JP2020059892A - Electroseamed steel pipe for oil wells and method for producing the same - Google Patents

Electroseamed steel pipe for oil wells and method for producing the same Download PDF

Info

Publication number
JP2020059892A
JP2020059892A JP2018192458A JP2018192458A JP2020059892A JP 2020059892 A JP2020059892 A JP 2020059892A JP 2018192458 A JP2018192458 A JP 2018192458A JP 2018192458 A JP2018192458 A JP 2018192458A JP 2020059892 A JP2020059892 A JP 2020059892A
Authority
JP
Japan
Prior art keywords
electric resistance
resistance welded
less
steel pipe
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018192458A
Other languages
Japanese (ja)
Other versions
JP7200588B2 (en
Inventor
健介 長井
Kensuke Nagai
健介 長井
英人 河野
Hideto Kono
英人 河野
治 吉田
Osamu Yoshida
治 吉田
高志 津末
Takashi Tsusue
高志 津末
龍雄 横井
Tatsuo Yokoi
龍雄 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018192458A priority Critical patent/JP7200588B2/en
Publication of JP2020059892A publication Critical patent/JP2020059892A/en
Application granted granted Critical
Publication of JP7200588B2 publication Critical patent/JP7200588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

To provide an electroseamed steel pipe for oil wells and a method for producing the same.SOLUTION: An electroseamed steel pipe for oil wells contains specific amounts of C, Mn, Ti, Nb, N, Si, Al, B, P, S, with the balance being Fe and inevitable impurities; the Mn%/Si% ratio being 2.0 or more; SK value of formula (1) being 0.10 or more and BH value of formula (2) being 1.3-2.7; a base metallographic structure containing bainite or martensite with an area ratio of 80% or more and ferrite with an area ratio of 5% or more; an electroseamed welded part being a mixed structure of bainite and martensite; a tensile yield strength of 655 MPa or more and 758 MPa or less; a tensile strength of 724 MPa or more; a Charpy absorption energy at -20°C being 100 J or more. SK=Nb%+Ti%+(V%+Mo%)/5 formula (1), BH=2.7C%+0.4Si%+Mn%+0.45(Ni%+Cu%) +0.8Cr%+2Mo% formula (2).SELECTED DRAWING: None

Description

本発明は、油井用に好適な電縫鋼管およびその製造方法に関する。さらに詳しくは、API規格 5CT R95相当の強度(降伏強度YS:655MPa以上758MPa以下、引張強度TS:724MPa以上)を有し、さらに、靭性に優れた油井用電縫鋼管及びその製造方法に関する。   The present invention relates to an electric resistance welded steel pipe suitable for oil wells and a method for manufacturing the same. More specifically, the present invention relates to an electric resistance welded steel pipe for oil wells having strength equivalent to API standard 5CT R95 (yield strength YS: 655 MPa or more and 758 MPa or less, tensile strength TS: 724 MPa or more), and a manufacturing method thereof.

油井管は、ガスやオイルを地中から採取する際に使用する鋼管であるが、近年、天然資源の掘削地域の過酷化に伴い、油井管に求められる特性が変化しつつある。
そのひとつの例として、深井戸化が進んでおり、圧潰特性(外圧に対して座屈しない特性)の向上および高靱性化が求められ始めた。
Oil well pipes are steel pipes used for extracting gas and oil from the ground. In recent years, the characteristics required for oil well pipes have been changing with the harshness of natural resource excavation areas.
As one example of this, deep wells are being advanced, and improvement in crushing characteristics (characteristics that do not buckle against external pressure) and higher toughness have begun to be demanded.

圧潰特性は、鋼管の周方向降伏強度が高いこと、鋼管の形状精度(特に偏肉・真円度)が高いことで向上する。電縫鋼管は形状精度が高いことから、同サイズ(外径・肉厚)の他管種に比べて圧潰特性が高いことが知られている。
圧潰強度を向上させるためのもう一つの方策は高強度化であるが、強度と靱性はおおむね相反特性であり、両立が困難である。
さらに電縫鋼管においては、結晶粒を微細化させづらい電縫溶接部の高靱性化が鋼管の高靱性化を阻害する要因である。
The crushing property is improved by the high yield strength in the circumferential direction of the steel pipe and the high shape accuracy (especially uneven thickness / roundness) of the steel pipe. ERW steel pipe is known to have high crushing characteristics compared to other pipe types of the same size (outer diameter and wall thickness) because of its high shape accuracy.
Another measure for improving the crush strength is to increase the strength, but strength and toughness are generally reciprocal properties, and it is difficult to achieve both at the same time.
Further, in the electric resistance welded steel pipe, the increase in toughness of the electric resistance welded portion, which makes it difficult to refine the crystal grains, is a factor that hinders the increase in the toughness of the steel pipe.

特許文献1、2には、Moを活用した降伏強度655MPaクラスの電縫油井管の製造方法が開示されている。
特許文献1には、C、Si、Mn、Ti、B、Mo、V、Nbを規定量含有し、P、S、Oを低く抑えた熱延鋼板において、金属組織を焼戻し上部ベイナイトとし、楕円状の旧γ粒の短径を25μm以下とした電縫鋼管用熱延鋼板が開示されている。
特許文献2には、C、Si、Mn、Nb、V、Ti、Mo、Ni、Alを規定量含有しMo量とNi量の合計値を規定の範囲とした電縫鋼管において、10面積%以下のポリゴナルフェライトと残部がベイネティックフェライトからなり、引張強度と降伏強度とシャルピー吸収エネルギーを特定の範囲とした高強度電縫鋼管が開示されている。
Patent Documents 1 and 2 disclose a method for manufacturing an electric resistance welded well tube having a yield strength of 655 MPa, which utilizes Mo.
Patent Document 1 discloses a hot-rolled steel sheet containing specified amounts of C, Si, Mn, Ti, B, Mo, V, and Nb, and suppressing P, S, and O to a low level, and having a tempered upper bainite as the metal structure. Disclosed is a hot-rolled steel sheet for electric resistance welded pipe in which the short diameter of the old γ-shaped particles is 25 μm or less.
In Patent Document 2, in an electric resistance welded steel pipe containing C, Si, Mn, Nb, V, Ti, Mo, Ni, and Al in a specified amount and setting the total value of the Mo amount and the Ni amount in a specified range, 10 area% The following discloses a high-strength electric resistance welded steel pipe comprising polygonal ferrite and the balance bainitic ferrite and having tensile strength, yield strength, and Charpy absorbed energy in specific ranges.

特開2015−168864号公報JP, 2005-168864, A 特許第6048621号公報Japanese Patent No. 6048621

特許文献1、2に記載の電縫鋼管はともに、0℃でのシャルピー吸収エネルギーが22J以上であることを特徴とするものであり、特許文献1では0℃でのシャルピー吸収エネルギー46〜76Jの実施例が開示されており、特許文献2では0℃でのシャルピー吸収エネルギー75〜170Jの実施例が開示されている。しかしながら、前述したように近年はさらなる高靱性化、具体的には−20℃でのシャルピー吸収エネルギー100J以上が求められており、特許文献1,2に記載の電縫鋼管ではこの要求を満足することができない。   Both of the electric resistance welded steel pipes described in Patent Documents 1 and 2 are characterized in that the Charpy absorbed energy at 0 ° C. is 22 J or more, and in Patent Document 1, the Charpy absorbed energy at 0 ° C. is 46 to 76 J. Examples are disclosed, and Patent Document 2 discloses an example of Charpy absorbed energy of 75 to 170 J at 0 ° C. However, as described above, in recent years, further toughness has been required, specifically, Charpy absorbed energy of 100 J or more at −20 ° C., and the electric resistance welded steel pipes described in Patent Documents 1 and 2 satisfy this requirement. I can't.

本発明は、前記の課題を解決するためになされた発明であって、母材部、電縫溶接部ともに655MPa以上の降伏強度を有し、−20℃におけるシャルピー靭性値が100J以上である油井用電縫鋼管およびその製造方法を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and has an yield strength of 655 MPa or more in both the base metal portion and the electric resistance welded portion, and an oil well having a Charpy toughness value of 100 J or more at -20 ° C. An object of the present invention is to provide an electric resistance welded steel pipe and a manufacturing method thereof.

本発明者らは、上述したような課題を解決すべく、鋭意研究を重ねた結果、以下に示す知見を得ることができた。
鋼材の強度・靱性特性は、その金属組織と密接に関連しており、結晶粒径の微細化は強度と靱性を共に向上させる数少ない方法である。一方、熱延鋼板を素材とし、製造される電縫鋼管においては、一般的には析出強化が主たる強化メカニズムであるが、析出強化は靱性を劣化させることが知られている。電縫鋼管の母材部は、熱延鋼板の製造において低温圧延などの実施により結晶粒を微細化することが可能であり、析出強化鋼であっても比較的靱性の高い鋼管は既に製造可能である。
The inventors of the present invention have made extensive studies in order to solve the above-mentioned problems, and as a result, have obtained the following findings.
The strength and toughness characteristics of steel materials are closely related to their metallographic structure, and refining the crystal grain size is one of the few ways to improve both strength and toughness. On the other hand, in an electric resistance welded steel pipe produced from a hot-rolled steel sheet, precipitation strengthening is generally the main strengthening mechanism, but it is known that precipitation strengthening deteriorates toughness. In the base metal part of ERW steel pipe, crystal grains can be refined by performing low temperature rolling etc. in the production of hot rolled steel plate, and even with precipitation strengthened steel, steel pipe with relatively high toughness can already be produced. Is.

一方、電縫溶接部に関しては、電縫溶接後の熱処理により金属組織が形成されるため、低温圧延などの組織微細化技術が使用できない。電縫溶接後の熱処理は、再加熱(オーステナイト化)後、単純な水冷で金属組織を制御しており、金属組織の制御範囲も熱延プロセスに比べて小さい。このようなプロセスの制約があるなかで、本発明者らは、母材・電縫溶接部の組織因子と強度・靱性特性の関係を鋭意検討した。   On the other hand, with respect to the electric resistance welded portion, a metal microstructure is formed by the heat treatment after the electric resistance welding, and therefore a microstructure refinement technique such as low temperature rolling cannot be used. In the heat treatment after electric resistance welding, the metal structure is controlled by simple water cooling after reheating (austenizing), and the control range of the metal structure is smaller than that in the hot rolling process. In view of such process restrictions, the present inventors diligently studied the relationship between the structure factor of the base metal / electric resistance welded portion and the strength / toughness characteristics.

その結果、母材部・電縫溶接部ともに、高強度化と高靱化の両立のために実施可能かつ最適な金属組織を明確化するに至った。具体的には、母材部では、析出強化と、熱延条件と熱延後の冷却条件の制御による組織分率の最適化が重要であり、電縫溶接部では、焼入れ性に効くBを含有させた上で低温で変態させることで、析出物の析出を抑制し、ベイナイト・マルテンサイト組織が主体の金属組織を形成することが重要であるとの知見を得た。これは電縫溶接部では強化に寄与する析出物をできるだけ減らすことで、き裂が発生しにくくなるためである。   As a result, we have clarified the feasible and optimal metallographic structure for both strength and toughness of both the base metal part and the electric resistance welded part. Specifically, in the base metal part, it is important to optimize precipitation strengthening and control of hot rolling conditions and cooling conditions after hot rolling to optimize the microstructure fraction. It was found that it is important to suppress the precipitation of precipitates and form a metal structure mainly composed of bainite-martensite structure by containing and then transforming at low temperature. This is because cracks are less likely to occur in the electric resistance welded portion by reducing the precipitates that contribute to strengthening as much as possible.

本発明者らは、これら知見に基づく技術的思想により、母材部、電縫溶接部ともに655MPaクラスの降伏強度を有するとともに、−20℃のシャルピー試験における吸収エネルギーを100J以上とした靭性を満足する電縫鋼管を製造可能とする技術を開発し、本発明に到ったものである。
前記課題を解決することを目的とした本発明の要旨は、以下のとおりである。
「1」本形態の油井用電縫鋼管は、質量%で、C:0.020〜0.100%、Mn:0.60〜2.00%、Ti:0.015〜0.150%、Nb:0.015〜0.100%、N:0.0010〜0.0200%、Si:0.010〜0.500%、Al:0.001〜0.100%、B:0.0010〜0.0025%を含み、P:0.030%以下、S:0.010%以下に制限し、残部がFe及び不可避的不純物からなる成分組成を有し、Mn%/Si%比が2.0以上であり、式(1)で示されるSK値が0.10以上、かつ式(2)で示されるBH値が1.3〜2.7の範囲であり、母材の金属組織が面積率で80%以上のベイナイトとマルテンサイトの一方または両方から構成される組織と、面積率で5%以上のフェライト組織を含み、電縫溶接部の金属組織が主としてベイナイトとマルテンサイトの混合組織であり、母材の降伏強度が655MPa以上758MPa以下、母材の引張強度が724MPa以上であり、母材および電縫溶接部の−20℃のシャルピー吸収エネルギーが100J以上であり、電縫溶接部の硬度が240Hv以上であることを特徴とする。
SK=Nb%+Ti%+(V%+Mo%)/5 …式(1)
BH=2.7C%+0.4Si%+Mn%+0.45(Ni%+Cu%)+0.8Cr%+2Mo%…式(2)
Based on the technical idea based on these findings, the present inventors have a yield strength of 655 MPa class for both the base metal part and the electric resistance welded part, and satisfy the toughness in which the absorbed energy in the Charpy test at −20 ° C. is 100 J or more. The present invention has been accomplished by developing a technology that enables manufacturing of an electric resistance welded steel pipe.
The gist of the present invention aiming to solve the above problems is as follows.
[1] The electric resistance welded steel pipe for oil wells of the present embodiment is, in mass%, C: 0.020 to 0.100%, Mn: 0.60 to 2.00%, Ti: 0.015 to 0.150%, Nb: 0.015 to 0.100%, N: 0.0010 to 0.0200%, Si: 0.010 to 0.500%, Al: 0.001 to 0.100%, B: 0.0010. It contains 0.0025% and is limited to P: 0.030% or less and S: 0.010% or less, the balance being Fe and unavoidable impurities, and the Mn% / Si% ratio is 2. 0 or more, the SK value represented by the formula (1) is 0.10 or more, and the BH value represented by the formula (2) is in the range of 1.3 to 2.7, and the metal structure of the base metal has an area. Structure composed of bainite and / or martensite of 80% or more in area ratio, and ferrai of 5% or more in area ratio Including the structure, the metal structure of the electric resistance welded part is mainly a mixed structure of bainite and martensite, the yield strength of the base material is 655 MPa or more and 758 MPa or less, the tensile strength of the base material is 724 MPa or more, and the base material and the electric resistance welding The Charpy absorbed energy at -20 ° C of the welded portion is 100 J or more, and the hardness of the electric resistance welded portion is 240 Hv or more.
SK = Nb% + Ti% + (V% + Mo%) / 5 (Equation 1)
BH = 2.7C% + 0.4Si% + Mn% + 0.45 (Ni% + Cu%) + 0.8Cr% + 2Mo% ... Formula (2)

「2」本形態の油井用電縫鋼管において、板厚が10mm以上、25mm以下であることが好ましい。 [2] In the oil-well electric resistance welded steel pipe of the present embodiment, the plate thickness is preferably 10 mm or more and 25 mm or less.

「3」本形態の油井用電縫鋼管において、質量%で、Mo:0.01〜0.50%、Cu:0.05〜0.50%、Ni:0.05〜0.50%、Cr:0.05〜0.50%、V:0.01〜0.10%、Ca:0.0001〜0.0100%、REM:0.0001〜0.0100%の1種又は2種以上を含有しても良い。 "3" In the electric resistance welded steel pipe for oil wells of the present embodiment, in mass%, Mo: 0.01 to 0.50%, Cu: 0.05 to 0.50%, Ni: 0.05 to 0.50%, One or more of Cr: 0.05 to 0.50%, V: 0.01 to 0.10%, Ca: 0.0001 to 0.0100%, REM: 0.0001 to 0.0100%. May be included.

「4」本形態に係る油井用電縫鋼管の製造方法は、質量%で、C :0.020〜0.100%、Mn:0.60〜2.00%、Ti:0.015〜0.150%、Nb:0.015〜0.100%、N:0.0010〜0.0200%、Si:0.010〜0.500%、Al:0.001〜0.100%、B:0.0010〜0.0025%を含み,P:0.030%以下、S:0.010%以下に制限し,残部がFe及び不可避的不純物からなる成分組成を有し、Mn%/Si%比が2.0以上であり、式(1)で示されるSK値が0.10以上、かつ式(2)で示されるBH値が1.3〜2.7の範囲のスラブを、950℃以下での累積圧下比が2.0以上、圧延終了温度が850℃以下の条件で仕上圧延した後、35℃/s以上の平均冷却速度で450〜650℃まで冷却し巻き取った熱延鋼板を造管、電縫溶接した後、電縫溶接部を900℃から1050℃の間に加熱し、その後、平均冷却速度が15℃/s以上で冷却し、500℃から室温の範囲で冷却を停止することを特徴とする。
SK=Nb%+Ti%+(V%+Mo%)/5…式(1)
BH=2.7C%+0.4Si%+Mn%+0.45(Ni%+Cu%)+0.8Cr%+2Mo%…式(2)
"4" The manufacturing method of the electric resistance welded steel pipe for oil wells according to the present embodiment is, in mass%, C: 0.020 to 0.100%, Mn: 0.60 to 2.00%, Ti: 0.015 to 0. 150%, Nb: 0.015 to 0.100%, N: 0.0010 to 0.0200%, Si: 0.010 to 0.500%, Al: 0.001 to 0.100%, B: Including 0.0010 to 0.0025%, P: 0.030% or less, S: 0.010% or less, with the balance being Fe and unavoidable impurities, the composition is Mn% / Si%. A slab having a ratio of 2.0 or more, an SK value represented by the formula (1) of 0.10 or more, and a BH value represented by the formula (2) of 1.3 to 2.7 is 950 ° C. After finishing rolling under the conditions that the cumulative rolling ratio below is 2.0 or more and the rolling end temperature is 850 ° C. or less, a flatness of 35 ° C./s or more is obtained. After hot-rolling a hot-rolled steel sheet cooled to 450 to 650 ° C. at a uniform cooling rate and rolled up, pipe-welded and electric-welded, the electric-welded welded portion is heated between 900 ° C. and 1050 ° C., and then the average cooling rate is 15 It is characterized in that the cooling is carried out at a temperature of 500 ° C./s or more and the cooling is stopped in the range of 500 ° C. to room temperature.
SK = Nb% + Ti% + (V% + Mo%) / 5 ... Formula (1)
BH = 2.7C% + 0.4Si% + Mn% + 0.45 (Ni% + Cu%) + 0.8Cr% + 2Mo% ... Formula (2)

「5」本形態に係る油井用電縫鋼管の製造方法において、質量%で、Mo:0.01〜0.50%、Cu:0.05〜1.00%、Ni:0.05〜1.00%、Cr:0.05〜1.00%、V:0.01〜0.10%、Ca:0.0001〜0.0100%、REM:0.0001〜0.0100%の1種又は2種以上を含有することができる。 [5] In the method for manufacturing an electric resistance welded steel pipe for oil wells according to this embodiment, Mo: 0.01 to 0.50%, Cu: 0.05 to 1.00%, Ni: 0.05 to 1 in mass%. 0.000%, Cr: 0.05 to 1.00%, V: 0.01 to 0.10%, Ca: 0.0001 to 0.0100%, REM: 0.0001 to 0.0100%, one kind Alternatively, two or more kinds can be contained.

本発明によれば、母材部と電縫溶接部の靭性と圧潰特性を向上させることが可能であり、油井用電縫鋼管及びその製造方法を提供することができ、産業上の貢献が極めて顕著な効果を奏する。   According to the present invention, it is possible to improve the toughness and crushing property of the base material portion and the electric resistance welded portion, and it is possible to provide the electric resistance welded steel pipe for oil wells and the manufacturing method thereof, which greatly contributes to industry. Has a remarkable effect.

SK値と降伏強度の関係を示すグラフ。The graph which shows the relationship between SK value and yield strength. BH値とビッカース硬度の関係を示すグラフ。The graph which shows the relationship between BH value and Vickers hardness.

以下、本発明に係る油井用電縫鋼管の一実施形態について説明する。
まず、本発明に係る一実施形態の油井用電縫鋼管に好適な鋼の成分組成について述べる。なお、成分組成における「%」は、特に断りがない限り質量%を意味する。また、成分組成における数値範囲において、「〜」を用いて表される数値範囲は、特に指定しない限り、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。よって、例えば、0.020〜0.10%は0.020%以上、0.10%以下の範囲を意味する。
Hereinafter, an embodiment of an electric resistance welded steel pipe for oil wells according to the present invention will be described.
First, the component composition of steel suitable for the electric resistance welded steel pipe for oil wells according to one embodiment of the present invention will be described. In addition, "%" in a component composition means the mass% unless there is particular notice. In addition, in the numerical range in the component composition, the numerical range represented by "to" means a range including the numerical values described before and after "to" as the lower limit value and the upper limit value, unless otherwise specified. Therefore, for example, 0.020 to 0.10% means a range of 0.020% or more and 0.10% or less.

本実施形態に係る油井用電縫鋼管は、以下に説明するように、質量%で、C:0.020〜0.100%、Mn:0.60〜2.00%、Ti:0.015〜0.150%、Nb:0.015〜0.100%、N:0.0010〜0.0200%、Si:0.010〜0.500%、Al:0.001〜0.100%、B:0.0010〜0.0025%を含み、P:0.030%以下、S:0.010%以下に制限し、残部がFe及び不可避的不純物からなる成分組成を有する。   The electric resistance welded steel pipe for oil wells according to the present embodiment is, as described below, in mass%, C: 0.020 to 0.100%, Mn: 0.60 to 2.00%, Ti: 0.015. .About.0.150%, Nb: 0.015 to 0.100%, N: 0.0010 to 0.0200%, Si: 0.010 to 0.500%, Al: 0.001 to 0.100%, B: 0.0010 to 0.0025% is included, P: 0.030% or less and S: 0.010% or less, with the balance being Fe and inevitable impurities.

また、前述の組成の油井用電縫鋼管は、Mn%/Si%比が2.0以上であり、後記する式(1)で示されるSK値が0.10以上、かつ後記する式(2)で示されるBH値が1.3〜2.7の範囲である。   In addition, the electric resistance welded steel pipe for oil wells having the above-described composition has a Mn% / Si% ratio of 2.0 or more, an SK value of 0.10 or more represented by a formula (1) described later, and a formula (2) described below. The BH value indicated by) is in the range of 1.3 to 2.7.

SK=Nb%+Ti%+(V%+Mo%)/5 …式(1)
BH=2.7C%+0.4Si%+Mn%+0.45(Ni%+Cu%)+0.8Cr%+2Mo%…式(2)
式(1)と式(2)において、C%、Si%、Mn%、Ni%、Cu%、Cr%、Mo%、Nb%、Ti%、V%は、それぞれ、C、Si、Mn、Ni、Cu、Cr、Mo、Nb、Ti、Vの含有量(質量%)である。Mo、Cu、Ni、Cr、Vは任意の含有元素であり、意図的に含有しない場合は、前記式(1)では0として計算する。また、成分組成について下限の規定がないものについては、不純物レベルまで含むことを示す。
以下、本発明の鋼材の成分組成を限定した理由について説明する。
SK = Nb% + Ti% + (V% + Mo%) / 5 (Equation 1)
BH = 2.7C% + 0.4Si% + Mn% + 0.45 (Ni% + Cu%) + 0.8Cr% + 2Mo% ... Formula (2)
In the formulas (1) and (2), C%, Si%, Mn%, Ni%, Cu%, Cr%, Mo%, Nb%, Ti%, and V% are C, Si, Mn, and It is the content (mass%) of Ni, Cu, Cr, Mo, Nb, Ti, and V. Mo, Cu, Ni, Cr, and V are arbitrary contained elements, and when they are not intentionally contained, they are calculated as 0 in the formula (1). In addition, if the compositional composition does not have a lower limit, it indicates that the content is up to the impurity level.
Hereinafter, the reasons for limiting the component composition of the steel material of the present invention will be described.

「C:炭素(0.020〜0.100%)」
Cは、鋼の焼き入れ性の向上および強度の発現に寄与する重要な元素であり、C含有量を0.020%以上とする。これより低い炭素量では、母材の強度が低下する。一方、C含有量が0.100%を超えると、鋼の強度が超過するため、C含有量の上限を0.100%とする。
「Mn:マンガン(0.60〜2.00%)」
Mnは、鋼の焼入れ性を高める元素であり、Sの無害化のためにも必須であり、Mn含有量を0.60%以上とする。Mnを過剰に含有すると、板厚の中央部に粗大なMnSが生成して、母材鋼板および電縫溶接部靭性を損なう場合がある。そのため、Mn含有量の上限を2.00%とする。
"C: carbon (0.020 to 0.100%)"
C is an important element that contributes to the improvement of the hardenability of steel and the development of strength, and the C content is 0.020% or more. If the carbon content is lower than this range, the strength of the base material decreases. On the other hand, if the C content exceeds 0.100%, the strength of the steel exceeds, so the upper limit of the C content is made 0.100%.
"Mn: manganese (0.60 to 2.00%)"
Mn is an element that enhances the hardenability of steel and is essential for making S harmless, and the Mn content is set to 0.60% or more. When Mn is excessively contained, coarse MnS is generated in the central portion of the plate thickness, which may impair the toughness of the base steel plate and the electric resistance welded portion. Therefore, the upper limit of the Mn content is 2.00%.

「Ti:チタン(0.015〜0.150%)」
Tiは、炭窒化物を形成し、母材鋼板の強度を向上させる元素であるとともに、結晶粒の微細化にも寄与する元素であり、Ti含有量を0.015%以上とする。しかし、Ti含有量が0.150%を超えると、粗大な炭窒化物を生成し、母材鋼板および電縫溶接部靭性の低下を招くため、Ti含有量の上限を0.150%とする。
"Ti: Titanium (0.015 to 0.150%)"
Ti is an element that forms carbonitrides and improves the strength of the base steel sheet, and also contributes to the refinement of crystal grains. The Ti content is 0.015% or more. However, if the Ti content exceeds 0.150%, coarse carbonitrides are generated, and the toughness of the base steel sheet and the electric resistance welded portion is deteriorated. Therefore, the upper limit of the Ti content is 0.150%. .

「Nb:ニオブ(0.015〜0.100%)」
Nbは母材鋼板の靭性を高めたり、母材鋼板の強度向上にも寄与するために含有されている。未再結晶圧延による靭性向上のため、Nb含有量を0.015%以上とする。Nb含有量が0.100%を超えると、粗大炭化物により靭性が劣化するため、Nb含有量の上限を0.100%とする。
「N:窒素(0.0010〜0.0200%)」
Nは、鋼中に合金窒化物を形成することで結晶粒の粗大化を抑制し、母材鋼板の靭性を向上させる。その効果を得るため、N含有量を0.0010%以上とする。一方、N含有量が0.0200%を超えると、合金窒化物の生成量が増加し、母材鋼板および電縫溶接部の靭性が劣化するため、N含有量の上限を0.0200%とする。
"Nb: niobium (0.015 to 0.100%)"
Nb is contained in order to enhance the toughness of the base steel sheet and to contribute to the improvement of the strength of the base steel sheet. The Nb content is 0.015% or more in order to improve the toughness by the non-recrystallization rolling. If the Nb content exceeds 0.100%, the coarse carbide deteriorates the toughness, so the upper limit of the Nb content is set to 0.100%.
"N: Nitrogen (0.0010 to 0.0200%)"
N suppresses the coarsening of crystal grains by forming an alloy nitride in the steel and improves the toughness of the base steel sheet. In order to obtain the effect, the N content is set to 0.0010% or more. On the other hand, if the N content exceeds 0.0200%, the amount of alloy nitride produced increases, and the toughness of the base steel sheet and the electric resistance welded portion deteriorates. Therefore, the upper limit of the N content is 0.0200%. To do.

「Si:ケイ素(0.010〜0.500%)」
Siは、鋼の脱酸剤として使用される元素であり、母材鋼板と電縫溶接部に粗大な酸化物が生成することを抑制し、靭性を向上させる効果がある。その効果を得るため、Si含有量を0.010%以上とする。一方、Si含有量が0.500%を超えると電縫溶接部に介在物が生成し、シャルピー吸収エネルギーが低下し、靭性が低下する可能性があることから、Si含有量の上限を0.500%とする。
「Al:アルミニウム(0.001〜0.100%)」
Alは、Si同様、鋼の脱酸材として含有される。フリー酸素起因の割れ防止のため、Al含有量を0.001%以上とする。一方、Al含有量が0.100%を越えると、電縫溶接時のAl系酸化物の生成に伴い、電縫溶接部靭性が低下するため、Al含有量の上限を0.100%とする。
"Si: Silicon (0.010 to 0.500%)"
Si is an element used as a deoxidizing agent for steel, and has the effect of suppressing the formation of coarse oxides in the base steel sheet and the electric resistance welded portion and improving the toughness. In order to obtain the effect, the Si content is set to 0.010% or more. On the other hand, if the Si content exceeds 0.500%, inclusions may be generated in the electric resistance welded portion, the Charpy absorbed energy may decrease, and the toughness may decrease, so the upper limit of the Si content is set to 0. 500%.
"Al: Aluminum (0.001 to 0.100%)"
Al, like Si, is contained as a deoxidizing material for steel. To prevent cracking due to free oxygen, the Al content is set to 0.001% or more. On the other hand, if the Al content exceeds 0.100%, the toughness of the electric resistance welded portion is reduced due to the formation of Al-based oxide during electric resistance welding, so the upper limit of the Al content is set to 0.100%. .

「B:ホウ素(0.0010〜0.0025%)」
Bは、微量で鋼の焼入れ性を高める元素である。その効果を得るため、B含有量を0.0010%以上とする。一方、B含有量が0.0025%を超えるとB析出物が生成することで焼き入れ性向上の効果が低下するので、B含有量の上限を0.0025%とする。
"B: Boron (0.0010 to 0.0025%)"
B is an element that enhances the hardenability of steel in a small amount. In order to obtain the effect, the B content is set to 0.0010% or more. On the other hand, if the B content exceeds 0.0025%, the effect of improving the hardenability is reduced due to the formation of B precipitates, so the upper limit of the B content is made 0.0025%.

「P:リン(0.030%以下)」
Pは、鋼中に的不純物として存在する元素で、P含有量が0.030%を超えると、粒界に偏析することで靭性を損なうため、P含有量の上限を0.030%とする。
「S:硫黄(0.010%以下)」
Sは、鋼中に不純物として存在する元素であり、過剰に含有されると鋼の靱性を劣化させるために、S含有量の上限を0.010%とする。
"P: Phosphorus (0.030% or less)"
P is an element existing as a target impurity in steel, and if the P content exceeds 0.030%, segregation at grain boundaries impairs toughness, so the upper limit of P content is made 0.030%. .
"S: Sulfur (0.010% or less)"
S is an element existing as an impurity in the steel, and if contained in excess, it deteriorates the toughness of the steel, so the upper limit of the S content is made 0.010%.

本実施形態では、上記の元素に加えて、前記母材鋼板に、更に、質量%で、Mo:0.01〜0.50%、Cu:0.05〜0.50%、Ni:0.05〜0.50%、Cr:0.05〜0.50%、V:0.01〜0.10%、Ca:0.0001〜0.0100%、REM:0.0001〜0.0100%から選ばれる1種又は2種以上の元素を含有してもよい。   In the present embodiment, in addition to the above elements, the base steel sheet is further provided with Mo: 0.01 to 0.50%, Cu: 0.05 to 0.50%, Ni: 0. 05-0.50%, Cr: 0.05-0.50%, V: 0.01-0.10%, Ca: 0.0001-0.0100%, REM: 0.0001-0.0100% One or more elements selected from the above may be contained.

「Mo:モリブデン(0.01〜0.50%)」
Moを含有する理由は、鋼材の焼入れ性を向上させるとともに析出強化により高強度を得るためである。その効果を得るためには、Mo含有量を0.01%以上とする。Moを多量に含有するとMo炭窒化物の生成により靭性を低下させる可能性があるため、Mo含有量の上限を0.50%とした。
「Cu:銅(0.05〜0.50%)」
Cuは、母材の強度向上に有効な元素であり、その効果を得るためには、Cu含有量を0.05%以上とする。しかし、Cuを多量に含有し過ぎると、微細なCu粒子を生成し、靭性を著しく劣化させるおそれがある。そのため、Cu含有量の上限を0.50%とする。
"Mo: molybdenum (0.01 to 0.50%)"
The reason for containing Mo is to improve the hardenability of the steel material and to obtain high strength by precipitation strengthening. In order to obtain the effect, the Mo content is 0.01% or more. If a large amount of Mo is contained, the toughness may be reduced due to the formation of Mo carbonitrides, so the upper limit of the Mo content was made 0.50%.
"Cu: Copper (0.05 to 0.50%)"
Cu is an element effective in improving the strength of the base material, and in order to obtain the effect, the Cu content is set to 0.05% or more. However, if too much Cu is contained, fine Cu particles may be generated and the toughness may be significantly deteriorated. Therefore, the upper limit of the Cu content is 0.50%.

「Ni:ニッケル(0.05〜0.50%)」
Niは、鋼の強度及び靭性の向上に寄与する元素である。それらの効果を得るためには、Ni含有量を0.05%以上とする。しかし、Niを多量に含有すると、強度が高くなりすぎるため、Ni含有量の上限を0.50%とする。
「Cr:クロム(0.05〜0.50%)」
Crは、鋼において固溶強化元素であり、その効果を得るためには、Cr含有量を0.05%以上とする。一方で、Crは溶接性を低下させる元素でもあり、多量に含有すると電縫溶接部に生成したCr系介在物により電縫溶接部の靭性が低下する。そのため、Cr含有量の上限を0.50%とする。
"Ni: nickel (0.05 to 0.50%)"
Ni is an element that contributes to improving the strength and toughness of steel. In order to obtain those effects, the Ni content is set to 0.05% or more. However, if a large amount of Ni is contained, the strength becomes too high, so the upper limit of the Ni content is made 0.50%.
"Cr: Chromium (0.05-0.50%)"
Cr is a solid solution strengthening element in steel, and in order to obtain its effect, the Cr content is set to 0.05% or more. On the other hand, Cr is also an element that deteriorates the weldability, and when it is contained in a large amount, the toughness of the electric resistance welded part is reduced by the Cr-based inclusions generated in the electric resistance welded part. Therefore, the upper limit of the Cr content is 0.50%.

「V:バナジウム(0.01〜0.10%)」
VはNbとほぼ同様の効果を有し、効果を得るためには、V含有量を0.01%以上とする。Vは電縫溶接部の軟化を抑制する効果も有する。ただし、Vを多量に含有するとV炭窒化物の析出により、靭性が低下する。そのため、V含有量の上限を0.10%とする。
「Ca:カルシウム(0.0001〜0.0100%)」
Caは、硫化物系介在物の形態を制御し、鋼の低温靭性を向上させる元素である。その効果を得るため、Ca含有量を0.0001%以上とする。Ca含有量が0.0100%を超えると、Ca系の粗大な介在物やクラスターが生成し、靭性に悪影響を及ぼすおそれがある。そのため、Ca含有量の上限を0.0100%とする。
"V: Vanadium (0.01-0.10%)"
V has almost the same effect as Nb, and in order to obtain the effect, the V content is set to 0.01% or more. V also has an effect of suppressing softening of the electric resistance welded portion. However, if a large amount of V is contained, the toughness decreases due to the precipitation of V carbonitride. Therefore, the upper limit of the V content is 0.10%.
"Ca: Calcium (0.0001-0.0100%)"
Ca is an element that controls the morphology of sulfide inclusions and improves the low temperature toughness of steel. In order to obtain the effect, the Ca content is set to 0.0001% or more. If the Ca content exceeds 0.0100%, coarse Ca-based inclusions or clusters are generated, which may adversely affect the toughness. Therefore, the upper limit of the Ca content is 0.0100%.

「REM:希土類元素(0.0001〜0.0100%)」
REMは、脱酸剤及び脱硫剤として含有される元素であり、REM含有量を0.0001%以上とする。一方、0.0100%を超えてREMを含有すると、粗大な酸化物を生じて母材鋼板の靱性を低下させることがある。そのため、REM含有量の上限を0.0100%とする。
ここで、REMは、Sc、Yおよびランタノイドの合計17元素を指し、前記REMの含有量はこれらの元素の合計含有量を意味する。REMは、例えばこれらの元素を複数混在させたミッシュメタルを用いることができる。
"REM: rare earth element (0.0001 to 0.0100%)"
REM is an element contained as a deoxidizing agent and a desulfurizing agent, and the REM content is 0.0001% or more. On the other hand, if REM is contained in excess of 0.0100%, coarse oxides may be generated and the toughness of the base steel sheet may be reduced. Therefore, the upper limit of the REM content is 0.0100%.
Here, REM refers to a total of 17 elements of Sc, Y and lanthanoid, and the content of the REM means the total content of these elements. For the REM, for example, a misch metal in which a plurality of these elements are mixed can be used.

上記元素以外の残部は、Fe及び不可避的不純物からなる。上記元素以外に、本実施形態の作用効果を害さない元素を微量に含有してもよい。
また、本実施形態においては、先に記載した式(1)で示されるSK値を0.10以上とする。SK値は析出強化量と関連するパラメータであり、高いほど析出強化量が大きいことを示す。
本実施形態において、熱延後の鋼板の冷却停止温度は450〜650℃であり、この温度範囲で冷却を停止し巻き取った鋼材においては、析出強化が主たる強化機構である。このことから、本パラメータ(SK値)は、図1に示すように母材部の降伏強度と関係がある。
図1は後述する実施例と比較例の中から、SK値と母材降伏強度の関係について複数の試料から選択して表示したグラフである。
降伏強度を例にとると、SK値が0.10を下回ると降伏強度655MPaを下回るため、SK値は0.10以上とする。尚、SK値は降伏強度に影響するのと同様に、引張強度にも影響する。
The balance other than the above elements is Fe and inevitable impurities. In addition to the above elements, a trace amount of an element that does not impair the action and effect of this embodiment may be contained.
Further, in the present embodiment, the SK value represented by the above-described formula (1) is set to 0.10. The SK value is a parameter related to the precipitation strengthening amount, and the higher the SK value, the larger the precipitation strengthening amount.
In the present embodiment, the cooling stop temperature of the steel sheet after hot rolling is 450 to 650 ° C, and precipitation strengthening is the main strengthening mechanism in the steel material in which cooling is stopped in this temperature range and rolled up. From this, this parameter (SK value) is related to the yield strength of the base material as shown in FIG.
FIG. 1 is a graph showing the relationship between the SK value and the base material yield strength selected from a plurality of samples from the examples and comparative examples described later.
Taking the yield strength as an example, the yield strength falls below 655 MPa when the SK value falls below 0.10. Therefore, the SK value is set to 0.10. The SK value affects the tensile strength as well as the yield strength.

本実施形態において、式(2)で示されるBH値を1.3以上とする。BH値は鋼の焼き入れ性と関係があり、高いほど焼き入れ性が高いことを示す。
本実施形態において、電縫溶接部強度は500℃以下までの急冷により金属組織が形成されるため、実質的に析出物は析出せず、焼き入れ性により強度がほぼ決まることから、本パラメータ(BH値)は図2に示すように電縫溶接部の強度と関連がある。
図2は後述する実施例と比較例の中から、BH値と電縫溶接部のビッカース硬度の関係について複数の試料から選択して表示したグラフである。
BH値を1.3以上とすることで電縫溶接部の硬度が240Hv以上となる。そのため、BH値は、1.3以上とする。BH値が高すぎると焼き入れ性が高すぎることで母材にフェライトが生成せず、靱性が劣化するため、上限を2.7とした。
なお、上述の組成の鋼板において、硬度240Hvであることは、引張試験における降伏強度換算で655MPa相当の硬度であることを示す。本パラメータ(BH値)の(2)式中にBが入っていないが、本パラメータはB(ボロン)含有を前提としており、Bが含有されていない鋼材においては適用不可能である。
In this embodiment, the BH value represented by the equation (2) is set to 1.3 or more. The BH value is related to the hardenability of steel, and the higher the BH value, the higher the hardenability.
In the present embodiment, the strength of the electric resistance welded portion forms a metal structure by rapid cooling to 500 ° C. or less, so that precipitates do not substantially precipitate and the strength is almost determined by the hardenability. The BH value) is related to the strength of the electric resistance welded portion as shown in FIG.
FIG. 2 is a graph showing the relationship between the BH value and the Vickers hardness of the electric resistance welded portion selected from a plurality of samples and displayed from the examples and comparative examples described later.
By setting the BH value to 1.3 or more, the hardness of the electric resistance welded portion becomes 240 Hv or more. Therefore, the BH value is set to 1.3 or more. If the BH value is too high, the hardenability is too high, so that ferrite is not generated in the base material and the toughness deteriorates. Therefore, the upper limit was set to 2.7.
In the steel sheet having the above composition, the hardness of 240 Hv means that the hardness is equivalent to 655 MPa in terms of yield strength in the tensile test. Although B is not included in the expression (2) of this parameter (BH value), this parameter is premised on the inclusion of B (boron), and is not applicable to steel materials not containing B.

本実施形態において、Mn%/Si%比のパラメータが2.0より小さくなると、電縫溶接部の靭性が低下する。これは電縫溶接部に生成するMnSi系の介在物が破壊の起点となるためと思われる。Mn%/Si%比が2.0以上となるとシャルピー吸収エネルギーが高位安定するため、本実施形態の電縫鋼管ではMn%/Si%比を2.0以上とする。   In the present embodiment, when the parameter of the Mn% / Si% ratio becomes smaller than 2.0, the toughness of the electric resistance welded portion deteriorates. It is considered that this is because the MnSi-based inclusions generated in the electric resistance welded portion serve as the starting point of fracture. When the Mn% / Si% ratio is 2.0 or more, the Charpy absorbed energy becomes stable at a high level, so the Mn% / Si% ratio is 2.0 or more in the electric resistance welded steel pipe of the present embodiment.

本実施形態の油井用電縫鋼管の必要な金属組織およびその比率は以下の通りである。
本実施形態の成分範囲では、母材の金属組織は、面積率で80%以上のベイナイトとマルテンサイトの一方または両方から構成される組織と、面積率で5%以上のフェライトが含まれていることで、靱性が向上する。ベイナイトとマルテンサイトの一方または両方から構成される組織の面積率が80%未満では、ベイナイトおよびマルテンサイトへの炭素濃化が顕著になり、またBを含有していることで、硬度が上昇して母材靱性が劣化する。また、フェライトを所定量生成させることは、結晶粒微細化を通して靭性を向上させる効果があり、その効果を得るためフェライトの面積率は5%以上である。フェライトが5%未満では母材靱性が劣化する。
また、電縫溶接部の金属組織は、主としてベイナイトとマルテンサイトの混合組織である。なお、母材部、電縫溶接部ともに不可避的に面積率で3%以下の残留オーステナイトが含まれる場合があるが、鋼材の特性に影響を及ぼすものではない。
The required metallographic structure and the ratio thereof of the electric resistance welded steel pipe for oil wells of the present embodiment are as follows.
In the component range of the present embodiment, the metal structure of the base material includes a structure composed of bainite and / or martensite having an area ratio of 80% or more and ferrite having an area ratio of 5% or more. As a result, toughness is improved. When the area ratio of the structure composed of bainite and / or martensite is less than 80%, carbon concentration in bainite and martensite becomes remarkable, and the addition of B increases hardness. As a result, the toughness of the base material deteriorates. Further, generating a predetermined amount of ferrite has an effect of improving toughness through grain refinement, and in order to obtain the effect, the area ratio of ferrite is 5% or more. If the ferrite content is less than 5%, the toughness of the base material deteriorates.
The metallographic structure of the electric resistance welded portion is mainly a mixed structure of bainite and martensite. It should be noted that both the base material portion and the electric resistance welded portion may inevitably contain residual austenite in an area ratio of 3% or less, but this does not affect the characteristics of the steel material.

これらの金属組織は、後述する熱間圧延プロセスおよび電縫溶接部熱処理を高度に制御することで作りこむことが可能である。なお、金属組織の面積率の測定は、電縫鋼管において、母材については電縫溶接部から管周方向に90°ずれた位置の断面(詳細には、管軸方向に対して垂直な断面)における肉厚中央部において、電縫溶接部については板厚方向と管周方向からなる面の溶接線をナイタールエッチングにより現出させたのち、溶接線から左右500μm離れた位置において、EBSD(Electron Back Scatter Diffraction patterns)法により得られた結晶方位情報をもとに、Grain Average Misorientation 解析(以下GAM解析)により求めることができる。詳細には、該表面を鏡面研磨後、コロイダルシリカによる仕上げ研磨を行った後、Field-Emission 型Scanning Electron Microscope(JEOL社製・7001F)を用い、200μm×300μmの領域について0.3μmステップにてEBSD法で結晶方位解析を行う。   These metal structures can be produced by highly controlling the hot rolling process and the heat treatment of the electric resistance welded portion described later. In addition, the area ratio of the metal structure is measured in the electric resistance welded steel pipe by a cross section at a position deviated from the electric resistance welded portion by 90 ° in the pipe circumferential direction (specifically, a cross section perpendicular to the pipe axis direction). ), The weld line on the surface consisting of the plate thickness direction and the pipe circumferential direction is exposed by nital etching for the electric resistance welded portion, and then EBSD (500 μm left and right from the weld line). It can be determined by grain average misorientation analysis (hereinafter referred to as GAM analysis) based on the crystal orientation information obtained by the Electron Back Scatter Diffraction patterns) method. Specifically, after the surface is mirror-polished, finish polishing with colloidal silica is performed, and then a Field-Emission Scanning Electron Microscope (7001F manufactured by JEOL) is used in a step of 0.3 μm for a region of 200 μm × 300 μm. Crystal orientation analysis is performed by the EBSD method.

その後のGAM解析において、15°の結晶方位差で囲まれる領域を一つの結晶粒と定義し、その中の平均の結晶方位差が1°以下のものをフェライトと判定する。なお、上記の測定を別視野で5視野以上測定し得られた各視野でのフェライトの面積率を相加平均することで得られる値を調査した電縫鋼管のフェライトの面積率とする。
また、EBSD法では、結晶方位情報とともに結晶構造情報も取得可能であり、結晶構造情報からフェライト・ベイナイト・マルテンサイトと残留オーステナイトを分類することが可能である。従い、EBSD測定を行うことで、残留オーステナイトの面積率も測定することが可能である。
ベイナイトとマルテンサイトの一方または両方から構成される組織の面積率は、フェライトと残留オーステナイトの面積率の残部とする。
In the subsequent GAM analysis, a region surrounded by a crystal orientation difference of 15 ° is defined as one crystal grain, and one having an average crystal orientation difference of 1 ° or less is determined as ferrite. The value obtained by arithmetically averaging the area ratio of ferrite in each field obtained by measuring 5 or more fields of view in the above-mentioned measurement is taken as the ferrite area ratio of the electric resistance welded steel pipe.
The EBSD method can also obtain crystal structure information together with crystal orientation information, and can classify ferrite / bainite / martensite and retained austenite from the crystal structure information. Therefore, it is possible to measure the area ratio of retained austenite by performing EBSD measurement.
The area ratio of the structure composed of one or both of bainite and martensite is the balance of the area ratio of ferrite and retained austenite.

次に、本発明における油井用電縫鋼管の製造方法について説明する。
まず、上述の組成に調整した溶鋼から連続鋳造法などにより得た鋳片を、加熱炉に装入し加熱する。本実施形態の鋼は、Ti、Nbの含有量が多いので、鋳片の加熱温度が低いと、未固溶のNb炭化物が生成し靭性が劣化するために、加熱温度は、1100℃以上にすることが好ましい。一方、加熱温度が高すぎると組織が粗大になり靭性が劣化するため,加熱温度は1350℃以下とすることが好ましい。
加熱した鋳片を粗圧延した後、950℃以下での累積圧下比が2.0以上、かつ仕上圧延終了温度が850℃以下の条件で仕上圧延を行う。
これらの条件は、母材の金属組織を微細化し、強度と靱性をともに向上させるために必要であり、特に本実施形態のようにベイナイト・マルテンサイト主体の組織を活用する場合には、特に重要なプロセスである。
Next, a method for manufacturing an electric resistance welded steel pipe for an oil well according to the present invention will be described.
First, a slab obtained by continuous casting from molten steel adjusted to the above composition is charged into a heating furnace and heated. Since the steel of the present embodiment has a large content of Ti and Nb, if the heating temperature of the slab is low, undissolved Nb carbide is generated and the toughness deteriorates. Therefore, the heating temperature is 1100 ° C or higher. Preferably. On the other hand, if the heating temperature is too high, the structure becomes coarse and the toughness deteriorates, so the heating temperature is preferably 1350 ° C. or lower.
After roughly rolling the heated slab, finish rolling is performed under the conditions that the cumulative reduction ratio at 950 ° C or lower is 2.0 or more and the finish rolling end temperature is 850 ° C or lower.
These conditions are necessary for refining the metal structure of the base material and improving both strength and toughness, and particularly important when utilizing a structure mainly composed of bainite / martensite as in the present embodiment. Process.

仕上圧延後、Ar3点以上の温度で加速冷却を開始することが好ましい。これは、仕上圧延後、フェライト変態が開始するAr3点未満まで空冷すると、粗大なポリゴナルフェライトが生成し、強度が低下するなど、靭性が劣化することがあるからである。
Ar3点温度以上で加速冷却を開始し、フェライトの生成を抑制することで所定量のベイナイトとマルテンサイトを含む組織が生成する。
Ar3点は、母材鋼板の成分から、下記式(3)によって求めることができる。
Ar3(℃)=910−310C%−80Mn%−55Ni%−20Cu%−15Cr%−80Mo% …式(3)
式(3)において、C%、Mn%、Ni%、Cu%、Cr%、Mo%は、それぞれ、C、Mn、Ni、Cu、Cr、Moの含有量(質量%)である。Ni、Cu、Cr、Moは任意の含有元素であり、意図的に含有しない場合は、上記式(3)では0として計算する。
After finish rolling, it is preferable to start accelerated cooling at a temperature of 3 points or higher of Ar. This is because after finish rolling, if air-cooled to less than the Ar3 point at which ferrite transformation starts, coarse polygonal ferrite is generated and strength decreases, which may deteriorate toughness.
Accelerated cooling is started at a temperature of the Ar 3 point or higher to suppress the formation of ferrite, whereby a structure containing a predetermined amount of bainite and martensite is generated.
The Ar3 point can be calculated by the following formula (3) from the components of the base steel sheet.
Ar3 (° C) = 910-310C% -80Mn% -55Ni% -20Cu% -15Cr% -80Mo% Formula (3)
In the formula (3), C%, Mn%, Ni%, Cu%, Cr%, and Mo% are contents (mass%) of C, Mn, Ni, Cu, Cr, and Mo, respectively. Ni, Cu, Cr, and Mo are arbitrary contained elements, and when they are not intentionally contained, they are calculated as 0 in the above formula (3).

本実施形態において、主相であるベイナイト・マルテンサイトと副相であるフェライトの面積率を制御することは、強度・靱性をバランスさせるために不可欠である。
鋼材は熱間加工されたオーステナイトから、まずはフェライト変態をおこし、その後ベイナイト変態またはマルテンサイト変態を起こすことで変態を完了させる。鋼の変態挙動は、成分と熱延条件・冷却パターンによって決まり、特に成分・冷却パターンの影響が大きい。
本実施形態における油井用電縫鋼管の成分と冷却速度の範囲は、金属組織の面積率をコントロールするための技術である。35℃/s以上の平均冷却速度で、冷却停止温度450〜650℃まで冷却する。冷却停止温度が650℃を超えると、フェライト面積率が高くなり、残部への炭素濃化が顕著になることで、硬質なマルテンサイトやベイナイトが生成し、靱性が劣化する。冷却停止温度が450℃未満になると、その後の巻き取り工程で析出物が生成せず、強度を満足することができない。冷却停止後10秒以内に巻き取ることが好ましい。
なお、実施形態の鋼板は、板厚10〜25mmの鋼管に対し特に有効である。
In the present embodiment, controlling the area ratio of bainite martensite which is the main phase and ferrite which is the subphase is indispensable for balancing strength and toughness.
Steel material undergoes ferrite transformation from hot-worked austenite, and then bainite transformation or martensite transformation completes the transformation. The transformation behavior of steel is determined by the composition and hot rolling conditions / cooling pattern, and the effect of the composition / cooling pattern is particularly large.
The range of the components and the cooling rate of the electric resistance welded steel pipe for oil wells in the present embodiment is a technique for controlling the area ratio of the metal structure. Cooling is performed at an average cooling rate of 35 ° C./s or more to a cooling stop temperature of 450 to 650 ° C. When the cooling stop temperature exceeds 650 ° C., the area ratio of ferrite becomes high, and the carbon concentration in the balance becomes remarkable, so that hard martensite and bainite are generated and the toughness deteriorates. If the cooling stop temperature is lower than 450 ° C., no precipitate is formed in the subsequent winding step, and the strength cannot be satisfied. It is preferable to wind up within 10 seconds after stopping cooling.
The steel sheet of the embodiment is particularly effective for a steel pipe having a plate thickness of 10 to 25 mm.

上述のように得られた熱延鋼板を連続的にロール成型し、オープンパイプとした後、突合せ部近傍を融点以上に加熱し、スクイズロールで圧接する電縫溶接を行う。電縫溶接の後、電縫溶接部の外表面が900℃から1050℃の範囲になるように加熱し、その後、平均冷却速度が15℃/s以上となるように冷却し、500℃から室温の範囲で冷却を停止することで目的の電縫鋼管を得ることができる。
なお、加熱中の温度測定は、鋼管の外表面から放射温度計にて測定する。これらの条件は、電縫溶接部の強度を確保するとともに、析出元素をできる限り固容状態で残存させることにより靱性を劣化させないために必要なプロセスである。
電縫溶接部の加熱温度が900℃を下回ると、溶接時に生成した粗大な組織が残存するため、靱性が劣化する。また、電縫溶接部の加熱温度が1050℃を超過すると、結晶粒径が粗大化するため、靱性が劣化する。冷却速度は、マルテンサイト・ベイナイトを生成させ、析出物を析出させることなく所望の電縫溶接部硬度を得るために、15℃/s以上とすることが必要である。冷却速度が15℃/s未満になると、電縫溶接部靱性を確保することが困難となる。冷却停止温度は、500℃を超過するとその後の放冷中に析出物が析出し、電縫溶接部靱性を確保することが困難となる。本実施形態において冷却停止温度の下限は特に特性に影響しない。
熱処理・冷却が完了した後,常温まで冷却しサイザーロールにより縮径圧延を行う。縮径圧延の縮径率は0.3%〜5.0%の範囲とすることが好ましい。
The hot-rolled steel sheet obtained as described above is continuously roll-formed into an open pipe, and then the vicinity of the butted portion is heated to a melting point or higher, and electric resistance welding is performed by pressure welding with a squeeze roll. After electric resistance welding, heat the outer surface of the electric resistance welded portion so as to be in the range of 900 ° C to 1050 ° C, then cool it so that the average cooling rate is 15 ° C / s or more, and from 500 ° C to room temperature. By stopping the cooling within the range, the target ERW steel pipe can be obtained.
The temperature during heating is measured from the outer surface of the steel pipe with a radiation thermometer. These conditions are necessary processes to secure the strength of the electric resistance welded portion and to prevent the toughness from deteriorating by allowing the precipitated element to remain in a solid state as much as possible.
If the heating temperature of the electric resistance welded portion is lower than 900 ° C., the coarse structure generated during welding remains, and the toughness deteriorates. Further, if the heating temperature of the electric resistance welded portion exceeds 1050 ° C., the crystal grain size becomes coarse and the toughness deteriorates. The cooling rate needs to be 15 ° C./s or more in order to generate martensite bainite and obtain a desired hardness of the electric resistance welded portion without depositing precipitates. If the cooling rate is less than 15 ° C / s, it becomes difficult to secure the toughness of the electric resistance welded portion. When the cooling stop temperature exceeds 500 ° C., precipitates are deposited during subsequent cooling, making it difficult to secure the toughness of the electric resistance welded portion. In the present embodiment, the lower limit of the cooling stop temperature does not particularly affect the characteristics.
After the heat treatment and cooling is completed, it is cooled to room temperature and reduced-sized by a sizer roll. The diameter reduction ratio of the diameter reduction rolling is preferably in the range of 0.3% to 5.0%.

以上のようにして製造した油井用電縫鋼管の特性を測定する方法は以下の通りである。
鋼管の軸方向(圧延方向)の全厚試験片を引張試験片として電縫鋼管より採取し、引張試験を行い、降伏強度(YS:0.2%オフセット)及び引張強度(TS)を測定する。ここで、全厚試験片及び引張試験片は、電縫鋼管のシーム部から周方向に90°の位置に対応する部分から採取する。
なお、圧潰強度は通常周方向の圧縮試験にて算出した圧縮降伏強度の値が重要であるが、造管後の電縫鋼管において周方向の圧縮降伏強度と軸方向の引張降伏強度は相関を持っているため、軸方向の引張試験にて圧潰強度を評価可能である。
The method of measuring the characteristics of the electric resistance welded steel pipe for oil well manufactured as described above is as follows.
A full-thickness test piece in the axial direction (rolling direction) of the steel pipe is taken as a tensile test piece from the electric resistance welded steel pipe, a tensile test is performed, and the yield strength (YS: 0.2% offset) and the tensile strength (TS) are measured. . Here, the full-thickness test piece and the tensile test piece are sampled from a portion corresponding to a position of 90 ° in the circumferential direction from the seam portion of the electric resistance welded steel pipe.
The value of the compressive yield strength calculated by the compression test in the circumferential direction is important for the crushing strength, but in the electric resistance welded steel pipe after pipe making, the compressive yield strength in the circumferential direction and the tensile yield strength in the axial direction have a correlation. Since it has, it is possible to evaluate the crush strength by a tensile test in the axial direction.

さらに、電縫鋼管の靭性の測定方法は以下の通りである。
靭性については、周方向(圧延垂直方向)のフルサイズVノッチシャルピー試験片を電縫鋼管の電縫溶接部および母材(電縫鋼管のシーム部から周方向に90°の位置に対応する部分)より採取し、Vノッチシャルピー試験を行い、−20℃での吸収エネルギー(CVN値)を測定した。電縫溶接部のシャルピー試験では、板厚方向と周方向から構成される面内の電縫照合部にVノッチを付与した試験片を使用する。
Furthermore, the method of measuring the toughness of the electric resistance welded steel pipe is as follows.
Regarding toughness, a full-size V-notch Charpy test piece in the circumferential direction (vertical rolling direction) was applied to the ERW welded portion of the electric resistance welded steel pipe and the base material (a portion corresponding to a position 90 ° in the circumferential direction from the seam portion of the electric resistance welded steel pipe). ), A V-notch Charpy test was performed, and the absorbed energy (CVN value) at −20 ° C. was measured. In the Charpy test of the electric resistance welded portion, a test piece provided with a V notch at the electric resistance comparison portion in the plane formed by the plate thickness direction and the circumferential direction is used.

電縫溶接部の硬度の測定は、株式会社フューチュアテック社製の硬度試験器(FV−300)を用いる。板厚方向と管周方向からなる面の溶接線をナイタールエッチングにより現出させたのち、溶接線から左右500μm離れた位置の外面1/4t、1/2tおよび内面3/4t位置の6点を荷重1kgで測定し、すべての値の相加平均値を電縫溶接部硬度とする。   The hardness of the electric resistance welded portion is measured using a hardness tester (FV-300) manufactured by Future Tech Co., Ltd. After exposing the weld line of the surface consisting of the plate thickness direction and the pipe circumferential direction by nital etching, 6 points of the outer surface 1 / 4t, 1 / 2t and the inner surface 3 / 4t position 500 μm away from the weld line on the left and right sides. Is measured with a load of 1 kg, and the arithmetic mean value of all values is taken as the hardness of the electric resistance welded portion.

以上説明のように製造された電縫鋼管は、母材の金属組織が面積率で80%以上のベイナイトとマルテンサイトの一方または両方から構成される組織と、面積率で5%以上のフェライト組織を含み、電縫溶接部の金属組織が主としてベイナイトとマルテンサイトの混合組織である。
この電縫鋼管は、母材の降伏強度が655MPa以上758MPa以下、母材の引張強度が724MPa以上であり、母材および電縫溶接部の−20℃のシャルピー吸収エネルギーが100J以上であり、電縫溶接部の硬度が240Hv以上である優れた電縫鋼管である。
The electric resistance welded steel pipe manufactured as described above has a structure in which the metal structure of the base material is composed of one or both of bainite and martensite with an area ratio of 80% or more, and a ferrite structure with an area ratio of 5% or more. And the metal structure of the electric resistance welded part is mainly a mixed structure of bainite and martensite.
This ERW steel pipe has a base material yield strength of 655 MPa or more and 758 MPa or less, a base material tensile strength of 724 MPa or more, and a Charpy absorbed energy at -20 ° C of the base material and the electric resistance welded portion of 100 J or more. It is an excellent electric resistance welded steel pipe having a hardness of 240 Hv or more at the sewn welded portion.

以下に実施例を示す。但し、以下に記載の実施例は具体的な例に沿って説明を行うものであり、本願発明は、以下の実施例で用いた条件に限定されるものではない。
表1に示す組成のNo.1〜No.16の発明例のスラブと表1、表2に示すNo.17〜No.48の比較例のスラブを、連続鋳造により製造し、1200〜1250℃に加熱して粗圧延した後、表3、表4に示す950℃以下の累積圧下比、仕上圧延終了温度の条件で仕上圧延し、厚さ17.5mmの鋼板とした。
熱延後の鋼板に対し、仕上圧延後のROT(ランアウトテーブル)において、表3、表4に示す平均冷却速度にて表3、表4に示す冷却停止温度まで加速冷却して巻き取りを行ない、熱延鋼板を得た。
Examples will be described below. However, the examples described below are described along with specific examples, and the present invention is not limited to the conditions used in the following examples.
The slabs of the invention examples of No. 1 to No. 16 having the composition shown in Table 1 and the slabs of the comparative examples of No. 17 to No. 48 shown in Table 1 and Table 2 were manufactured by continuous casting, and 1200 to 1250 ° C. After heating to rough rolling, the finish rolling was performed under the conditions of a cumulative reduction ratio of 950 ° C. or less and a finish rolling finish temperature shown in Tables 3 and 4 to obtain a steel sheet having a thickness of 17.5 mm.
In the ROT (runout table) after finish rolling, the steel sheet after hot rolling was subjected to accelerated cooling to the cooling stop temperature shown in Tables 3 and 4 at the average cooling rate shown in Tables 3 and 4 and winding. , Hot rolled steel sheet was obtained.

得られた熱延鋼板について、連続的にロール成型し、オープンパイプとした後、突き合わせ部近傍を融点以上に加熱し、スクイズロールで圧接する電縫溶接を行い、電縫鋼管とした。
電縫鋼管の電縫溶接部を表3、表4に示す温度(ERW部加熱温度)に再加熱し、その後、表3、表4に示す平均冷却速度で、表3、表4に示す冷却停止温度まで冷却し、その後冷却を停止し放冷した。常温まで冷却した後、サイザーロールにより縮径圧延を行い、外径406mm、肉厚17.5mmの電縫鋼管を得た。
The hot-rolled steel sheet thus obtained was continuously roll-formed into an open pipe, and then the vicinity of the butted portion was heated to a temperature equal to or higher than the melting point, and electric resistance welding was performed by pressure welding with a squeeze roll to obtain an electric resistance welded steel pipe.
The electric resistance welded portion of the electric resistance welded steel tube is reheated to the temperature (ERW portion heating temperature) shown in Tables 3 and 4, and then cooled at the average cooling rate shown in Tables 3 and 4 After cooling to the stop temperature, the cooling was stopped and the mixture was allowed to cool. After cooling to room temperature, diameter reduction rolling was performed using a sizer roll to obtain an electric resistance welded steel pipe having an outer diameter of 406 mm and a wall thickness of 17.5 mm.

得られた電縫鋼管の母材および電縫溶接部の金属組織を前述した方法で調査した。また、母材の引張試験、母材および電縫溶接部のシャルピー試験、電縫溶接部の硬度測定を前述した方法で実施した。   The base metal of the obtained electric resistance welded steel pipe and the metal structure of the electric resistance welded portion were investigated by the method described above. Further, the tensile test of the base material, the Charpy test of the base material and the electric resistance welded portion, and the hardness measurement of the electric resistance welded portion were carried out by the methods described above.

表3、表4に母材のベイナイトおよびマルテンサイト面積率、母材のフェライト面積率、電縫鋼管の母材降伏強度、母材引張強度、母材シャルピー吸収エネルギー(J)、電縫溶接部硬度(Hv)、電縫溶接部シャルピー吸収エネルギー(J)をまとめて示す。
母材のベイナイトおよびマルテンサイト面積率とは、ベイナイトとマルテンサイトの一方または両方から構成される組織が母材の全組織に対して占有する面積率(%)を示す。
Tables 3 and 4 show the bainite and martensite area ratio of the base material, the ferrite area ratio of the base material, the base material yield strength of the electric resistance welded steel pipe, the base material tensile strength, the base material Charpy absorbed energy (J), and the electric resistance welded portion. The hardness (Hv) and the Charpy absorbed energy (J) of the electric resistance welded portion are collectively shown.
The bainite and martensite area ratio of the base material indicates the area ratio (%) occupied by the structure composed of one or both of bainite and martensite with respect to the entire structure of the base material.

Figure 2020059892
Figure 2020059892

Figure 2020059892
Figure 2020059892

Figure 2020059892
Figure 2020059892

Figure 2020059892
Figure 2020059892

表1、表3に示すように、本発明例のNo.1〜No.16の試料は、油井用として好適な母材の引張降伏強度が655MPa以上758MPa以下、母材の引張強度が724MPa以上であり、母材および電縫溶接部の−20℃のシャルピー吸収エネルギーが100J以上であり、電縫溶接部の硬度が240Hv以上である優れた電縫鋼管であった。   As shown in Table 1 and Table 3, No. 1 of the present invention example. 1 to No. Sample No. 16 has a tensile yield strength of 655 MPa or more and 758 MPa or less of a base material suitable for oil wells, a tensile strength of 724 MPa or more of the base material, and a Charpy absorbed energy of −20 ° C. of the base material and the electric resistance welded portion of 100 J. The above was an excellent electric resistance welded steel tube having a hardness of the electric resistance welded portion of 240 Hv or more.

表1に示す比較例No.1の試料は、C含有量が望ましい範囲の下限を下回ったため、表3に示すように母材降伏強度が望ましい範囲の下限を下回った。
表1に示す比較例No.2の試料は、C含有量が望ましい範囲の上限を超過したため、表3に示すように母材降伏強度が望ましい範囲を超過した。
表1に示す比較例No.3の試料は、Mn含有量が望ましい範囲の下限を下回ったため、S起因の脆化が起こり、表3に示すように母材靭性と電縫溶接部靱性が劣化した。
表1に示す比較例No.4の試料は、Mn含有量が望ましい範囲の上限を上回ったため、MnS起因の脆化が起こり、表3に示すように母材靭性と電縫溶接部靱性が劣化した。
Comparative example No. 1 shown in Table 1. In the sample of No. 1, since the C content was below the lower limit of the desirable range, as shown in Table 3, the base material yield strength was below the lower limit of the desirable range.
Comparative example No. 1 shown in Table 1. In the sample of No. 2, since the C content exceeded the upper limit of the desirable range, the base material yield strength exceeded the desirable range as shown in Table 3.
Comparative example No. 1 shown in Table 1. In the sample of No. 3, since the Mn content was below the lower limit of the desirable range, embrittlement due to S occurred, and as shown in Table 3, the toughness of the base material and the toughness of the electric resistance welded portion deteriorated.
Comparative example No. 1 shown in Table 1. In the sample of No. 4, since the Mn content exceeded the upper limit of the desirable range, embrittlement due to MnS occurred, and as shown in Table 3, the toughness of the base metal and the toughness of the electric resistance welded portion deteriorated.

表1に示す比較例No.5の試料は、Ti含有量が望ましい範囲の下限を下回ったため、結晶粒径が大きくなり、表3に示すように母材靱性が劣化した。
表1に示す比較例No.6の試料は、Ti含有量が望ましい範囲の上限を超過したため、Ti系炭窒化物が多量に生成し、表3に示すように母材靭性と電縫溶接部靱性が劣化した。
表1に示す比較例No.7の試料は、Nb含有量が望ましい範囲の下限を下回ったため、結晶粒径が大きくなり、表3に示すように母材靱性が劣化した。
表1に示す比較例No.8の試料は、Nb含有量が望ましい範囲の上限を超過したため、Nb系炭窒化物が多量に生成し、表3に示すように母材靭性と電縫溶接部靱性が劣化した。
Comparative example No. 1 shown in Table 1. In the sample of No. 5, the Ti content was below the lower limit of the desirable range, so the crystal grain size became large and the toughness of the base material deteriorated as shown in Table 3.
Comparative example No. 1 shown in Table 1. In the sample of No. 6, since the Ti content exceeded the upper limit of the desirable range, a large amount of Ti-based carbonitride was produced, and as shown in Table 3, the toughness of the base metal and the toughness of the electric resistance welded portion were deteriorated.
Comparative example No. 1 shown in Table 1. In the sample of No. 7, the Nb content was below the lower limit of the desirable range, so that the crystal grain size became large and the toughness of the base material deteriorated as shown in Table 3.
Comparative example No. 1 shown in Table 1. In the sample of No. 8, the Nb content exceeded the upper limit of the desirable range, so that a large amount of Nb-based carbonitride was produced, and as shown in Table 3, the toughness of the base metal and the toughness of the electric resistance welded portion were deteriorated.

表1に示す比較例No.9の試料は、N含有量が望ましい範囲の下限を下回ったため、炭窒化物が生成せず、結晶粒径が粗大となり、表3に示すように母材靱性が劣化した。
表1に示す比較例No.10の試料は、N含有量が望ましい範囲の上限を超過したため、合金炭化物の生成が多くなり、表3に示すように母材靭性と電縫溶接部靱性が劣化した。
Comparative example No. 1 shown in Table 1. In the sample of No. 9, the N content was below the lower limit of the desirable range, so carbonitride was not formed, the crystal grain size became coarse, and the base material toughness deteriorated as shown in Table 3.
Comparative example No. 1 shown in Table 1. In the sample of No. 10, the N content exceeded the upper limit of the desirable range, so that the generation of alloy carbide increased, and as shown in Table 3, the toughness of the base metal and the toughness of the electric resistance welded portion deteriorated.

表2に示す比較例No.11の試料は、Si含有量が望ましい範囲の下限を下回ったため、脱酸が不十分となり、表4に示すように母材靭性と電縫溶接部の靱性が劣化した。
表2に示す比較例No.12の試料は、Si含有量が望ましい範囲の上限を超過したため、電縫溶接部に多量のSi酸化物が生成し、表4に示すように電縫溶接部靱性が劣化した。
表2に示す比較例No.13の試料は、Al含有量が望ましい範囲の下限を下回ったため脱酸が不十分となり、表4に示すように母材靭性と電縫溶接部の靱性が劣化した。
表2に示す比較例No.14の試料は、Al含有量が望ましい範囲の上限を超過したため、電縫溶接部に多量のSi酸化物が生成し、表4に示すように電縫溶接部靱性が劣化した。
Comparative example No. 3 shown in Table 2. In the sample of No. 11, the Si content was below the lower limit of the desirable range, so deoxidation was insufficient, and as shown in Table 4, the toughness of the base metal and the toughness of the electric resistance welded portion deteriorated.
Comparative example No. 3 shown in Table 2. In sample No. 12, the Si content exceeded the upper limit of the desirable range, so a large amount of Si oxide was generated in the electric resistance welded portion, and as shown in Table 4, the toughness of the electric resistance welded portion was deteriorated.
Comparative example No. 3 shown in Table 2. In the sample of No. 13, the Al content was below the lower limit of the desirable range, so deoxidation became insufficient, and as shown in Table 4, the toughness of the base metal and the toughness of the electric resistance welded portion deteriorated.
Comparative example No. 3 shown in Table 2. In the sample of No. 14, since the Al content exceeded the upper limit of the desirable range, a large amount of Si oxide was generated in the electric resistance welded portion, and as shown in Table 4, the toughness of the electric resistance welded portion was deteriorated.

表2に示す比較例No.15の試料は、B含有量が望ましい範囲の下限を下回ったため、焼き入れ性が不足し、表4に示すように電縫溶接部の硬度が低下した。
表2に示す比較例No.16の試料は、 B含有量が望ましい範囲の上限を超過したため、B析出物が生成したことで、焼き入れ性が低下し、表4に示すように電縫溶接部硬度が低下した。
表2に示す比較例No.17の試料は、P含有量が望ましい範囲の上限を上回ったため、粒界脆化が起こり、表4に示すように母材靭性と電縫溶接部靱性ともに劣化した。
表2に示す比較例No.18の試料は、S含有量が望ましい範囲の上限を上回ったため、粗大な介在物を生成し、表4に示すように母材靭性と電縫溶接部靱性が劣化した。
Comparative example No. 3 shown in Table 2. In the sample of No. 15, the B content was below the lower limit of the desirable range, so the hardenability was insufficient, and the hardness of the electric resistance welded portion decreased as shown in Table 4.
Comparative example No. 3 shown in Table 2. In the samples of No. 16, since the B content exceeded the upper limit of the desirable range, the formation of B precipitates deteriorated the hardenability, and as shown in Table 4, the hardness of the electric resistance welded part decreased.
Comparative example No. 3 shown in Table 2. In the sample of No. 17, since the P content exceeded the upper limit of the desirable range, grain boundary embrittlement occurred, and as shown in Table 4, both the base metal toughness and the toughness of the electric resistance welded portion deteriorated.
Comparative example No. 3 shown in Table 2. In the sample of No. 18, the S content exceeded the upper limit of the desirable range, so that coarse inclusions were generated, and as shown in Table 4, the toughness of the base material and the toughness of the electric resistance welded portion were deteriorated.

表2に示す比較例No.19の試料は、Mn/Siが望ましい範囲の下限を下回ったため、電縫溶接部にMnSi系酸化物が生成し、表4に示すように電縫溶接部靱性が劣化した。
表2に示す比較例No.20の試料は、SK値が望ましい範囲の下限を下回ったため、表4に示すように母材引張降伏強度が低下した。
表2に示す比較例No.21の試料は、BH値が望ましい範囲の下限を下回ったため、表4に示すように電縫溶接部硬度が低下した。
Comparative example No. 3 shown in Table 2. In the sample of No. 19, Mn / Si was below the lower limit of the desirable range, so that MnSi-based oxide was generated in the electric resistance welded portion, and as shown in Table 4, the toughness of the electric resistance welded portion was deteriorated.
Comparative example No. 3 shown in Table 2. In the sample of No. 20, the SK value was below the lower limit of the desirable range, so that the base material tensile yield strength decreased as shown in Table 4.
Comparative example No. 3 shown in Table 2. In the sample of No. 21, the BH value was below the lower limit of the desirable range, so that the hardness of the electric resistance welded portion was decreased as shown in Table 4.

表2、表4に示す比較例No.22の試料は、仕上げ圧延終了温度が望ましい範囲の上限を超過したため、表4に示すように母材靱性が劣化した。
表2、表4に示す比較例No.23の試料は、累計圧下比が望ましい範囲の下限を下回ったため、表4に示すように母材靱性が劣化した。
Comparative example Nos. Shown in Tables 2 and 4. In the sample of No. 22, the finish rolling end temperature exceeded the upper limit of the desirable range, so that the base material toughness deteriorated as shown in Table 4.
Comparative example Nos. Shown in Tables 2 and 4. In the sample of No. 23, the cumulative reduction ratio was below the lower limit of the desirable range, so that the base material toughness deteriorated as shown in Table 4.

表2、表4に示す比較例No.24の試料は、熱間圧延後の第一段冷却速度が望ましい範囲の下限を下回ったため、表4に示すように母材靱性が劣化した。
表2、表4に示す比較例No.25の試料は、冷却停止温度が望ましい範囲の下限を下回ったため、析出が十分に起こらず表4に示すように強度が規定値に達しなかった。
表2、表4に示す比較例No.26の試料は、冷却停止温度が望ましい範囲の上限を超過したため、組織分率が規定を満足せず、表4に示すように母材靱性が劣化した。
Comparative example Nos. Shown in Tables 2 and 4. In the sample No. 24, the first stage cooling rate after hot rolling fell below the lower limit of the desirable range, so that the base material toughness deteriorated as shown in Table 4.
Comparative example Nos. Shown in Tables 2 and 4. In the sample of No. 25, the cooling stop temperature was below the lower limit of the desirable range, so that precipitation did not sufficiently occur and the strength did not reach the specified value as shown in Table 4.
Comparative example Nos. Shown in Tables 2 and 4. In the sample of No. 26, the cooling stop temperature exceeded the upper limit of the desirable range, so the structural fraction did not satisfy the regulation, and the base material toughness deteriorated as shown in Table 4.

表2、表4に示す比較例No.27の試料は、電縫溶接部再加熱温度が望ましい範囲の下限を下回ったため、溶接したままの粗大組織が残存し、表4に示すように電縫溶接部靱性が劣化した。
表2、表4に示す比較例No.28の試料は、電縫溶接部再加熱温度が望ましい範囲の上限を超過したため、組織が粗大化し、表4に示すように電縫溶接部靱性が劣化した。
Comparative example Nos. Shown in Tables 2 and 4. In the sample No. 27, the reheating temperature of the electric resistance welded portion was below the lower limit of the desirable range, so that the coarse structure remained as welded and the toughness of the electric resistance welded portion deteriorated as shown in Table 4.
Comparative example Nos. Shown in Tables 2 and 4. In the sample No. 28, the reheating temperature of the electric resistance welded portion exceeded the upper limit of the desired range, so that the structure was coarsened and the toughness of the electric resistance welded portion was deteriorated as shown in Table 4.

表2、表4に示す比較例No.29の試料は、電縫溶接部熱処理時の冷却速度が望ましい範囲の下限を下回ったため、表4に示すように電縫溶接部靱性が劣化した。
表2、表4に示す比較例No.30の試料は、電縫溶接部熱処理時の冷却停止温度が望ましい範囲の上限を超過したため、表4に示すように電縫溶接部靱性が劣化した。
表2、表4に示す比較例No.31の試料は、BH値が望ましい範囲の上限を超過したため、表4に示すようにフェライト面積率が規定を下回り、母材靱性が劣化した。
以上の説明から、上述した条件で製造することが上述の優れた特性を有する油井用電縫鋼管を製造する際に重要であることがわかった。
Comparative example Nos. Shown in Tables 2 and 4. In the sample No. 29, the cooling rate during heat treatment of the electric resistance welded portion was below the lower limit of the desirable range, so that the toughness of the electric resistance welded portion deteriorated as shown in Table 4.
Comparative example Nos. Shown in Tables 2 and 4. In sample No. 30, the cooling stop temperature during heat treatment of the electric resistance welded portion exceeded the upper limit of the desirable range, so that the toughness of the electric resistance welded portion was deteriorated as shown in Table 4.
Comparative example Nos. Shown in Tables 2 and 4. In the sample No. 31, the BH value exceeded the upper limit of the desired range, so that the ferrite area ratio fell below the standard as shown in Table 4 and the base material toughness deteriorated.
From the above description, it was found that manufacturing under the above-mentioned conditions is important when manufacturing the electric resistance welded steel pipe for oil wells having the above-mentioned excellent properties.

Claims (5)

質量%で、
C :0.020〜0.100%、
Mn:0.60〜2.00%、
Ti:0.015〜0.150%、
Nb:0.015〜0.100%、
N :0.0010〜0.0200%、
Si:0.010〜0.500%、
Al:0.001〜0.100%、
B :0.0010〜0.0025%
を含み,
P :0.030%以下、
S :0.010%以下
に制限し、残部がFe及び不純物からなる成分組成を有し、
Mn%/Si%比が2.0以上であり、式(1)で示されるSK値が0.10以上、かつ式(2)で示されるBH値が1.3〜2.7の範囲であり、母材の金属組織が面積率で80%以上のベイナイトとマルテンサイトの一方または両方から構成される組織と、面積率で5%以上のフェライトとを含み、電縫溶接部の金属組織が主としてベイナイトとマルテンサイトの混合組織であり、母材の引張降伏強度が655MPa以上758MPa以下、母材の引張強度が724MPa以上であり、母材および電縫溶接部の−20℃のシャルピー吸収エネルギーが100J以上であり、電縫溶接部の硬度が240Hv以上であることを特徴とする油井用電縫鋼管。
SK=Nb%+Ti%+(V%+Mo%)/5 …式(1)
BH=2.7C%+0.4Si%+Mn%+0.45(Ni%+Cu%)+0.8Cr%+2Mo%…式(2)
In mass%,
C: 0.020 to 0.100%,
Mn: 0.60 to 2.00%,
Ti: 0.015 to 0.150%,
Nb: 0.015 to 0.100%,
N: 0.0010 to 0.0200%,
Si: 0.010 to 0.500%,
Al: 0.001 to 0.100%,
B: 0.0010 to 0.0025%
Including,
P: 0.030% or less,
S: limited to 0.010% or less, with the balance being a component composition consisting of Fe and impurities,
The Mn% / Si% ratio is 2.0 or more, the SK value represented by the formula (1) is 0.10 or more, and the BH value represented by the formula (2) is in the range of 1.3 to 2.7. The metal structure of the base metal includes a structure composed of one or both of bainite and martensite having an area ratio of 80% or more, and ferrite having an area ratio of 5% or more, and the metal structure of the electric resistance welded portion is Mainly a mixed structure of bainite and martensite, the tensile yield strength of the base material is 655 MPa or more and 758 MPa or less, the tensile strength of the base material is 724 MPa or more, and the Charpy absorbed energy at -20 ° C of the base material and the electric resistance welded portion is An electric resistance welded steel pipe for an oil well having a hardness of 100 J or more and a hardness of the electric resistance welded portion of 240 Hv or more.
SK = Nb% + Ti% + (V% + Mo%) / 5 (Equation 1)
BH = 2.7C% + 0.4Si% + Mn% + 0.45 (Ni% + Cu%) + 0.8Cr% + 2Mo% ... Formula (2)
板厚が10mm以上、25mm以下であることを特徴とする請求項1に記載の油井用電縫鋼管。   The electric resistance welded steel pipe for oil wells according to claim 1, wherein the plate thickness is 10 mm or more and 25 mm or less. 質量%で、
Mo:0.01〜0.50%、
Cu:0.05〜0.50%、
Ni:0.05〜0.50%、
Cr:0.05〜0.50%、
V :0.01〜0.10%、
Ca:0.0001〜0.0100%、
REM:0.0001〜0.0100%
の1種又は2種以上を含有することを特徴とする請求項1または請求項2に記載の油井用電縫鋼管。
In mass%,
Mo: 0.01 to 0.50%,
Cu: 0.05 to 0.50%,
Ni: 0.05 to 0.50%,
Cr: 0.05 to 0.50%,
V: 0.01 to 0.10%,
Ca: 0.0001 to 0.0100%,
REM: 0.0001 to 0.0100%
The electric resistance welded steel pipe for oil wells according to claim 1 or 2, containing one or more of the above.
質量%で、
C :0.020〜0.100%、
Mn:0.60〜2.00%、
Ti:0.015〜0.150%、
Nb:0.015〜0.100%、
N :0.0010〜0.0200%、
Si:0.010〜0.500%、
Al:0.001〜0.100%、
B :0.0010〜0.0025%
を含み,
P :0.030%以下、
S :0.010%以下
に制限し,残部がFe及び不純物からなる成分組成を有し、
Mn%/Si%比が2.0以上であり、式(1)で示されるSK値が0.10以上、かつ式(2)で示されるBH値が1.3〜2.7の範囲のスラブを、950℃以下での累積圧下比が2.0以上、圧延終了温度が850℃以下の条件で仕上圧延した後、35℃/sec以上の平均冷却速度で450〜650℃まで冷却し巻き取った熱延鋼板を造管、電縫溶接した後、電縫溶接部を900℃〜1050℃の間に加熱し、その後、平均冷却速度が15℃/s以上で冷却し、500℃以下の範囲で冷却を停止することを特徴とする油井用電縫鋼管の製造方法。
SK=Nb%+Ti%+(V%+Mo%)/5…式(1)
BH=2.7C%+0.4Si%+Mn%+0.45(Ni%+Cu%)+0.8Cr%+2Mo%…式(2)
In mass%,
C: 0.020 to 0.100%,
Mn: 0.60 to 2.00%,
Ti: 0.015 to 0.150%,
Nb: 0.015 to 0.100%,
N: 0.0010 to 0.0200%,
Si: 0.010 to 0.500%,
Al: 0.001 to 0.100%,
B: 0.0010 to 0.0025%
Including,
P: 0.030% or less,
S: limited to 0.010% or less, with the balance being a component composition consisting of Fe and impurities,
The Mn% / Si% ratio is 2.0 or more, the SK value represented by the formula (1) is 0.10 or more, and the BH value represented by the formula (2) is in the range of 1.3 to 2.7. The slab is finish-rolled under the conditions that the cumulative reduction ratio at 950 ° C or lower is 2.0 or higher and the rolling end temperature is 850 ° C or lower, and then cooled to 450 to 650 ° C at an average cooling rate of 35 ° C / sec or higher and wound. After pipe forming and electric resistance welding of the taken hot rolled steel sheet, the electric resistance welding portion is heated between 900 ° C. and 1050 ° C., then cooled at an average cooling rate of 15 ° C./s or more, and 500 ° C. or less. A method for producing an electric resistance welded steel pipe for oil wells, characterized in that cooling is stopped within a range.
SK = Nb% + Ti% + (V% + Mo%) / 5 ... Formula (1)
BH = 2.7C% + 0.4Si% + Mn% + 0.45 (Ni% + Cu%) + 0.8Cr% + 2Mo% ... Formula (2)
質量%で、
Mo:0.01〜0.50%以下、
Cu:0.05〜1.00%以下、
Ni:0.05〜1.00%以下、
Cr:0.05〜1.00%以下、
V :0.01〜0.10%以下、
Ca:0.0001〜0.0100%以下、
REM:0.0001〜0.0100%以下
の1種又は2種以上が含有されていることを特徴とする請求項4に記載の油井用電縫鋼管の製造方法。
In mass%,
Mo: 0.01 to 0.50% or less,
Cu: 0.05 to 1.00% or less,
Ni: 0.05 to 1.00% or less,
Cr: 0.05 to 1.00% or less,
V: 0.01 to 0.10% or less,
Ca: 0.0001 to 0.0100% or less,
REM: 0.0001-0.0100% or less 1 type or 2 types or more are contained, The manufacturing method of the electric resistance welded steel pipe for oil wells of Claim 4 characterized by the above-mentioned.
JP2018192458A 2018-10-11 2018-10-11 ERW steel pipe for oil well and manufacturing method thereof Active JP7200588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018192458A JP7200588B2 (en) 2018-10-11 2018-10-11 ERW steel pipe for oil well and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018192458A JP7200588B2 (en) 2018-10-11 2018-10-11 ERW steel pipe for oil well and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2020059892A true JP2020059892A (en) 2020-04-16
JP7200588B2 JP7200588B2 (en) 2023-01-10

Family

ID=70218842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018192458A Active JP7200588B2 (en) 2018-10-11 2018-10-11 ERW steel pipe for oil well and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7200588B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522622A (en) * 2020-11-30 2021-03-19 钢铁研究总院 High-steel-grade oil well pipe and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256777A (en) * 1999-03-08 2000-09-19 Nippon Steel Corp High tensile strength steel plate excellent in strength and low temperature toughness
JP2011063878A (en) * 2009-08-17 2011-03-31 Nippon Steel Corp Spiral steel pipe having rib formed on inner surface thereof, and process for production thereof
JP2013231221A (en) * 2012-05-01 2013-11-14 Nippon Steel & Sumitomo Metal Corp Electric resistance welded steel tube and method for producing the same
WO2016152170A1 (en) * 2015-03-26 2016-09-29 Jfeスチール株式会社 Thick steel plate for structural pipe, method for producing thick steel plate for structural pipe, and structural pipe.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256777A (en) * 1999-03-08 2000-09-19 Nippon Steel Corp High tensile strength steel plate excellent in strength and low temperature toughness
JP2011063878A (en) * 2009-08-17 2011-03-31 Nippon Steel Corp Spiral steel pipe having rib formed on inner surface thereof, and process for production thereof
JP2013231221A (en) * 2012-05-01 2013-11-14 Nippon Steel & Sumitomo Metal Corp Electric resistance welded steel tube and method for producing the same
WO2016152170A1 (en) * 2015-03-26 2016-09-29 Jfeスチール株式会社 Thick steel plate for structural pipe, method for producing thick steel plate for structural pipe, and structural pipe.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522622A (en) * 2020-11-30 2021-03-19 钢铁研究总院 High-steel-grade oil well pipe and preparation method thereof
CN112522622B (en) * 2020-11-30 2022-02-25 钢铁研究总院 High-steel-grade oil well pipe and preparation method thereof

Also Published As

Publication number Publication date
JP7200588B2 (en) 2023-01-10

Similar Documents

Publication Publication Date Title
EP3042976B1 (en) Steel sheet for thick-walled high-strength line pipe having exceptional corrosion resistance, crush resistance properties, and low-temperature ductility, and line pipe
JP4844687B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP5516784B2 (en) Low yield ratio high strength steel sheet, method for producing the same, and high strength welded steel pipe using the same
JP5821173B2 (en) Low yield ratio high strength high uniform stretch steel sheet and method for producing the same
JP5590253B2 (en) High strength steel pipe excellent in deformation performance and low temperature toughness, high strength steel plate, and method for producing said steel plate
JP5532800B2 (en) Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same
JP2008163456A (en) Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same
JP5092498B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP5765497B1 (en) ERW steel pipe with excellent weld quality and manufacturing method thereof
JP2007314828A (en) High-strength steel pipe superior in strain aging resistance for line pipe, high-strength steel sheet for line pipe, and method for manufacturing them
JP5884201B2 (en) Hot-rolled steel sheet for high-strength line pipe with a tensile strength of 540 MPa or more
JP2007138290A (en) Thick high strength hot rolled steel plate and its production method
JP2008163455A (en) Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same
JP2020012168A (en) Thick steel sheet for sour resistant linepipe, and manufacturing method therefor
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP7216902B2 (en) ERW steel pipe for oil well and manufacturing method thereof
JP7155703B2 (en) Thick steel plate for line pipe and manufacturing method thereof
WO2016056216A1 (en) Steel sheet for line pipe, method for manufacturing same, and steel tube for line pipe
JP7200588B2 (en) ERW steel pipe for oil well and manufacturing method thereof
JP2016117932A (en) Rolling h-shaped steel and manufacturing method therefor
JP7469616B2 (en) Electric resistance welded steel pipe for oil wells and its manufacturing method
JPWO2019064459A1 (en) High-strength steel sheet for sour line pipes, method for producing the same, and high-strength steel pipe using high-strength steel sheets for sour line pipes
JP6693610B1 (en) ERW steel pipe for line pipe
JP2003301236A (en) High-strength steel material showing excellent resistance to hydrogen-induced cracking (hic)
JP2020128577A (en) Electroseamed steel pipe for line pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221205

R151 Written notification of patent or utility model registration

Ref document number: 7200588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151