JP2020037862A - Vibration control structure of building - Google Patents

Vibration control structure of building Download PDF

Info

Publication number
JP2020037862A
JP2020037862A JP2019210851A JP2019210851A JP2020037862A JP 2020037862 A JP2020037862 A JP 2020037862A JP 2019210851 A JP2019210851 A JP 2019210851A JP 2019210851 A JP2019210851 A JP 2019210851A JP 2020037862 A JP2020037862 A JP 2020037862A
Authority
JP
Japan
Prior art keywords
building
vibration damping
mass
layer
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019210851A
Other languages
Japanese (ja)
Other versions
JP6853869B2 (en
Inventor
渡辺 泰志
Yasushi Watanabe
泰志 渡辺
仁志 佐々木
Hitoshi Sasaki
仁志 佐々木
田中 鉄也
Tetsuya Tanaka
鉄也 田中
伸也 牛坂
Shinya Ushizaka
伸也 牛坂
千明 大泉
Chiaki Oizumi
千明 大泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2019210851A priority Critical patent/JP6853869B2/en
Publication of JP2020037862A publication Critical patent/JP2020037862A/en
Application granted granted Critical
Publication of JP6853869B2 publication Critical patent/JP6853869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a vibration control structure of a building capable of reducing a response of the building in a primary mode and a secondary mode effectively.SOLUTION: A vibration controller B consisting of two degrees of freedom is installed in a building A and is configured that a primary proper period of the vibration controller B is synchronized to a primary proper period of the building A and a secondary proper period of the vibration controller B is synchronized to a secondary proper period of the building A respectively.SELECTED DRAWING: Figure 1

Description

本発明は、建物の制振構造に関する。   The present invention relates to a building damping structure.

従来、マンションやオフィスビルなどの多層構造の建物では、建物内に設置した制振ダンパーによって、地震時に作用した地震エネルギー(振動エネルギー)を吸収して減衰させ、建物の応答を低減させるようにしている(例えば、特許文献1、特許文献2、特許文献3、特許文献4、特許文献5参照)。   Conventionally, in multi-layered buildings such as condominiums and office buildings, the damping dampers installed inside the building absorb and attenuate the seismic energy (vibration energy) that acts during an earthquake, reducing the response of the building. (For example, see Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, and Patent Document 5).

また、このような制振ダンパーには、鋼材等の降伏耐力やすべり材の摩擦抵抗を利用した履歴系ダンパー、粘性体の粘性抵抗を利用したオイルダンパーなどの粘性系ダンパー、粘弾性体のせん断抵抗を利用した粘弾性系ダンパーが多用されている。   In addition, such damping dampers include hysteretic dampers, such as hysteretic dampers that utilize the yield strength of steel or the frictional resistance of sliding materials, oil dampers that use the viscous resistance of viscous materials, and shearing of viscoelastic materials. Viscoelastic dampers utilizing resistance are often used.

一方、TMD(Tuned Mass Damper)と称する制振装置を建物の頂部側(屋上など)に設置し、建物の地震時応答を低減させることも提案、実用化されている。   On the other hand, it has also been proposed and put to practical use to install a vibration damping device called TMD (Tuned Mass Damper) on the top side of a building (such as a rooftop) to reduce the earthquake response of the building.

具体的に、TMDは、例えば、付帯フレームに振り子(錘体(重錘))を取り付け、錘体が往復振動する1自由度振動系として構成されている。そして、建物の1次固有周期と同調させて、建物の振動と逆方向に錘体を振動させることにより、すなわち、錘体が振動することによる慣性抵抗力(慣性質量効果)を利用することにより、建物に作用した地震エネルギーを減衰させ、建物の応答を低減させることができる。   Specifically, for example, the TMD is configured as a one-degree-of-freedom vibration system in which a pendulum (weight (weight)) is attached to an attached frame and the weight reciprocates. By oscillating the weight in the opposite direction to the vibration of the building in synchronization with the primary natural period of the building, that is, by using the inertial resistance (inertial mass effect) caused by the oscillation of the weight. Thus, the seismic energy acting on the building can be attenuated, and the response of the building can be reduced.

特開2002−48187号公報JP-A-2002-48187 特開2001−208129号公報JP 2001-208129 A 特開平11−294522号公報JP-A-11-294522 特開平07−113359号公報JP 07-113359 A 再公表WO2009/17162号公報Re-publication WO2009 / 17162

ここで、上記従来のTMDを制振装置として用いる場合には、TMDの周期を建物の1次モード固有周期に同調させることによって建物の応答を低減するようにしている。すなわち、超高層建物等の応答が主として1次モードで振動していることを前提にしている。   Here, when the above-mentioned conventional TMD is used as a vibration damping device, the response of the building is reduced by tuning the period of the TMD to the natural period of the first mode of the building. That is, it is assumed that the response of the skyscraper or the like vibrates mainly in the first-order mode.

しかしながら、超高層建物などにおいては、建物の高さあるいは地震動の性質によって2次モードが卓越するような応答が生じる場合もあり、このような場合に対し1次モードの固有周期のみに同調させたTMDでは建物の応答低減効果が期待できない場合がある。   However, in a high-rise building or the like, a response may occur in which the second mode is dominant depending on the height of the building or the nature of the seismic motion. In such a case, tuning is performed only to the natural period of the first mode. In some cases, the effect of reducing the response of the building cannot be expected with TMD.

本発明は、上記事情に鑑み、1次モード及び2次モードの建物の応答を効果的に低減することを可能にする建物の制振構造を提供することを目的とする。   The present invention has been made in view of the above circumstances, and has as its object to provide a vibration damping structure of a building that can effectively reduce the response of a building in a primary mode and a secondary mode.

上記の目的を達するために、この発明は以下の手段を提供している。   In order to achieve the above object, the present invention provides the following means.

本発明の建物の制振構造は、建物に作用した振動エネルギーを減衰させるための制振構造であって、1層目の水平バネ要素上の連結材の上に2層目の水平バネ要素を設け、前記2層目の水平バネ要素上に実マスとしての錘体を設けるとともに、前記建物と前記連結材に接続して付加質量を与える回転慣性質量ダンパーを設け、前記1層目と前記2層目の水平バネ要素によって2自由度を備えてなる制振装置を建物に設置し、且つ、前記制振装置の1次固有周期を前記建物の1次固有周期に、前記制振装置の2次固有周期を前記建物の2次固有周期にそれぞれ同調させて構成されていることを特徴とする。   A vibration damping structure for a building according to the present invention is a vibration damping structure for attenuating vibration energy applied to a building, and includes a horizontal spring element of a second layer on a connecting member on a horizontal spring element of a first layer. And a weight as a real mass is provided on the horizontal spring element of the second layer, and a rotary inertial mass damper connected to the building and the connecting member to provide an additional mass is provided. A vibration damping device having two degrees of freedom is installed in a building by a horizontal spring element of a layer, and the first natural period of the vibration damping device is set to the first natural period of the building, It is characterized in that the next natural period is synchronized with the second natural period of the building.

本発明の建物の制振構造においては、2自由度を備えるTMDとしての制振装置を建物に設置し、この制振装置の1次固有周期を建物の1次固有周期に、制振装置の2次固有周期を建物の2次固有周期にそれぞれ同調させることによって、地震などが発生した際の1次モード及び2次モードの建物の応答を効果的に低減させることが可能になる。   In the vibration damping structure for a building according to the present invention, a vibration damping device as a TMD having two degrees of freedom is installed in the building, and the primary natural period of the vibration damping device is set to the primary natural period of the building. By tuning the secondary natural period to the secondary natural period of the building, it becomes possible to effectively reduce the response of the building in the primary mode and the secondary mode when an earthquake or the like occurs.

また、積層ゴム体などの水平バネ要素を1層目と2層目に設け、2層目の水平バネ要素上に実マスとしての錘体を設けるとともに、1層目に実マスを設ける代わりに連結材と建物に接続して付加質量を与える回転慣性質量ダンパーを設けてなるTMDとしての制振装置を用いることで、実マスを2層配置することなく、1次モード及び2次モードの建物の応答を効果的に低減させることが可能になる。
すなわち、1層目の実マスをなくし、重量を増やすことなく、建物の1次モード及び2次モードの建物の応答を低減させることが可能になる。
Instead of providing a horizontal spring element such as a laminated rubber body on the first and second layers and providing a weight as an actual mass on the horizontal spring element on the second layer, instead of providing an actual mass on the first layer, By using a vibration damping device as a TMD provided with a rotary inertia mass damper that provides an additional mass by connecting to a connecting member and a building, a building in a primary mode and a secondary mode without arranging two layers of actual masses Can be effectively reduced.
That is, it is possible to reduce the response of the building in the primary mode and the secondary mode of the building without losing the actual mass of the first layer and increasing the weight.

これにより、本実施形態の建物の制振構造によれば、超高層建物等の建物の応答を1次モードのみならず2次モードも含めて制御することが可能となり、建物の1次モードのみに同調させた従来のTMDに比べて2次モードが卓越するような場合であっても建物の応答を効果的に低減させることができる。そして、従来に比べ、広範の建物、地震動に対して適用することが可能になる。   Thus, according to the building damping structure of the present embodiment, it is possible to control the response of a building such as a high-rise building not only in the primary mode but also in the secondary mode. The response of the building can be effectively reduced even when the secondary mode is dominant as compared with the conventional TMD tuned to the above. And, it becomes possible to apply to a wide range of buildings and seismic motions as compared with the related art.

本発明の一実施形態に係る建物の制振構造を示す斜視図である。It is a perspective view showing the damping structure of the building concerning one embodiment of the present invention. 本発明の一実施形態に係る建物の制振構造を示す斜視図である。It is a perspective view showing the damping structure of the building concerning one embodiment of the present invention. 本発明の一実施形態に係る建物の制振構造の制振装置を示す斜視図である。It is a perspective view showing the damping device of the damping structure of the building concerning one embodiment of the present invention. 本発明の一実施形態に係る建物の制振構造を示す図である。It is a figure showing the vibration control structure of the building concerning one embodiment of the present invention. 本発明の一実施形態に係る建物の制振構造の解析モデルを示す図である。It is a figure showing the analysis model of the damping structure of the building concerning one embodiment of the present invention. 本発明の一実施形態に係る建物の制振構造の基本モデルの固有値解析結果を示す図である。It is a figure showing the eigenvalue analysis result of the basic model of the damping structure of the building concerning one embodiment of the present invention. 2層目のみに付加マスを設置した場合の固有値解析結果を示す図である。It is a figure showing an eigenvalue analysis result when an additional mass is installed only in the second layer. 1層目のみに付加マスを設置した場合の固有値解析結果を示す図である。It is a figure showing an eigenvalue analysis result when an additional mass is installed only in the first layer. 1層目と2層目に均等に付加マスを設置した場合の固有値解析結果を示す図である。It is a figure showing an eigenvalue analysis result at the time of setting an additional mass equally on the 1st layer and the 2nd layer.

以下、図1から図9を参照し、本発明の一実施形態に係る建物の制振構造について説明する。   Hereinafter, a vibration damping structure of a building according to an embodiment of the present invention will be described with reference to FIGS.

本実施形態の建物Aは、図1及び図2に示すように、超高層部ビルなどの多層構造の建物であり、本実施形態の建物の制振構造Cは、この建物Aの頂部(屋上)に制振装置Bを設置して構成されている。なお、本発明に係る建物は、制振装置Bが建物の頂部側(上層部)に設置されていればよく、必ずしも屋上に設置されていなくてもよい。   As shown in FIGS. 1 and 2, the building A according to the present embodiment is a multi-layer building such as a super-high-rise building, and the vibration damping structure C of the building according to the present embodiment is at the top (rooftop) of the building A. ) Is provided with a vibration damping device B. In the building according to the present invention, the vibration damping device B only needs to be installed on the top side (upper layer) of the building, and need not necessarily be installed on the roof.

そして、本実施形態の制振装置Bは、2自由度を有するTMDが用いられている。   The vibration damping device B of the present embodiment uses a TMD having two degrees of freedom.

具体的に、例えば、本実施形態の制振装置Bは、図3に示すように、積層ゴム体(水平バネ要素)1、2を備えた複数の制振柱3と、複数の制振柱3の積層ゴム体1、2よりも上方に連結して架設された連結梁(連結材)4、5と、連結梁4、5に支持されて連結梁4、5上に設置された錘体15と、一端を建物Aに、他端を連結梁5に接続して配設された回転慣性質量ダンパー6とを備えて構成されている。
なお、本実施形態では、水平バネ要素が積層ゴム体1、2であるものとして説明を行うが、本発明に係る水平バネ要素は水平の多方向の振動に対して減衰効果を発揮することが可能であれば、例えばバネ部材など、他の水平バネ要素であってもよい。
Specifically, for example, as shown in FIG. 3, the vibration damping device B of the present embodiment includes a plurality of vibration damping columns 3 having laminated rubber bodies (horizontal spring elements) 1 and 2, and a plurality of vibration damping columns. Connecting beams (connecting members) 4 and 5 erected and connected above the laminated rubber bodies 1 and 2 of FIG. 3, and a weight body supported on the connecting beams 4 and 5 and installed on the connecting beams 4 and 5 15 and a rotary inertial mass damper 6 having one end connected to the building A and the other end connected to the connecting beam 5.
In the present embodiment, the description will be made assuming that the horizontal spring elements are the laminated rubber bodies 1 and 2. However, the horizontal spring element according to the present invention may exhibit a damping effect against horizontal multidirectional vibration. If possible, other horizontal spring elements such as, for example, spring members may be used.

また、積層ゴム体1、2は、一般に免震建物などで使用される積層ゴムと同様に構成したものであり、例えばゴムと鋼板を上下方向に交互に重ね合せるようにして形成されている。そして、本実施形態では、4本の制振柱3が所定位置に立設されており、各制振柱3が、下方側に第1積層ゴム体1、この第1積層ゴム体1上に鋼製の第1連結構造体7、連結構造体7上に第2積層ゴム体2、第2積層ゴム体2上に鋼製の第2連結構造体8を配置し、これら第1積層ゴム体1、第1連結構造体7、第2積層ゴム体2、第2連結構造体8を上下方向に一体に並設して形成されている。すなわち、本実施形態の制振柱3は、複数の積層ゴム体1、2を上下方向に並設して構成されている。   Further, the laminated rubber bodies 1 and 2 are configured similarly to the laminated rubber generally used in a seismic isolation building or the like, and are formed, for example, by alternately stacking a rubber and a steel plate in a vertical direction. In the present embodiment, four damping columns 3 are erected at predetermined positions, and each damping column 3 is placed on the first laminated rubber body 1 on the lower side, and on the first laminated rubber body 1. The first connecting structure 7 made of steel, the second laminated rubber body 2 on the connecting structure 7, the second connecting structure 8 made of steel on the second laminated rubber body 2, and the first laminated rubber body 1, a first connection structure 7, a second laminated rubber body 2, and a second connection structure 8 are integrally formed in a vertical direction. That is, the damping column 3 of the present embodiment is configured by arranging a plurality of laminated rubber bodies 1 and 2 in a vertical direction.

さらに、本実施形態の制振装置Bは、隣り合う制振柱3の第1連結構造体7に一端、他端を連結してH形鋼やI形鋼などの連結梁5が架設されている。また、4本の制振柱3にそれぞれ連結梁5を架設することにより、方形状の第1鉄骨フレーム9が形成されている。   Further, in the vibration damping device B of the present embodiment, one end and the other end are connected to the first connection structure 7 of the adjacent vibration damping column 3, and a connection beam 5 such as an H-beam or an I-beam is erected. I have. In addition, by connecting the connecting beam 5 to each of the four damping columns 3, a first steel frame 9 having a rectangular shape is formed.

さらに、隣り合う制振柱3の第2連結構造体8に一端、他端を連結してH形鋼やI形鋼などの連結梁4が架設され、これら4本の制振柱3にそれぞれ連結梁4を架設することにより、方形状の第2鉄骨フレーム10が形成されている。   Further, connecting beams 4 such as H-shaped steel and I-shaped steel are connected to the second connecting structure 8 of the adjacent vibration damping columns 3 by connecting one end and the other end thereof. The second steel frame 10 having a rectangular shape is formed by erection of the connecting beam 4.

そして、第2鉄骨フレーム10上(及び第1鉄骨フレーム9上)に方形盤状の錘体15が設置され、第2鉄骨フレーム(及び第1鉄骨フレーム9)を介して4本の制振柱3によって錘体15が支持されている。   Then, a square disk-shaped weight 15 is installed on the second steel frame 10 (and on the first steel frame 9), and the four damping columns are provided via the second steel frame (and the first steel frame 9). The weight 15 is supported by 3.

さらに、本実施形態では、第1鉄骨フレーム9の各連結梁5に上端を接続して下方に鉄骨が延設され、この鉄骨からなる制振装置側連結部11に一端を、建物Aの屋上に一体形成されたコンクリートブロックなどの建物側連結部12に他端をそれぞれ接続して、回転慣性質量ダンパー6が設置されている。   Further, in the present embodiment, an upper end is connected to each connecting beam 5 of the first steel frame 9 to extend a steel frame downward, and one end is connected to the vibration-control-device-side connecting portion 11 made of this steel frame, and a roof of the building A The other end is connected to a building-side connecting portion 12 such as a concrete block integrally formed with a rotary inertia mass damper 6.

また、回転慣性質量ダンパー6は、第1鉄骨フレーム9の各連結梁5、すなわち方形枠状の第1鉄骨フレーム9の各辺に沿うように、且つダンパー軸を横方向(水平方向)に配し、4台配設されている。さらに、本実施形態では、回転慣性質量ダンパー6によって付加質量を与え、少なくとも水平の2方向(直交する水平方向のX方向とY方向)の周期調整を行うように構成されている。   Further, the rotary inertia mass damper 6 is arranged along the connecting beams 5 of the first steel frame 9, that is, each side of the first steel frame 9 having a rectangular frame shape, and the damper axis is arranged in the horizontal direction (horizontal direction). And four are arranged. Further, in the present embodiment, an additional mass is given by the rotary inertia mass damper 6, and the cycle is adjusted at least in two horizontal directions (the orthogonal X direction and Y direction).

そして、上記構成からなる本実施形態の建物の制振構造Cにおいては、水平の多方向の振動に対して減衰効果を発揮する積層ゴム体1、2を備えて制振柱3が構成され、この積層ゴム体1、2を備えた複数の制振柱3に錘体15を支持させて構成されているため、地震時に建物に作用した振動エネルギーを積層ゴム体1、2で吸収し、建物Aの少なくとも水平の2方向の応答を低減させることができる。   And in the vibration damping structure C of the building of the present embodiment having the above configuration, the vibration damping column 3 is provided with the laminated rubber bodies 1 and 2 which exhibit a damping effect against horizontal multidirectional vibrations, Since the weight 15 is supported by the plurality of vibration damping columns 3 having the laminated rubber bodies 1 and 2, vibration energy acting on the building during an earthquake is absorbed by the laminated rubber bodies 1 and 2, The response of A in at least two horizontal directions can be reduced.

また、制振柱3が複数の積層ゴム体1、2を並設して(積み上げて)構成されていることで、これら複数の積層ゴム体1、2による振動エネルギーの減衰効果が相乗的に発揮され、より確実に建物Aの応答を低減させることが可能になる。   Further, since the vibration damping column 3 is configured by arranging (stacking) the plurality of laminated rubber bodies 1 and 2, the effect of damping vibration energy by the plurality of laminated rubber bodies 1 and 2 is synergistic. The response of the building A can be reduced more reliably.

さらに、本実施形態の建物の制振構造Cにおいては、減衰を与えるための回転慣性質量ダンパー6を備えることにより、TMDとしての適切な減衰効果を発揮させることが可能になるとともに、回転慣性質量ダンパー6によって付加質量を与え、少なくとも水平の2方向の周期調整を行うことができる。   Further, in the vibration damping structure C of the building of the present embodiment, the provision of the rotary inertia mass damper 6 for providing the damping makes it possible to exert an appropriate damping effect as the TMD, The additional mass is given by the damper 6, and the period adjustment in at least two horizontal directions can be performed.

これにより、図4に示すように、積層ゴム体1、2などの水平バネ要素を1層目と2層目に設け、2層目の水平バネ要素上に実マスとしての錘体15を設けるとともに、1層目に実マスを設ける代わりに連結材4と建物に接続して付加質量を与える回転慣性質量ダンパー6を設けてなるTMDとしての制振装置Bを用いることで、実マスを2層配置することなく、1次モード及び2次モードの建物Aの応答を効果的に低減させることが可能になる。
すなわち、1層目の実マスをなくし、重量を増やすことなく、建物の1次モード及び2次モードの建物Aの応答を低減させることが可能になる。
Thereby, as shown in FIG. 4, horizontal spring elements such as the laminated rubber bodies 1 and 2 are provided in the first and second layers, and the weight 15 as an actual mass is provided on the horizontal spring elements in the second layer. In addition, instead of providing the actual mass in the first layer, the damping device B as a TMD provided with the connecting member 4 and the rotary inertial mass damper 6 which is connected to the building to provide an additional mass is used, so that the actual mass can be reduced to two. It is possible to effectively reduce the response of the building A in the first mode and the second mode without layer arrangement.
That is, it is possible to reduce the response of the building A in the primary mode and the secondary mode of the building without losing the actual mass of the first layer and increasing the weight.

さらに、本実施形態の建物の制振構造Cにおいては、個々の部材数も少なく、コンパクトに構成することが可能になるとともに、組み立ても容易で、且つ錘体15等の各部材を分割して(錘体15も分割して)運搬することができ、従来と比較して施工性を大幅に向上させることも可能である。   Further, in the vibration damping structure C of the building of the present embodiment, the number of individual members is small, the structure can be made compact, the assembly is easy, and each member such as the weight 15 is divided. It is possible to carry (the weight 15 is also divided), and it is possible to greatly improve the workability as compared with the related art.

よって、本実施形態の建物の制振構造Cにおいては、制振装置Bの占有空間を極力小さくすることができるとともに、多方向での固有周期調整が容易に行え、建物Aの多方向の応答を低減させることが可能になる。   Therefore, in the vibration damping structure C of the building of the present embodiment, the space occupied by the vibration damping device B can be made as small as possible, the natural period can be easily adjusted in multiple directions, and the response of the building A in multiple directions can be improved. Can be reduced.

すなわち、本実施形態の建物の制振構造Cにおいては、超高層建物等の建物の応答を1次モードのみならず2次モードも含めて制御することが可能になり、建物に1次モードのみに同調させたTMDと比べて2次モードが卓越するような応答が生じる建物に対してもその応答低減を効果的に行うことが可能になる。よって、従来と比較し、TMDを用いて広範の建物及び地震動に対し、優れた応答低減効果を付与することが可能になる。   That is, in the vibration damping structure C of the building of the present embodiment, it is possible to control the response of the building such as the skyscraper not only in the primary mode but also in the secondary mode. It is possible to effectively reduce the response even in a building in which a response in which the secondary mode is dominant as compared to the TMD tuned to the above. Therefore, as compared with the related art, it is possible to provide an excellent response reduction effect to a wide range of buildings and seismic motion using TMD.

ここで、超高層建物のTMDとして、本実施形態に示した積層ゴム体1、2を2段積にして水平剛性を小さくした制振装置Bを用いた場合、1つの実マスをその頂部に設置すると、1自由度のバネ−マス系を水平のX,Xに直交する水平のYそれぞれの方向に対して構築することが可能であるが、どちらも同じ固有周期を有するバネ−マス系となる。このため、X,Y2方向で固有周期が異なる超高層建物のような場合は、それぞれの方向について独立に同調させるTMDを設置する必要が生じる。   Here, when the vibration damping device B in which the laminated rubber bodies 1 and 2 shown in the present embodiment are stacked in two steps to reduce the horizontal rigidity is used as the TMD of the high-rise building, one actual mass is placed on the top thereof. When installed, a single-degree-of-freedom spring-mass system can be constructed in each of horizontal X and horizontal Y directions orthogonal to X. Become. For this reason, in the case of a high-rise building having a different natural period in the X and Y2 directions, it is necessary to install a TMD for tuning independently in each direction.

これに対し、本願の発明者らは、実マスを増やさずにX,Y2方向の1方向のみの固有周期を伸ばす方法として、本実施形態の建物の制振構造Cのように、その方向に対して慣性質量を付加させる方法を考えた。但し、積層ゴム体1、2を2段積にし、その頂部変位(相対変位)に対して慣性質量効果を得ようとする場合、慣性質量効果を期待するデバイス(装置:回転慣性質量ダンパー6)には大きなストローク(例えば100cm程度)への追従性が要求され、そのままでは対応できない可能性があった。一方、通常の免震層に設置するオイルダンパーは免震層にて想定される層間変形(例えば60cm程度)に対する追従性能を有しているので、技術的に層間変形で60cm程度を実現するのはさほど困難ではないと考えられる。   On the other hand, the present inventors have proposed a method of extending the natural period in only one of the X and Y2 directions without increasing the actual mass, as in the case of the vibration damping structure C of the building of the present embodiment. On the other hand, a method of adding an inertial mass was considered. However, when the laminated rubber bodies 1 and 2 are made into a two-stage product and an inertial mass effect is to be obtained with respect to the top displacement (relative displacement), a device that expects the inertial mass effect (apparatus: rotary inertial mass damper 6) Is required to be able to follow a large stroke (for example, about 100 cm), and it may not be possible to cope with it as it is. On the other hand, an oil damper installed on a normal seismic isolation layer has the ability to follow the interlayer deformation (for example, about 60 cm) assumed in the seismic isolation layer. It is not so difficult.

このような知見から、積層ゴム体1、2を2段積とし、その頂部に実マス15を設置し、各段の積層ゴム体1、2の変形に対して検討を行い、慣性質量を付加した場合のTMDの基本的な性質を把握することとした。   Based on such knowledge, the laminated rubber bodies 1 and 2 are made into a two-stage product, the actual mass 15 is installed on the top, and the deformation of the laminated rubber bodies 1 and 2 at each stage is examined, and the inertial mass is added. In this case, the basic properties of TMD were determined.

はじめに、検討対象TMDモデル及び固有値解析式について説明する。
積層ゴム体1、2を2段積にして用いるTMD(制振装置B)の検討を行うために、図5に示すような付加質量を有する2質点系TMDモデルを想定する。このTMDモデルの振動方程式は、式(1)、式(2)、式(3)に示す通り、質量マトリックス、減衰マトリックス、剛性マトリックスを有する。
First, the TMD model to be examined and the eigenvalue analysis formula will be described.
In order to study a TMD (vibration damping device B) that uses the laminated rubber bodies 1 and 2 as a two-stage product, a two-mass-point TMD model having an additional mass as shown in FIG. 5 is assumed. The vibration equation of the TMD model has a mass matrix, a damping matrix, and a stiffness matrix as shown in Expressions (1), (2), and (3).

Figure 2020037862
Figure 2020037862

Figure 2020037862
Figure 2020037862

Figure 2020037862
Figure 2020037862

式(1)〜(3)で示されるマトリックスを用いて表現される振動方程式の固有値は、式(4)で表され、この行列式の特性方程式を解くことによって計算することができる。
すなわち、式(4)は最終的に式(5)となり、ωについての2次方程式となる。
The eigenvalue of the vibration equation expressed using the matrices represented by the equations (1) to (3) is represented by the equation (4), and can be calculated by solving the characteristic equation of the determinant.
That is, equation (4) finally the formula (5), and a quadratic equation for omega 2.

Figure 2020037862
Figure 2020037862

Figure 2020037862
Figure 2020037862

したがって、有効なω、Tは、次の式(6)で表せる。 Therefore, effective ω i and T i can be expressed by the following equation (6).

Figure 2020037862
Figure 2020037862

また、i次の固有ベクトルは次の式(7)で表せる。   The i-th order eigenvector can be expressed by the following equation (7).

Figure 2020037862
Figure 2020037862

さらに、各次の刺激係数、刺激関数及び略算法(複素固有値解析によらず、実固有値解析のモードベクトルと減衰マトリックスを用いる方法)より求められる減衰定数は、それぞれ、式(1)〜(3)、式(7)より式(8)、式(9)、式(10)となる。   Further, the following stimulus coefficients, stimulus functions, and decay constants obtained by the approximate calculation method (method using the mode vector and the decay matrix of the real eigenvalue analysis without using the complex eigenvalue analysis) are respectively expressed by the equations (1) to (3). ) And equation (7) yield equations (8), (9) and (10).

Figure 2020037862
Figure 2020037862

(i次の刺激関数)

Figure 2020037862
(I-th stimulus function)
Figure 2020037862

(i次の減衰定数)

Figure 2020037862
(I-th order decay constant)
Figure 2020037862

次に、本検討では、2層のTMDの2層目(頂部)のみに実マスを設置した場合に、付加マスの配置によってTMDの固有周期及び刺激関数がどのように変化するかを調べる。   Next, in this study, it is examined how the natural period and the stimulus function of the TMD change depending on the arrangement of the additional mass when the real mass is placed only on the second layer (top) of the two-layer TMD.

付加マスはTMDのモードを直線モードと仮定した場合に一次の有効マスが等しくなるように設定する。ここでは、実マスのみによるTMDを基本モデルとし、その実マス重量を400ton、水平バネはTMDの固有周期が約4.0secとなるように設定する。   The additional mass is set so that the primary effective masses become equal when the TMD mode is assumed to be the linear mode. Here, the TMD using only the actual mass is used as the basic model, the actual mass weight is set to 400 ton, and the horizontal spring is set so that the natural period of the TMD is about 4.0 sec.

そして、本検討では、表1に示すように、基本モデルを含めた4ケースについて検討を行った。   In this study, as shown in Table 1, four cases including the basic model were examined.

Figure 2020037862
Figure 2020037862

基本モデルの固有値解析結果を図6に示す。
基本モデルは実質的に1質点系モデルであるが、以降の解析上の都合もあり、解析モデルとして2質点系モデルを採用している。そのため、1層のマスを1.0tonとして解析上の工夫をしており、結果として2次モードが出ている。しかし、1層目に実マスが無く、その位置における慣性力が存在しないため、2次モードは事実上意味を持たないものとなっている。また、ここでは減衰係数はすべて0としている。
FIG. 6 shows the eigenvalue analysis result of the basic model.
Although the basic model is substantially a one-mass system model, a two-mass system model is adopted as an analysis model because of the following analytical convenience. Therefore, the analysis is devised by setting the mass of one layer to 1.0 ton, and as a result, the secondary mode appears. However, since there is no actual mass in the first layer and no inertial force at that position, the secondary mode is practically meaningless. Here, the attenuation coefficients are all set to 0.

検討ケースM、N、Lの結果をそれぞれ、図7、図8、図9に示す。
検討ケースM、Nでは、付加マスの大きさによって一次の固有モードが当初設定していた固有モードと異なってくるため、固有周期は付加マスの大きさに応じて変化することが確認された。
The results of study cases M, N, and L are shown in FIGS. 7, 8, and 9, respectively.
In the examination cases M and N, it was confirmed that the eigenperiod changes according to the size of the additional mass because the primary eigenmode differs from the originally set eigenmode depending on the size of the additional mass.

また、検討ケースM、Nでは付加マスの大きさが同じであれば、ほぼ同じ1次固有周期を与えることがわかる。さらに、付加マスの大きさが同じ場合の検討ケースM、Nの各次刺激関数は互いに転倒させた形となっている点、どちらも付加マスの大きさが大きくなるに従って1次の刺激関数が全体的に小さくなり、付加マスが設置されている部位の層間変形を生じさせにくい形に2次の刺激関数が変化してゆくという興味深い結果が得られた。   In addition, in the study cases M and N, if the size of the additional mass is the same, it is understood that the same primary natural period is given. Furthermore, the primary stimulus functions of the examination cases M and N in the case where the size of the additional mass is the same are in a form in which the primary stimulus functions are turned over each other. An interesting result was obtained that the secondary stimulus function changed to a shape that became smaller overall and hardly caused interlayer deformation of the portion where the additional mass was placed.

一方、検討ケースLでは付加マスが固有モードを変化させることが無いため、付加マスの大きさによらず1次固有周期の値はほとんど変化しないことが確認された。また、付加マスの割合が大きくなるに従って1次の刺激関数は0に近づいてゆき、2次の刺激関数は常に0になることが確認された。   On the other hand, in the study case L, since the additional mass did not change the eigenmode, it was confirmed that the value of the primary natural period hardly changed regardless of the size of the additional mass. In addition, it was confirmed that the primary stimulus function approaches 0 as the ratio of the additional mass increases, and the secondary stimulus function always becomes 0.

以上のように、簡単な固有値解析によって1つの実マスと1〜2の付加マスを有した2層TMDの動的性質を調べた結果、1つの実マスに付加マスを組み合わせた2層TMDによって、付加マスの配置パターンによって様々な2自由度振動系を実現できることがわかった。これにより、この性質を応用すれば、1つの実マスを用いて2つの振動系を制御するTMDを構築可能であることが実証された。   As described above, the dynamic property of a two-layer TMD having one real mass and one or two additional masses was examined by a simple eigenvalue analysis. As a result, the two-layer TMD combining one real mass with the additional mass was obtained. It has been found that various two-degree-of-freedom vibration systems can be realized by the arrangement pattern of the additional masses. Thus, it has been proved that by applying this property, it is possible to construct a TMD that controls two vibration systems using one actual mass.

以上、本発明に係る建物の制振構造の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。   The embodiment of the vibration damping structure for a building according to the present invention has been described above. However, the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention.

例えば、本実施形態では、水平バネ要素が積層ゴム体であるものとして説明を行ったが、必ずしも積層ゴム体でなくてもよい。   For example, in the present embodiment, the description has been made assuming that the horizontal spring element is a laminated rubber body. However, the horizontal spring element is not necessarily required to be a laminated rubber body.

1 積層ゴム体(水平バネ要素)
2 積層ゴム体(水平バネ要素)
3 制振柱
4 連結梁
5 連結梁
6 回転慣性質量ダンパー
7 第1連結構造体
8 第2連結構造体
9 第1鉄骨フレーム
10 第2鉄骨フレーム
11 制振装置側連結部
12 建物側連結部
13 凹部(クランク、段部)
14 ダンパー接続用梁部
15 錘体(実マス)
A 建物
B 制振装置
C 建物の制振構造
1 laminated rubber body (horizontal spring element)
2 Laminated rubber body (horizontal spring element)
3 damping column 4 connecting beam 5 connecting beam 6 rotary inertia mass damper 7 first connecting structure 8 second connecting structure 9 first steel frame 10 second steel frame 11 damping device side connecting part 12 building side connecting part 13 Recess (crank, step)
14 Damper connection beam 15 Weight (actual mass)
A Building B Damping device C Building damping structure

本発明の建物の制振構造は、建物に作用した振動エネルギーを減衰させるための制振構造であって、1層目の水平バネ要素上の連結材の上に2層目の水平バネ要素を設け、前記2層目の水平バネ要素上に実マスとしての錘体を設けるとともに、前記建物と前記連結材に接続して付加質量を与える回転慣性質量ダンパーを設け、前記1層目と前記2層目の水平バネ要素によって2自由度を備えてなる制振装置を建物の頂部側に設置し、少なくとも水平の2方向の周期調整を行うように構成されていることを特徴とする。
また、本発明の建物の制振構造は、前記制振装置が、前記1層目の水平バネ要素および前記2層目の水平バネ要素を備えた複数の制振柱と、前記複数の制振柱同士の間に架設された前記連結材と、前記回転慣性質量ダンパーと、を備え、前記連結材は、平面視方形枠状に配設され、前記回転慣性質量ダンパーは、前記連結材の各辺に沿うように、且つダンパー軸を水平方向に配し、少なくとも水平の直交する2方向の周期調整を行うように配置されていてもよい。
また、本発明の建物の制振構造は、前記制振柱が、下方側に配設された前記1層目の水平バネ要素と、該1層目の水平バネ要素の上方に配設された第1連結構造体と、該第1連結構造体の上方に配設された前記2層目の水平バネ要素と、該2層目の水平バネ要素の上方に配設された第2連結構造体と、を備えていてもよい。
また、本発明の建物の制振構造は、隣り合う前記制振柱の前記第1連結構造体同士の間に第1の連結材が架設され、隣り合う前記制振柱の前記第2連結構造体同士の間に第2の連結材が架設され、前記第2の連結材上に前記錘体が配設されていてもよい。
A vibration damping structure for a building according to the present invention is a vibration damping structure for attenuating vibration energy applied to a building, and includes a horizontal spring element of a second layer on a connecting member on a horizontal spring element of a first layer. And a weight as a real mass is provided on the horizontal spring element of the second layer, and a rotary inertial mass damper connected to the building and the connecting member to provide an additional mass is provided. A vibration damping device having two degrees of freedom by a horizontal spring element of the layer is installed on the top side of the building , and is configured to perform a period adjustment in at least two horizontal directions .
In the vibration damping structure for a building according to the present invention, the vibration damping device may include a plurality of damping columns including the first-layer horizontal spring element and the second-layer horizontal spring element; The connecting member, which is provided between columns, and the rotary inertial mass damper, wherein the connecting member is disposed in a rectangular frame shape in a plan view, and the rotary inertial mass damper is provided with each of the connecting members. The damper shafts may be arranged along the side and in the horizontal direction, and may be arranged so as to adjust the period at least in two directions perpendicular to each other.
In the vibration damping structure for a building according to the present invention, the damping pillar is disposed above the first-layer horizontal spring element disposed below and the first-layer horizontal spring element. A first connection structure, the second-layer horizontal spring element disposed above the first connection structure, and a second connection structure disposed above the second-layer horizontal spring element And may be provided.
In the vibration damping structure for a building according to the present invention, a first connecting member is provided between the first connecting structures of the adjacent vibration damping columns, and the second connection structure of the adjacent vibration damping columns is provided. A second connecting member may be provided between the bodies, and the weight may be provided on the second connecting member.

Claims (1)

建物に作用した振動エネルギーを減衰させるための制振構造であって、
1層目の水平バネ要素上の連結材の上に2層目の水平バネ要素を設け、前記2層目の水平バネ要素上に実マスとしての錘体を設けるとともに、前記建物と前記連結材に接続して付加質量を与える回転慣性質量ダンパーを設け、前記1層目と前記2層目の水平バネ要素によって2自由度を備えてなる制振装置を建物に設置し、
且つ、前記制振装置の1次固有周期を前記建物の1次固有周期に、前記制振装置の2次固有周期を前記建物の2次固有周期にそれぞれ同調させて構成されていることを特徴とする建物の制振構造。
A vibration damping structure for attenuating vibration energy acting on a building,
A second-layer horizontal spring element is provided on the connecting member on the first-layer horizontal spring element, and a weight as an actual mass is provided on the second-layer horizontal spring element. A rotary inertia mass damper that provides an additional mass by connecting to the building, a vibration damping device having two degrees of freedom by the first layer and the second layer of horizontal spring elements is installed in a building,
The first natural period of the vibration damping device is tuned to the first natural period of the building, and the second natural period of the vibration damping device is tuned to the second natural period of the building. The vibration control structure of the building.
JP2019210851A 2019-11-21 2019-11-21 Vibration control structure of the building Active JP6853869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019210851A JP6853869B2 (en) 2019-11-21 2019-11-21 Vibration control structure of the building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019210851A JP6853869B2 (en) 2019-11-21 2019-11-21 Vibration control structure of the building

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015217464A Division JP6622568B2 (en) 2015-11-05 2015-11-05 Building vibration control structure

Publications (2)

Publication Number Publication Date
JP2020037862A true JP2020037862A (en) 2020-03-12
JP6853869B2 JP6853869B2 (en) 2021-03-31

Family

ID=69738064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019210851A Active JP6853869B2 (en) 2019-11-21 2019-11-21 Vibration control structure of the building

Country Status (1)

Country Link
JP (1) JP6853869B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113684940A (en) * 2021-08-09 2021-11-23 广州大学 Existing building vibration reduction structure capable of reducing subway vibration and design method thereof

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517778A (en) * 1981-10-15 1985-05-21 Nicolai Charles M Earthquake-proof building with improved foundation
JPH04237778A (en) * 1991-01-22 1992-08-26 Shimizu Corp Damping device
JPH07113359A (en) * 1993-10-19 1995-05-02 Penta Ocean Constr Co Ltd Building structure furnished with vibration control device
JPH07127306A (en) * 1993-11-02 1995-05-16 Kajima Corp Vibration controller
JP2544984B2 (en) * 1990-02-26 1996-10-16 清水建設株式会社 Vibration suppression device for structures
JPH0967957A (en) * 1995-08-30 1997-03-11 Bridgestone Corp Vibration control device
JP2660340B2 (en) * 1987-10-16 1997-10-08 株式会社ブリヂストン Dynamic vibration absorber for buildings
JP2938095B2 (en) * 1989-08-11 1999-08-23 株式会社ブリヂストン Dynamic vibration absorber for buildings
JPH11294522A (en) * 1998-04-14 1999-10-29 Daiwa House Ind Co Ltd Tuned mass damper
JP2001208129A (en) * 2000-01-24 2001-08-03 Ohbayashi Corp Damping device
JP2002048187A (en) * 2000-08-02 2002-02-15 Ohbayashi Corp Anti-vibration system
JP2008101769A (en) * 2006-09-21 2008-05-01 Shimizu Corp Vibration reducing mechanism and its specification setting method
JP2008133947A (en) * 2006-10-23 2008-06-12 Shimizu Corp Vibration reducing mechanism and its specification setting method
WO2009017162A1 (en) * 2007-07-30 2009-02-05 Nihon University Damping structure, and designing method of damping structure
JP2011220511A (en) * 2010-04-14 2011-11-04 Ohbayashi Corp Vibration control device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517778A (en) * 1981-10-15 1985-05-21 Nicolai Charles M Earthquake-proof building with improved foundation
JP2660340B2 (en) * 1987-10-16 1997-10-08 株式会社ブリヂストン Dynamic vibration absorber for buildings
JP2938095B2 (en) * 1989-08-11 1999-08-23 株式会社ブリヂストン Dynamic vibration absorber for buildings
JP2544984B2 (en) * 1990-02-26 1996-10-16 清水建設株式会社 Vibration suppression device for structures
JPH04237778A (en) * 1991-01-22 1992-08-26 Shimizu Corp Damping device
JPH07113359A (en) * 1993-10-19 1995-05-02 Penta Ocean Constr Co Ltd Building structure furnished with vibration control device
JPH07127306A (en) * 1993-11-02 1995-05-16 Kajima Corp Vibration controller
JPH0967957A (en) * 1995-08-30 1997-03-11 Bridgestone Corp Vibration control device
JPH11294522A (en) * 1998-04-14 1999-10-29 Daiwa House Ind Co Ltd Tuned mass damper
JP2001208129A (en) * 2000-01-24 2001-08-03 Ohbayashi Corp Damping device
JP2002048187A (en) * 2000-08-02 2002-02-15 Ohbayashi Corp Anti-vibration system
JP2008101769A (en) * 2006-09-21 2008-05-01 Shimizu Corp Vibration reducing mechanism and its specification setting method
JP2008133947A (en) * 2006-10-23 2008-06-12 Shimizu Corp Vibration reducing mechanism and its specification setting method
WO2009017162A1 (en) * 2007-07-30 2009-02-05 Nihon University Damping structure, and designing method of damping structure
JP2011220511A (en) * 2010-04-14 2011-11-04 Ohbayashi Corp Vibration control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113684940A (en) * 2021-08-09 2021-11-23 广州大学 Existing building vibration reduction structure capable of reducing subway vibration and design method thereof
CN113684940B (en) * 2021-08-09 2023-03-07 广州大学 Existing building vibration reduction structure capable of reducing subway vibration and design method thereof

Also Published As

Publication number Publication date
JP6853869B2 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
Villaverde SEISMIC CONTROL, OF STRUCTURES VVITH DAMPED) RESONANT APPENDAGES
JP2020101081A (en) Vibration control device and architectural structure having this
JP6622568B2 (en) Building vibration control structure
JP5403372B2 (en) Truss beam structure
JP2020037862A (en) Vibration control structure of building
Asai et al. Outrigger tuned viscous mass damping system for high-rise buildings subject to earthquake loadings
JPS63114774A (en) Vibration damping apparatus of building
JP3828695B2 (en) Seismic control wall of a three-story house
JPH11200661A (en) Vibration control method for connected structure
JP2009155801A (en) Vibration control structure
JP2011174298A (en) Connecting vibration control structure of structural body
Kenarangi et al. Application of tuned mass dampers in controlling the nonlinear behavior of 3-D structural models, considering the soil-structure interaction
JP2004285599A (en) Vibration control structure of structure
JP4788134B2 (en) Damping structure of structure
Awchat et al. Seismic Response of Tall Building with Underground Storey Using Dampers
Li Vibration transmissibility of two-DOF vibrating systems
JP2903075B2 (en) Multi-degree-of-freedom dynamic vibration absorber
JP7257747B2 (en) Damping structure
Thirumeni et al. Effect of Tuned Mass Damper as a Soft Storey on Multi-Storeyed Framed Structures
JP7374694B2 (en) Design method for seismically isolated buildings
JP7312343B2 (en) How to set the specifications of the damping device
Pnevmatikos Structural control for asymmetric buildings subjected to earthquake excitations
JP6951860B2 (en) Seismic isolation structure
JP2022139621A (en) Vibration damping device
JP6573105B2 (en) TMD mechanism

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210312

R150 Certificate of patent or registration of utility model

Ref document number: 6853869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150