JP2020132515A - Solidified body of neutralized schwertmannite and its production method, as well as cleaning method with solidified body of neutralized schwertmannite - Google Patents

Solidified body of neutralized schwertmannite and its production method, as well as cleaning method with solidified body of neutralized schwertmannite Download PDF

Info

Publication number
JP2020132515A
JP2020132515A JP2020020355A JP2020020355A JP2020132515A JP 2020132515 A JP2020132515 A JP 2020132515A JP 2020020355 A JP2020020355 A JP 2020020355A JP 2020020355 A JP2020020355 A JP 2020020355A JP 2020132515 A JP2020132515 A JP 2020132515A
Authority
JP
Japan
Prior art keywords
neutralized
schwertmanite
solidified body
water
gypsum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020020355A
Other languages
Japanese (ja)
Other versions
JP7364190B2 (en
Inventor
亀島 欣一
Kinichi Kameshima
欣一 亀島
彰彦 石川
Akihiko Ishikawa
彰彦 石川
健作 福田
Kensaku Fukuda
健作 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Okayama University NUC
Original Assignee
Dowa Holdings Co Ltd
Okayama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Okayama University NUC filed Critical Dowa Holdings Co Ltd
Publication of JP2020132515A publication Critical patent/JP2020132515A/en
Application granted granted Critical
Publication of JP7364190B2 publication Critical patent/JP7364190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

【課題】処理対象物中の重金属を固定した後、当該処理対象物から容易に分離出来、且つ、製造も容易な重金属の吸着材とその製造方法、並びに当該吸着材を用いた浄化方法と提供する。
【解決手段】中和シュベルトマナイトと石膏とを含む固化体、および、中和シュベルトマナイトと半水石膏とを混合して混合物を得る工程と、前記混合物へ水を添加した後、混合してスラリーを得る工程と、前記スラリーを固化させて、中和シュベルトマナイトと石膏とを含む固化体を得る工程と、を有する固化体の製造方法を提供する。
【選択図】図1
PROBLEM TO BE SOLVED: To provide a heavy metal adsorbent which can be easily separated from the object to be treated and easily manufactured after fixing the heavy metal in the object to be treated, a method for producing the same, and a purification method and a method using the adsorbent. To do.
SOLUTION: A solidified body containing neutralized Schwertmanite and gypsum, and a step of mixing neutralized Schwertmanite and hemihydrate gypsum to obtain a mixture, and adding water to the mixture and then mixing. The present invention provides a method for producing a solidified product, which comprises a step of obtaining a slurry and a step of solidifying the slurry to obtain a solidified product containing neutralized Schwertmanite and gypsum.
[Selection diagram] Fig. 1

Description

本発明は、環境中における砒素を初めとする重金属やリンの回収に用いられる吸着材として最適な中和シュベルトマナイトの固化体およびその製造方法、並びに当該中和シュベルトマナイトの固化体を用いた環境の浄化方法に係る。
尚、本発明において固化体とは、大きさが概ね1cm以上で塊状または粒状を有し、水に不溶、且つ、水中で崩壊しない固形物の状態となっていることをいう。
The present invention uses a solidified body of neutralized Schwertmanite, a method for producing the same, and a solidified body of the neutralized Schwertmanite, which is optimal as an adsorbent used for recovering heavy metals such as arsenic and phosphorus in the environment. It is related to the purification method of the environment where it was.
In the present invention, the solidified body means a solid substance having a size of about 1 cm 3 or more, having a lump or a granular shape, being insoluble in water, and not disintegrating in water.

環境中における砒素を初めとする重金属等による汚染は世界的な問題であり、様々な浄化技術や浄化方法が検討され提案されている。
例えば特許文献1には、人工ゼオライトと鉄酸化物とをバインダーにて結合した水質浄化剤が提案されている。
また、本出願人も鉄酸化物であるシュベルトマナイトに注目し、これを中和して化学的安定性を増加させた中和シュベルトマナイトに想到した。そして、特許文献2において当該中和シュベルトマナイトを用いた重金属の固定化方法を開示している。
Contamination by heavy metals such as arsenic in the environment is a global problem, and various purification techniques and methods have been studied and proposed.
For example, Patent Document 1 proposes a water purification agent in which an artificial zeolite and an iron oxide are bonded with a binder.
The applicant also paid attention to the iron oxide Schwertmanite, and came up with a neutralized Schwertmanite that neutralized the iron oxide to increase the chemical stability. Then, Patent Document 2 discloses a method for immobilizing heavy metals using the neutralized Schwertmanite.

特開2008−168182号公報Japanese Unexamined Patent Publication No. 2008-168182 特開2018−47397号公報Japanese Unexamined Patent Publication No. 2018-47397

環境の浄化方法は、確かな浄化効果を挙げられる方法であることは勿論であるが、マテリアルコストや施工コストも低廉であることが強く求められる。当該観点から従来技術を検討した本発明者らは、以下の課題に想到した。 It goes without saying that the method for purifying the environment is a method that can produce a reliable purification effect, but it is strongly required that the material cost and the construction cost are low. The present inventors who have examined the prior art from this point of view have come up with the following problems.

例えば、特許文献1に記載された水質浄化剤は製造工程が長く複雑である。また、原料にマテリアルコストの高いものを用いていると考えられる。この結果、当該水質浄化剤のマテリアルコストはかなり高価なものになることが懸念される。 For example, the water purification agent described in Patent Document 1 has a long and complicated manufacturing process. In addition, it is considered that raw materials with high material cost are used. As a result, there is concern that the material cost of the water purification agent will be considerably high.

一方、特許文献2に記載された中和シュベルトマナイトは低廉な原料を用い、比較的単純な工程で製造可能でありながら、化学的にも安定である。従って、低廉なマテリアルコストを実現できると考えられる。
しかし、中和シュベルトマナイトは微細な粒子である。従って、処理対象物(例えば、汚染水)に含まれる砒素を初めとする重金属を吸着し固定した後、当該処理対象物から重金属を吸着固定した中和シュベルトマナイトを分離する工程迄を考える場合は、処理コストが嵩むことが考えられる。
On the other hand, the neutralized Schwertmanite described in Patent Document 2 uses an inexpensive raw material and can be produced by a relatively simple process, but is also chemically stable. Therefore, it is considered that a low material cost can be realized.
However, neutralized Schwertmanite is a fine particle. Therefore, when considering the process of adsorbing and fixing heavy metals such as arsenic contained in the object to be treated (for example, contaminated water) and then separating the neutralized Schwertmanite adsorbed and fixed to the heavy metal from the object to be treated. Is considered to increase the processing cost.

本発明は上述の状況の下で為されたものであり、その解決しようとする課題は、処理対象物中の重金属を固定した後、当該処理対象物から容易に分離出来、且つ、製造も容易な重金属の吸着材とその製造方法、並びに当該吸着材を用いた処理対象物の浄化方法、とを提供することである。 The present invention has been made under the above-mentioned circumstances, and the problem to be solved is that after fixing the heavy metal in the object to be treated, it can be easily separated from the object to be processed and easily manufactured. It is an object of the present invention to provide an adsorbent for heavy metals, a method for producing the same, and a method for purifying an object to be treated using the adsorbent.

上述の課題を解決する為、本発明者らは研究をおこなった。そして、中和シュベルトマナイトは良好な吸着性能を発揮すると共に化学的に安定である上、マテリアルコストも低廉であって、砒素を初めとする重金属等の吸着物質として優れていることを認識した。
ここで、本発明者らは、重金属を固定した中和シュベルトマナイトを処理対象物から容易に分離する手法について、さらに研究をおこなった。そして、石膏を固化材として用いた中和シュベルトマナイトの固化体に想到し本発明を完成した。
In order to solve the above-mentioned problems, the present inventors conducted research. It was also recognized that neutralized Schwertmannite exhibits good adsorption performance, is chemically stable, has a low material cost, and is excellent as an adsorbent for heavy metals such as arsenic. ..
Here, the present inventors further studied a method for easily separating neutralized Schwertmanite on which a heavy metal is fixed from an object to be treated. Then, he came up with a solidified body of neutralized Schwertmanite using gypsum as a solidifying material, and completed the present invention.

即ち、上述の課題を解決する第1の発明は、
中和シュベルトマナイトと石膏とを含む固化体である。
第2の発明は、
100質量部の中和シュベルトマナイトに対して、50質量部以上150質量部以下の石膏を含む第1の発明に記載の固化体である。
第3の発明は、
中和シュベルトマナイトと半水石膏とを混合して混合物を得る工程と、
前記混合物へ水を添加した後、混合してスラリーを得る工程と、
前記スラリーを固化させて、中和シュベルトマナイトと石膏とを含む固化体を得る工程
と、を有する固化体の製造方法である。
第4の発明は、
100質量部の中和シュベルトマナイトに対して、50質量部以上150質量部以下の半水石膏を混合する、第3の発明に記載の固化体の製造方法である。
第5の発明は、
半水石膏100質量部に対して、200質量部を超え400質量部以下の水を添加する、第3または第4の発明に記載の固化体の製造方法である。
第6の発明は、
重金属を含有する処理対象の水中へ、第1または第2の発明に記載の固化体を投入して前記重金属を吸着させた後に、前記水中から前記固化体を分離する浄化方法である。
That is, the first invention that solves the above-mentioned problems is
It is a solidified product containing neutralized Schwertmanite and gypsum.
The second invention is
The solidified body according to the first invention, which comprises 50 parts by mass or more and 150 parts by mass or less of gypsum with respect to 100 parts by mass of neutralized Schwertmanite.
The third invention is
The process of mixing neutralized Schwertmanite and hemihydrate gypsum to obtain a mixture,
A step of adding water to the mixture and then mixing to obtain a slurry.
This is a method for producing a solidified body, which comprises a step of solidifying the slurry to obtain a solidified body containing neutralized Schwertmanite and gypsum.
The fourth invention is
The method for producing a solidified body according to the third invention, wherein 50 parts by mass or more and 150 parts by mass or less of hemihydrate gypsum is mixed with 100 parts by mass of neutralized Schwertmanite.
The fifth invention is
The method for producing a solidified body according to the third or fourth invention, wherein water of more than 200 parts by mass and 400 parts by mass or less is added to 100 parts by mass of hemihydrate gypsum.
The sixth invention is
This is a purification method in which the solidified body according to the first or second invention is put into the water to be treated containing a heavy metal, the heavy metal is adsorbed, and then the solidified body is separated from the water.

本発明に係る中和シュベルトマナイトと石膏とを含む固化体は、処理対象物中の重金属を吸着固定した後、当該処理対象物から容易に分離出来た。 The solidified body containing the neutralized Schwertmanite and gypsum according to the present invention could be easily separated from the object to be treated after adsorbing and fixing the heavy metal in the object to be treated.

実施例1に係る固化体の外観である。It is the appearance of the solidified body which concerns on Example 1. 水中における実施例1に係る固化体の外観である。It is an appearance of the solidified body which concerns on Example 1 in water. 実施例2に係る固化体の外観である。It is the appearance of the solidified body which concerns on Example 2. 水中における実施例2に係る固化体の外観である。It is an appearance of the solidified body which concerns on Example 2 in water.

本発明は、環境中における砒素を初めとする重金属やリンの回収に用いられる吸着材として最適な中和シュベルトマナイトの固化体およびその製造方法、並びに当該中和シュベルトマナイトの固化体を用いた環境の浄化方法に係るものである。
以下、本発明について[1]中和シュベルトマナイト、[2]中和シュベルトマナイトの固化材、[3]中和シュベルトマナイトの固化体、[4]中和シュベルトマナイトの固化体の製造方法、[5]中和シュベルトマナイトの固化体を用いた処理対象物の浄化方法、の順に説明する。
The present invention uses a solidified body of neutralized Schwertmanite, a method for producing the same, and a solidified body of the neutralized Schwertmanite, which is optimal as an adsorbent used for recovering heavy metals such as arsenic and phosphorus in the environment. It is related to the purification method of the existing environment.
Hereinafter, the present invention relates to [1] neutralized Schwertmanite, [2] neutralized Schwertmanite solidifying material, [3] neutralized Schwertmanite solidified body, and [4] neutralized Schwertmanite solidified body. The production method and [5] the method for purifying the object to be treated using the solidified body of neutralized Schwertmanite will be described in this order.

[1]中和シュベルトマナイト
本発明に係る中和シュベルトマナイトは、Fe(OH)8−2x(SO(但し、xは1≦x≦1.75である。)構造を示すシュベルトマナイトへ、カルシウム化合物(CaSO、CaCO、CaO、およびCa(OH)から選択されるいずれか1種以上)を反応させて、当該シュベルトマナイトの分子構造中に存在する硫酸イオンの少なくとも一部をカルシウムイオンに置換したものである。
以下、(1)シュベルトマナイトおよび中和シュベルトマナイト、(2)中和シュベルトマナイトの製造方法例、(3)重金属の固定化剤としての中和シュベルトマナイト、の順に説明する。
[1] Neutralized Schwertmanite The neutralized Schwertmanite according to the present invention is Fe 8 O 8 (OH) 8-2x (SO 4 ) x (where x is 1 ≦ x ≦ 1.75). Calcium compound (one or more selected from CaSO 4 , CaCO 3 , CaO, and Ca (OH) 2 ) is reacted with Schwertmanite showing the structure and is present in the molecular structure of the Schwertmanite. At least a part of the sulfate ion is replaced with calcium ion.
Hereinafter, (1) Schwertmanite and neutralized Schwertmanite, (2) an example of a method for producing neutralized Schwertmanite, and (3) neutralized Schwertmanite as a fixing agent for heavy metals will be described in this order.

(1)シュベルトマナイトおよび中和シュベルトマナイト
シュベルトマナイトは、砒素を初めとする重金属に対して高い吸着能を有する。しかし、当該シュベルトマナイトは水等に溶解し易く、溶解そして再析出を経ることによりゲータイトへ変異し易い。この結果、当該シュベルトマナイトを、処理対象物である例えば重金属を含有する汚染水へ添加した場合、または、長期間の保存又は輸送を行った場合には、ゲータイトへの変異が起こり、重金属に対する吸着能を発揮できないことがあった。
(1) Schwertmanite and Neutralized Schwertmanite Schwertmanite has a high adsorptive capacity for heavy metals such as arsenic. However, the Schwertmanite is easily dissolved in water or the like, and is easily mutated to goethite through dissolution and reprecipitation. As a result, when the Schwertmanite is added to contaminated water containing a heavy metal, for example, which is the object to be treated, or when it is stored or transported for a long period of time, a mutation to goethite occurs and the heavy metal is mutated. In some cases, the adsorption ability could not be exhibited.

これに対し、本発明に係る中和シュベルトマナイトは、酸性化合物であるシュベルトマナイトを上述したカルシウム化合物で中和し、シュベルトマナイトのカルシウム塩とすることで水との反応性を抑制し耐水性を付与したものである。当該中和反応は容易に進み、生産効率面、コスト面といった観点から実施が容易である。さらに、シュベルトマナイトのカルシウム塩は中性である。この結果、環境へ与える負荷が殆ど無く、好ましい。 On the other hand, the neutralized Schwertmanite according to the present invention suppresses the reactivity with water by neutralizing the acidic compound Schwertmanite with the above-mentioned calcium compound and converting it into a calcium salt of Schwertmanite. It is water resistant. The neutralization reaction proceeds easily, and is easy to carry out from the viewpoints of production efficiency and cost. In addition, the calcium salt of Schwertmanite is neutral. As a result, there is almost no load on the environment, which is preferable.

(2)中和シュベルトマナイトの製造方法例
中和シュベルトマナイトの製造方法例について説明する。
硫化鉄鉱床の鉱山から得られる排水へ第二鉄塩を添加し、さらにアルカリを添加してpHを3〜4の範囲とする。そして水酸化第二鉄の沈殿を形成させた後、当該排水を殿物スラリーと上澄水とに分離する(除去工程)。
前記除去工程で得られた上澄水へ鉄酸化細菌を添加し、前記上澄水に含まれる2価鉄を3価鉄へ酸化して処理液を得る(酸化工程)。
前記酸化工程後の処理液をバクテリア酸化殿物スラリーと上澄水とに分離し、得られた酸化工程後の上澄水へ炭酸カルシウムを添加して中和し、pHを4〜5の範囲とする(第一の中和工程)。そして、前記第一の中和工程後の液へ消石灰:2水石膏(CaSO・2HO)および/または半水石膏(CaSO・1/2HO)を添加して中和し、pHを7〜9の範囲とすることで(第二の中和工程)、本発明に係る中和シュベルトマナイトが得られる。
(2) Example of Manufacturing Method of Neutralized Schwert Manite An example of manufacturing method of neutralized Schwert Manite will be described.
A ferric salt is added to the wastewater obtained from the iron sulfide deposit mine, and an alkali is further added to bring the pH in the range of 3 to 4. Then, after forming a ferric hydroxide precipitate, the wastewater is separated into a slurry and a supernatant water (removal step).
Iron-oxidizing bacteria are added to the supernatant water obtained in the removal step, and ferrous iron contained in the supernatant water is oxidized to ferric iron to obtain a treatment liquid (oxidation step).
The treatment liquid after the oxidation step is separated into a bacterial oxidation compound slurry and a supernatant water, and calcium carbonate is added to the obtained supernatant water after the oxidation step to neutralize the solution, and the pH is set in the range of 4 to 5. (First neutralization step). Then, the to the first solution after the neutralization step of hydrated lime: 2 dihydrate gypsum (CaSO 4 · 2H 2 O) and / or hemihydrate gypsum (CaSO 4 · 1 / 2H 2 O) was added for neutralization, By setting the pH in the range of 7 to 9 (second neutralization step), the neutralized gypsum according to the present invention can be obtained.

(3)重金属の固定化剤としての中和シュベルトマナイト
本発明に係る中和シュベルトマナイトは、砒素を初めとする重金属を十分に固定化、不溶化出来るものであった。
このメカニズムは現在確認中であるが、シュベルトマナイトの重金属吸着能とカルシウム塩との相乗効果の発現、添加されたカルシウム塩による中和シュベルトマナイトのさらなる安定化効果の発揮、等によるものではないかと推察できる。
(3) Neutralizing Schwertmanite as an Fixing Agent for Heavy Metals The neutralizing Schwertmanite according to the present invention was capable of sufficiently immobilizing and insolubilizing heavy metals such as arsenic.
This mechanism is currently being confirmed, but it may be due to the synergistic effect of the heavy metal adsorption capacity of Schwertmanite and the calcium salt, and the further stabilization effect of the neutralized Schwertmanite by the added calcium salt. It can be inferred that there is no such thing.

[2]中和シュベルトマナイトの固化材
上述したように本発明に係る中和シュベルトマナイトは、砒素を初めとする重金属に対する優れた固定化剤である。さらに、未中和のシュベルトマナイトに較べ耐水性も有している。しかしながら、中和シュベルトマナイトは粉体形状を有している為、重金属を含有する処理対象の水中へ当該中和シュベルトマナイトを添加し、重金属を吸着させた後、被処理水と重金属を吸着した中和シュベルトマナイトとを分離する操作を求められた場合に課題がある。
[2] Solidifying Material of Neutralized Schwert Manite As described above, the neutralized Schwert Manite according to the present invention is an excellent fixing agent for heavy metals such as arsenic. Furthermore, it has water resistance as compared with unneutralized Schwertmanite. However, since the neutralized Schwertmanite has a powder shape, the neutralized Schwertmanite is added to the water to be treated containing a heavy metal, the heavy metal is adsorbed, and then the water to be treated and the heavy metal are separated. There is a problem when an operation for separating the adsorbed neutralized Schwertmanite is required.

当該分離操作としては、自然沈降による分離、遠心分離、さらには、フィルターを用いた濾過分離等が考えられる。しかし、いずれの分離方法を採るにしても、時間や処理コストが嵩むことが考えられる。 As the separation operation, separation by natural sedimentation, centrifugation, and filtration separation using a filter can be considered. However, whichever separation method is adopted, time and processing cost may increase.

ここで本発明者らは、適宜な固化材により中和シュベルトマナイトを固体成型して固化体とすることが出来れば、重金属を含有する処理対象の水中へ当該中和シュベルトマナイトの固化体を適用した後、重金属を吸着した当該固化体を容易に、被処理水から分離可能となることに想到した。 Here, if the neutralized Schwertmanite can be solid-molded into a solidified body with an appropriate solidifying material, the present inventors can put the neutralized Schwertmanite into the water to be treated containing a heavy metal. After applying the above, it was conceived that the solidified body adsorbed with heavy metals could be easily separated from the water to be treated.

中和シュベルトマナイトを固体成型する為の固化材として、例えば特許文献1:(0053)〜(0054)段落に記載されているような有機高分子系バインダーが考えられる。しかし有機高分子系バインダーを使用した場合、当該固形材のマテリアルコストが高い為、結局、製造される固体成型中和シュベルトマナイトの製造コストが上昇してしまうこととなる。 As a solidifying material for solid-molding the neutralized Schwertmanite, for example, an organic polymer-based binder as described in paragraphs 1 (0053) to (0054) of Patent Document can be considered. However, when an organic polymer-based binder is used, the material cost of the solid material is high, so that the production cost of the solid-molded neutralized Schwertmanite to be produced will increase in the end.

ここで、本発明者らは研究を進め、中和シュベルトマナイトの固化剤として半水石膏(CaSO・1/2HO)を使用する構成に想到した。
半水石膏は水と混合されることにより、数10%以上の気孔率を含んだ状態で固化することから,本手法により中和シュベルトマナイトを内包し、浄化径路を内部に含む中和シュベルトマナイトの固化体を比較的簡便に得ることができるからである。また,原料石膏に廃石膏を活用することで、従来技術よりも安価なマテリアルコストで、環境負荷の低い中和シュベルトマナイトの固化体を用いた、砒素を初めとする重金属やリンの回収技術への応用が期待できることによる。
Here we studying, and conceived as a solidifying agent for neutralizing schwertmannite configurations using hemihydrate gypsum (CaSO 4 · 1 / 2H 2 O).
When hemihydrate gypsum is mixed with water, it solidifies with a porosity of several tens of percent or more. Therefore, this method contains neutralized gypsum and neutralized gypsum containing a purification path inside. This is because a solidified body of manite can be obtained relatively easily. In addition, by utilizing waste gypsum as the raw material gypsum, a technology for recovering heavy metals such as arsenic and phosphorus using a solidified body of neutralized Schwertmanite, which has a lower environmental load at a lower material cost than the conventional technology. Because it can be expected to be applied to.

[3]中和シュベルトマナイトの固化体
特許文献1は、(0053)段落の1箇所においてバインダーとしての石膏について、文言的に触れている。しかしながら、特許文献1では、処理水への投入後のpH変化を考慮した為に、石膏の使用には消極的な記載がされている。これは、特許文献1では重金属の固定化剤として、本発明とは異なり未中和のシュベルトマナイトを使用している為、当該未中和のシュベルトマナイトおよび固化材の双方がpHへ与える影響を考慮しなければならない為であると考えられる。
これに対し、本発明においては重金属の固定化剤として中和シュベルトマナイトを用いる構成である為、固化材として半水石膏を用いても、環境への負荷は殆ど無いものである。
当該観点からも、本発明に係る中和シュベルトマナイトを、適宜量の半水石膏を用いて固化させた中和シュベルトマナイトの固化体、および、当該中和シュベルトマナイトの固化体を用いた被処理対象物からの、砒素を初めとする重金属やリンの回収方法は優れたものであると考えられる。
[3] Solidified body of neutralized Schwertmanite Patent Document 1 literally mentions gypsum as a binder in one paragraph (0053). However, Patent Document 1 makes a reluctant description about the use of gypsum in consideration of the pH change after the addition to the treated water. This is because, unlike the present invention, unneutralized Schwertmanite is used as the fixing agent for heavy metals in Patent Document 1, so that both the unneutralized Schwertmanite and the solidifying material give the pH to pH. It is thought that this is because the impact must be taken into consideration.
On the other hand, in the present invention, since the neutralized Schwertmanite is used as the fixing agent for heavy metals, even if hemihydrate gypsum is used as the solidifying material, there is almost no burden on the environment.
From this point of view as well, a solidified body of the neutralized Schwertmanite obtained by solidifying the neutralized Schwertmanite according to the present invention with an appropriate amount of hemihydrate gypsum and a solidified body of the neutralized Schwertmanite are used. It is considered that the method for recovering heavy metals such as arsenic and phosphorus from the object to be treated is excellent.

[4]中和シュベルトマナイトの固化体の製造方法
中和シュベルトマナイトの固化体の製造方法について、1例を挙げながら説明する。
中和シュベルトマナイトを乳鉢等にて解砕した後、篩にて篩分けして、中和シュベルトマナイト粉体を得る。得られた中和シュベルトマナイト粉体へ半水石膏を加え、十分に混合した後、所定量の脱イオン水を加えて攪拌する。
[4] Method for Producing Solidified Body of Neutralized Schwertmanite A method for producing a solidified body of neutralized Schwertmanite will be described with reference to an example.
Neutralized Schwertmanite is crushed in a mortar or the like and then sieved through a sieve to obtain neutralized Schwertmanite powder. Semi-hydrated gypsum is added to the obtained neutralized Schwertmanite powder and mixed thoroughly, and then a predetermined amount of deionized water is added and stirred.

中和シュベルトマナイト粉体へ半水石膏を加える際、中和シュベルトマナイト粉体と、半水石膏との混合比率は100:50〜100:150であることが好ましい。
また、中和シュベルトマナイト粉体と半水石膏との混合物へ、脱イオン水を加える際、中和シュベルトマナイト粉体と半水石膏との混合物と、脱イオン水との混合比率は100:200〜100:400であることが好ましい。
When adding hemihydrate gypsum to the neutralized Schwertmanite powder, the mixing ratio of the neutralized Schwertmanite powder and the hemihydrate gypsum is preferably 100:50 to 100:150.
When deionized water is added to the mixture of neutralized Schwertmanite powder and hemihydrate gypsum, the mixing ratio of the mixture of neutralized Schwertmanite powder and hemihydrate gypsum and the deionized water is 100. : 200 to 100: 400 is preferable.

中和シュベルトマナイト粉体と半水石膏と脱イオン水とを攪拌し、好ましくは脱泡してスラリーを得る。得られたスラリーを所望の内寸を有する適宜な型に流し込み、室温にて12時間程度静置して硬化させて固化体を得る。当該固化体を型から離型し、好ましくは50℃程度の雰囲気下で12時間程度乾燥させて、本発明に係る中和シュベルトマナイトの固化体を得る。 The neutralized Schwertmanite powder, hemihydrate gypsum and deionized water are stirred and preferably defoamed to obtain a slurry. The obtained slurry is poured into an appropriate mold having a desired inner size, and allowed to stand at room temperature for about 12 hours to be cured to obtain a solidified body. The solidified body is removed from the mold and dried in an atmosphere of preferably about 50 ° C. for about 12 hours to obtain a solidified body of the neutralized Schwertmanite according to the present invention.

[5]中和シュベルトマナイトの固化体を用いた処理対象物の浄化方法
本発明に係る中和シュベルトマナイトの固化体を用いた浄化方法の処理対象物としては、まず、砒素を初めとする重金属やリンを含む水が考えられる。そこで、以下、処理対象物が当該砒素等を含む水である場合を例として、中和シュベルトマナイトの固化体を用いた処理対象物の浄化方法について説明する。
[5] Purification Method of Object to be Treated Using Solidified Body of Neutralized Schwertmanite As the object to be treated by the purification method using the solidified body of neutralized Schwertmanite according to the present invention, first, arsenic is used. Water containing heavy metals and phosphorus can be considered. Therefore, a method for purifying the object to be treated using a solidified body of neutralized Schwertmanite will be described below, taking as an example the case where the object to be treated is water containing the arsenic or the like.

上述したように、本発明に係る中和シュベルトマナイトの固化体は、固化材として半水石膏を用い数10%以上の気孔率を有し、環境への負荷は殆ど無いものである。
そこで、処理対象物の水へ、本発明に係る中和シュベルトマナイトの固化体の適宜量を直接投入し、当該固化体の内部に含まれる浄化径路において砒素等を吸着させる。当該吸着過程において、中和シュベルトマナイトの固化体は崩壊しない。そこで、当該吸着過程が完了したと考えられる時点で、適宜な目開きを有するメッシュ等を用いて、浄化された処理対象物の水と固化体とを容易に分離することが出来る。
また、中和シュベルトマナイトの固化体の集積体中へ処理対象物の水を通過させて、当該処理対象物の水を浄化することも可能である。
As described above, the solidified body of the neutralized Schwertmanite according to the present invention uses hemihydrate gypsum as a solidifying material and has a porosity of several tens of percent or more, and has almost no burden on the environment.
Therefore, an appropriate amount of the solidified body of the neutralized Schwertmanite according to the present invention is directly added to the water of the object to be treated, and arsenic or the like is adsorbed in the purification path contained inside the solidified body. In the adsorption process, the solidified body of neutralized Schwertmanite does not collapse. Therefore, when it is considered that the adsorption process is completed, the water of the purified object to be treated and the solidified body can be easily separated by using a mesh or the like having an appropriate opening.
It is also possible to purify the water of the object to be treated by passing the water of the object to be treated into the aggregate of the solidified body of the neutralized Schwertmanite.

以下、実施例を参照しながら、本発明をより具体的に説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples.

(実施例1)
実施例1について、〈1〉中和シュベルトマナイトの固化体の製造、〈2〉中和シュベルトマナイトのリン酸イオン除去率測定による固化体の特性評価、〈3〉中和シュベルトマナイトの固化体のリン酸イオン除去率測定による特性評価についての説明、〈4〉中和シュベルトマナイトの固化体の砒素除去率測定による特性評価、の順で説明する。
(Example 1)
Regarding Example 1, <1> production of a solidified body of neutralized Schwertmanite, <2> characteristic evaluation of the solidified body by measuring the phosphate ion removal rate of neutralized Schwertmanite, and <3> neutralized Schwertmanite. The description of the characteristic evaluation by measuring the phosphate ion removal rate of the solidified body and the characteristic evaluation by measuring the arsenic removal rate of the solidified body of the neutralized Schwertmanite will be described in this order.

〈1〉中和シュベルトマナイトの固化体の製造
「[1]中和シュベルトマナイト、(2)中和シュベルトマナイトの製造方法例」にて説明した製造方法により、中和シュベルトマナイトを製造した。
製造した中和シュベルトマナイトをアルミナ製の乳鉢で解砕し、目開き180μmのステンレス製篩にて篩分けして得た、中和シュベルトマナイト粉体10gを準備した。
一方、半水石膏として市販の半水石膏(A級、吉野石膏(株)製)10gを準備した。
当該中和シュベルトマナイト粉体10gと、半水石膏10gとを100mlのプラスチックカップ内で十分に混合し、そこへ30gの脱イオン水を加えた。
<1> Production of a solidified body of neutralized Schwertmanite Neutralized Schwertmanite is produced by the production method described in "[1] Neutralized Schwertmanite, (2) Example of manufacturing method of neutralized Schwertmanite". Manufactured.
10 g of the neutralized Schwertmanite powder obtained by crushing the produced neutralized Schwertmanite in an alumina mortar and sieving with a stainless steel sieve having an opening of 180 μm was prepared.
On the other hand, as a hemihydrate gypsum, 10 g of commercially available hemihydrate gypsum (class A, manufactured by Yoshino Gypsum Co., Ltd.) was prepared.
10 g of the neutralized Schwertmanite powder and 10 g of hemihydrate gypsum were sufficiently mixed in a 100 ml plastic cup, and 30 g of deionized water was added thereto.

当該カップの内容物を、自転公転ミキサー(ARE−310、シンキー(株)製)を用いて2000rpmで30秒間攪拌した。次に、2200rpmで30秒間攪拌して脱泡した。その後、プラスチック棒を用い、60秒間手混ぜ攪拌して、実施例1に係るスラリーとした。
当該スラリーをシリコン製またはプラスチック製の型(内形状:12×12×12mm)に流し込み、25℃にて12時間静置して硬化させて硬化物とした。得られた硬化物を型から離型し、50℃の高温槽にて12時間乾燥させて、実施例1に係る中和シュベルトマナイト固化体(外形状:12×12×12mm)を得た。
当該固化体の外観を図1、水中における固化体の外観を図2、物性値を表1に示す。
The contents of the cup were stirred at 2000 rpm for 30 seconds using a rotation / revolution mixer (ARE-310, manufactured by Shinky Co., Ltd.). Next, the bubbles were defoamed by stirring at 2200 rpm for 30 seconds. Then, using a plastic rod, it was manually mixed and stirred for 60 seconds to obtain a slurry according to Example 1.
The slurry was poured into a silicon or plastic mold (inner shape: 12 × 12 × 12 mm 3 ) and allowed to stand at 25 ° C. for 12 hours to be cured to obtain a cured product. The obtained cured product was removed from the mold and dried in a high temperature bath at 50 ° C. for 12 hours to obtain a neutralized Schwertmanite solidified body (outer shape: 12 × 12 × 12 mm 3 ) according to Example 1. It was.
The appearance of the solidified body is shown in FIG. 1, the appearance of the solidified body in water is shown in FIG. 2, and the physical property values are shown in Table 1.

尚、嵩密度(外形)は、固化体試料の乾燥重量を、当該試料の外寸法から求めた体積で割ることで求めた。
比表面積は窒素吸着法によるBET多点法で求めた。具体的には、比表面積/細孔分布測定装置(マイクロトラックベル製BELSORP−miniII)を使用した。そして、100℃で10時間の真空脱気を施し、液体窒素温度で窒素を低圧から飽和吸着させ、相対圧0.10〜0.35の7点におけるBET多点法による解析を行った。
見かけ密度、嵩密度、気孔率はJIS規格Z8807(固体の密度及び比重の測定方法)の「8:液中ひょう量法による密度及び比重の測定方法」に準拠して求めた。
以下、実施例2〜5も同様である。
The bulk density (outer shape) was determined by dividing the dry weight of the solidified sample by the volume obtained from the outer dimensions of the sample.
The specific surface area was determined by the BET multipoint method by the nitrogen adsorption method. Specifically, a specific surface area / pore distribution measuring device (BELSORP-miniII manufactured by Microtrac Bell) was used. Then, vacuum degassing was performed at 100 ° C. for 10 hours, nitrogen was saturated and adsorbed from a low pressure at a liquid nitrogen temperature, and analysis was performed by the BET multipoint method at 7 points with a relative pressure of 0.10 to 0.35.
The apparent density, bulk density, and porosity were determined in accordance with JIS Standard Z8807 (Method for measuring solid density and specific gravity) "8: Method for measuring density and specific gravity by the in-liquid weighing method".
Hereinafter, the same applies to Examples 2 to 5.

〈2〉中和シュベルトマナイトの固化体のリン酸イオン除去率測定による特性評価
リン酸塩としてリン酸二水素カリウム(KHPO)を用い、所定濃度200ppmを有するリン酸溶液を得た。
実施例1に係る中和シュベルトマナイト固化体0.1gと、前記リン酸溶液(所定濃度200ppm)100mlとを混合し、25℃の下、中和シュベルトマナイト固化体とリン酸溶液とを24時間反応させ、リン酸を、十分にシュベルトマナイト固化体へ飽和吸着させた。
<2> Evaluation of Characteristics of Neutralized Schwertmanite Solution by Measuring Phosphate Ion Removal Rate Using potassium dihydrogen phosphate (KH 2 PO 4 ) as a phosphate, a phosphate solution having a predetermined concentration of 200 ppm was obtained. ..
0.1 g of the neutralized Schwertmanite solidified product according to Example 1 and 100 ml of the phosphoric acid solution (predetermined concentration 200 ppm) are mixed, and the neutralized Schwertmanite solidified product and the phosphoric acid solution are mixed at 25 ° C. After reacting for 24 hours, phosphoric acid was sufficiently saturated and adsorbed on the Schwertmannite solidified product.

当該吸着反応の後、反応後の溶液を10ml分取し、25mlのメスフラスコへ移した。このとき、実施例1に係る中和シュベルトマナイト固化体は、溶液中でも崩壊しなかったので、反応後の溶液と中和シュベルトマナイト固化体とは容易に分離が出来た。 After the adsorption reaction, 10 ml of the solution after the reaction was taken and transferred to a 25 ml volumetric flask. At this time, the neutralized Schwertmanite solidified product according to Example 1 did not disintegrate even in the solution, so that the solution after the reaction and the neutralized Schwertmanite solidified product could be easily separated.

当該メスフラスコへMo(v)−Mo(vi)試薬を1.0ml加え、標線付近まで脱イオン水を入れた。そして、沸騰水の入ったビーカーに当該メスフラスコを入れ、30分間程度浸漬して試薬を発色させた。
当該メスフラスコを冷却後、脱イオン水を加えて正確に標線合わせを行い試料溶液とした。当該試料溶液の波長830nmの吸光度を吸光光度計(UV−2450、島津製作所(株)製)で測定した。一方、リン酸の標準溶液から得られた検量線から、当該試料溶液のリン酸濃度を求め、実施例1に係る中和シュベルトマナイト固化体のリン酸イオン除去率(1gの固化体が除去するリン酸イオン量(mg))を算出した。当該算出結果を表1に示す。
1.0 ml of Mo (v) -Mo (vi) reagent was added to the volumetric flask, and deionized water was added to the vicinity of the marked line. Then, the volumetric flask was placed in a beaker containing boiling water and immersed for about 30 minutes to develop the color of the reagent.
After cooling the volumetric flask, deionized water was added and the markings were accurately aligned to prepare a sample solution. The absorbance of the sample solution at a wavelength of 830 nm was measured with an absorptiometer (UV-2450, manufactured by Shimadzu Corporation). On the other hand, the phosphoric acid concentration of the sample solution was determined from the calibration line obtained from the standard solution of phosphoric acid, and the phosphate ion removal rate of the neutralized Schwertmanite solidified product according to Example 1 (1 g of the solidified product was removed). The amount of phosphate ion (mg) to be produced was calculated. The calculation results are shown in Table 1.

〈3〉中和シュベルトマナイトの固化体のリン酸イオン除去率測定による特性評価についての説明
実施例1において、中和シュベルトマナイト固化体の吸着性能を評価するにあたり、リン酸イオンを砒酸イオンの代替として用いた測定を行った。
良く知られているように、砒素や砒酸は生物への毒性が高い物質であり、取り扱いには格段の配慮が必要である。この為、一般的な設備を有する実験室や研究所では砒素や砒酸の使用が制限されることも多い。一方、砒素の水中形態である砒酸イオン(AsO 3−)は正四面体構造を有するオキソニウムイオンであり、リンの水中形態であるリン酸イオン(PO 3−)と同様の構造を有している。また、砒酸はリン酸と同様の3段階の解離性を示す。
この為、砒酸イオンと同型であり挙動もよく似ているリン酸イオンを用いた。
<3> Description of Characteristic Evaluation of Neutralized Schwertmanite Solidified Body by Measuring Phosphate Ion Removal Rate In Example 1, in evaluating the adsorption performance of the neutralized Schwertmanite solidified body, phosphate ions were used as arsenate ions. The measurement used as an alternative to was performed.
As is well known, arsenic and arsenic are substances that are highly toxic to living organisms, and special care must be taken when handling them. For this reason, the use of arsenic and arsenic is often restricted in laboratories and laboratories with general equipment. On the other hand, arsenate ion in-water form of arsenic (AsO 4 3-) is the oxonium ion with a tetrahedral structure, have a phosphate ion (PO 4 3-) and similar structures in-water form of phosphorus are doing. In addition, arsenic acid exhibits three levels of dissociability similar to phosphoric acid.
Therefore, phosphate ion, which is the same type as arrate ion and has similar behavior, was used.

〈4〉中和シュベルトマナイトの固化体の砒素除去率測定による特性評価
本発明に係る中和シュベルトマナイトの固化体の特性評価を、さらに確認する為、上述した中和シュベルトマナイトの固化体のリン酸イオン除去率測定による特性評価に続けて、砒素除去率測定による特性評価を実施した。
<4> Characteristic evaluation by measuring the arsenic removal rate of the solidified body of neutralized Schwertmanite In order to further confirm the characteristic evaluation of the solidified body of neutralized Schwertmanite according to the present invention, the above-mentioned solidification of neutralized Schwertmanite Following the characterization by measuring the phosphate ion removal rate of the body, the characterization was performed by measuring the arsenic removal rate.

砒素溶液として、市販のひ素標準液(As1000)[富士フィルム和光純薬(株)製]を用いて、砒素濃度200ppmを有する砒素水溶液を調製した。
実施例1に係る中和シュベルトマナイト固化体0.1gと、前記砒素水溶液(砒素濃度200ppm)100mlとを混合し、25℃の下、中和シュベルトマナイト固化体とリン酸溶液とを24時間反応させ、砒素を、十分にシュベルトマナイト固化体へ飽和吸着させた。
As an arsenic solution, a commercially available arsenic standard solution (As1000) [manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.] was used to prepare an arsenic aqueous solution having an arsenic concentration of 200 ppm.
0.1 g of the neutralized Schwertmanite solidified product according to Example 1 and 100 ml of the arsenic aqueous solution (arsenic concentration 200 ppm) are mixed, and the neutralized Schwertmanite solidified product and the phosphoric acid solution are mixed at 25 ° C. After a time reaction, arsenic was sufficiently saturated and adsorbed on the Schwertmannite solidified product.

当該吸着反応の後、反応後の溶液を分取した。このとき、実施例1に係る中和シュベルトマナイト固化体は、溶液中でも崩壊しなかったので、反応後の溶液と中和シュベルトマナイト固化体とは容易に分離が出来た。
分取された反応後の溶液中の砒素濃度を、誘導結合プラズマ(ICP)質量分析装置(アジレントテクノロジー社製、Agilent 7900 ICP−MS)を用いて分析し、実施例1に係る中和シュベルトマナイト固化体の砒素除去率(1gの固化体が除去する砒素量(mg))を算出した。当該算出結果を表1に示す。
After the adsorption reaction, the solution after the reaction was separated. At this time, since the neutralized Schwertmanite solidified body according to Example 1 did not disintegrate even in the solution, the solution after the reaction and the neutralized Schwertmanite solidified body could be easily separated.
The arsenic concentration in the separated solution after the reaction was analyzed using an inductively coupled plasma (ICP) mass spectrometer (Agilent 7900 ICP-MS manufactured by Agilent Technologies), and the neutralized Schwertma according to Example 1. The arsenic removal rate of the night solidified product (the amount of arsenic removed by 1 g of the solidified product (mg)) was calculated. The calculation results are shown in Table 1.

(実施例2)
シリコン製またはプラスチック製の型として(内形状:10×10×10mm)を用いた以外は、実施例1と同様の操作を行って、実施例2に係る中和シュベルトマナイト固化体(外形状:10×10×10mm)を得た。
当該固化体は、水中でも崩壊しなかった。
当該固化体の外観を図3、水中における固化体の外観を図4、物性値を表1に示す。
(Example 2)
The same operation as in Example 1 was performed except that a silicon or plastic mold (inner shape: 10 × 10 × 10 mm 3 ) was used, and the neutralized Schwertmanite solidified body (outer) according to Example 2 was performed. Shape: 10 × 10 × 10 mm 3 ) was obtained.
The solidified body did not collapse even in water.
The appearance of the solidified body is shown in FIG. 3, the appearance of the solidified body in water is shown in FIG. 4, and the physical property values are shown in Table 1.

そして実施例1と同様に、当該固化体のリン酸イオン除去率および砒素除去率を測定した。当該測定結果を表1に示す。 Then, in the same manner as in Example 1, the phosphate ion removal rate and the arsenic removal rate of the solidified body were measured. The measurement results are shown in Table 1.

(実施例3)
自転公転ミキサーを用いた攪拌および脱泡しない以外は実施例2と同様の条件にて、実施例3に係る中和シュベルトマナイト固化体(形状:10×10×10mm)を得た。
当該固化体は、水中でも崩壊しなかった。物性値を表1に示す。
(Example 3)
A neutralized Schwertmanite solidified body (shape: 10 × 10 × 10 mm 3 ) according to Example 3 was obtained under the same conditions as in Example 2 except that stirring and defoaming were not performed using a rotation / revolution mixer.
The solidified body did not collapse even in water. The physical property values are shown in Table 1.

そして実施例1と同様に、当該固化体のリン酸イオン除去率および砒素除去率を測定した。当該測定結果を表1に示す。 Then, in the same manner as in Example 1, the phosphate ion removal rate and the arsenic removal rate of the solidified body were measured. The measurement results are shown in Table 1.

(実施例4)
中和シュベルトマナイト粉体12.5gと、半水石膏10gとを100mlのプラスチックカップ内で十分に混合し、そこへ30gの脱イオン水を加えた。そして、自転公転ミキサーを用いた攪拌および脱泡しない以外は、実施例2と同様の条件にて、実施例4に係る中和シュベルトマナイト固化体(形状:10×10×10mm)を得た。
当該固化体は、水中でも崩壊しなかった。物性値を表1に示す。
(Example 4)
12.5 g of neutralized Schwertmanite powder and 10 g of hemihydrate gypsum were thoroughly mixed in a 100 ml plastic cup, and 30 g of deionized water was added thereto. Then, a neutralized Schwertmanite solidified body (shape: 10 × 10 × 10 mm 3 ) according to Example 4 was obtained under the same conditions as in Example 2 except that stirring and defoaming were not performed using a rotation / revolution mixer. It was.
The solidified body did not collapse even in water. The physical property values are shown in Table 1.

そして実施例1と同様に、当該固化体のリン酸イオン除去率および砒素除去率を測定した。当該測定結果を表1に示す。 Then, in the same manner as in Example 1, the phosphate ion removal rate and the arsenic removal rate of the solidified body were measured. The measurement results are shown in Table 1.

(実施例5)
中和シュベルトマナイト粉体15gと、半水石膏10gとを100mlのプラスチックカップ内で十分に混合し、そこへ30gの脱イオン水を加えた。そして、自転公転ミキサーを用いた攪拌および脱泡しない以外は、実施例2と同様の条件にて、実施例5に係る中和シュベルトマナイト固化体(形状:10×10×10mm)を得た。
当該固化体は、水中でも崩壊しなかった。物性値を表1に示す。
(Example 5)
15 g of neutralized Schwertmanite powder and 10 g of hemihydrate gypsum were thoroughly mixed in a 100 ml plastic cup, and 30 g of deionized water was added thereto. Then, a neutralized Schwertmanite solidified body (shape: 10 × 10 × 10 mm 3 ) according to Example 5 was obtained under the same conditions as in Example 2 except that stirring and defoaming were not performed using a rotation / revolution mixer. It was.
The solidified body did not collapse even in water. The physical property values are shown in Table 1.

そして実施例1と同様に、当該固化体のリン酸イオン除去率および砒素除去率を測定した。当該測定結果を表1に示す。 Then, in the same manner as in Example 1, the phosphate ion removal rate and the arsenic removal rate of the solidified body were measured. The measurement results are shown in Table 1.

(参考例1)
実施例において中和シュベルトマナイト固化体の作成時に用いた、市販の半水石膏自体のリン酸イオン除去率および砒素除去率を測定した。
半水石膏として市販の半水石膏(A級、吉野石膏(株)製)210gを準備した。
当該半水石膏20gを100mlのプラスチックカップ内へ入れ、中和シュベルトマナイト粉体を加えることなく、30gの脱イオン水を加えた以外は、実施例1と同様の操作を実施した。
得られた固化体の物性値を表1に示す。
(Reference example 1)
The phosphate ion removal rate and arsenic removal rate of the commercially available hemihydrate gypsum itself used in the preparation of the neutralized Schwertmanite solidified body in the examples were measured.
As a hemihydrate gypsum, 210 g of commercially available hemihydrate gypsum (class A, manufactured by Yoshino Gypsum Co., Ltd.) was prepared.
The same operation as in Example 1 was carried out except that 20 g of the hemihydrate gypsum was placed in a 100 ml plastic cup and 30 g of deionized water was added without adding the neutralized Schwertmanite powder.
Table 1 shows the physical property values of the obtained solidified product.

そして実施例1と同様に、当該固化体のリン酸イオン除去率および砒素除去率を測定した。当該測定結果を表1に示す。 Then, in the same manner as in Example 1, the phosphate ion removal rate and the arsenic removal rate of the solidified body were measured. The measurement results are shown in Table 1.

Claims (6)

中和シュベルトマナイトと石膏とを含む固化体。 Solidified body containing neutralized Schwertmanite and gypsum. 100質量部の中和シュベルトマナイトに対して、50質量部以上150質量部以下の石膏を含む請求項1に記載の固化体。 The solidified body according to claim 1, which contains gypsum of 50 parts by mass or more and 150 parts by mass or less with respect to 100 parts by mass of neutralized Schwertmanite. 中和シュベルトマナイトと半水石膏とを混合して混合物を得る工程と、
前記混合物へ水を添加した後、混合してスラリーを得る工程と、
前記スラリーを固化させて、中和シュベルトマナイトと石膏とを含む固化体を得る工程と、を有する固化体の製造方法。
The process of mixing neutralized Schwertmanite and hemihydrate gypsum to obtain a mixture,
A step of adding water to the mixture and then mixing to obtain a slurry.
A method for producing a solidified body, which comprises a step of solidifying the slurry to obtain a solidified body containing neutralized Schwertmanite and gypsum.
100質量部の中和シュベルトマナイトに対して、50質量部以上150質量部以下の半水石膏を混合する、請求項3に記載の固化体の製造方法。 The method for producing a solidified body according to claim 3, wherein hemihydrate gypsum of 50 parts by mass or more and 150 parts by mass or less is mixed with 100 parts by mass of neutralized Schwertmanite. 半水石膏100質量部に対して、200質量部を超え400質量部以下の水を添加する、請求項3または4に記載の固化体の製造方法。 The method for producing a solidified body according to claim 3 or 4, wherein water of more than 200 parts by mass and 400 parts by mass or less is added to 100 parts by mass of hemihydrate gypsum. 重金属を含有する処理対象の水中へ、請求項1または2に記載の固化体を投入して前記重金属を吸着させた後に、前記水中から前記固化体を分離する浄化方法。
A purification method in which the solidified body according to claim 1 or 2 is put into water to be treated containing a heavy metal to adsorb the heavy metal, and then the solidified body is separated from the water.
JP2020020355A 2019-02-12 2020-02-10 Solidified body of neutralized schwertmannite, method for producing the same, and purification method using solidified body of neutralized schwertmannite Active JP7364190B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019022591 2019-02-12
JP2019022591 2019-02-12

Publications (2)

Publication Number Publication Date
JP2020132515A true JP2020132515A (en) 2020-08-31
JP7364190B2 JP7364190B2 (en) 2023-10-18

Family

ID=72262280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020020355A Active JP7364190B2 (en) 2019-02-12 2020-02-10 Solidified body of neutralized schwertmannite, method for producing the same, and purification method using solidified body of neutralized schwertmannite

Country Status (1)

Country Link
JP (1) JP7364190B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204294A (en) * 2006-01-31 2007-08-16 Komurisu:Kk Solidifying material and solidified body utilizing the solidifying material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204294A (en) * 2006-01-31 2007-08-16 Komurisu:Kk Solidifying material and solidified body utilizing the solidifying material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
石川彰彦: "機能性物質シュベルトマナイトの用途開発 〜有害物質対策、農業用資材等", JST 岡山大学新技術説明会資料, JPN7023002571, 15 December 2016 (2016-12-15), ISSN: 0005098300 *

Also Published As

Publication number Publication date
JP7364190B2 (en) 2023-10-18

Similar Documents

Publication Publication Date Title
Zhang et al. Enhanced phosphate scavenging with effective recovery by magnetic porous biochar supported La (OH) 3: Kinetics, isotherms, mechanisms and applications for water and real wastewater
JP5905669B2 (en) Hazardous material treatment material and method
Islam et al. Arsenate removal from aqueous solution by cellulose-carbonated hydroxyapatite nanocomposites
Lan et al. Highly efficient removal of As (V) with modified electrolytic manganese residues (M-EMRs) as a novel adsorbent
Vila et al. Novel biopolymer-coated hydroxyapatite foams for removing heavy-metals from polluted water
Wu et al. Phosphorus removal from aqueous solutions by adsorptive concrete aggregates
Kanno et al. Novel apatite-based sorbent for defluoridation: synthesis and sorption characteristics of nano-micro-crystalline hydroxyapatite-coated-limestone
Devi et al. Stabilization and solidification of arsenic and iron contaminated canola meal biochar using chemically modified phosphate binders
Dong et al. Iron coated pottery granules for arsenic removal from drinking water
TWI597243B (en) Hazardous material handling materials and methods of their manufacture, handling of hazardous materials
JP4423645B2 (en) Hydroxyapatite silica composite porous material adsorbent and method for producing the same
JP6118571B2 (en) Treatment method of contaminated soil
JP5981863B2 (en) Granular environmental water treatment agent and method for treating water contaminated with harmful substances using the same
Sasaki et al. Evaluation of the capacity of hydroxyapaptite prepared from concrete sludge to remove lead from water
Wang et al. Synthesis of a Matériaux Institut Lavoisier metal-organic framework 96 (MIL-96 (RM)) using red mud and its application to defluorination of water
JP2011240325A (en) Agent for eliminating heavy metal ion and phosphate ion in wastewater, and method for eliminating heavy metal ion and phosphate ion using the same
Abdelmigeed et al. Novel easily separable core–shell Fe 3 O 4/PVP/ZIF-8 nanostructure adsorbent: optimization of phosphorus removal from Fosfomycin pharmaceutical wastewater
JP2016022406A (en) Method for treating heavy metal-contaminated water
Forghani Tehrani et al. Lead (II) removal from aqueous solutions and battery industry wastewater by sorption using seawater-neutralized red mud
JP4936453B2 (en) Adsorbent for water treatment having a pH of less than 4 and containing iron ions and ions containing arsenic and method for purifying the water
Sarmah et al. Surface modification of paddy husk ash by hydroxyl-alumina coating to develop an efficient water defluoridation media and the immobilization of the sludge by lime-silica reaction
JP7364190B2 (en) Solidified body of neutralized schwertmannite, method for producing the same, and purification method using solidified body of neutralized schwertmannite
JP5548956B2 (en) Arsenic sorbent and arsenic contaminant purification method
JP6208648B2 (en) Treatment agent and treatment method for contaminated water or soil
Van Dat et al. Synthesis of calcium-deficient carbonated hydroxyapatite as promising sorbent for removal of lead ions

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230927

R150 Certificate of patent or registration of utility model

Ref document number: 7364190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150