JP2020132921A - Manufacturing method of copper-clad laminate - Google Patents

Manufacturing method of copper-clad laminate Download PDF

Info

Publication number
JP2020132921A
JP2020132921A JP2019025046A JP2019025046A JP2020132921A JP 2020132921 A JP2020132921 A JP 2020132921A JP 2019025046 A JP2019025046 A JP 2019025046A JP 2019025046 A JP2019025046 A JP 2019025046A JP 2020132921 A JP2020132921 A JP 2020132921A
Authority
JP
Japan
Prior art keywords
copper
copper plating
film
clad laminate
plating solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019025046A
Other languages
Japanese (ja)
Other versions
JP7230564B2 (en
Inventor
芳英 西山
Yoshihide Nishiyama
芳英 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019025046A priority Critical patent/JP7230564B2/en
Publication of JP2020132921A publication Critical patent/JP2020132921A/en
Application granted granted Critical
Publication of JP7230564B2 publication Critical patent/JP7230564B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a manufacturing method of a copper-clad laminate having a copper plating film in which progress of recrystallization is slow.SOLUTION: A method is for obtaining a copper-clad laminate through depositing a copper plating film on a surface of a substrate by electrolytic plating using a copper plating solution. A concentration is 0.6-2.5 mg/L with regard to Nincluded in a leveler component in the copper plating solution. The nitrogen included in the leveler component in the copper plating solution is incorporated in the copper plating film. As the nitrogen incorporated in the copper plating film inhibits recrystallization so that recrystallization of the copper plating film can be delayed.SELECTED DRAWING: Figure 1

Description

本発明は、銅張積層板の製造方法に関する。さらに詳しくは、本発明は、フレキシブルプリント配線板(FPC)などの製造に用いられる銅張積層板の製造方法に関する。 The present invention relates to a method for manufacturing a copper-clad laminate. More specifically, the present invention relates to a method for manufacturing a copper-clad laminate used for manufacturing a flexible printed wiring board (FPC) or the like.

液晶パネル、ノートパソコン、デジタルカメラ、携帯電話などには、樹脂フィルムの表面に配線パターンが形成されたフレキシブルプリント配線板が用いられる。フレキシブルプリント配線板は、例えば、銅張積層板から製造される。 Flexible printed wiring boards having a wiring pattern formed on the surface of a resin film are used for liquid crystal panels, notebook computers, digital cameras, mobile phones, and the like. The flexible printed wiring board is manufactured from, for example, a copper-clad laminate.

銅張積層板の製造方法としてメタライジング法が知られている。メタライジング法による銅張積層板の製造は、例えば、つぎの手順で行なわれる。まず、樹脂フィルムの表面にニッケルクロム合金からなる下地金属層を形成する。つぎに、下地金属層の上に銅薄膜層を形成する。つぎに、銅薄膜層の上に銅めっき被膜を形成する。銅めっきにより、配線パターンを形成するのに適した膜厚となるまで導体層を厚膜化する。メタライジング法により、樹脂フィルム上に直接導体層が形成された、いわゆる2層基板と称されるタイプの銅張積層板が得られる。 The metallizing method is known as a method for manufacturing a copper-clad laminate. The production of the copper-clad laminate by the metallizing method is performed, for example, by the following procedure. First, a base metal layer made of a nickel-chromium alloy is formed on the surface of the resin film. Next, a copper thin film layer is formed on the base metal layer. Next, a copper plating film is formed on the copper thin film layer. By copper plating, the conductor layer is thickened until the film thickness is suitable for forming the wiring pattern. By the metallizing method, a copper-clad laminate of a type called a so-called two-layer substrate in which a conductor layer is directly formed on a resin film can be obtained.

この種の銅張積層板を用いてフレキシブルプリント配線板を製造する方法としてセミアディティブ法が知られている。セミアディティブ法によるフレキシブルプリント配線板の製造は、つぎの手順で行なわれる(特許文献1参照)。まず、銅張積層板の銅めっき被膜の表面にレジスト層を形成する。つぎに、レジスト層のうち配線パターンを形成する部分に開口部を形成する。つぎに、レジスト層の開口部から露出した銅めっき被膜を陰極として電解めっきを行ない、配線部を形成する。つぎに、レジスト層を除去し、フラッシュエッチングなどにより配線部以外の導体層を除去する。これにより、フレキシブルプリント配線板が得られる。 A semi-additive method is known as a method for manufacturing a flexible printed wiring board using this type of copper-clad laminate. The flexible printed wiring board is manufactured by the semi-additive method according to the following procedure (see Patent Document 1). First, a resist layer is formed on the surface of the copper plating film of the copper-clad laminate. Next, an opening is formed in the portion of the resist layer that forms the wiring pattern. Next, electrolytic plating is performed using the copper plating film exposed from the opening of the resist layer as a cathode to form a wiring portion. Next, the resist layer is removed, and the conductor layer other than the wiring portion is removed by flash etching or the like. As a result, a flexible printed wiring board can be obtained.

セミアディティブ法において、銅めっき被膜の表面にレジスト層を形成するあたり、ドライフィルムレジストを用いることがある。この場合、銅めっき被膜の表面を化学研磨した後に、ドライフィルムレジストを貼り付ける。化学研磨により銅めっき被膜の表面に微細な凹凸をつけることで、アンカー効果によるドライフィルムレジストの密着性を高めている。しかし、銅めっき被膜の表面の凹凸が過剰であると、かえってドライフィルムレジストの密着性が悪化することがある。 In the semi-additive method, a dry film resist may be used to form a resist layer on the surface of the copper plating film. In this case, after the surface of the copper plating film is chemically polished, a dry film resist is attached. By making fine irregularities on the surface of the copper plating film by chemical polishing, the adhesion of the dry film resist due to the anchor effect is improved. However, if the surface of the copper plating film is excessively uneven, the adhesion of the dry film resist may be deteriorated.

特開2006−278950号公報Japanese Unexamined Patent Publication No. 2006-278950

化学研磨後の銅めっき被膜の表面粗さは、銅めっき被膜の結晶粒のサイズに影響される。結晶粒が小さいほど化学研磨後の銅めっき被膜の表面が滑らかになり、結晶粒が大きいほど化学研磨後の銅めっき被膜の表面が粗くなるという傾向がある。 The surface roughness of the copper plating film after chemical polishing is affected by the size of the crystal grains of the copper plating film. The smaller the crystal grains, the smoother the surface of the copper plating film after chemical polishing, and the larger the crystal grains, the rougher the surface of the copper plating film after chemical polishing.

銅めっき被膜の結晶粒はめっき処理後の再結晶の進行にともない、徐々に大きくなる。再結晶が進行中の銅めっき被膜に化学研磨を行なうと、化学研磨の時点におけるめっき処理からの経過時間によって、化学研磨後の銅めっき被膜の表面粗さが変化する。そのため、配線加工における工程管理が困難になる。また、再結晶が終了した銅めっき被膜は結晶粒が大きくなっていることから、化学研磨後の表面粗さが過剰となることがある。そこで、銅張積層板の銅めっき被膜には、再結晶の進行が遅いことが求められる場合がある。 The crystal grains of the copper plating film gradually increase in size as the recrystallization progresses after the plating treatment. When the copper plating film in which recrystallization is in progress is chemically polished, the surface roughness of the copper plating film after the chemical polishing changes depending on the elapsed time from the plating treatment at the time of the chemical polishing. Therefore, process control in wiring processing becomes difficult. Further, since the crystal grains of the copper-plated coating that has been recrystallized are large, the surface roughness after chemical polishing may be excessive. Therefore, the copper-plated coating of the copper-clad laminate may be required to have a slow progress of recrystallization.

本発明は上記事情に鑑み、再結晶の進行が遅い銅めっき被膜を有する銅張積層板の製造方法を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a method for producing a copper-clad laminate having a copper-plated coating film in which recrystallization proceeds slowly.

第1発明の銅張積層板の製造方法は、銅めっき液を用いた電解めっきにより、基材の表面に銅めっき被膜を成膜して銅張積層板を得る方法であって、前記銅めっき液中のレベラー成分に含まれるN+の濃度が0.6〜2.5mg/Lであることを特徴とする。
第2発明の銅張積層板の製造方法は、第1発明において、前記レベラー成分がジアリルジメチルアンモニウムクロライドおよび/またはヤヌス・グリーンBであることを特徴とする。
第3発明の銅張積層板の製造方法は、第1または第2発明において、前記銅めっき液中の銅濃度が15〜70g/L、硫酸濃度が20〜250g/L、塩素濃度が20〜80g/Lであることを特徴とする。
第4発明の銅張積層板の製造方法は、第1〜第3発明のいずれかにおいて、前記電解めっきの電流密度が0.1〜4.5A/dm2であることを特徴とする。
The method for producing a copper-clad laminate according to the first invention is a method for obtaining a copper-clad laminate by forming a copper plating film on the surface of a base material by electrolytic plating using a copper plating solution, and the copper plating It is characterized in that the concentration of N + contained in the leveler component in the liquid is 0.6 to 2.5 mg / L.
The method for producing a copper-clad laminate of the second invention is characterized in that, in the first invention, the leveler component is diallyldimethylammonium chloride and / or Janus Green B.
In the first or second invention, the method for producing a copper-clad laminate according to the third invention has a copper concentration of 15 to 70 g / L, a sulfuric acid concentration of 20 to 250 g / L, and a chlorine concentration of 20 to 20 to the copper plating solution. It is characterized by being 80 g / L.
The method for producing a copper-clad laminate of the fourth invention is characterized in that, in any one of the first to third inventions, the current density of the electrolytic plating is 0.1 to 4.5 A / dm 2 .

本発明によれば、銅めっき液のレベラー成分に含まれる窒素が銅めっき被膜に取り込まれる。銅めっき被膜に取り込まれた窒素により再結晶が阻害されるため、銅めっき被膜の再結晶の進行を遅くできる。 According to the present invention, nitrogen contained in the leveler component of the copper plating solution is incorporated into the copper plating film. Since recrystallization is inhibited by nitrogen incorporated into the copper plating film, the progress of recrystallization of the copper plating film can be slowed down.

銅張積層板の断面図である。It is sectional drawing of the copper-clad laminate. めっき装置の斜視図である。It is a perspective view of a plating apparatus.

つぎに、本発明の実施形態を図面に基づき説明する。
図1に示すように、本発明の一実施形態に係る方法により製造される銅張積層板1は、基材10と、基材10の表面に形成された銅めっき被膜20とからなる。図1に示すように基材10の片面のみに銅めっき被膜20を形成してもよいし、基材10の両面に銅めっき被膜20を形成してもよい。
Next, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the copper-clad laminate 1 manufactured by the method according to the embodiment of the present invention comprises a base material 10 and a copper plating film 20 formed on the surface of the base material 10. As shown in FIG. 1, the copper plating film 20 may be formed on only one side of the base material 10, or the copper plating film 20 may be formed on both sides of the base material 10.

銅めっき被膜20は電解めっきにより成膜される。したがって、基材10は銅めっき被膜20が成膜される側の表面に導電性を有する素材であればよい。例えば、基材10は絶縁性を有するベースフィルム11の表面に金属層12が形成されたものである。ベースフィルム11としてポリイミドフィルムなどの樹脂フィルムを用いることができる。金属層12は、例えば、スパッタリング法により形成される。金属層12は下地金属層13と銅薄膜層14とからなる。下地金属層13と銅薄膜層14とはベースフィルム11の表面にこの順に積層されている。一般に、下地金属層13はニッケル、クロム、またはニッケルクロム合金からなる。金属層12と銅めっき被膜20とにより導体層が構成されている。 The copper plating film 20 is formed by electrolytic plating. Therefore, the base material 10 may be a material having conductivity on the surface on the side where the copper plating film 20 is formed. For example, the base material 10 has a metal layer 12 formed on the surface of a base film 11 having an insulating property. A resin film such as a polyimide film can be used as the base film 11. The metal layer 12 is formed by, for example, a sputtering method. The metal layer 12 is composed of a base metal layer 13 and a copper thin film layer 14. The base metal layer 13 and the copper thin film layer 14 are laminated in this order on the surface of the base film 11. Generally, the base metal layer 13 is made of nickel, chromium, or a nickel-chromium alloy. The conductor layer is composed of the metal layer 12 and the copper plating film 20.

電解めっきは、例えば、図2に示すめっき装置3を用いて行なわれる。
めっき装置3は、ロールツーロールにより長尺帯状の基材10を搬送しつつ、基材10に対して電解めっきを行なう装置である。めっき装置3はロール状に巻回された基材10を繰り出す供給装置31と、めっき後の基材10(銅張積層板1)をロール状に巻き取る巻取装置32とを有する。
Electroplating is performed using, for example, the plating apparatus 3 shown in FIG.
The plating device 3 is a device that performs electrolytic plating on the base material 10 while transporting the long strip-shaped base material 10 by roll-to-roll. The plating device 3 has a supply device 31 for feeding out the base material 10 wound in a roll shape, and a winding device 32 for winding up the base material 10 (copper-clad laminate 1) after plating in a roll shape.

めっき装置3は基材10を搬送する上下一対のエンドレスベルト33(下側のエンドレスベルト33は図示省略)を有する。各エンドレスベルト33には基材10を把持する複数のクランプ34が設けられている。供給装置31から繰り出された基材10は、その幅方向が鉛直方向に沿う懸垂姿勢となり、両縁が上下のクランプ34に把持される。基材10はエンドレスベルト33の駆動によりめっき装置3内を周回した後、クランプ34から開放され、巻取装置32で巻き取られる。 The plating apparatus 3 has a pair of upper and lower endless belts 33 (the lower endless belt 33 is not shown) that conveys the base material 10. Each endless belt 33 is provided with a plurality of clamps 34 for gripping the base material 10. The base material 10 unwound from the supply device 31 is in a suspended posture in the width direction along the vertical direction, and both edges are gripped by the upper and lower clamps 34. The base material 10 circulates in the plating device 3 by driving the endless belt 33, is released from the clamp 34, and is wound by the winding device 32.

基材10の搬送経路には、前処理槽35、めっき槽40、および後処理槽36が配置されている。めっき槽40には銅めっき液が貯留されている。めっき槽40内を搬送される基材10は、その全体が銅めっき液に浸漬されている。基材10はめっき槽40内を搬送されつつ、電解めっきよりその表面に銅めっき被膜20が成膜される。これにより、長尺帯状の銅張積層板1が得られる。 A pretreatment tank 35, a plating tank 40, and a posttreatment tank 36 are arranged in the transport path of the base material 10. A copper plating solution is stored in the plating tank 40. The entire base material 10 conveyed in the plating tank 40 is immersed in a copper plating solution. While the base material 10 is conveyed in the plating tank 40, a copper plating film 20 is formed on the surface of the base material 10 by electrolytic plating. As a result, a long strip-shaped copper-clad laminate 1 can be obtained.

銅めっき液は水溶性銅塩を含む。銅めっき液に一般的に用いられる水溶性銅塩であれば、特に限定されず用いられる。水溶性銅塩として、無機銅塩、アルカンスルホン酸銅塩、アルカノールスルホン酸銅塩、有機酸銅塩などが挙げられる。無機銅塩として、硫酸銅、酸化銅、塩化銅、炭酸銅などが挙げられる。アルカンスルホン酸銅塩として、メタンスルホン酸銅、プロパンスルホン酸銅などが挙げられる。アルカノールスルホン酸銅塩として、イセチオン酸銅、プロパノールスルホン酸銅などが挙げられる。有機酸銅塩として、酢酸銅、クエン酸銅、酒石酸銅などが挙げられる。 The copper plating solution contains a water-soluble copper salt. Any water-soluble copper salt generally used in the copper plating solution is used without particular limitation. Examples of the water-soluble copper salt include an inorganic copper salt, an alkane sulfonic acid copper salt, an alkanol sulfonic acid copper salt, and an organic acid copper salt. Examples of the inorganic copper salt include copper sulfate, copper oxide, copper chloride, and copper carbonate. Examples of the alkane sulfonic acid copper salt include copper methanesulfonate and copper propane sulfonate. Examples of the alkanol sulfonic acid copper salt include copper isethionic acid and copper propanol sulfonate. Examples of the organic acid copper salt include copper acetate, copper citrate, copper tartrate and the like.

銅めっき液に用いる水溶性銅塩として、無機銅塩、アルカンスルホン酸銅塩、アルカノールスルホン酸銅塩、有機酸銅塩などから選択された1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。例えば、硫酸銅と塩化銅とを組み合わせる場合のように、無機銅塩、アルカンスルホン酸銅塩、アルカノールスルホン酸銅塩、有機酸銅塩などから選択された1つのカテゴリー内の異なる2種類以上を組み合わせて用いてもよい。ただし、銅めっき液の管理の観点からは、1種類の水溶性銅塩を単独で用いることが好ましい。 As the water-soluble copper salt used in the copper plating solution, one type selected from inorganic copper salt, alkane sulfonic acid copper salt, alkanol sulfonic acid copper salt, organic acid copper salt and the like may be used alone, or two or more types may be used. May be used in combination. For example, as in the case of combining copper sulfate and copper chloride, two or more different types in one category selected from inorganic copper salt, alkane sulfonic acid copper salt, alkanol sulfonic acid copper salt, organic acid copper salt, etc. It may be used in combination. However, from the viewpoint of controlling the copper plating solution, it is preferable to use one kind of water-soluble copper salt alone.

銅めっき液は硫酸を含んでもよい。硫酸の添加量を調整することで、銅めっき液のpHおよび硫酸イオン濃度を調整できる。 The copper plating solution may contain sulfuric acid. By adjusting the amount of sulfuric acid added, the pH and sulfate ion concentration of the copper plating solution can be adjusted.

銅めっき液は一般的にめっき液に添加される添加剤を含む。添加剤として、ブライトナー成分、レベラー成分、ポリマー成分、塩素成分などが挙げられる。添加剤として、ブライトナー成分、レベラー成分、ポリマー成分、塩素成分などから選択された1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。 The copper plating solution contains additives that are generally added to the plating solution. Examples of the additive include a Brightner component, a leveler component, a polymer component, a chlorine component and the like. As the additive, one type selected from the Brightner component, the leveler component, the polymer component, the chlorine component and the like may be used alone, or two or more types may be used in combination.

ブライトナー成分として、特に限定されないが、ビス(3−スルホプロピル)ジスルフィド(略称SPS)、3−メルカプトプロパン−1−スルホン酸(略称MPS)などから選択された1種類を単独で、または2種類以上を組み合わせて用いることが好ましい。レベラー成分は窒素を含有するアミンなどで構成される。レベラー成分として、特に限定されないが、ジアリルジメチルアンモニウムクロライド、ヤヌス・グリーンBなどから選択された1種類を単独で、または2種類以上を組み合わせて用いることが好ましい。ポリマー成分として、特に限定されないが、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコール−ポリプロピレングリコール共重合体から選択された1種類を単独で、または2種類以上を組み合わせて用いることが好ましい。塩素成分として、特に限定されないが、塩酸、塩化ナトリウムなどから選択された1種類を単独で、または2種類以上を組み合わせて用いることが好ましい。 The Brightener component is not particularly limited, but one type selected from bis (3-sulfopropyl) disulfide (abbreviated as SPS), 3-mercaptopropane-1-sulfonic acid (abbreviated as MPS), etc. may be used alone or as two types. It is preferable to use the above in combination. The leveler component is composed of nitrogen-containing amines and the like. The leveler component is not particularly limited, but it is preferable to use one selected from diallyldimethylammonium chloride, Janus Green B, etc. alone or in combination of two or more. The polymer component is not particularly limited, but it is preferable to use one selected from polyethylene glycol, polypropylene glycol, and polyethylene glycol-polypropylene glycol copolymer alone or in combination of two or more. The chlorine component is not particularly limited, but it is preferable to use one selected from hydrochloric acid, sodium chloride and the like alone or in combination of two or more.

銅めっき液の各成分の含有量は任意に選択できる。ただし、銅めっき液は銅を15〜70g/L、硫酸を20〜250g/L含有することが好ましい。そうすれば、銅めっき被膜20を十分な速度で成膜できる。銅めっき液はブライトナー成分を1〜50mg/L含有することが好ましい。そうすれば、析出結晶を微細化し銅めっき被膜20の表面を平滑にできる。銅めっき液はレベラー成分を1〜300mg/L含有することが好ましい。そうすれば、突起を抑制し平坦な銅めっき被膜20を形成できる。銅めっき液はポリマー成分を10〜1,500mg/L含有することが好ましい。そうすれば、基材10端部への電流集中を緩和し均一な銅めっき被膜20を形成できる。銅めっき液は塩素成分を20〜80mg/L含有することが好ましい。そうすれば、異常析出を抑制できる。 The content of each component of the copper plating solution can be arbitrarily selected. However, the copper plating solution preferably contains 15 to 70 g / L of copper and 20 to 250 g / L of sulfuric acid. Then, the copper plating film 20 can be formed at a sufficient speed. The copper plating solution preferably contains a Brightener component of 1 to 50 mg / L. Then, the precipitated crystals can be made finer and the surface of the copper plating film 20 can be smoothed. The copper plating solution preferably contains a leveler component of 1 to 300 mg / L. Then, the protrusions can be suppressed and the flat copper plating film 20 can be formed. The copper plating solution preferably contains a polymer component of 10 to 1,500 mg / L. Then, the current concentration on the end of the base material 10 can be relaxed and a uniform copper plating film 20 can be formed. The copper plating solution preferably contains a chlorine component of 20 to 80 mg / L. Then, abnormal precipitation can be suppressed.

銅めっき液の温度は20〜35℃が好ましい。また、めっき槽40内の銅めっき液を撹拌することが好ましい。銅めっき液を撹拌する手段は、特に限定されないが、噴流を利用した手段を用いることができる。例えば、ノズルから噴出させた銅めっき液を基材10に吹き付けることで、銅めっき液を撹拌できる。 The temperature of the copper plating solution is preferably 20 to 35 ° C. Further, it is preferable to stir the copper plating solution in the plating tank 40. The means for stirring the copper plating solution is not particularly limited, but a means using a jet can be used. For example, the copper plating solution can be agitated by spraying the copper plating solution ejected from the nozzle onto the base material 10.

めっき槽40の内部には、基材10の搬送方向に沿って複数のアノードが配置されている。アノードと基材10との間に電流を流すことで、基材10の表面に銅めっき被膜20を成膜できる。複数のアノードは、それぞれに整流器が接続されている。したがって、アノードごとに異なる電流密度となるように設定できる。電流密度は0.1〜4.5A/dm2が好ましい。 Inside the plating tank 40, a plurality of anodes are arranged along the transport direction of the base material 10. A copper plating film 20 can be formed on the surface of the base material 10 by passing an electric current between the anode and the base material 10. A rectifier is connected to each of the plurality of anodes. Therefore, the current density can be set to be different for each anode. The current density is preferably 0.1 to 4.5 A / dm 2 .

本願発明者は、以上のような電解めっきにおいて、銅めっき液中のレベラー成分の濃度を適切な範囲に調整することにより、銅めっき被膜20の再結晶時間を長くできるとの知見を得ている。 The inventor of the present application has obtained the finding that the recrystallization time of the copper plating film 20 can be lengthened by adjusting the concentration of the leveler component in the copper plating solution to an appropriate range in the above electrolytic plating. ..

その理由は不明なところもあるが、概ねつぎのとおりであると考えられる。銅めっき液に添加剤を添加すると、添加剤に由来する不純物が銅めっき被膜20に取り込まれる。例えば、銅めっき液にレベラー成分を添加すると、レベラー成分に含まれる窒素が銅めっき被膜20に取り込まれる。銅めっき被膜20に取り込まれた窒素は銅めっき被膜20の結晶粒界に存在し、結晶粒同士の結合を抑制する。これにより、結晶粒が大きく成長することが阻害されるため、再結晶の進行が遅くなる。 The reason for this is unknown, but it is thought to be as follows. When an additive is added to the copper plating solution, impurities derived from the additive are incorporated into the copper plating film 20. For example, when a leveler component is added to a copper plating solution, nitrogen contained in the leveler component is incorporated into the copper plating film 20. Nitrogen taken into the copper plating film 20 exists at the grain boundaries of the copper plating film 20 and suppresses the bonding between the crystal grains. This hinders the large growth of crystal grains, which slows down the progress of recrystallization.

具体的には、銅めっき液中のレベラー成分に含まれるN+(正電荷を帯びた窒素)の濃度(以下、単に「N+濃度」と称する。)を0.6〜2.5mg/Lとすることが好ましい。ここで、N+濃度は銅めっき液の単位体積あたりのレベラー成分中のN+の質量を意味する。例えば、式(1)に示すように、N+濃度CNは、銅めっき液中のレベラー成分の濃度ρlに、レベラー成分の分子量Mlに対するレベラー成分に含まれるN+の原子量Ar(N)の総和の比率をかけることで求められる。
Specifically, the concentration of N + (positively charged nitrogen) contained in the leveler component in the copper plating solution (hereinafter, simply referred to as "N + concentration") is 0.6 to 2.5 mg / L. Is preferable. Here, the N + concentration means the mass of N + in the leveler component per unit volume of the copper plating solution. For example, as shown in the formula (1), the N + concentration C N is the atomic weight Ar (N) of N + contained in the leveler component with respect to the concentration ρ l of the leveler component in the copper plating solution with respect to the molecular weight M l of the leveler component. ) Is calculated by multiplying by the sum ratio.

+濃度を基準として、銅めっき液へのレベラー成分の添加量を調整する。再結晶の進行に影響するのは、レベラー成分そのものではなく、銅めっき被膜20に取り込まれたレベラー成分由来の窒素である。ここで、銅めっき被膜20にはレベラー成分に含まれる窒素原子の全てが取り込まれるのではなく、正電荷を帯びた窒素原子のみが取り込まれる。そのため、レベラー成分に含まれるN+の濃度を基準とすることが好ましい。 The amount of leveler component added to the copper plating solution is adjusted based on the N + concentration. It is not the leveler component itself that affects the progress of recrystallization, but the nitrogen derived from the leveler component incorporated into the copper plating film 20. Here, not all of the nitrogen atoms contained in the leveler component are incorporated into the copper plating film 20, but only positively charged nitrogen atoms are incorporated. Therefore, it is preferable to use the concentration of N + contained in the leveler component as a reference.

つぎに、実施例を説明する。
(試験1)
つぎの手順で、基材を準備した。ベースフィルムとして、厚さ35μmのポリイミドフィルム(宇部興産社製 Upilex−35SGAV1)を用意した。ベースフィルムをマグネトロンスパッタリング装置にセットした。マグネトロンスパッタリング装置内にはニッケルクロム合金ターゲットと銅ターゲットとが設置されている。ニッケルクロム合金ターゲットの組成はCrが20質量%、Niが80質量%である。真空雰囲気下で、ベースフィルムの片面に、厚さ250Åのニッケルクロム合金からなる下地金属層を形成し、その上に厚さ1,500Åの銅薄膜層を形成した。
Next, an embodiment will be described.
(Test 1)
The substrate was prepared by the following procedure. As a base film, a polyimide film having a thickness of 35 μm (Upilex-35SGAV1 manufactured by Ube Industries, Ltd.) was prepared. The base film was set in the magnetron sputtering apparatus. A nickel-chromium alloy target and a copper target are installed in the magnetron sputtering apparatus. The composition of the nickel-chromium alloy target is 20% by mass of Cr and 80% by mass of Ni. Under a vacuum atmosphere, a base metal layer made of a nickel-chromium alloy having a thickness of 250 Å was formed on one side of the base film, and a copper thin film layer having a thickness of 1,500 Å was formed on the base metal layer.

つぎに、銅めっき液を調整した。銅めっき液は銅を30g/L、硫酸を70g/L、ブライトナー成分を16mg/L、ポリマー成分を1,100mg/L、塩素成分を50mg/L含有する。ブライトナー成分としてビス(3−スルホプロピル)ジスルフィドを用いた。ポリマー成分としてポリエチレングリコール−ポリプロピレングリコール共重合体(日油株式会社製 ユニルーブ50MB−11)を用いた。塩素成分として塩酸(和光純薬工業株式会社製の35%塩酸)を用いた。 Next, the copper plating solution was adjusted. The copper plating solution contains 30 g / L of copper, 70 g / L of sulfuric acid, 16 mg / L of the Brightener component, 1,100 mg / L of the polymer component, and 50 mg / L of the chlorine component. Bis (3-sulfopropyl) disulfide was used as the Brightener component. A polyethylene glycol-polypropylene glycol copolymer (Unilube 50MB-11 manufactured by NOF CORPORATION) was used as a polymer component. Hydrochloric acid (35% hydrochloric acid manufactured by Wako Pure Chemical Industries, Ltd.) was used as the chlorine component.

また、銅めっき液はレベラー成分を含む。レベラー成分としてジアリルジメチルアンモニウムクロライド−二酸化硫黄共重合体(ニットーボーメディカル株式会社製 PAS−A―5、以下同じ)を用いた。レベラー成分の濃度が異なる6種類の銅めっき液(レベラー成分の濃度:5、10、20、30、40、50mg/L)を調整した。これらを銅めっき液1〜6と称する。 In addition, the copper plating solution contains a leveler component. A diallyldimethylammonium chloride-sulfur dioxide copolymer (PAS-A-5 manufactured by Nittobo Medical Co., Ltd., the same applies hereinafter) was used as a leveler component. Six types of copper plating solutions having different levels of leveler components (leveler component concentrations: 5, 10, 20, 30, 40, 50 mg / L) were adjusted. These are referred to as copper plating solutions 1 to 6.

ジアリルジメチルアンモニウムクロライド−二酸化硫黄共重合体は以下の構造式で表される。構造単位あたりの分子量は225.7であり、1つの構造単位に1つのN+(原子量14.0)が含まれる。レベラー成分の濃度が50mg/Lの場合のN+濃度は3.1mg/L(=50[mg/L]×14.0/225.7)となる。以下、同様の手順で、レベラー成分としてジアリルジメチルアンモニウムクロライド−二酸化硫黄共重合体を用いた場合のN+濃度を求める。
The diallyldimethylammonium chloride-sulfur dioxide copolymer is represented by the following structural formula. The molecular weight per structural unit is 225.7, and one structural unit contains one N + (atomic weight 14.0). When the concentration of the leveler component is 50 mg / L, the N + concentration is 3.1 mg / L (= 50 [mg / L] × 14.0 / 225.7). Hereinafter, the N + concentration when a diallyldimethylammonium chloride-sulfur dioxide copolymer is used as the leveler component is determined by the same procedure.

以上のとおり調整した銅めっき液が貯留されためっき槽に基材を供給した。電解めっきにより基材の片面に厚さ2.0μmの銅めっき被膜を成膜した。ここで、銅めっき液の温度を31℃とした。また、電解めっきの間、ノズルから噴出させた銅めっき液を基材の表面に対して略垂直に吹き付けることで、銅めっき液を撹拌した。 The base material was supplied to the plating tank in which the copper plating solution prepared as described above was stored. A copper plating film having a thickness of 2.0 μm was formed on one side of the base material by electrolytic plating. Here, the temperature of the copper plating solution was set to 31 ° C. In addition, during the electrolytic plating, the copper plating solution ejected from the nozzle was sprayed substantially perpendicular to the surface of the base material to stir the copper plating solution.

電解めっきにおいて、めっき開始から終了までの電流密度を0.4A/dm2で50秒、0.6A/dm2で50秒、0.8A/dm2で50秒、1.0A/dm2で50秒、1.2A/dm2で50秒、1.5A/dm2で50秒、2.0A/dm2で160秒と変化させた。銅めっき液1〜6を用いて得られた銅張積層板を、それぞれ試料1〜6と称する。 In the electrolytic plating, the current density to the end from the plating after 50 seconds at 0.4A / dm 2, 0.6A / dm 2 at 50 seconds, 50 seconds at 0.8 A / dm 2, at 1.0A / dm 2 It was changed to 50 seconds, 1.2 A / dm 2 for 50 seconds, 1.5 A / dm 2 for 50 seconds, and 2.0 A / dm 2 for 160 seconds. Copper-clad laminates obtained by using the copper plating solutions 1 to 6 are referred to as samples 1 to 6, respectively.

以上の手順で得られた6つの試料1〜6について、銅めっき被膜の再結晶時間を測定した。再結晶時間は四探針法により銅めっき被膜の抵抗率の変化を観察することで測定した。銅めっき被膜の再結晶の進行にともない、結晶粒が大きくなり、抵抗率が変化する。抵抗率が一定になった時点で再結晶終了と判断する。めっき処理から再結晶終了までの経過時間を再結晶時間とした。なお、抵抗率の測定器として、三菱ケミカルアナリティック製のロレスタAX MCP−T370を用いた。 The recrystallization time of the copper plating film was measured for the six samples 1 to 6 obtained by the above procedure. The recrystallization time was measured by observing the change in resistivity of the copper plating film by the four-probe method. As the recrystallization of the copper plating film progresses, the crystal grains become larger and the resistivity changes. When the resistivity becomes constant, it is judged that recrystallization is completed. The elapsed time from the plating treatment to the end of recrystallization was defined as the recrystallization time. As a resistivity measuring instrument, Lola TAX MCP-T370 manufactured by Mitsubishi Chemical Analytical Co., Ltd. was used.

その結果を表1に示す。
The results are shown in Table 1.

表1より、N+濃度を0.6〜2.5mg/Lに調整すれば、銅めっき被膜の再結晶時間を4日以上にできることが分かる。また、N+濃度を1.2〜1.9mg/Lに調整すれば、銅めっき被膜の再結晶時間を5日にできることが分かる。 From Table 1, it can be seen that the recrystallization time of the copper plating film can be set to 4 days or more by adjusting the N + concentration to 0.6 to 2.5 mg / L. It can also be seen that if the N + concentration is adjusted to 1.2 to 1.9 mg / L, the recrystallization time of the copper plating film can be set to 5 days.

(試験2)
試験1と同様の手順で基材を準備した。
つぎに、銅めっき液を調整した。レベラー成分としてヤヌス・グリーンB(東京化成工業株式会社製の試薬、以下同じ)を用いたほかは、試験1と同様の条件で銅めっき液を調整した。レベラー成分の濃度が異なる7種類の銅めっき液(レベラー成分の濃度:10、20、30、50、70、90、100mg/L)を調整した。これらを銅めっき液7〜13と称する。
(Test 2)
The substrate was prepared in the same procedure as in Test 1.
Next, the copper plating solution was adjusted. The copper plating solution was prepared under the same conditions as in Test 1 except that Janus Green B (reagent manufactured by Tokyo Chemical Industry Co., Ltd., the same applies hereinafter) was used as the leveler component. Seven types of copper plating solutions having different levels of leveler components (leveler component concentrations: 10, 20, 30, 50, 70, 90, 100 mg / L) were adjusted. These are referred to as copper plating solutions 7 to 13.

ヤヌス・グリーンBは以下の構造式で表される。分子量は511.1であり、1つの分子に1つのN+(原子量14.0)が含まれる。レベラー成分の濃度が100mg/Lの場合のN+濃度は2.7mg/L(=100[mg/L]×14.0/511.1)となる。以下、同様の手順で、レベラー成分としてヤヌス・グリーンBを用いた場合のN+濃度を求める。
Janus Green B is represented by the following structural formula. The molecular weight is 511.1, and one molecule contains one N + (atomic weight 14.0). When the concentration of the leveler component is 100 mg / L, the N + concentration is 2.7 mg / L (= 100 [mg / L] × 14.0 / 511.1). Hereinafter, the N + concentration when Janus Green B is used as the leveler component is determined by the same procedure.

つぎに、試験1と同様の手順で電解めっきを行なった。銅めっき液7〜13を用いて得られた銅張積層板を、それぞれ試料7〜13と称する。また、得られた7つの試料7〜13について、試験1と同様の手順で、銅めっき被膜の再結晶時間を測定した。 Next, electrolytic plating was performed in the same procedure as in Test 1. The copper-clad laminates obtained by using the copper plating solutions 7 to 13 are referred to as samples 7 to 13, respectively. In addition, the recrystallization time of the copper plating coating was measured for the obtained seven samples 7 to 13 in the same procedure as in Test 1.

その結果を表2に示す。
The results are shown in Table 2.

表2より、N+濃度を0.6〜2.5mg/Lに調整すれば、銅めっき被膜の再結晶時間を3日以上にできることが分かる。また、N+濃度を0.8〜2.5mg/Lに調整すれば、銅めっき被膜の再結晶時間を4日以上にできることが分かる。さらに、N+濃度を0.8〜1.9mg/Lに調整すれば、銅めっき被膜の再結晶時間を5日にできることが分かる。 From Table 2, it can be seen that the recrystallization time of the copper plating film can be set to 3 days or more by adjusting the N + concentration to 0.6 to 2.5 mg / L. It can also be seen that the recrystallization time of the copper plating film can be set to 4 days or more by adjusting the N + concentration to 0.8 to 2.5 mg / L. Furthermore, it can be seen that the recrystallization time of the copper plating film can be set to 5 days by adjusting the N + concentration to 0.8 to 1.9 mg / L.

1 銅張積層板
10 基材
11 ベースフィルム
12 金属層
13 下地金属層
14 銅薄膜層
1 Copper-clad laminate 10 Base film 11 Base film 12 Metal layer 13 Base metal layer 14 Copper thin film layer

Claims (4)

銅めっき液を用いた電解めっきにより、基材の表面に銅めっき被膜を成膜して銅張積層板を得る方法であって、
前記銅めっき液中のレベラー成分に含まれるN+の濃度が0.6〜2.5mg/Lである
ことを特徴とする銅張積層板の製造方法。
It is a method of forming a copper plating film on the surface of a base material by electrolytic plating using a copper plating solution to obtain a copper-clad laminate.
A method for producing a copper-clad laminate, characterized in that the concentration of N + contained in the leveler component in the copper plating solution is 0.6 to 2.5 mg / L.
前記レベラー成分がジアリルジメチルアンモニウムクロライドおよび/またはヤヌス・グリーンBである
ことを特徴とする請求項1記載の銅張積層板の製造方法。
The method for producing a copper-clad laminate according to claim 1, wherein the leveler component is diallyldimethylammonium chloride and / or Janus Green B.
前記銅めっき液中の銅濃度が15〜70g/L、硫酸濃度が20〜250g/L、塩素濃度が20〜80g/Lである
ことを特徴とする請求項1または2に記載の銅張積層板の製造方法。
The copper-clad laminate according to claim 1 or 2, wherein the copper concentration in the copper plating solution is 15 to 70 g / L, the sulfuric acid concentration is 20 to 250 g / L, and the chlorine concentration is 20 to 80 g / L. How to make a board.
前記電解めっきの電流密度が0.1〜4.5A/dm2である
ことを特徴とする請求項1〜3のいずれかに記載の銅張積層板の製造方法。
The method for producing a copper-clad laminate according to any one of claims 1 to 3, wherein the current density of the electrolytic plating is 0.1 to 4.5 A / dm 2 .
JP2019025046A 2019-02-15 2019-02-15 Method for manufacturing copper-clad laminate Active JP7230564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019025046A JP7230564B2 (en) 2019-02-15 2019-02-15 Method for manufacturing copper-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019025046A JP7230564B2 (en) 2019-02-15 2019-02-15 Method for manufacturing copper-clad laminate

Publications (2)

Publication Number Publication Date
JP2020132921A true JP2020132921A (en) 2020-08-31
JP7230564B2 JP7230564B2 (en) 2023-03-01

Family

ID=72262453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019025046A Active JP7230564B2 (en) 2019-02-15 2019-02-15 Method for manufacturing copper-clad laminate

Country Status (1)

Country Link
JP (1) JP7230564B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020132920A (en) * 2019-02-15 2020-08-31 住友金属鉱山株式会社 Manufacturing method of copper-clad laminate

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159820A (en) * 2012-02-03 2013-08-19 Nippon Mektron Ltd Electroplating method and electroplating apparatus
JP2016113645A (en) * 2014-12-11 2016-06-23 住友金属鉱山株式会社 Copper electroplating solution for flexible wiring board and method for producing laminate using the copper electroplating solution
WO2016208609A1 (en) * 2015-06-26 2016-12-29 住友金属鉱山株式会社 Conductive substrate
JP2017031459A (en) * 2015-07-31 2017-02-09 住友金属鉱山株式会社 Electric copper plating solution for flexible wiring board and method of producing laminate produced by the electric copper plating solution
JP2017066462A (en) * 2015-09-29 2017-04-06 住友金属鉱山株式会社 Method for manufacturing silver coated copper powder and method for manufacturing conductive paste using the same
JP2017185690A (en) * 2016-04-05 2017-10-12 住友金属鉱山株式会社 Conductive substrate and manufacturing method of conductive substrate
JP2017185689A (en) * 2016-04-05 2017-10-12 住友金属鉱山株式会社 Conductive substrate
JP2019167583A (en) * 2018-03-23 2019-10-03 住友金属鉱山株式会社 Copper-clad laminated sheet, and method of producing copper-clad laminated sheet
JP2020011441A (en) * 2018-07-18 2020-01-23 住友金属鉱山株式会社 Copper-clad laminate
JP2020012156A (en) * 2018-07-18 2020-01-23 住友金属鉱山株式会社 Method for producing copper-clad laminate
JP2020084280A (en) * 2018-11-28 2020-06-04 住友金属鉱山株式会社 Copper-clad laminate and manufacturing method copper-clad laminate
JP2020084279A (en) * 2018-11-28 2020-06-04 住友金属鉱山株式会社 Copper-clad laminate and manufacturing method copper-clad laminate

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159820A (en) * 2012-02-03 2013-08-19 Nippon Mektron Ltd Electroplating method and electroplating apparatus
JP2016113645A (en) * 2014-12-11 2016-06-23 住友金属鉱山株式会社 Copper electroplating solution for flexible wiring board and method for producing laminate using the copper electroplating solution
WO2016208609A1 (en) * 2015-06-26 2016-12-29 住友金属鉱山株式会社 Conductive substrate
JP2017031459A (en) * 2015-07-31 2017-02-09 住友金属鉱山株式会社 Electric copper plating solution for flexible wiring board and method of producing laminate produced by the electric copper plating solution
JP2017066462A (en) * 2015-09-29 2017-04-06 住友金属鉱山株式会社 Method for manufacturing silver coated copper powder and method for manufacturing conductive paste using the same
JP2017185690A (en) * 2016-04-05 2017-10-12 住友金属鉱山株式会社 Conductive substrate and manufacturing method of conductive substrate
JP2017185689A (en) * 2016-04-05 2017-10-12 住友金属鉱山株式会社 Conductive substrate
JP2019167583A (en) * 2018-03-23 2019-10-03 住友金属鉱山株式会社 Copper-clad laminated sheet, and method of producing copper-clad laminated sheet
JP2020011441A (en) * 2018-07-18 2020-01-23 住友金属鉱山株式会社 Copper-clad laminate
JP2020012156A (en) * 2018-07-18 2020-01-23 住友金属鉱山株式会社 Method for producing copper-clad laminate
JP2020084280A (en) * 2018-11-28 2020-06-04 住友金属鉱山株式会社 Copper-clad laminate and manufacturing method copper-clad laminate
JP2020084279A (en) * 2018-11-28 2020-06-04 住友金属鉱山株式会社 Copper-clad laminate and manufacturing method copper-clad laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020132920A (en) * 2019-02-15 2020-08-31 住友金属鉱山株式会社 Manufacturing method of copper-clad laminate

Also Published As

Publication number Publication date
JP7230564B2 (en) 2023-03-01

Similar Documents

Publication Publication Date Title
JP6993613B2 (en) Manufacturing method of copper-clad laminate
JP7107190B2 (en) Method for manufacturing copper-clad laminate
TWI793350B (en) copper clad laminate
JP7107189B2 (en) COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES
JP7230564B2 (en) Method for manufacturing copper-clad laminate
JP7276025B2 (en) COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES
JP7211184B2 (en) COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES
JP7215211B2 (en) Method for manufacturing copper-clad laminate
KR102525404B1 (en) Copper clad laminate
JP7343280B2 (en) Manufacturing method for copper clad laminates
JP2021195604A (en) Copper-clad laminate and manufacturing method of copper-clad laminate
JP7087760B2 (en) Copper-clad laminate
JP7087758B2 (en) Copper-clad laminate
JP7409151B2 (en) Manufacturing method for copper clad laminates
JP7409150B2 (en) Manufacturing method for copper clad laminates
JP2021008650A (en) Copper-clad laminate plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221109

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221109

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221202

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230130

R150 Certificate of patent or registration of utility model

Ref document number: 7230564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150