilane is inhibited in a later step.

顔料中のケイ素(Si)またはシリカ(SiO)含有量は、例えば、後述する実施例に記載の方法により測定することができる。
リン化合物としては、ヘキサメタリン酸ナトリウム等の水溶性のリン化合物が用いられる。その添加量は四酸化三鉄に対して五酸化二リン換算で5.0g/kg以下が好ましい。リン化合物を添加することで四酸化三鉄の残留磁化を低くすることができる。5.0g/kgよりも添加量を増やしても残留磁化は大きく変化せず、更に添加量が大きい場合は四酸化三鉄の結晶成長を阻害する可能性がある。リン化合物を添加しなくても四酸化三鉄の残留磁化が目標範囲内の場合は、添加しなくても良い。
The silicon (Si) or silica (SiO 2 ) content in the pigment can be measured, for example, by the method described in Examples described later.
As the phosphorus compound, a water-soluble phosphorus compound such as sodium hexametaphosphate is used. The amount added is preferably 5.0 g / kg or less in terms of diphosphorus pentoxide with respect to triiron tetroxide. By adding a phosphorus compound, the residual magnetization of triiron tetroxide can be lowered. The residual magnetization does not change significantly even if the addition amount is increased above 5.0 g / kg, and if the addition amount is further large, the crystal growth of triiron tetroxide may be inhibited. If the residual magnetization of triiron tetroxide is within the target range without adding the phosphorus compound, it may not be added.

ケイ素化合物及びリン化合物を添加する場合は、水酸化アルカリ、第一鉄塩水溶液、及びそれらの混合品のいずれに投入しても良い。ただし、四酸化三鉄の結晶化が始まる前に添加する必要がある。 When a silicon compound and a phosphorus compound are added, they may be added to an alkali hydroxide, an aqueous ferrous salt solution, or a mixture thereof. However, it must be added before crystallization of triiron tetroxide begins.

四酸化三鉄を主成分とする磁性体の形状は、球状であることが好ましい。コアとなる磁性体の形状が概略球状であると、残留磁化を適度な範囲に調整しやすく、粒子の凝集などの問題が起きにくくなる。また、磁性体の表面に四酸化三鉄以外の特定の元素が偏在している必要はない。 The shape of the magnetic material containing triiron tetroxide as the main component is preferably spherical. When the shape of the magnetic material as the core is substantially spherical, the residual magnetization can be easily adjusted within an appropriate range, and problems such as particle aggregation are less likely to occur. Further, it is not necessary that a specific element other than triiron tetroxide is unevenly distributed on the surface of the magnetic material.

次に、i−ブチルトリメトキシシランを用いて磁性体表面にアルキルシラン化合物層を被着させる。被着の方法には、湿式法と乾式法があるが、被着斑が生じにくく、疎水化度を高めやすいという観点から、湿式法を用いることが好ましい。湿式法による被着を行う際には、まず、コアとなる磁性体(基体)を水中に分散してスラリーとする。スラリー中の磁性体の濃度は0.18kg/L以上0.60kg/L以下が適している。磁性体の濃度が0.18kg/Lよりも小さい場合、i−ブチルトリメトキシシランと四酸化三鉄の接触頻度が小さくなるため被着量が減少する。この結果、得られるアルキルシラン化合物層を有する顔料の疎水化度が小さくなる傾向がある。一方で磁性体の濃度が0.60kg/Lより大きい場合、スラリーの粘度が大きいため均一なかく拌が難しく、四酸化三鉄粒子間で被着量斑が生じ得る。 Next, an alkylsilane compound layer is adhered to the surface of the magnetic material using i-butyltrimethoxysilane. There are a wet method and a dry method as the method of adhesion, but it is preferable to use the wet method from the viewpoint that adhesion spots are less likely to occur and the degree of hydrophobicity is easily increased. When performing adhesion by the wet method, first, the magnetic material (base) to be the core is dispersed in water to form a slurry. The concentration of the magnetic substance in the slurry is preferably 0.18 kg / L or more and 0.60 kg / L or less. When the concentration of the magnetic substance is smaller than 0.18 kg / L, the contact frequency between i-butyltrimethoxysilane and triiron tetroxide decreases, so that the amount of adhesion decreases. As a result, the degree of hydrophobicity of the obtained pigment having the alkylsilane compound layer tends to decrease. On the other hand, when the concentration of the magnetic substance is larger than 0.60 kg / L, uniform stirring is difficult due to the high viscosity of the slurry, and adhesion amount unevenness may occur between the triiron tetroxide particles.

被着を行う際のスラリー温度は35℃以上90℃以下が適しており、より好ましくは50℃以上90℃以下である。スラリー温度が35℃より低い場合、四酸化三鉄の表面へのi−ブチルトリメトキシシラン加水分解物の被着速度が小さくなり、得られる顔料の疎水化度が小さくなる傾向がある。一方でスラリー温度が90℃より高くなると被着が急激に進行するため、四酸化三鉄粒子間に被着量斑が生じる可能性がある。 The slurry temperature at the time of adhering is preferably 35 ° C. or higher and 90 ° C. or lower, and more preferably 50 ° C. or higher and 90 ° C. or lower. When the slurry temperature is lower than 35 ° C., the adhesion rate of the i-butyltrimethoxysilane hydrolyzate on the surface of triiron tetroxide tends to decrease, and the degree of hydrophobicity of the obtained pigment tends to decrease. On the other hand, when the slurry temperature is higher than 90 ° C., the adhesion progresses rapidly, so that the adhesion amount unevenness may occur between the triiron tetroxide particles.

被着を行う際のスラリーpHは7.0以上11.5以下が適しており、より好ましくは9.5以上11.0以下である。スラリーpHが7.0よりも小さい場合は、i−ブチルトリメトキシシラン加水分解物の被着速度が小さくなり、得られる顔料の疎水化度が小さくなる傾向がある。スラリーpHが11.5よりも大きい場合はi−ブチルトリメトキシシラン同士の縮合反応が進行しやすくなり、基体に対する被着量が小さくなるため、やはり得られる顔料の疎水化度が小さくなる傾向がある。pHの調整には、これらに限定されないが、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の水酸化アルカリを用いることができる。 The slurry pH at the time of adhering is preferably 7.0 or more and 11.5 or less, and more preferably 9.5 or more and 11.0 or less. When the slurry pH is smaller than 7.0, the adhesion rate of the i-butyltrimethoxysilane hydrolyzate tends to decrease, and the degree of hydrophobicity of the obtained pigment tends to decrease. When the slurry pH is higher than 11.5, the condensation reaction between i-butyltrimethoxysilanes tends to proceed and the amount of adhesion to the substrate becomes small, so that the degree of hydrophobicity of the obtained pigment also tends to be small. is there. Alkali hydroxides such as sodium hydroxide, potassium hydroxide and calcium hydroxide can be used for adjusting the pH without being limited to these.

i−ブチルトリメトキシシランを添加した後の上記温度及びpHにおける保持時間は2時間以上が適しており、更に好ましくは4時間以上である。保持時間が2時間より短い場合、被着が完了しないことがあるため、疎水化度が安定しないおそれがある。保持に際しては、均一な被着を促進するため、スラリーのかく拌を行うことが好ましい。 The retention time at the above temperature and pH after the addition of i-butyltrimethoxysilane is preferably 2 hours or more, more preferably 4 hours or more. If the holding time is shorter than 2 hours, the degree of hydrophobicity may not be stable because the adhesion may not be completed. At the time of holding, it is preferable to stir the slurry in order to promote uniform adhesion.

水酸化アルカリがアルキルシラン化合物層を有する顔料中に残留すると重合法トナーを製造する工程で支障をきたす場合は、i−ブチルトリメトキシシラン添加後の保持が終了した後に、アルカリ成分の中和のためにスラリーpHを7.0〜9.0に再調整しても良い。pHの調整には、これに限定されないが、硫酸、塩酸等の酸を用いることができる。 If the alkali hydroxide remains in the pigment having the alkylsilane compound layer, which interferes with the process of producing the polymerization method toner, the alkali component is neutralized after the retention after the addition of i-butyltrimethoxysilane is completed. Therefore, the slurry pH may be readjusted to 7.0 to 9.0. The pH can be adjusted with, but not limited to, an acid such as sulfuric acid or hydrochloric acid.

四酸化三鉄の表面に被着するi−ブチルトリメトキシシラン分子内のメトキシ基は、被着が終了した段階で全て加水分解していることが望ましい。i−ブチルトリメトキシシランの分子内にメトキシ基が残存していると、四酸化三鉄の表面を隙間なく被覆することが難しいため疎水性の四酸化三鉄の表面が残存し、得られる顔料の疎水化度が小さくなる可能性がある。 It is desirable that all the methoxy groups in the i-butyltrimethoxysilane molecule adhered to the surface of triiron tetroxide are hydrolyzed at the stage when the adhesion is completed. If a methoxy group remains in the molecule of i-butyltrimethoxysilane, it is difficult to coat the surface of triiron tetroxide without gaps, so the surface of hydrophobic triiron tetroxide remains, and the obtained pigment. The degree of hydrophobization may be reduced.

被着が終了したスラリーを固液分離し、アルキルシラン化合物層が被着した磁性体を含むケーキを得る。ケーキを十分に洗浄した後、乾燥して、本発明の顔料を得る。乾燥は60℃以上100℃以下の温度で実施するのが好ましい。水分の存在下で100℃より高温に加熱すると、顔料中のi−ブチルトリメトキシシランの加水分解物の縮合が進行し、凝集体が発生して顔料の分散性が悪化することがある。乾燥温度が60℃より低いと、水分が残存することがあり、得られる顔料の疎水化度が小さくなることがある。乾燥は1時間以上実施するのが適している。乾燥中は顔料を回転させる必要はないが、乾燥を早めるために乾燥途中で顔料をほぐしたり、顔料の位置を動かしても良い。 The slurry that has been adhered is solid-liquid separated to obtain a cake containing a magnetic material to which the alkylsilane compound layer is adhered. After the cake is thoroughly washed, it is dried to obtain the pigment of the present invention. Drying is preferably carried out at a temperature of 60 ° C. or higher and 100 ° C. or lower. When heated to a temperature higher than 100 ° C. in the presence of water, condensation of the hydrolyzate of i-butyltrimethoxysilane in the pigment proceeds, aggregates are generated, and the dispersibility of the pigment may be deteriorated. If the drying temperature is lower than 60 ° C., water may remain and the degree of hydrophobicity of the obtained pigment may be reduced. It is suitable to carry out drying for 1 hour or more. It is not necessary to rotate the pigment during drying, but the pigment may be loosened or the position of the pigment may be moved during drying to accelerate the drying.

ケーキの乾燥後に、顔料の疎水化度をより大きくするために、熱処理を実施しても良い。空気中で熱処理を実施すると、コアとなる磁性体の酸化が進行し、顔料が暗赤色となる可能性がある。更にアルキルシラン化合物層が部分的に分解し、疎水化度が小さくなる可能性があるため、窒素ガスに代表される不活性ガスを用いて、不活性雰囲気で熱処理を実施するのが好ましい。熱処理は150℃以上250℃以下で実施するのが好ましく、より好ましくは180℃以上225℃以下である。熱処理温度が150℃以上であると、顔料内部まで熱が行き渡り、疎水化度が大きくなりやすい。熱処理温度が250℃以下であると、アルキルシラン化合物層の分解が抑えられ、疎水化度の低下を防止することができる。 After the cake has dried, heat treatment may be performed to increase the degree of hydrophobicity of the pigment. When the heat treatment is performed in air, the core magnetic material may be oxidized and the pigment may turn dark red. Further, since the alkylsilane compound layer may be partially decomposed and the degree of hydrophobicity may be reduced, it is preferable to carry out the heat treatment in an inert atmosphere using an inert gas typified by nitrogen gas. The heat treatment is preferably carried out at 150 ° C. or higher and 250 ° C. or lower, more preferably 180 ° C. or higher and 225 ° C. or lower. When the heat treatment temperature is 150 ° C. or higher, heat is distributed to the inside of the pigment, and the degree of hydrophobicity tends to increase. When the heat treatment temperature is 250 ° C. or lower, decomposition of the alkylsilane compound layer is suppressed, and a decrease in the degree of hydrophobicity can be prevented.

本発明の顔料は、加熱時のVOC発生量が小さく、かつ疎水化度が大きいという特徴を有し、特に重合法トナーをはじめとする電子写真現像剤の材料として好適である。 The pigment of the present invention has the characteristics that the amount of VOC generated during heating is small and the degree of hydrophobicity is large, and is particularly suitable as a material for an electrophotographic developer such as a polymerization method toner.

以下、本発明の態様を示す実施例について説明するが、以下の実施例は単に例示のために示すものであり、発明の範囲がこれらによって制限されるものではない。なお、以下「L」はリットルを示す。 Hereinafter, examples showing aspects of the present invention will be described, but the following examples are shown merely for illustration purposes, and the scope of the invention is not limited thereto. In the following, "L" indicates liter.

[測定法]
[メディアン径の測定及び算出]
日本電子製透過型電子顕微鏡JEM−1400plusを用いて測定した。観察倍率は、30,000倍(透過型電子顕微鏡の観察倍率10,000倍×印画3倍)とした。観察視野内の約300個の粒子の円径をCarl Zeiss社製Particle Size Analyzer TGZ−3の参照円径(4mm〜10mm)に整合させて求めることができる一次粒子像の面積と等価な面積の円の直径を粒子径とし、粒子径の3乗の累積曲線を作成し、その50%に相当する粒子径をメディアン径(μm)とした。
[Measurement method]
[Measurement and calculation of median diameter]
The measurement was performed using a transmission electron microscope JEM-1400plus manufactured by JEOL Ltd. The observation magnification was 30,000 times (observation magnification of a transmission electron microscope 10,000 times x printing 3 times). The area equivalent to the area of the primary particle image that can be obtained by matching the circle diameter of about 300 particles in the observation field with the reference circle diameter (4 mm to 10 mm) of the Particle Size Analyzer TGZ-3 manufactured by Carl Zeiss. The diameter of the circle was defined as the particle diameter, a cumulative curve of the cube of the particle diameter was created, and the particle diameter corresponding to 50% of the cumulative curve was defined as the median diameter (μm).

[アルコキシシランの加水分解物含有量の測定]
LECO製CS−230型炭素(C)・硫黄(S)分析装置を用いて試料の炭素(C)含有量を分析した。アルコキシシランが完全に加水分解したと仮定して、アルコキシシランの加水分解物量(g/kg)を該炭素(C)測定値から算出した。
[Measurement of Hydrolyzate Content of Alkoxysilane]
The carbon (C) content of the sample was analyzed using a CS-230 type carbon (C) / sulfur (S) analyzer manufactured by LECO. Assuming that the alkoxysilane was completely hydrolyzed, the amount of hydrolyzate (g / kg) of the alkoxysilane was calculated from the carbon (C) measurement value.

[シリカ含有量の測定]
試料10gを耐熱性るつぼに計り取り、モトヤマ製電気炉SUPER−C SO−2035Dを用いて空気中、600℃で1時間加熱し、焼成した。試料が完全に冷却した後に内径40mm、高さ5mmのアルミリングに試料8.0gを充填し、島津メクテム製BRIQUETTING MACHINE MP−35を用いて150kg/cmで圧縮成形した。成形した試料のケイ素含有量をリガク製Simultix10を用いて測定した。基体(コア)についても同様にケイ素含有量を測定した。試料のケイ素(Si)含有量から試料のシリカ(SiO)含有量を計算した。顔料(被覆後)のケイ素含有量から基体のケイ素含有量を減じてi−ブチルトリメトキシシラン加水分解物中のケイ素含有量を算出した。LECO製CS−230型炭素(C)・硫黄(S)分析装置を用いて測定した炭素(C)含有量から、i−ブチルトリメトキシシラン加水分解物中の炭素/ケイ素のmol比率を算出した。更にi−ブチルトリメトキシシラン分子中のメトキシ基3個が全て加水分解した状態、即ち炭素/ケイ素のmol比率が4.00となった状態を加水分解が100%進行した状態とし、加水分解率(mmol/mol)を以下の式により算出した:
加水分解率(mmol/mol)=1000×{1−(炭素(C)含有量/ケイ素(Si)含有量−4.00)/3.00}
[VOC発生量の測定]
試料2.0gをゴム栓付きの、容積30mLのスクリュー管瓶に入れ、120℃で1時間加熱した。加熱直後のスクリュー管瓶にシリンジを刺して内部の気体を5mL採取し、ジェイ・サイエンス西日本製パックドカラム(3m)SE−30を取り付けたYanaco製ガスクロマトグラフ G3800に注入した。キャリアガスはヘリウムを用い、流速は30mL/minとした。カラム温度は80℃から、5℃/minで200℃まで昇温した。また対照物質として、特許文献2の実施例8にしたがって製造したn−ヘキシルトリメトキシシラン被覆粒子を同じ手順で測定した。試料とn−ヘキシルトリメトキシシラン被覆粒子について、ノルマルヘキサンのピークとn−ヘキサデカンのピークの間に検出されたピーク面積をそれぞれ求めた。n−ヘキシルトリメトキシシラン被覆粒子の該当ピーク面積に対する、試料の該当ピーク面積を計算し、従来品に対する試料のVOC発生量(%)とした。
[Measurement of silica content]
10 g of the sample was weighed in a heat-resistant crucible, heated in air at 600 ° C. for 1 hour using a Motoyama electric furnace SUPER-C SO-2035D, and fired. After the sample was completely cooled, 8.0 g of the sample was filled in an aluminum ring having an inner diameter of 40 mm and a height of 5 mm, and compression molding was performed at 150 kg / cm 2 using BRIQUETTING MACHINE MP-35 manufactured by Shimadzu Mectem. The silicon content of the molded sample was measured using Simultix 10 manufactured by Rigaku. The silicon content of the substrate (core) was measured in the same manner. The silica (SiO 2 ) content of the sample was calculated from the silicon (Si) content of the sample. The silicon content in the i-butyltrimethoxysilane hydrolyzate was calculated by subtracting the silicon content of the substrate from the silicon content of the pigment (after coating). The mol ratio of carbon / silicon in the i-butyltrimethoxysilane hydrolyzate was calculated from the carbon (C) content measured using a LECO CS-230 type carbon (C) / sulfur (S) analyzer. .. Further, the state in which all three methoxy groups in the i-butyltrimethoxysilane molecule are hydrolyzed, that is, the state in which the mol ratio of carbon / silicon is 4.00 is defined as the state in which the hydrolysis has proceeded 100%, and the hydrolysis rate (Mmol / mol) was calculated by the following formula:
Hydrolysis rate (mmol / mol) = 1000 × {1- (carbon (C) content / silicon (Si) content-4.00) /3.00}
[Measurement of VOC generation amount]
2.0 g of the sample was placed in a screw tube bottle with a rubber stopper and a volume of 30 mL, and heated at 120 ° C. for 1 hour. Immediately after heating, a syringe was inserted into a screw tube bottle to collect 5 mL of the gas inside, and the gas was injected into a Yanaco gas chromatograph G3800 equipped with a J-Science West Japan packed column (3 m) SE-30. Helium was used as the carrier gas, and the flow rate was 30 mL / min. The column temperature was raised from 80 ° C. to 200 ° C. at 5 ° C./min. As a control substance, n-hexyltrimethoxysilane-coated particles produced according to Example 8 of Patent Document 2 were measured by the same procedure. For the sample and the n-hexyltrimethoxysilane-coated particles, the peak area detected between the peak of normal hexane and the peak of n-hexadecane was determined, respectively. The corresponding peak area of the sample was calculated with respect to the corresponding peak area of the n-hexyltrimethoxysilane coated particles, and used as the VOC generation amount (%) of the sample with respect to the conventional product.

[疎水化度の測定]
測定試料は目開き1mmのふるいで通過したものを用い、ふるい通過から5min以内に測定を実施した。メタノール含有量が25g/kgずつ異なる複数のメタノール水溶液を用意し、それぞれ約2mLずつ試験管に入れた。各試験管に20mg以上40mg以下の試料を静かに投入し、沈降の有無を目視確認した。試料を投入してから5秒経過時点で、投入した試料が全く沈降しない場合は「沈降しない」、一部でも沈降した場合は「沈降する」と判定した。試料が沈降する最もメタノール濃度の小さい水溶液のメタノール含有量を、疎水化度(g/kg)とした。
[Measurement of hydrophobicity]
As the measurement sample, a sample passed through a sieve having an opening of 1 mm was used, and the measurement was carried out within 5 minutes after passing through the sieve. A plurality of aqueous methanol solutions having different methanol contents of 25 g / kg were prepared, and about 2 mL each was placed in a test tube. A sample of 20 mg or more and 40 mg or less was gently put into each test tube, and the presence or absence of sedimentation was visually confirmed. When 5 seconds have passed since the sample was charged, it was determined that the sample did not settle at all, that it did not settle, and that even a part of the sample settled, it settled. The methanol content of the aqueous solution having the lowest methanol concentration at which the sample settled was defined as the degree of hydrophobicity (g / kg).

[磁気特性の測定]
東英工業製振動試料型磁力計VSM−3を使用し、外部磁場79.6kA/mの際の磁化:σs(Am/kg)、及び残留磁化:σr(Am/kg)を測定した。以下に操作の詳細を示す。なお、本測定において外部磁場値の「−」は、磁場の方向が「+」の場合とは逆であることを示す。また、操作は室温を23.0℃に保った室内で実施した。
[Measurement of magnetic characteristics]
Magnetization: σs (Am 2 / kg) and residual magnetization: σr (Am 2 / kg) at an external magnetic field of 79.6 kA / m were measured using a vibrating sample magnetometer VSM-3 manufactured by Toei Kogyo. .. The details of the operation are shown below. In this measurement, the external magnetic field value "-" indicates that the direction of the magnetic field is opposite to that of "+". The operation was carried out in a room where the room temperature was maintained at 23.0 ° C.

まず、標準試料を使用し、振動試料型磁力計の+398kA/m印加時の磁化を5EMUに調整した。底面積38.47mm、高さ7mm、内容量が0.05655cmの円柱形のセルに、試料粉末を充填密度として2.20g/cm以上2.40g/cm以下の範囲になるように充填した。円柱状セルの高さ方向が鉛直になるように装置内にセットし、外部磁場を+79.6kA/mに設定し、外部磁場が0A/mから試料への印加を行った。+63.7kA/m付近より印加速度を下げ、+78kA/m以上では印加速度を最低の20min/Full−scaleにし、+79.6kA/mを超えないように印加した。+79.6kA/mの印加時はGAUSS METERの出力値が+1.000Vであることで確認した。+79.6kA/m印加した状態の磁化(+σs)としてMAIN AMPLIFIERの出力値(V)を読み取った。磁化は時間経過とともに緩やかに変化するので、出力値の読み取りは+79.6kA/mの印加を確認した時点で速やかに行った。+σs値を読み取った後、減磁した。外部磁場が0A/mであることを確認し残留磁化の+σr値を求め、磁場を反転して−79.6kA/mまで逆方向に帯電を印加した。印加速度を速くして−79.6kA/mまで印加し、−79.6kA/m印加した状態の磁化(−σs)としてMAIN AMPLIFIERの出力値を読み取った。+σsの読み取り操作と同様に、−63.4kA/m以上の負帯電では印加速度を下げ、−78.0kA/m以上の負帯電での印加速度は最低の20min/Fullscaleにし、−79.6kA/mを超えて負帯電を印加しないようにした。−79.6kA/mの確認をGAUSS METERの出力値で行う点及び−σsとしてMAIN AMPLIFIERの出力値の読み取りを速やかに行う点は+σsと同様である。−σs値を読み取った後、減磁した。外部磁場0A/mを確認し、残留磁化の−σr値を求めた。磁場を反転して+79.6kA/mまで印加した。これらも外部磁場変化に伴う磁化の推移を目視で読み取った。また、印加速度は7min/Fullscaleに設定した。 First, using a standard sample, the magnetization of the vibrating sample magnetometer when +398 kA / m was applied was adjusted to 5 EMU. Bottom area 38.47mm 2, height 7 mm, a cylindrical cell having an inner volume is 0.05655cm 3, so as to be 2.20 g / cm 3 or more 2.40 g / cm 3 or less in the range of sample powder as packing density Filled with. The columnar cell was set in the apparatus so that the height direction was vertical, the external magnetic field was set to +79.6 kA / m, and the external magnetic field was applied to the sample from 0 A / m. The application speed was lowered from around +63.7 kA / m, and at +78 kA / m or higher, the application speed was set to the minimum of 20 min / Full-scale, and the application was applied so as not to exceed +79.6 kA / m. It was confirmed that the output value of GAUSS METER was + 1.000V when +79.6 kA / m was applied. The output value (V) of MAIN AMPLIFIER was read as the magnetization (+ σs) in the state where + 79.6 kA / m was applied. Since the magnetization changes slowly with the passage of time, the output value was read promptly when the application of +79.6 kA / m was confirmed. After reading the + σs value, it was demagnetized. After confirming that the external magnetic field was 0 A / m, the + σr value of the residual magnetization was obtained, the magnetic field was inverted, and charging was applied in the reverse direction to −79.6 kA / m. The application speed was increased to -79.6 kA / m, and the output value of MAIN AMPLIFIER was read as the magnetization (-σs) in the state where -79.6 kA / m was applied. Similar to the + σs reading operation, the application speed is reduced for negative charges of -63.4 kA / m or more, and the application speed for negative charges of -78.0 kA / m or more is set to the minimum of 20 min / Fullscale, which is -79.6 kA. Negative charging was not applied beyond / m. It is the same as + σs in that the confirmation of -79.6 kA / m is performed by the output value of GAUSS METER and the output value of MAIN AMPLIIER is read promptly as -σs. After reading the −σs value, it was demagnetized. The external magnetic field of 0 A / m was confirmed, and the −σr value of the residual magnetization was determined. The magnetic field was inverted and applied up to +79.6 kA / m. These also visually read the transition of magnetization due to changes in the external magnetic field. The application speed was set to 7 min / Full scale.

上記の操作により読み取った正負2つの外部磁場79.6kA/mの際の磁化σs及び残留磁化σrにおける絶対値の平均値を、外部磁場79.6kA/mの磁化σs及び残留磁化σrとした。 The average value of the absolute values of the magnetization σs and the residual magnetization σr at the two positive and negative external magnetic fields 79.6 kA / m read by the above operation was taken as the magnetization σs and the residual magnetization σr of the external magnetic field 79.6 kA / m.

[基体(四酸化三鉄を主成分とする磁性体)の製造]
[基体の製造例A]
反応槽に22kgの水酸化ナトリウムを含む水溶液170Lを入れ、シリカ換算で0.40kg/Lのケイ酸ナトリウム水溶液800mLを加えた後に40℃に昇温した。当該水溶液に毎分80Lの窒素を吹き込みながら、Fe換算で0.10kg/Lの硫酸第一鉄水溶液を、当該水溶液のpHが8.1に達するまで添加して、水酸化第一鉄を生成し、これを含むスラリーを得た。水を添加してスラリー中のFe濃度を0.04kg/Lに調整した上で、1mol/Lの水酸化ナトリウム水溶液を添加して当該スラリーのpHを8.5に調整した。このスラリーに毎分70Lで40分間空気を吹き込み、酸化した。このスラリーを90℃に昇温後、毎分70Lで空気を吹き込み、酸化率が70%以上71%以下になるまで酸化して、四酸化三鉄を主成分とする磁性体を得た。得られた磁性体(基体)は、常法により濾過、水洗、リパルプして基体スラリーとした。得られた基体はシリカ含有量が11.1g/kg、BET比表面積が8.4m/g、一次粒子のメディアン径が0.24μmであった。
[Manufacturing of substrate (magnetic material containing triiron tetroxide as the main component)]
[Material Production Example A]
170 L of an aqueous solution containing 22 kg of sodium hydroxide was placed in a reaction vessel, 800 mL of a 0.40 kg / L sodium silicate aqueous solution in terms of silica was added, and then the temperature was raised to 40 ° C. While blowing 80 L of nitrogen per minute into the aqueous solution, a ferrous sulfate aqueous solution of 0.10 kg / L in terms of Fe is added until the pH of the aqueous solution reaches 8.1 to produce ferrous hydroxide. A slurry containing this was obtained. Water was added to adjust the Fe concentration in the slurry to 0.04 kg / L, and then a 1 mol / L sodium hydroxide aqueous solution was added to adjust the pH of the slurry to 8.5. Air was blown into this slurry at 70 L / min for 40 minutes to oxidize it. After raising the temperature of this slurry to 90 ° C., air was blown at 70 L / min and oxidized until the oxidation rate became 70% or more and 71% or less to obtain a magnetic material containing triiron tetroxide as a main component. The obtained magnetic material (base) was filtered, washed with water, and repulped by a conventional method to obtain a base slurry. The obtained substrate had a silica content of 11.1 g / kg, a BET specific surface area of 8.4 m 2 / g, and a median diameter of primary particles of 0.24 μm.

[基体の製造例B]
pHを8.5に調整した後のスラリーに毎分70Lで空気を吹き込む時間を38分間にしたことを除いては、製造例Aと同様の方法で基体スラリーを作製した。得られた基体はシリカ含有量が10.5g/kg、BET比表面積が7.6m/g、メディアン径が0.28μmであった。
[Material Production Example B]
A substrate slurry was prepared in the same manner as in Production Example A, except that the time for blowing air at 70 L / min into the slurry after adjusting the pH to 8.5 was 38 minutes. The obtained substrate had a silica content of 10.5 g / kg, a BET specific surface area of 7.6 m 2 / g, and a median diameter of 0.28 μm.

[基体の製造例C]
製造例Aの基体スラリーと製造例Bの基体スラリーを等量混合し、よくかく拌した。得られた基体はシリカ含有量が10.8g/kg、BET比表面積が8.0m/g、メディアン径が0.26μmであった。
[Material Production Example C]
The substrate slurry of Production Example A and the substrate slurry of Production Example B were mixed in equal amounts and stirred well. The obtained substrate had a silica content of 10.8 g / kg, a BET specific surface area of 8.0 m 2 / g, and a median diameter of 0.26 μm.

[基体の製造例D]
pHを8.5に調整した後のスラリーに毎分70Lで空気を吹き込む時間を49分間にしたことを除いては、製造例Aと同様の方法で基体スラリーを作製した。得られた基体はシリカ含有量が10.9g/kg、BET比表面積が8.9m/g、メディアン径が0.24μmであった。
[Material Production Example D]
A substrate slurry was prepared in the same manner as in Production Example A, except that the time for blowing air at 70 L / min into the slurry after adjusting the pH to 8.5 was 49 minutes. The obtained substrate had a silica content of 10.9 g / kg, a BET specific surface area of 8.9 m 2 / g, and a median diameter of 0.24 μm.

[基体の製造例E]
pHを8.5に調整した後のスラリーに毎分70Lで空気を吹き込む時間を47分間にしたことを除いては、製造例Aと同様の方法で基体スラリーを作製した。得られた基体はシリカ含有量が10.5g/kg、BET比表面積が8.1m/g、メディアン径が0.25μmであった。
[Material Production Example E]
A substrate slurry was prepared in the same manner as in Production Example A, except that the time for blowing air at 70 L / min into the slurry after adjusting the pH to 8.5 was 47 minutes. The obtained substrate had a silica content of 10.5 g / kg, a BET specific surface area of 8.1 m 2 / g, and a median diameter of 0.25 μm.

[基体の製造例F]
製造例Dの基体スラリーと製造例Eの基体スラリーを等量混合し、よくかく拌した。得られた基体はシリカ含有量が10.7g/kg、BET比表面積が8.5m/g、メディアン径が0.24μmであった。
[Material Production Example F]
The substrate slurry of Production Example D and the substrate slurry of Production Example E were mixed in equal amounts and stirred well. The obtained substrate had a silica content of 10.7 g / kg, a BET specific surface area of 8.5 m 2 / g, and a median diameter of 0.24 μm.

[基体の製造例G]
水酸化第一鉄を含むスラリーに水を添加してFe濃度を0.10kg/Lに調整した後にpHを9.6に調整し、かつその後のスラリーに毎分70Lで空気を吹き込む時間を2分間にしたことを除いては、製造例Aと同様の方法で基体スラリーを作製した。得られた基体はシリカ含有量が11.7g/kg、BET比表面積が6.8m/g、メディアン径が0.29μmであった。
[Material Production Example G]
Water was added to the slurry containing ferrous hydroxide to adjust the Fe concentration to 0.10 kg / L, then the pH was adjusted to 9.6, and the time for blowing air into the slurry at 70 L / min was 2 A substrate slurry was prepared in the same manner as in Production Example A, except that the minutes were taken. The obtained substrate had a silica content of 11.7 g / kg, a BET specific surface area of 6.8 m 2 / g, and a median diameter of 0.29 μm.

[基体の製造例H]
反応槽に2700kgの水酸化ナトリウムを含む水溶液22.5mを入れ、シリカ換算で0.40kg/Lのケイ酸ナトリウム水溶液100Lを加えた後に40℃に昇温した。当該水溶液に毎分700Lの窒素を吹き込みながら、Fe換算で0.10kg/Lの硫酸第一鉄水溶液を、当該水溶液のpHが8.0に達するまで添加して、水酸化第一鉄を生成し、これを含むスラリーを得た。水を添加して鉄(Fe)濃度を0.04kg/Lに調整した上で、1mol/Lの水酸化ナトリウム水溶液を添加して当該スラリーのpHを8.5に調整した。このスラリーに毎分8.0mで39分間空気を吹き込み、酸化した。このスラリーを90℃に昇温後、毎分6.6mで空気を吹き込み、酸化率が70%以上71%以下になるまで酸化して、四酸化三鉄を主成分とする磁性体を得た。得られた磁性体(基体)は、常法により濾過、水洗、リパルプして基体スラリーとした。得られた基体はシリカ含有量が12.0g/kg、BET比表面積が8.0m/g、メディアン径が0.23μmであった。
[Material Production Example H]
22.5 m 3 of an aqueous solution containing 2700 kg of sodium hydroxide was placed in a reaction vessel, 100 L of an aqueous sodium silicate solution of 0.40 kg / L in terms of silica was added, and then the temperature was raised to 40 ° C. While blowing 700 L of nitrogen per minute into the aqueous solution, 0.10 kg / L ferrous sulfate aqueous solution in terms of Fe is added until the pH of the aqueous solution reaches 8.0 to produce ferrous hydroxide. A slurry containing this was obtained. Water was added to adjust the iron (Fe) concentration to 0.04 kg / L, and then a 1 mol / L sodium hydroxide aqueous solution was added to adjust the pH of the slurry to 8.5. Blowing 39 minutes air per minute 8.0 m 3 to the slurry, it was oxidized. After heating the slurry to 90 ° C., blowing air per minute 6.6 m 3, is oxidized to the oxidation rate falls below 71% 70%, to obtain a magnetic material mainly composed of triiron tetraoxide It was. The obtained magnetic material (base) was filtered, washed with water, and repulped by a conventional method to obtain a base slurry. The obtained substrate had a silica content of 12.0 g / kg, a BET specific surface area of 8.0 m 2 / g, and a median diameter of 0.23 μm.

[基体の製造例I]
pHを8.5に調整した後のスラリーに毎分70Lで空気を吹き込む時間を42分間にしたことを除いては、製造例Aと同様の方法で基体スラリーを作製した。得られた基体はシリカ含有量が10.8g/kg、BET比表面積が8.3m/g、メディアン径が0.25μmであった。
[Material Production Example I]
A substrate slurry was prepared in the same manner as in Production Example A, except that the time for blowing air at 70 L / min into the slurry after adjusting the pH to 8.5 was 42 minutes. The obtained substrate had a silica content of 10.8 g / kg, a BET specific surface area of 8.3 m 2 / g, and a median diameter of 0.25 μm.

[基体の製造例J]
製造例Iと同じ方法であるが、別のロットで基体スラリーを作製した。得られた基体はシリカ含有量が10.7g/kg、BET比表面積が8.0m/g、メディアン径が0.26μmであった。
[Material Production Example J]
The same method as in Production Example I was used, but a substrate slurry was prepared in a different lot. The obtained substrate had a silica content of 10.7 g / kg, a BET specific surface area of 8.0 m 2 / g, and a median diameter of 0.26 μm.

[基体の製造例K]
pHを8.5に調整した後のスラリーに毎分70Lで空気を吹き込む時間を30分間にしたことを除いては、製造例Aと同様の方法で基体スラリーを作製した。得られた基体はシリカ含有量が9.7g/kg、BET比表面積が7.0m/g、メディアン径が0.34μmであった。
[Material Production Example K]
A substrate slurry was prepared in the same manner as in Production Example A, except that the time for blowing air at 70 L / min into the slurry after adjusting the pH to 8.5 was set to 30 minutes. The obtained substrate had a silica content of 9.7 g / kg, a BET specific surface area of 7.0 m 2 / g, and a median diameter of 0.34 μm.

[基体の製造例L]
pHを8.5に調整した後のスラリーに毎分8.0mで空気を吹き込む時間を30分間にしたことを除いては、製造例Hと同様の方法で基体スラリーを作製した。得られた基体はシリカ含有量が10.8g/kg、BET比表面積が8.4m/g、メディアン径が0.27μmであった。
[Material Production Example L]
pH is performed except that the time for blowing air for 30 minutes at min 8.0 m 3 of the slurry was adjusted to 8.5 to prepare a substrate slurry in Preparation H the same way. The obtained substrate had a silica content of 10.8 g / kg, a BET specific surface area of 8.4 m 2 / g, and a median diameter of 0.27 μm.

[基体の製造例M]
反応槽に2700kgの水酸化ナトリウムを含む水溶液22.5mを入れ、シリカ換算で0.40kg/Lのケイ酸ナトリウム水溶液100Lとヘキサメタリン酸ナトリウム13.0kgを加えた後に40℃に昇温した。当該水溶液に毎分700Lの窒素を吹き込みながら、Fe換算で0.10kg/Lの硫酸第一鉄水溶液を、当該水溶液のpHが8.2に達するまで添加して、水酸化第一鉄を生成し、これを含むスラリーを得た。水を添加して鉄(Fe)濃度を0.04kg/Lに調整した上で、1mol/Lの水酸化ナトリウム水溶液を添加して当該スラリーのpHを8.5に調整した。このスラリーに毎分8.0mで45分間空気を吹き込み、酸化した。このスラリーを90℃に昇温後、毎分6.6mで空気を吹き込み、酸化率が70%以上71%以下になるまで酸化して、四酸化三鉄を主成分とする磁性体を得た。得られた磁性体(基体)は、常法により濾過、水洗、リパルプして基体スラリーとした。
[Material Production Example M]
22.5 m 3 of an aqueous solution containing 2700 kg of sodium hydroxide was placed in a reaction vessel, 100 L of an aqueous sodium silicate solution of 0.40 kg / L in terms of silica and 13.0 kg of sodium hexametaphosphate were added, and then the temperature was raised to 40 ° C. While blowing 700 L of nitrogen per minute into the aqueous solution, a ferrous sulfate aqueous solution of 0.10 kg / L in terms of Fe is added until the pH of the aqueous solution reaches 8.2 to produce ferrous hydroxide. A slurry containing this was obtained. Water was added to adjust the iron (Fe) concentration to 0.04 kg / L, and then a 1 mol / L sodium hydroxide aqueous solution was added to adjust the pH of the slurry to 8.5. Blowing 45 minutes air per minute 8.0 m 3 to the slurry, it was oxidized. After heating the slurry to 90 ° C., blowing air per minute 6.6 m 3, is oxidized to the oxidation rate falls below 71% 70%, to obtain a magnetic material mainly composed of triiron tetraoxide It was. The obtained magnetic material (base) was filtered, washed with water, and repulped by a conventional method to obtain a base slurry.

[基体の製造例N]
pHを8.5に調整した後のスラリーに毎分8.0mで空気を吹き込む時間を42分間に変更したことを除いては、製造例Mと同様の方法で基体スラリーを作製した。
[Material Production Example N]
except that it has changed to the time of blowing air for 42 minutes at min 8.0 m 3 to the slurry after the pH was adjusted to 8.5 to prepare a substrate slurry in Preparation M and the same method.

[基体の製造例O]
製造例Mの基体スラリーと製造例Nの基体スラリーを等量混合し、よくかく拌した。得られた基体はシリカ含有量が11.9g/kg、BET比表面積が8.0m/g、メディアン径が0.25μmであった。
[Material Production Example O]
The substrate slurry of Production Example M and the substrate slurry of Production Example N were mixed in equal amounts and stirred well. The obtained substrate had a silica content of 11.9 g / kg, a BET specific surface area of 8.0 m 2 / g, and a median diameter of 0.25 μm.

[基体の製造例P]
特許文献2(特開2005−263619号公報)の基体粒子の製造例Dに記載の方法に準じて製造した。タンクに18.5kgの水酸化ナトリウムを含む水溶液180Lを入れ40℃に調整した後、ヘキサメタリン酸ナトリウム86.4g(Feに対し、P換算で0.32重量%に該当する)及びSiOとして413.5g/Lのケイ酸ナトリウム溶液681.7mL(Feに対し、SiO換算で1.50重量%に該当する)を添加し、硫酸第一鉄水溶液をpHが8.5に達するまで添加した。その後、1mol/L NaOHでpHを9.0に調整した後、鉄濃度を34g/L、液量を400Lとし、30分間保持した。毎分100Lで空気を吹き込み、酸化率(Fe3+/t−Fe重量比)が8%になるまで酸化した。このスラリーを90℃に調整後、毎分50Lで空気を吹き込みながら酸化率68%まで酸化した。その後、毎分80Lの窒素ガスを吹き込みながら3時間撹拌保持して反応終了とした。生成粒子は、常法により、ろ過、水洗、リパルプして基体スラリーとした。得られた基体粒子はシリカ含有量が12.4g/kg、BET比表面積が7.5m/g、メディアン径が0.23μmであった。
[Material Production Example P]
It was produced according to the method described in Production Example D of the substrate particles of Patent Document 2 (Japanese Unexamined Patent Publication No. 2005-263619). After adjusting to 40 ° C. Put aqueous 180L containing sodium hydroxide 18.5kg tank, with respect to sodium hexametaphosphate 86.4g (Fe 3 O 4, corresponding to 0.32 wt% in terms of P 2 O 5 ) and to 413.5g / L sodium silicate solution 681.7mL (Fe 3 O 4 as SiO 2, corresponding to 1.50 wt% in terms of SiO 2) was added, pH of the aqueous ferrous sulfate solution Was added until a value of 8.5 was reached. Then, after adjusting the pH to 9.0 with 1 mol / L NaOH, the iron concentration was 34 g / L and the liquid volume was 400 L, and the mixture was maintained for 30 minutes. Air was blown at 100 L / min and oxidized until the oxidation rate (Fe 3+ / t-Fe weight ratio) reached 8%. After adjusting this slurry to 90 ° C., it was oxidized to an oxidation rate of 68% while blowing air at 50 L / min. Then, the reaction was completed by stirring and holding for 3 hours while blowing 80 L of nitrogen gas per minute. The produced particles were filtered, washed with water, and repulped by a conventional method to prepare a substrate slurry. The obtained substrate particles had a silica content of 12.4 g / kg, a BET specific surface area of 7.5 m 2 / g, and a median diameter of 0.23 μm.

表1に実施例及び比較例で用いる基体のシリカ含有量、BET比表面積及びメディアン径を示す。 Table 1 shows the silica content, BET specific surface area, and median diameter of the substrates used in Examples and Comparative Examples.

Figure 2020139101
Figure 2020139101

[顔料の製造]
[実施例1]
製造例Cで得た基体スラリーを用いた。基体1.92kgを含むスラリーを、スラリー濃度0.48kg/Lに調整し、特殊機器製ROBOMICS fMODEL(以下「TKロボミックス」と略記する)を用いて9000rpmで20分間分散した。スラリーを550rpmでかく拌しながら70℃に昇温し、0.05kg/Lの水酸化ナトリウム水溶液を用いてスラリーpHを10.0に調整し、1時間保持した後、基体重量に対して32.0g/kg相当量のi−ブチルトリメトキシシランを添加し、同pHで5.0時間保持した。次に98%濃硫酸を脱イオン水で体積10倍に希釈した希硫酸(以下「1/10希硫酸」と記す)でスラリーpHを9.0に調整し、0.5時間保持した。保持が終了したスラリーはフィルタープレスを用いて濾過し、濾液の電気伝導度が200μS/cm以下となるまで水道水で洗浄した。洗浄ケーキは90℃で3時間乾燥した。乾燥物は東京アトマイザー製造製TASM−1型サンプルミル(以下「サンプルミル」と略記する)を用いて粉砕し、疎水性黒色磁性顔料を得た。得られた顔料のi−ブチルトリメトキシシランの加水分解物含有量は22.5g/kg、疎水化度は625g/kg、一次粒子のメディアン径は0.26μm、外部磁場79.6kA/m下の磁化σsは64.9Am/kg、残留磁化σrは2.9Am/kg、VOC発生量はn−ヘキシルトリメトキシシラン被覆粒子に対して0.1%未満であった。
[Manufacturing of pigments]
[Example 1]
The substrate slurry obtained in Production Example C was used. The slurry containing 1.92 kg of the substrate was adjusted to a slurry concentration of 0.48 kg / L, and dispersed at 9000 rpm for 20 minutes using ROBOMICS fMODEL (hereinafter abbreviated as “TK Robomix”) manufactured by a special instrument. The temperature of the slurry was raised to 70 ° C. while stirring at 550 rpm, the pH of the slurry was adjusted to 10.0 using a 0.05 kg / L aqueous sodium hydroxide solution, and the mixture was held for 1 hour, and then 32. An amount equivalent to 0 g / kg of i-butyltrimethoxysilane was added, and the mixture was kept at the same pH for 5.0 hours. Next, the slurry pH was adjusted to 9.0 with dilute sulfuric acid (hereinafter referred to as "1/10 dilute sulfuric acid") obtained by diluting 98% concentrated sulfuric acid with deionized water 10 times by volume, and the slurry was held for 0.5 hours. The slurry that had been retained was filtered using a filter press and washed with tap water until the electrical conductivity of the filtrate became 200 μS / cm or less. The washing cake was dried at 90 ° C. for 3 hours. The dried product was pulverized using a TASM-1 type sample mill manufactured by Tokyo Atomizer (hereinafter abbreviated as "sample mill") to obtain a hydrophobic black magnetic pigment. The hydrolyzate content of i-butyltrimethoxysilane in the obtained pigment was 22.5 g / kg, the degree of hydrophobicity was 625 g / kg, the median diameter of the primary particles was 0.26 μm, and the external magnetic field was 79.6 kA / m. The magnetization σs was 64.9 Am 2 / kg, the residual magnetization σr was 2.9 Am 2 / kg, and the amount of VOC generated was less than 0.1% with respect to the n-hexyltrimethoxysilane-coated particles.

[実施例2]
実施例1で得られた乾燥物を、窒素雰囲気、180℃で1時間熱処理した。熱処理物はサンプルミルを用いて粉砕し、疎水性黒色磁性顔料を得た。得られた顔料のi−ブチルトリメトキシシランの加水分解物含有量は23.1g/kg、疎水化度は675g/kg、メディアン径は0.26μm、外部磁場79.6kA/m下の磁化σsは68.2Am/kg、残留磁化σrは4.0Am/kg、VOC発生量はn−ヘキシルトリメトキシシラン被覆粒子に対して0.1%未満であった。
[Example 2]
The dried product obtained in Example 1 was heat-treated at 180 ° C. for 1 hour in a nitrogen atmosphere. The heat-treated product was pulverized using a sample mill to obtain a hydrophobic black magnetic pigment. The hydrolyzate content of i-butyltrimethoxysilane in the obtained pigment was 23.1 g / kg, the degree of hydrophobicity was 675 g / kg, the median diameter was 0.26 μm, and the magnetization σs under an external magnetic field of 79.6 kA / m. Was 68.2 Am 2 / kg, the residual magnetization σr was 4.0 Am 2 / kg, and the amount of VOC generated was less than 0.1% with respect to the n-hexyltrimethoxysilane-coated particles.

[実施例3]
製造例Fで得た基体スラリーを用いた。水酸化ナトリウム水溶液を用いて調整するスラリーpHを11.2に変更した以外は、実施例2と同様の操作で疎水性黒色磁性顔料を得た。
[Example 3]
The substrate slurry obtained in Production Example F was used. A hydrophobic black magnetic pigment was obtained by the same operation as in Example 2 except that the slurry pH adjusted by using an aqueous sodium hydroxide solution was changed to 11.2.

[実施例4]
製造例Gで得た基体スラリーを用いた。基体7.74kgを含むスラリーを、スラリー濃度0.48kg/Lに調整し、特殊機器製TK HOMOMIXER MARKII40(以下「TKホモミキサー」と略記する)を用いて電流値4.0Aで20分間分散した。スラリーを550rpmでかく拌しながら70℃に昇温し、0.05kg/Lの水酸化ナトリウム水溶液を用いてスラリーpHを9.5に調整し、1時間保持した後、基体重量に対して20.6g/kg相当量のi−ブチルトリメトキシシランを添加し、同pHで6.0時間保持した。次に1/10希硫酸でスラリーpHを9.0に調整し、0.5時間保持した。保持が終了したスラリーはフィルタープレスを用いて濾過し、濾液の電気伝導度が200μS/cm以下となるまで水道水で洗浄した。洗浄ケーキを90℃で3時間乾燥し、窒素雰囲気、225℃で1時間熱処理を行った。熱処理物はサンプルミルを用いて粉砕し、疎水性黒色磁性顔料を得た。得られた顔料のi−ブチルトリメトキシシラン加水分解物中の炭素/ケイ素のmol比率は4.07であった。これより加水分解率は977(mmol/mol)であり、i−ブチルトリメトキシシラン中のメトキシ基のほとんどが加水分解したことがわかった。
[Example 4]
The substrate slurry obtained in Production Example G was used. The slurry containing 7.74 kg of the substrate was adjusted to a slurry concentration of 0.48 kg / L and dispersed at a current value of 4.0 A for 20 minutes using a TK HOMOMIXER MARKII40 (hereinafter abbreviated as “TK homomixer”) manufactured by a special instrument. .. The temperature of the slurry was raised to 70 ° C. while stirring at 550 rpm, the pH of the slurry was adjusted to 9.5 using a 0.05 kg / L aqueous solution of sodium hydroxide, and the mixture was held for 1 hour. An amount equivalent to 6 g / kg of i-butyltrimethoxysilane was added, and the mixture was kept at the same pH for 6.0 hours. Next, the slurry pH was adjusted to 9.0 with 1/10 dilute sulfuric acid and held for 0.5 hours. The slurry that had been retained was filtered using a filter press and washed with tap water until the electrical conductivity of the filtrate became 200 μS / cm or less. The washed cake was dried at 90 ° C. for 3 hours and heat treated in a nitrogen atmosphere at 225 ° C. for 1 hour. The heat-treated product was pulverized using a sample mill to obtain a hydrophobic black magnetic pigment. The mol ratio of carbon / silicon in the i-butyltrimethoxysilane hydrolyzate of the obtained pigment was 4.07. From this, it was found that the hydrolysis rate was 977 (mmol / mol), and most of the methoxy groups in i-butyltrimethoxysilane were hydrolyzed.

[実施例5]
製造例Fで得た基体スラリーを用いた。水酸化ナトリウム水溶液を用いて調整するスラリーpHを11.0に変更した以外は、実施例3と同様の操作で疎水性黒色磁性顔料を得た。
[Example 5]
The substrate slurry obtained in Production Example F was used. A hydrophobic black magnetic pigment was obtained by the same operation as in Example 3 except that the slurry pH adjusted by using an aqueous sodium hydroxide solution was changed to 11.0.

[実施例6]
製造例Hで得た基体スラリーを用いた。最初に基体1.44kgを含むスラリーを用い、i−ブチルトリメトキシシランの添加量を基体重量に対して14.0g/kgに変更し、その後pH10.0で4.3時間保持し、1/10希硫酸でスラリーpHを7.0に調整し、乾燥した洗浄ケーキを窒素雰囲気で熱処理する温度を150℃に変更した以外は、実施例2と同様の操作で疎水性黒色磁性顔料を得た。
[Example 6]
The substrate slurry obtained in Production Example H was used. First, using a slurry containing 1.44 kg of the substrate, the amount of i-butyltrimethoxysilane added was changed to 14.0 g / kg based on the weight of the substrate, and then the pH was kept at 10.0 for 4.3 hours, and 1 /. A hydrophobic black magnetic pigment was obtained by the same operation as in Example 2 except that the slurry pH was adjusted to 7.0 with 10 dilute sulfuric acid and the temperature at which the dried washing cake was heat-treated in a nitrogen atmosphere was changed to 150 ° C. ..

[実施例7]
製造例Iで得た基体スラリーを用いた。分散後にスラリーを加温する温度を50℃に、i−ブチルトリメトキシシランの添加量を基体重量に対して24.0g/kgに変更し、乾燥した洗浄ケーキを窒素雰囲気で熱処理する温度を150℃に変更した以外は、実施例2と同様の操作で疎水性黒色磁性顔料を得た。
[Example 7]
The substrate slurry obtained in Production Example I was used. The temperature at which the slurry is heated after dispersion is changed to 50 ° C., the amount of i-butyltrimethoxysilane added is changed to 24.0 g / kg with respect to the weight of the substrate, and the temperature at which the dried washing cake is heat-treated in a nitrogen atmosphere is set to 150. A hydrophobic black magnetic pigment was obtained by the same operation as in Example 2 except that the temperature was changed to ° C.

[実施例8]
製造例Jで得た基体スラリーを用いた。分散後にスラリーを加温する温度を90℃に、i−ブチルトリメトキシシランの添加量を基体重量に対して20.6g/kgに変更した以外は、実施例7と同様の操作で疎水性黒色磁性顔料を得た。
[Example 8]
The substrate slurry obtained in Production Example J was used. Hydrophobic black by the same operation as in Example 7 except that the temperature for heating the slurry after dispersion was changed to 90 ° C. and the amount of i-butyltrimethoxysilane added was changed to 20.6 g / kg with respect to the substrate weight. A magnetic pigment was obtained.

[実施例9]
製造例Hで得た基体スラリーを用いた。最初のスラリー濃度を0.60kg/Lに調整し、pH10.0で5.0時間保持した後に調整するpHを7.0に変更した以外は、実施例8と同様の操作で疎水性黒色磁性顔料を得た。
[Example 9]
The substrate slurry obtained in Production Example H was used. Hydrophobic black magnetism was carried out in the same manner as in Example 8 except that the initial slurry concentration was adjusted to 0.60 kg / L, the pH was maintained at pH 10.0 for 5.0 hours, and then the adjusted pH was changed to 7.0. Obtained a pigment.

[実施例10]
製造例Jで得た基体スラリーを用いた。基体2.70kgを含むスラリーを、スラリー濃度0.18kg/Lに調整し、水酸化ナトリウム水溶液を用いてスラリーpHを10.0に調整し、i−ブチルトリメトキシシランを添加した後にpH10.0で5.0時間保持し、乾燥した洗浄ケーキを窒素雰囲気で熱処理する温度を150℃に変更した以外は、実施例4と同様の操作で疎水性黒色磁性顔料を得た。
[Example 10]
The substrate slurry obtained in Production Example J was used. The slurry containing 2.70 kg of the substrate was adjusted to a slurry concentration of 0.18 kg / L, the pH of the slurry was adjusted to 10.0 using an aqueous sodium hydroxide solution, and the pH was 10.0 after adding i-butyltrimethoxysilane. A hydrophobic black magnetic pigment was obtained by the same operation as in Example 4 except that the temperature at which the dried washed cake was heat-treated in a nitrogen atmosphere was changed to 150 ° C.

[実施例11]
製造例Kで得た基体スラリーを用いた。最初に基体7.66kgを含むスラリーを用いた以外は、実施例4と同様の操作で疎水性黒色磁性顔料を得た。
[Example 11]
The substrate slurry obtained in Production Example K was used. A hydrophobic black magnetic pigment was obtained by the same operation as in Example 4 except that a slurry containing 7.66 kg of the substrate was used first.

[実施例12]
製造例Lで得た基体スラリーを用いた。水酸化ナトリウム水溶液を用いて調整するスラリーpHを9.5に、i−ブチルトリメトキシシランの添加量を基体重量に対して19.0g/kgに、i−ブチルトリメトキシシラン添加後pHを保持する時間を6.0時間に変更し、乾燥した洗浄ケーキを窒素雰囲気で熱処理する温度を225℃に変更した以外は、実施例3と同様の操作で疎水性黒色磁性顔料を得た。
[Example 12]
The substrate slurry obtained in Production Example L was used. The pH of the slurry adjusted with an aqueous sodium hydroxide solution is 9.5, the amount of i-butyltrimethoxysilane added is 19.0 g / kg based on the weight of the substrate, and the pH is maintained after the addition of i-butyltrimethoxysilane. A hydrophobic black magnetic pigment was obtained by the same operation as in Example 3 except that the pH was changed to 6.0 hours and the temperature at which the dried washed cake was heat-treated in a nitrogen atmosphere was changed to 225 ° C.

[実施例13]
製造例Iで得た基体スラリーを用いた。分散後にスラリーを加温する温度を35℃に、i−ブチルトリメトキシシランの添加量を基体重量に対して27.0g/kgに変更した以外は、実施例7と同様の操作で疎水性黒色磁性顔料を得た。
[Example 13]
The substrate slurry obtained in Production Example I was used. Hydrophobic black by the same operation as in Example 7 except that the temperature for heating the slurry after dispersion was changed to 35 ° C. and the amount of i-butyltrimethoxysilane added was changed to 27.0 g / kg with respect to the substrate weight. A magnetic pigment was obtained.

[比較例1]
製造例Oで得た基体スラリーを用いた。基体2.16kgを含むスラリーを、スラリー濃度0.12kg/Lに調整し、TKホモミキサーを用いて電流値4.0Aで20分間分散した。500rpmでかく拌しながらスラリー温度を40℃に昇温し、0.05kg/Lの水酸化ナトリウム水溶液を用いてスラリーpHを9.0に調整し、1時間保持した後、基体重量に対して20.6g/kg相当量のi−ブチルトリメトキシシランを添加し、同pHで50.0時間保持した。次に1/10希硫酸でスラリーpHを7.0に調整し、1.0時間保持した。保持が終了したスラリーはフィルタープレスを用いて濾過し、水道水を用いて濾液の電気伝導度が200μS/cm以下となるまで洗浄した。洗浄ケーキを90℃で3時間乾燥後、窒素雰囲気、150℃で1時間熱処理を行った。熱処理物はサンプルミルを用いて粉砕し、黒色磁性顔料を得た。得られた顔料のi−ブチルトリメトキシシランの加水分解物含有量は8.2g/kg、疎水化度は425g/kg、一次粒子のメディアン径は0.25μm、外部磁場79.6kA/m下の磁化σsは72.1Am/kg、残留磁化σrは4.2Am/kg、VOC発生量はn−ヘキシルトリメトキシシラン被覆粒子に対して1.0%であった。
[Comparative Example 1]
The substrate slurry obtained in Production Example O was used. The slurry containing 2.16 kg of the substrate was adjusted to a slurry concentration of 0.12 kg / L and dispersed at a current value of 4.0 A for 20 minutes using a TK homomixer. Raise the slurry temperature to 40 ° C. while stirring at 500 rpm, adjust the slurry pH to 9.0 using a 0.05 kg / L aqueous sodium hydroxide solution, hold for 1 hour, and then 20 based on the substrate weight. An amount equivalent to .6 g / kg of i-butyltrimethoxysilane was added, and the mixture was kept at the same pH for 50.0 hours. Next, the slurry pH was adjusted to 7.0 with 1/10 dilute sulfuric acid and held for 1.0 hour. The retained slurry was filtered using a filter press and washed with tap water until the electrical conductivity of the filtrate became 200 μS / cm or less. The washed cake was dried at 90 ° C. for 3 hours and then heat-treated at 150 ° C. for 1 hour in a nitrogen atmosphere. The heat-treated product was pulverized using a sample mill to obtain a black magnetic pigment. The hydrolyzate content of i-butyltrimethoxysilane in the obtained pigment was 8.2 g / kg, the degree of hydrophobicity was 425 g / kg, the median diameter of the primary particles was 0.25 μm, and the external magnetic field was 79.6 kA / m. The magnetization σs was 72.1 Am 2 / kg, the residual magnetization σr was 4.2 Am 2 / kg, and the amount of VOC generated was 1.0% with respect to the n-hexyltrimethoxysilane-coated particles.

[比較例2]
製造例Pを用いた基体スラリーを用い、特許文献2の実施例8に準じて製造した。基体スラリーのpHを5.0に調整し、TKホモミキサー(6,000rpm)で30分間分散した。分散スラリーの平均粒子径は0.72μmであった。分散スラリーの温度を40℃、基体濃度を100g/Lに調整後、塩酸:水=1:9(体積比)の希塩酸でスラリーpHを5.0に調整し、30分間保持した。スラリーpHを5.0に再調整後、基体マグネタイト重量に対して1.64%相当量の、n−ヘキシルトリメトキシシラン原液を添加し、同pH下で20時間撹拌保持した。撹拌機はTKホモミキサーを用いた。次にローラーポンプを用いて100g/Lの水酸化ナトリウム水溶液を2時間連続添加してpH8.0に調整し1時間保持した。なお、処理の開始から終了までスラリーの温度は40℃を維持した。処理終了スラリーはフィルタープレスを用いてろ過し、純水を使用してろ液の電気伝導度が200μS/cm以下となるまで洗浄した。洗浄ケーキを90℃で2時間乾燥後、続けて130℃で1時間熱処理を行った。熱処理物をTASM−1型サンプルミルを用いて粉砕した。
[Comparative Example 2]
Using the substrate slurry using Production Example P, it was produced according to Example 8 of Patent Document 2. The pH of the substrate slurry was adjusted to 5.0 and dispersed with a TK homomixer (6,000 rpm) for 30 minutes. The average particle size of the dispersed slurry was 0.72 μm. After adjusting the temperature of the dispersed slurry to 40 ° C. and the substrate concentration to 100 g / L, the slurry pH was adjusted to 5.0 with dilute hydrochloric acid of hydrochloric acid: water = 1: 9 (volume ratio), and the slurry was held for 30 minutes. After readjusting the slurry pH to 5.0, an amount of n-hexyltrimethoxysilane stock solution corresponding to 1.64% based on the weight of the substrate magnetite was added, and the mixture was kept stirred at the same pH for 20 hours. A TK homomixer was used as the stirrer. Next, a 100 g / L sodium hydroxide aqueous solution was continuously added for 2 hours using a roller pump to adjust the pH to 8.0 and held for 1 hour. The temperature of the slurry was maintained at 40 ° C. from the start to the end of the treatment. The treated slurry was filtered using a filter press and washed with pure water until the electrical conductivity of the filtrate became 200 μS / cm or less. The washed cake was dried at 90 ° C. for 2 hours and then heat-treated at 130 ° C. for 1 hour. The heat-treated product was pulverized using a TASM-1 type sample mill.

実施例1から実施例13及び比較例1、2のアルコキシシランの被着条件を表2に示す。また、実施例1から実施例13及び比較例1、2で得られた顔料の諸特性を表3に示す。 Table 2 shows the adhesion conditions of the alkoxysilanes of Examples 1 to 13 and Comparative Examples 1 and 2. Table 3 shows various characteristics of the pigments obtained in Examples 1 to 13 and Comparative Examples 1 and 2.

Figure 2020139101
Figure 2020139101

Figure 2020139101
Figure 2020139101

表3からわかるように、実施例1〜13では、疎水化度が575g/kg以上であり、VOC発生量が比較例2のn−ヘキシルトリメトキシシラン被覆粒子の発生量の30%未満である疎水性黒色磁性顔料が得られた。一方、比較例1では、i−ブチルトリメトキシシランを使用したものの、低濃度の基体スラリーを用いて被着を実施したため、被着したi−ブチルトリメトキシシラン加水分解物量が小さくなり、得られた顔料の疎水化度が小さくなった。本発明において、顔料の十分な疎水化度を得るためには、上述した通り、i−ブチルトリメトキシシランと基体との接触頻度を高めるために基体スラリーの濃度を高めに設定し、また、被着速度を高めるために温度及びpHを高めに設定し、上記温度及びpHでの保持時間を十分に取ることが望ましいと言える。これらは、ある程度互いに調整可能であると考えられ、例えば、温度が低めの場合には、基体スラリーの濃度をより高めるまたはpHを高く設定し、保持時間を長めに取るなどにより、i−ブチルトリメトキシシランの被着量を高めて疎水化度を高めることができると考えられる。しかし、これらの調整には限度もあると考えられ、例えば、比較例1では、基体スラリーの濃度が0.12kg/Lと非常に低かったため、保持時間を50.0時間と長めに取ったにもかかわらず、被着量(加水分解物含有量)及び疎水化度が小さいという結果になったと考えられる。こうした点を考慮すると、被着時の基体スラリーの濃度は、上述した通り、0.18kg/L以上とすることが望ましいといえる。比較例2では、アルコキシシランの種類を変更した結果、疎水化度は大きくなったが、VOC発生量も非常に大きくなった。 As can be seen from Table 3, in Examples 1 to 13, the degree of hydrophobization is 575 g / kg or more, and the amount of VOC generated is less than 30% of the amount of n-hexyltrimethoxysilane-coated particles of Comparative Example 2. A hydrophobic black magnetic pigment was obtained. On the other hand, in Comparative Example 1, although i-butyltrimethoxysilane was used, the adherence was carried out using a low-concentration substrate slurry, so that the amount of i-butyltrimethoxysilane hydrolyzate adhered was reduced, and the result was obtained. The degree of hydrophobicity of the pigment became smaller. In the present invention, in order to obtain a sufficient degree of hydrophobicity of the pigment, as described above, the concentration of the substrate slurry is set high in order to increase the contact frequency between the i-butyltrimethoxysilane and the substrate, and the substrate slurry is applied. It can be said that it is desirable to set the temperature and pH high in order to increase the landing speed and to take a sufficient holding time at the above temperature and pH. It is considered that these can be adjusted to each other to some extent. For example, when the temperature is low, the i-butyltri is obtained by increasing the concentration of the substrate slurry or setting the pH higher and taking a longer holding time. It is considered that the adhesion amount of methoxysilane can be increased to increase the degree of hydrophobicity. However, it is considered that there is a limit to these adjustments. For example, in Comparative Example 1, the concentration of the substrate slurry was very low at 0.12 kg / L, so that the holding time was set to a long time of 50.0 hours. Nevertheless, it is considered that the result was that the adherence amount (hydrolyzate content) and the degree of hydrophobicity were small. Considering these points, it can be said that the concentration of the substrate slurry at the time of adhesion is preferably 0.18 kg / L or more as described above. In Comparative Example 2, as a result of changing the type of alkoxysilane, the degree of hydrophobicity was increased, but the amount of VOC generated was also very large.

以上説明したように本発明では、四酸化三鉄を主成分とする磁性体(コア)の表面にi−ブチルトリメトキシシランを用いてアルキルシラン化合物層を特定の量の範囲のi−ブチルトリメトキシシラン加水分解物量となるように、好ましくは高濃度の磁性体スラリーを用いて、高温、高pHで被覆することで、VOC発生量の小さい顔料が得られる。得られた顔料は重合法トナーをはじめとする電子写真現像剤の材料として好適である。
As described above, in the present invention, i-butyltrimethoxysilane is used on the surface of a magnetic material (core) containing triiron tetroxide as a main component to form an alkylsilane compound layer in a specific amount range of i-butyltri. By coating with a magnetic material slurry having a high concentration preferably at a high temperature and a high pH so as to have an amount of methoxysilane hydrolyzate, a pigment having a small amount of VOC generated can be obtained. The obtained pigment is suitable as a material for an electrophotographic developer such as a polymerization method toner.

Claims (5)

四酸化三鉄を主成分とする磁性体の表面にアルキルシラン化合物層を有する顔料であって、アルキルシラン化合物層が、前記顔料の重量に基づいて、8.5g/kg以上40.0g/kg以下の量のi−ブチルトリメトキシシランの加水分解物からなり、前記顔料の疎水化度が575g/kg以上800g/kg以下である、前記顔料。 A pigment having an alkylsilane compound layer on the surface of a magnetic material containing triiron tetroxide as a main component, wherein the alkylsilane compound layer is 8.5 g / kg or more and 40.0 g / kg based on the weight of the pigment. The pigment comprising the following amount of a hydrolyzate of i-butyltrimethoxysilane and having a degree of hydrophobicity of the pigment of 575 g / kg or more and 800 g / kg or less. 透過型電子顕微鏡を用いた画像解析から求めた一次粒子のメディアン径が0.20μm以上0.35μm以下である請求項1に記載の顔料。 The pigment according to claim 1, wherein the median diameter of the primary particles obtained from image analysis using a transmission electron microscope is 0.20 μm or more and 0.35 μm or less. 外部磁場が79.6kA/mの際の磁化が64.0Am/kg以上72.0Am/kg以下であり、かつ外部磁場が79.6kA/mで着磁した後の残留磁化が2.8Am/kg以上4.2Am/kg以下である請求項1又は請求項2に記載の顔料。 When the external magnetic field is 79.6 kA / m, the magnetization is 64.0 Am 2 / kg or more and 72.0 Am 2 / kg or less, and the residual magnetization after magnetizing at 79.6 kA / m is 2. The pigment according to claim 1 or 2, which is 8 Am 2 / kg or more and 4.2 Am 2 / kg or less. 四酸化三鉄を主成分とする磁性体を水中に分散したスラリーに、i−ブチルトリメトキシシランを添加して、i−ブチルトリメトキシシランの加水分解物を生じさせ、この加水分解物を前記磁性体の表面に被着させる工程、及びi−ブチルトリメトキシシランの加水分解物が被着した磁性体を固液分離により得て、乾燥する工程
を含む、請求項1から請求項3までのいずれか1項に記載の顔料の製造方法
I-Butyltrimethoxysilane is added to a slurry in which a magnetic substance containing triiron tetroxide as a main component is dispersed in water to generate a hydrolyzate of i-butyltrimethoxysilane, and this hydrolyzate is used as described above. Claims 1 to 3 include a step of adhering to the surface of the magnetic material and a step of obtaining the magnetic material adhered with the hydrolyzate of i-butyltrimethoxysilane by solid-liquid separation and drying it. The method for producing a pigment according to any one item.
(1)四酸化三鉄を主成分とする磁性体を水中に0.18kg/L以上0.60kg/L以下の量で含むスラリーを準備し、前記スラリーのpHを7.0以上11.5以下に、かつ、温度を35℃以上90℃以下に調整する工程、
(2)i−ブチルトリメトキシシランを(1)のスラリーに添加し、スラリーの温度を(1)に記載の温度範囲に保ったまま2時間以上かく拌することで前記磁性体表面にi−ブチルトリメトキシシランの加水分解物を被着させる工程、
(3)(2)のスラリーから前記加水分解物が被着した磁性体を含むケーキを固液分離する工程、及び
(4)(3)のケーキを空気中で60℃以上100℃以下の温度で乾燥させる工程
を含む、請求項4に記載の製造方法。
(1) Prepare a slurry containing a magnetic substance containing triiron tetroxide as a main component in water in an amount of 0.18 kg / L or more and 0.60 kg / L or less, and adjust the pH of the slurry to 7.0 or more and 11.5. Below, and the step of adjusting the temperature to 35 ° C or higher and 90 ° C or lower,
(2) i-Butyltrimethoxysilane is added to the slurry of (1), and the slurry is stirred for 2 hours or more while maintaining the temperature of the slurry in the temperature range described in (1), thereby causing i- on the surface of the magnetic material. Step of depositing a hydrolyzate of butyltrimethoxysilane,
(3) A step of solid-liquid separation of the cake containing the magnetic substance adhered to the hydrolyzate from the slurry of (2), and a temperature of 60 ° C. or higher and 100 ° C. or lower in the air of the cake of (4) and (3). The production method according to claim 4, which comprises a step of drying with.
JP2019037421A 2019-03-01 2019-03-01 Electrophotographic pigment and method for producing the same Active JP7229814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019037421A JP7229814B2 (en) 2019-03-01 2019-03-01 Electrophotographic pigment and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019037421A JP7229814B2 (en) 2019-03-01 2019-03-01 Electrophotographic pigment and method for producing the same

Publications (2)

Publication Number Publication Date
JP2020139101A true JP2020139101A (en) 2020-09-03
JP7229814B2 JP7229814B2 (en) 2023-02-28

Family

ID=72279981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019037421A Active JP7229814B2 (en) 2019-03-01 2019-03-01 Electrophotographic pigment and method for producing the same

Country Status (1)

Country Link
JP (1) JP7229814B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100465A (en) * 2008-10-22 2010-05-06 Toda Kogyo Corp Surface-treated magnetic iron oxide particle powder and black coating material and rubber-resin composition using the same
JP2010100464A (en) * 2008-10-22 2010-05-06 Toda Kogyo Corp Surface-treated magnetic iron oxide particle powder, and black coating material and rubber-resin composition using the same
JP2012014167A (en) * 2010-05-31 2012-01-19 Canon Inc Magnetic toner
CN109096499A (en) * 2018-06-11 2018-12-28 中国石油天然气股份有限公司 Superparamagnetic nano magnetic bead, preparation method thereof and application of controllable emulsification/demulsification performance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100465A (en) * 2008-10-22 2010-05-06 Toda Kogyo Corp Surface-treated magnetic iron oxide particle powder and black coating material and rubber-resin composition using the same
JP2010100464A (en) * 2008-10-22 2010-05-06 Toda Kogyo Corp Surface-treated magnetic iron oxide particle powder, and black coating material and rubber-resin composition using the same
JP2012014167A (en) * 2010-05-31 2012-01-19 Canon Inc Magnetic toner
CN109096499A (en) * 2018-06-11 2018-12-28 中国石油天然气股份有限公司 Superparamagnetic nano magnetic bead, preparation method thereof and application of controllable emulsification/demulsification performance

Also Published As

Publication number Publication date
JP7229814B2 (en) 2023-02-28

Similar Documents

Publication Publication Date Title
JP4749733B2 (en) Hydrophobic magnetic iron oxide particles
JP5366069B2 (en) Ferrite particles and manufacturing method thereof
JP2008282002A (en) Hydrophobic magnetic iron oxide particulate powder for magnetic toner and method for manufacturing the same
EP0826635A1 (en) Magnetite particles and production process of the same
JP5741890B2 (en) Black magnetic iron oxide particle powder and method for producing the same
US6106987A (en) Magnetic particles and magnetic carrier for electrophotographic developer
JP5136749B2 (en) Black magnetic iron oxide particle powder
JP4409335B2 (en) Magnetite particles and method for producing the same
JPH05213620A (en) Magnetite particles and its production
EP0808801B1 (en) Magnetite particles and process for production thereof
JP2020139101A (en) Pigment for electrophotography and method for producing the same
JP3473003B2 (en) Black magnetic iron oxide particle powder
JPH07257930A (en) Spherical magnetite grain and production thereof
US6087057A (en) Magnetic particles and magnetic carrier for electrophotographic developer
JP4745485B2 (en) Magnetite production method
JP5826453B2 (en) Black magnetic iron oxide particle powder
JP2003183027A (en) Iron oxide particle
JP4259831B2 (en) Method for producing magnetite particles
JP3261903B2 (en) Highly dispersible hydrophobic metal oxide powder and method for producing the same
JP4815075B2 (en) Magnetite containing toner
JP4448687B2 (en) Black iron oxide particles, method for producing the same, electrophotographic toner using the same, and image forming method using the toner
JPS6317222A (en) Spherical magnetite particle powder and production thereof
EP4130885A1 (en) Ferrite particles, electrophotographic developer carrier core material, electrophotographic developer carrier, and electrophotographic developer
JP6061704B2 (en) Coated magnetite particles
JP3149886B2 (en) Method for producing spherical magnetite particle powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220202

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230215

R150 Certificate of patent or registration of utility model

Ref document number: 7229814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150