JP2020020005A - Method for manufacturing non-oriented silicon steel sheet - Google Patents

Method for manufacturing non-oriented silicon steel sheet Download PDF

Info

Publication number
JP2020020005A
JP2020020005A JP2018145352A JP2018145352A JP2020020005A JP 2020020005 A JP2020020005 A JP 2020020005A JP 2018145352 A JP2018145352 A JP 2018145352A JP 2018145352 A JP2018145352 A JP 2018145352A JP 2020020005 A JP2020020005 A JP 2020020005A
Authority
JP
Japan
Prior art keywords
rolling
steel sheet
hot
rolled
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018145352A
Other languages
Japanese (ja)
Other versions
JP7147340B2 (en
Inventor
竜太郎 川又
Ryutaro Kawamata
竜太郎 川又
智 鹿野
Satoshi Shikano
智 鹿野
鉄州 村川
Tesshu Murakawa
鉄州 村川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018145352A priority Critical patent/JP7147340B2/en
Publication of JP2020020005A publication Critical patent/JP2020020005A/en
Application granted granted Critical
Publication of JP7147340B2 publication Critical patent/JP7147340B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

To provide a method for manufacturing a non-oriented silicon steel sheet in which anisotropy of magnetic flux density in the entire circumferential direction is reduced.SOLUTION: The method for manufacturing non-oriented electromagnetic steel sheets includes the steps of: applying hot rolling to a slab; applying annealing to a hot-rolled sheet at 800-1,080°C for 5 seconds to 2 minutes; applying warm rolling at a rolling-reduction ratio of 3-75% in a temperature range of 400-700°C in a cooling process; and applying finish-annealing to a rolled sheet. When the magnetic flux densities at a magnetic field intensity of 5,000 A/m at 0°, 22.5°, 45°, 67.5°, 90° with respect to the rolling direction are defined as B, B, B, B, and B, respectively, an anisotropy index B50 defined by Equation (1) is equal to or less than 0.017. Bin Equation (1) is defined by Equation (2).SELECTED DRAWING: None

Description

本発明は、無方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for manufacturing a non-oriented electrical steel sheet.

電気機器等に使用される電磁鋼板は、省エネルギー化の観点等から、高効率化が求められている。
例えば、エアコンのコンプレッサー、家電製品に使用される各種モーター、自動車においては駆動モーター、電動ターボ、電動コンプレッサー用途で小型化及び高効率化のために高速回転及び高周波励磁が行われるようになり、高磁束密度かつ異方性の小さい無方向性電磁鋼板の要請が高まっている。
Electrical steel sheets used for electrical equipment and the like are required to have high efficiency from the viewpoint of energy saving.
For example, compressors for air conditioners, various motors used in home appliances, and motors for driving motors, electric turbos, electric compressors, etc., use high-speed rotation and high-frequency excitation for miniaturization and high efficiency. There is an increasing demand for non-oriented electrical steel sheets having a low magnetic flux density and low anisotropy.

このような状況から、無方向性電磁鋼板における高い磁束密度を目指して、従来から様々な技術が採用されている。   Under such circumstances, various techniques have been conventionally employed with the aim of achieving a high magnetic flux density in the non-oriented electrical steel sheet.

具体的には、熱延板焼鈍を省略しつつ磁気特性を向上させるために、仕上熱延後のコイルの保有熱で熱延板焼鈍を代替する自己焼鈍が採用されている。例えば、特許文献1には、自己焼鈍の技術が記載されている。
また、特許文献2には、自己焼鈍を行わず、仕上熱延を高温で仕上げ、その後巻取りまでの間に無注水時間を設定することで磁気特性を向上させる技術が記載されている。
Specifically, in order to improve magnetic properties while omitting hot-rolled sheet annealing, self-annealing is used, which replaces hot-rolled sheet annealing with the heat retained in the coil after finish hot rolling. For example, Patent Literature 1 describes a self-annealing technique.
Patent Literature 2 describes a technique for improving magnetic properties by finishing a hot-rolled finish at a high temperature without performing self-annealing and then setting a non-water injection time until winding.

また、特許文献3、4に記載されているように、熱延板焼鈍前に軽圧下圧延を施し、熱延板焼鈍中に歪誘起粒成長を行わせることで磁気特性を向上する技術が採用されている。   Further, as described in Patent Documents 3 and 4, a technology is employed in which light reduction rolling is performed before hot-rolled sheet annealing and strain-induced grain growth is performed during hot-rolled sheet annealing to improve magnetic properties. Have been.

また、特許文献5には、自己焼鈍中の熱延板の結晶粒成長をSn添加で均一に冷間圧延前結晶粒径を粗大化し、かつ、Sn添加による仕上焼鈍時の集合組織制御の相乗効果で磁束密度を高める技術が開示されている。   Patent Document 5 discloses that the grain growth of a hot-rolled sheet during self-annealing is uniformly increased by adding Sn to increase the crystal grain size before cold rolling, and the synergistic effect of controlling the texture during finish annealing by adding Sn. A technique for increasing the magnetic flux density by the effect is disclosed.

特許文献6には、0.10mmから0.25mmの高周波用薄手無方向性電磁鋼板を製造するにあたり、最終冷間圧延率と冷間圧延前結晶粒径の関係を式で規定する技術が開示されている。また、熱延板焼鈍を施し、冷間圧延前結晶粒径と冷間圧延率の間に一定の関係式を満たすように冷間圧延前粒径を制御する技術、さらに無方向性電磁鋼板の表面粗度Raを0.5μm以下とする技術、鋼板の磁性を22.5°おきに測定し、その最大値と最小値の差である鉄損ΔW10/400が4.0W/kg以下かつ磁束密度ΔB50が0.08T以下に制御する技術が提案されている。
特許文献7には、質量%で、C:0.0005〜0.010%、Mn:0.05〜1.5%、Si:0.8〜4.0%、Al:0.1〜4.0%を含有し、かつ、Si、Al、Mnの含有量がSi+2Al−Mn≧2の関係を満たし、残部はFe及び不可避不純物元素より成る成分の鋼素材を熱間圧延し、得られた熱延板を焼鈍し、次いで冷間圧延を施した後に再結晶焼鈍し、さらにスキンパス圧延を経て最終焼鈍を施す無方向性電磁鋼板の製造方法であって、熱延板の焼鈍温度Thを1000℃≦Th≦1150℃とし、冷間圧延の圧延率CRを85%≦CR≦93%とする、全周特性かつ加工性の良好な無方向性電磁鋼板の製造方法が開示されている。
特許文献8には、重量%で、C≦0.01%、Si:0.1%〜2.0%、Al≦2.0%、Si+2Al:0.1%〜2.50%、Mn<1.0%、Ni:0.1%〜4%を含有し、残部Feおよび不可避的不純物よりなる異方性の少ない無方向性電磁鋼板において、磁束密度B50値角度特性の最小値と最大値の差が0.025T以下となる、異方性の少ない無方向性電磁鋼板が開示されている。
Patent Document 6 discloses a technique for defining a relationship between a final cold-rolling rate and a crystal grain size before cold-rolling by using an expression in producing a high-frequency thin non-oriented electrical steel sheet having a high frequency of 0.10 mm to 0.25 mm. Have been. In addition, hot-rolled sheet annealing, technology to control the grain size before cold rolling so as to satisfy a certain relational expression between the crystal grain size before cold rolling and the cold rolling reduction, furthermore, the non-oriented electrical steel sheet Technology for reducing surface roughness Ra to 0.5 μm or less, magnetism of steel sheet is measured every 22.5 °, and iron loss ΔW10 / 400, which is the difference between the maximum value and the minimum value, is 4.0 W / kg or less and magnetic flux A technique for controlling the density ΔB50 to 0.08T or less has been proposed.
Patent Document 7 discloses that, in mass%, C: 0.0005 to 0.010%, Mn: 0.05 to 1.5%, Si: 0.8 to 4.0%, Al: 0.1 to 4 0.0%, and the contents of Si, Al, and Mn satisfy the relationship of Si + 2Al-Mn ≧ 2, and the balance was obtained by hot rolling a steel material having a component composed of Fe and inevitable impurity elements. A method for producing a non-oriented electrical steel sheet in which a hot-rolled sheet is annealed, then cold-rolled, then recrystallized, and further subjected to final annealing through skin pass rolling, wherein the hot-rolled sheet has an annealing temperature Th of 1000. There is disclosed a method for producing a non-oriented electrical steel sheet having excellent circumferential properties and good workability, wherein the temperature is set to ≦ C ≦ Th ≦ 1150 ° C. and the rolling reduction CR of the cold rolling is set to 85% ≦ CR ≦ 93%.
Patent Document 8 discloses that C ≦ 0.01%, Si: 0.1% to 2.0%, Al ≦ 2.0%, Si + 2Al: 0.1% to 2.50%, Mn <% by weight. In a non-oriented electrical steel sheet containing 1.0%, Ni: 0.1% to 4%, and having a small amount of anisotropy, the balance being Fe and unavoidable impurities, the minimum value and the maximum value of the magnetic flux density B50 value angular characteristic A non-oriented electrical steel sheet having a small anisotropy and having a value difference of 0.025T or less is disclosed.

特許文献9には、熱延板焼鈍二回冷延法で無方向性電磁鋼板を製造するにあたり、第1回目の冷間圧延前の結晶粒径を10〜60μmの範囲に制御し、中間焼鈍後の再結晶率を30〜85%の範囲に制御し、第2回目の冷間圧延圧下率を3〜30%とする技術が開示されている。   Patent Document 9 discloses that, in producing a non-oriented electrical steel sheet by the hot-rolled sheet annealing twice cold rolling method, the crystal grain size before the first cold rolling is controlled in a range of 10 to 60 μm, and the intermediate annealing is performed. A technique is disclosed in which the subsequent recrystallization rate is controlled in the range of 30 to 85% and the second cold rolling reduction is 3 to 30%.

特許文献10には、800℃以上の温度での熱延板焼鈍後、1回又は中間焼鈍を含む2回の圧延工程において、50℃以上の温度域で少なくとも20%以上の圧下を施し、その後850℃以上の温度で仕上げ焼鈍を施す技術が開示されている。
特許文献11には、スイッチトリラクタンスモータにおいて、仕上焼鈍時の昇温速度、鋼板張力、雰囲気酸化性、降温速度等の条件を規定した製造方法が開示されている。
In Patent Document 10, after hot-rolled sheet annealing at a temperature of 800 ° C. or more, in a rolling process including one or two times including intermediate annealing, a reduction of at least 20% or more is performed in a temperature range of 50 ° C. or more, A technique for performing finish annealing at a temperature of 850 ° C. or higher is disclosed.
Patent Literature 11 discloses a method for manufacturing a switch reluctance motor in which conditions such as a heating rate during finish annealing, a steel sheet tension, an oxidizing atmosphere, and a cooling rate are specified.

特許文献12には、回転速度が小さいパワーステアリング用のモジュラーモータにおいて、仕上焼鈍条件を規定した製造方法が開示されている。
特許文献13には、熱延板焼鈍一回冷延法が開示されている。
Patent Document 12 discloses a method of manufacturing a modular motor for power steering having a low rotation speed, in which finish annealing conditions are defined.
Patent Document 13 discloses a once-rolled hot-rolled sheet annealing cold rolling method.

特公昭57−43132号公報JP-B-57-43132 特開昭62−54023号公報JP-A-62-54023 特開平2−213418号公報JP-A-2-213418 特開平3−211258号公報JP-A-3-21258 特開2002−294415号公報JP 2002-294415 A 特開2001−295003号公報JP 2001-295003 A 特開2008−45151号公報JP 2008-45151 A 特開平8−246108号公報JP-A-8-246108 特開2001−49402号公報JP 2001-49402 A 特開2000−144348号公報JP 2000-144348 A 特開2005−240095号公報JP 2005-240095 A 特開2006−144036号公報JP 2006-144036 A 特開2005−307258号公報JP 2005-307258 A

しかし、特許文献1及び特許文献2の技術は、ライン焼鈍に及ばず、磁束密度の板面内異方性に改善の余地があり、特に昨今開発が進む、毎分2万回転以上20万回転以下にも達する高速回転機に適用する場合には磁束密度の異方性低減の要請が高まっている。   However, the techniques of Patent Literature 1 and Patent Literature 2 do not extend to line annealing, and there is room for improvement in the in-plane anisotropy of the magnetic flux density. When applied to a high-speed rotating machine having the following requirements, there is an increasing demand for anisotropy reduction in magnetic flux density.

特許文献3及び特許文献4の技術では、熱延板に軽圧下を施し熱延板焼鈍を施しており磁束密度の面内異方性に改善の余地があり、例えば通常の回転機、EIコア、額縁鉄心に使用する場合には磁束の流れの均一性を向上させる余地がある。さらに、昨今開発が進む、毎分2万回転以上20万回転以下にも達する高速回転機に適用する場合には磁束密度の異方性低減により、使用時の騒音および振動の低減への要請が高まっている。   In the techniques disclosed in Patent Documents 3 and 4, the hot-rolled sheet is subjected to light reduction and hot-rolled sheet annealing, and there is room for improvement in the in-plane anisotropy of the magnetic flux density. When used in a frame iron core, there is room for improving the uniformity of the flow of magnetic flux. Furthermore, when applied to a high-speed rotating machine that has recently been developed and reaches 20,000 to 200,000 rotations per minute, there is a need to reduce noise and vibration during use by reducing the anisotropy of magnetic flux density. Is growing.

特許文献5の技術では、磁束密度の面内異方性に改善の余地があり、例えば通常の回転機、EIコア、額縁鉄心に使用する場合には磁束の流れの均一性をより向上させる余地がある。さらに、昨今の高速回転機に適用する場合には磁束密度の異方性低減により、使用時の騒音および振動の低減への要請が高まっている。とりわけ、昨今開発が進む、毎分2万回転以上20万回転以下にも達する高速回転機では騒音および振動の低減の点で磁束密度の異方性低減の要請が高まっている。   In the technique of Patent Document 5, there is room for improvement in the in-plane anisotropy of the magnetic flux density. For example, when used in a normal rotating machine, an EI core, or a frame iron core, there is room for further improving the uniformity of the magnetic flux flow. There is. Further, when applied to recent high-speed rotating machines, there is an increasing demand for reduction of noise and vibration during use due to reduction of anisotropy of magnetic flux density. In particular, in high-speed rotating machines that have been developed recently and reach 20,000 to 200,000 rotations per minute, demand for anisotropy reduction of magnetic flux density is increasing in terms of reduction of noise and vibration.

特許文献6、特許文献7及び特許文献8の技術では、昨今開発が進む、毎分2万回転以上20万回転以下にも達する高速回転機では騒音および振動の低減の点で磁束密度の異方性低減の要請が高まっている。   The technologies of Patent Documents 6, 7, and 8 have recently been developed. In a high-speed rotating machine reaching 20,000 to 200,000 revolutions per minute, the anisotropic magnetic flux density is reduced in terms of noise and vibration reduction. There has been an increasing demand for reduced performance.

特許文献9の技術では、特許文献6と同様に、プロセス条件を制御した二回法によってもその最終製品の磁束密度の面内異方性を低減させる余地があり、モータ騒音および振動の改善にも余地を残す。さらに、昨今開発が進む、毎分2万回転以上20万回転以下にも達する高速回転機に適用する場合には異方性低減の要請が高まっている。   In the technique of Patent Document 9, similarly to Patent Document 6, there is room for reducing the in-plane anisotropy of the magnetic flux density of the final product even by the twice method in which the process conditions are controlled, and the motor noise and vibration are improved. Also leave room. Furthermore, in the case of application to a high-speed rotating machine that has recently been developed and reaches 20,000 to 200,000 rotations per minute, there is an increasing demand for anisotropy reduction.

特許文献10の技術では、熱延板焼鈍を施した無方向性電磁鋼板の磁束密度の面内異方性を低減させる余地があり、モータ騒音および振動改善においても低減の余地がある。さらに、昨今開発が進む、毎分2万回転以上20万回転以下にも達する高速回転機に適用する場合には異方性低減の要請が高まっている。   In the technique of Patent Document 10, there is room for reducing the in-plane anisotropy of the magnetic flux density of the non-oriented electrical steel sheet subjected to hot-rolled sheet annealing, and there is room for reduction in motor noise and vibration improvement. Furthermore, in the case of application to a high-speed rotating machine that has recently been developed and reaches 20,000 to 200,000 rotations per minute, there is an increasing demand for anisotropy reduction.

特許文献11の技術では、高効率モータに適用する場合に異方性の小さい無方向性電磁鋼板を製造する余地が残されている。さらに、当該技術では、昨今開発が進む、毎分2万回転以上20万回転以下にも達する高速回転機に適用する場合には異方性低減の要請が高まっている。   The technique of Patent Document 11 leaves room for manufacturing non-oriented electrical steel sheets having small anisotropy when applied to a high-efficiency motor. Further, in the case of this technology, there is an increasing demand for anisotropy reduction when it is applied to a high-speed rotating machine reaching 20,000 to 200,000 rotations per minute, which is being developed recently.

特許文献12の技術は、回転速度が小さいパワーステアリング用モジュラーモータを対象とし、一般の回転機ではパワーステアリングよりも回転数が高く、その騒音および振動を低減する要請が高まっている。さらに、昨今開発が進む、より高速回転の回転機に対しては異方性の低減の余地があり、例えば毎分2万回転以上20万回転以下にも達する高速回転機に適用する場合には異方性低減の要請が高まっている。   The technique of Patent Document 12 is directed to a power steering modular motor having a low rotation speed, and the rotation speed of a general rotating machine is higher than that of the power steering, and there is an increasing demand for reducing noise and vibration. Furthermore, there is room for anisotropy reduction for higher-speed rotating machines that are being developed recently. For example, when applied to high-speed rotating machines that reach 20,000 to 200,000 rotations per minute, There is an increasing demand for anisotropy reduction.

特許文献13の技術は、磁束密度の面内異方性を低減する余地があり、例えば、昨今開発が進む高速回転機に適用する場合には異方性低減の余地がある。さらに、最近開発が進行する毎分2万回転以上20万回転以下にも達する高速回転機に適用する場合には異方性低減の要請が高まっている。   The technique of Patent Document 13 has room for reducing in-plane anisotropy of magnetic flux density. For example, there is room for reduction of anisotropy when applied to a high-speed rotating machine that has recently been developed. Further, when applied to a high-speed rotating machine that has recently been developed and reaches 20,000 to 200,000 rotations per minute, there is a growing demand for anisotropy reduction.

以上の様に、従来技術では全周方向の磁束密度の異方性(つまり方向によって生じる磁束密度の大小の差)を低減することが容易でなく、磁束密度の異方性低減が求められていた。そして、回転機の鉄心に適用した場合に、騒音および振動の低減、最高回転数の向上などの達成が求められていた。
このような背景において、本発明者らは特定のパラメータで規定される磁束密度の異方性を制御することにより、モータ等の回転機に適用した場合の回転時のトルク変動が低減して騒音および振動が低減し、最高回転数の上昇が可能となることを知見した。
As described above, in the related art, it is not easy to reduce the anisotropy of the magnetic flux density in the entire circumferential direction (that is, the difference in the magnitude of the magnetic flux density caused by the direction), and it is required to reduce the anisotropy of the magnetic flux density. Was. When applied to the iron core of a rotating machine, it has been required to achieve reduction of noise and vibration, improvement of the maximum number of revolutions, and the like.
In such a background, the present inventors control the anisotropy of the magnetic flux density defined by a specific parameter, thereby reducing the torque fluctuation during rotation when applied to a rotating machine such as a motor and reducing noise. It was also found that vibrations were reduced and that the maximum number of revolutions could be increased.

本発明は上記知見をもとになされたものであり、全周方向の磁束密度の異方性を低減した無方向性電磁鋼板を製造する製造方法を提供することを目的とする。   The present invention has been made based on the above findings, and has as its object to provide a manufacturing method for manufacturing a non-oriented electrical steel sheet with reduced anisotropy of magnetic flux density in all circumferential directions.

上述した課題を解決する手段は、以下の通りである。
<1>
スラブに熱間圧延を施し、熱延鋼板とする熱間圧延工程と、
熱延鋼板に、800℃以上1080℃以下で5秒以上2分以下の熱延板焼鈍を施す熱延板焼鈍工程と、
熱延板焼鈍の冷却過程において、400℃以上700℃以下の温度域で圧下率3%以上75%以下の温間圧延を施す温間圧延工程と、
温間圧延後の圧延板に、仕上焼鈍を施す仕上焼鈍工程と、
を備え、
圧延方向に対して、0°、22.5°、45°、67.5°、及び90°の角度の方向での、磁界強度5000A/mにおける磁束密度をそれぞれB50(0°)、B50(22.5°)、B50(45°)、B50(67.5°)、及びB50(90°)と表記した際に、下記式(1)で規定される異方性指標B50(anisotropy)が0.017以下である無方向性電磁鋼板を製造する、無方向性電磁鋼板の製造方法。

式(1)
ここで、式(1)中、B50AVEは、下記式(2)で規定される。

式(2)
<2>
温間圧延を、700℃超1080℃以下の温度で5秒以上2分以下の中間焼鈍を挟んで2回以上実施する<1>に記載の無方向性電磁鋼板の製造方法。
<3>
前記無方向性電磁鋼板は、圧延方向での磁界強度5000A/mにおける磁束密度B50(0°)と、圧延方向に対して直角となる方向での磁界強度5000A/mにおける磁束密度B50(90°)と、の算術平均である平均磁束密度B50(LC)が、1.64T以上である<1>又は<2>に記載の無方向性電磁鋼板の製造方法。
<4>
前記無方向性電磁鋼板は、質量%で、
Si:0.1%〜3.8%、
Mn:0.1%〜2.5%、
Al:0%〜2.5%、を含有し、
残部がFe及び不純物からなる組成である、<1>〜<3>のいずれか一項に記載の無方向性電磁鋼板の製造方法。
Means for solving the above-mentioned problem are as follows.
<1>
Hot rolling the slab to a hot-rolled steel sheet,
Hot-rolled steel sheet, hot-rolled sheet annealing step of performing hot-rolled sheet annealing at 800 ° C or higher and 1080 ° C or lower for 5 seconds or more and 2 minutes or less;
In the cooling process of the hot-rolled sheet annealing, a warm rolling step of performing warm rolling at a rolling reduction of 3% to 75% in a temperature range of 400 ° C to 700 ° C,
Finish annealing step of performing finish annealing on the rolled sheet after warm rolling,
With
The magnetic flux densities at directions of 0 °, 22.5 °, 45 °, 67.5 °, and 90 ° with respect to the rolling direction at a magnetic field strength of 5000 A / m are represented by B50 (0 °) and B50, respectively. When expressed as 50 (22.5 °) , B 50 (45 °) , B 50 (67.5 °) , and B 50 (90 °) , the anisotropy index defined by the following formula (1) A method for producing a non-oriented electrical steel sheet, wherein the non-oriented electrical steel sheet has a B50 (anisotropy) of 0.017 or less.

Equation (1)
Here, in the equation (1), B50AVE is defined by the following equation (2).

Equation (2)
<2>
<1> The method for producing a non-oriented electrical steel sheet according to <1>, wherein the warm rolling is performed twice or more at a temperature of more than 700 ° C and not more than 1080 ° C with an intermediate annealing of 5 seconds or more and 2 minutes or less.
<3>
The non-oriented electrical steel sheets, the magnetic flux density B 50 in the magnetic field strength 5000A / m at the rolling direction (0 °), the magnetic flux density B 50 in the magnetic field strength 5000A / m in a direction at right angles to the rolling direction ( 90 °) , wherein the average magnetic flux density B 50 (LC) , which is an arithmetic average of the non-oriented electrical steel sheet, is 1.64 T or more, according to <1> or <2>.
<4>
The non-oriented electrical steel sheet is, in mass%,
Si: 0.1% to 3.8%,
Mn: 0.1% to 2.5%,
Al: 0% to 2.5%,
The method for producing a non-oriented electrical steel sheet according to any one of <1> to <3>, wherein the balance is a composition comprising Fe and impurities.

本発明によれば、全周方向の磁束密度の異方性を低減した無方向性電磁鋼板を製造する製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of manufacturing the non-oriented electrical steel sheet which reduced the anisotropy of the magnetic flux density of all the circumferential directions is provided.

本発明は、無方向性電磁鋼板の磁束密度の異方性によりモータ回転時のトルク変動を制御して騒音および振動を低減させるものである。最初に、この技術知見に至った実験の結果について説明する。   The present invention is to reduce the noise and the vibration by controlling the torque fluctuation during the rotation of the motor by the anisotropy of the magnetic flux density of the non-oriented electrical steel sheet. First, the results of an experiment that led to this technical knowledge will be described.

(実験1)
鋼種Bのスラブを、加熱温度を1100℃として粗熱延を行い、次いで仕上温度900℃で仕上熱延を行い、熱延鋼板を2.0mm厚に仕上げ、これを650℃に冷却した後、コイラに巻き取った。この熱延鋼板から、以下の工程により2種の鋼板BAおよびBBを製造した。鋼種Bのスラブから得られた無方向性電磁鋼板の化学組成を表1に示す。
(Experiment 1)
The slab of steel type B is subjected to rough hot rolling at a heating temperature of 1100 ° C., and then subjected to finish hot rolling at a finishing temperature of 900 ° C. to finish a hot-rolled steel sheet to a thickness of 2.0 mm and cool it to 650 ° C. Wound on a coiler. From the hot-rolled steel sheet, two types of steel sheets BA and BB were manufactured by the following steps. Table 1 shows the chemical composition of the non-oriented electrical steel sheet obtained from the steel type B slab.

鋼板BAは、以下のように製造した。
熱延鋼板に975℃で60秒の熱延板焼鈍を施し、熱延板焼鈍後の冷却過程で、1パスで30%の圧延(温間圧延)を施し、1.4mm厚に仕上げ、その後室温まで冷却した。このときの圧延は、スタンド入側温度が480℃、スタンド出側温度が410℃であった。
この温間圧延板を酸洗後、20℃(圧延開始温度)で追加圧延を施し0.25mm厚とした。追加圧延中の加工発熱による最高到達温度は75℃であった。その後、970℃20秒の仕上げ焼鈍を施した。
The steel sheet BA was manufactured as follows.
The hot-rolled steel sheet is subjected to hot-rolled sheet annealing at 975 ° C. for 60 seconds, and in the cooling process after the hot-rolled sheet annealing, is subjected to 30% rolling (warm rolling) in one pass to finish to a thickness of 1.4 mm. Cooled to room temperature. In the rolling at this time, the temperature at the stand entrance was 480 ° C, and the temperature at the stand exit was 410 ° C.
After pickling, the warm-rolled sheet was subjected to additional rolling at 20 ° C. (rolling start temperature) to a thickness of 0.25 mm. The highest attainable temperature due to the heat generated during processing during the additional rolling was 75 ° C. Thereafter, finish annealing at 970 ° C. for 20 seconds was performed.

鋼板BBは、以下のように製造した。
熱延鋼板に975℃で60秒の熱延板焼鈍を施し、その後室温まで冷却した。この熱延焼鈍板を酸洗後、20℃(圧延開始温度)で圧延を施し0.25mm厚とした。この圧延中の加工発熱による最高到達温度は75℃であった。その後、970℃20秒の仕上げ焼鈍を施した。
The steel plate BB was manufactured as follows.
The hot-rolled steel sheet was annealed at 975 ° C. for 60 seconds, and then cooled to room temperature. This hot rolled annealed sheet was pickled and then rolled at 20 ° C. (rolling start temperature) to a thickness of 0.25 mm. The maximum temperature due to the heat generated during processing during the rolling was 75 ° C. Thereafter, finish annealing at 970 ° C. for 20 seconds was performed.

得られた鋼板BAおよびBBについて、圧延方向から22.5°おきにエプスタイン試料に切り出し、歪取り焼鈍を施した後、エプスタイン測定を行い、異方性指標B50(anisotropy)を得た。
鋼板BAのB50(anisotropy)は、0.008、鋼板BBのB50(anisotropy)は、0.019であった。
The obtained steel sheets BA and BB were cut into Epstein samples at intervals of 22.5 ° from the rolling direction, subjected to strain relief annealing, and subjected to Epstein measurement to obtain an anisotropy index B50 (anisotropic).
The B50 (anisotropic) of the steel sheet BA was 0.008, and the B50 (anisotropic) of the steel sheet BB was 0.019.

また、鋼板BAまたはBBを用いてステータを作製し、ロータに板厚0.35mmで引張強さ750MPaの高張力鋼板を用いた最高出力5kWの永久磁石同期式高速回転モータを作製した。
それぞれのモータの回転数を変更したときの騒音を、JIS Z8731(1999)に基づき測定した。結果を表2に示す。
それぞれのモータの回転数を変更したときの振動を、JIS C1510(1995)に基づき基準振動加速度は10−5m/sとして、単位dBで評価した。結果を表3に示す。
Further, a stator was manufactured using a steel plate BA or BB, and a permanent magnet synchronous high-speed rotation motor with a maximum output of 5 kW using a high-strength steel plate having a thickness of 0.35 mm and a tensile strength of 750 MPa as a rotor was manufactured.
The noise when the rotation speed of each motor was changed was measured based on JIS Z8731 (1999). Table 2 shows the results.
Vibration when the number of rotations of each motor was changed was evaluated in unit dB based on JIS C1510 (1995) with a reference vibration acceleration of 10 −5 m / s 2 . Table 3 shows the results.

これらの結果から、異方性指標B50(anisotropy)が小さい鋼板BAは、異方性指標B50(anisotropy)が大きい鋼板BBよりも、回転数の全領域において、騒音および振動が低減されていることが確認できる。   From these results, the steel sheet BA having a small anisotropy index B50 (anistropy) has reduced noise and vibration in the entire rotation speed range as compared with the steel sheet BB having a large anisotropy index B50 (anisotropic). Can be confirmed.

(実験2)
鋼種Dのスラブを、加熱温度を1100℃として粗熱延を行い、次いで仕上温度890℃で仕上熱延を行い、熱延鋼板を2.0mm厚に仕上げ、これを600℃に冷却した後、コイラに巻き取った。この熱延鋼板から、以下の工程により2種の鋼板DAおよびDBを製造した。鋼種Dのスラブから得られた無方向性電磁鋼板の化学組成を表4に示す。
(Experiment 2)
A slab of steel type D is subjected to rough hot rolling at a heating temperature of 1100 ° C., and then subjected to finish hot rolling at a finishing temperature of 890 ° C. to finish a hot-rolled steel sheet to a thickness of 2.0 mm and cool it to 600 ° C. Wound on a coiler. From the hot-rolled steel sheet, two types of steel sheets DA and DB were manufactured by the following steps. Table 4 shows the chemical composition of the non-oriented electrical steel sheet obtained from the steel type D slab.

鋼板DAは、以下のように製造した。
熱延鋼板に950℃で30秒の熱延板焼鈍を施し、熱延板焼鈍後の冷却過程で、1パスで30%の圧延を施し、1.4mm厚に仕上げ、その後室温まで冷却した。このときの圧延は、スタンド入側温度が295℃、スタンド出側温度が200℃であった。
この圧延板を酸洗後、26℃(圧延開始温度)で追加圧延を施し0.25mm厚とした。追加圧延中の加工発熱による最高到達温度は80℃であった。その後、970℃で30秒の仕上げ焼鈍を施した。
The steel sheet DA was manufactured as follows.
The hot-rolled steel sheet was subjected to hot-rolled sheet annealing at 950 ° C. for 30 seconds, and in a cooling process after the hot-rolled sheet annealing, was rolled by 30% in one pass, finished to a thickness of 1.4 mm, and then cooled to room temperature. In the rolling at this time, the temperature at the stand entrance was 295 ° C., and the temperature at the stand exit was 200 ° C.
After this pickled plate was pickled, additional rolling was performed at 26 ° C. (rolling start temperature) to a thickness of 0.25 mm. The highest attained temperature due to the heat generated during processing during the additional rolling was 80 ° C. Thereafter, finish annealing was performed at 970 ° C. for 30 seconds.

鋼板DBは、以下のように製造した。
熱延鋼板に950℃で30秒の熱延板焼鈍を施し、熱延板焼鈍後の冷却過程で、1パスで30%の圧延(温間圧延)を施し、1.4mm厚に仕上げ、その後室温まで冷却した。このときの圧延は、スタンド入側温度が550℃、スタンド出側温度が470℃であった。
この温間圧延板を酸洗後、26℃(圧延開始温度)で追加圧延を施し0.25mm厚とした。追加圧延中の加工発熱による最高到達温度は80℃であった。その後、970℃で30秒の仕上げ焼鈍を施した。
The steel plate DB was manufactured as follows.
The hot-rolled steel sheet is subjected to hot-rolled sheet annealing at 950 ° C. for 30 seconds, and in the cooling process after the hot-rolled sheet annealing, is subjected to 30% rolling (warm rolling) in one pass to finish to a thickness of 1.4 mm. Cooled to room temperature. In the rolling at this time, the stand entrance temperature was 550 ° C, and the stand exit temperature was 470 ° C.
After pickling, the warm-rolled sheet was subjected to additional rolling at 26 ° C. (rolling start temperature) to a thickness of 0.25 mm. The highest attained temperature due to the heat generated during processing during the additional rolling was 80 ° C. Thereafter, finish annealing was performed at 970 ° C. for 30 seconds.

得られた鋼板DAおよびDBについて、圧延方向から22.5°おきにエプスタイン試料に切り出し、歪取り焼鈍を施した後、エプスタイン測定を行い、異方性指標B50(anisotropy)を得た。
鋼板DAのB50(anisotropy)は、0.021、鋼板DBのB50(anisotropy)は、0.007であった。
The obtained steel plates DA and DB were cut into Epstein samples at intervals of 22.5 ° from the rolling direction, subjected to strain relief annealing, and subjected to Epstein measurement to obtain an anisotropy index B50 (anisotropic).
B50 (anisotropic) of the steel plate DA was 0.021, and B50 (anisotropic) of the steel plate DB was 0.007.

また、鋼板DAまたはDBを用いてステータを作製し、出力200Wの永久磁石式同期ブラシレス同期モータを作製した。鋼板はステータに使用し、ロータはネオジムボンド磁石を回転軸に取り付け、高速回転に耐えるように炭素繊維でネオジムボンド磁石の周囲を巻いて補強した。
それぞれのモータの回転数を変更したときの騒音を、JIS Z8731(1999)に基づき測定した。結果を表5に示す。
それぞれのモータの回転数を変更したときの振動を、JIS C1510(1995)に基づき基準振動加速度は10−5m/sとして、単位dBで評価した。結果を表6に示す。
Further, a stator was manufactured using the steel plate DA or DB, and a permanent magnet synchronous brushless synchronous motor having an output of 200 W was manufactured. The steel plate was used for the stator, and the rotor was attached with a neodymium bonded magnet on the rotating shaft, and reinforced around the neodymium bonded magnet with carbon fiber to withstand high-speed rotation.
The noise when the rotation speed of each motor was changed was measured based on JIS Z8731 (1999). Table 5 shows the results.
Vibration when the number of rotations of each motor was changed was evaluated in unit dB based on JIS C1510 (1995) with a reference vibration acceleration of 10 −5 m / s 2 . Table 6 shows the results.

これらの結果から、異方性指標B50(anisotropy)が小さい鋼板DBは、異方性指標B50(anisotropy)が大きい鋼板DAよりも、回転数の全領域において、騒音および振動が低減されていることが確認できる。この結果は、上述の実験1と同様であり、異方性指標B50(anisotropy)の制御による騒音および振動の低減効果は、モータ種類によらず得られることが確認できた。   From these results, the steel plate DB having a small anisotropy index B50 (anisotropic) has reduced noise and vibration in the entire rotation speed range as compared with the steel plate DA having a large anisotropy index B50 (anisotropic). Can be confirmed. The results are the same as those in Experiment 1 described above, and it has been confirmed that the effect of reducing noise and vibration by controlling the anisotropy index B50 (anisotropic) can be obtained regardless of the type of motor.

次いで、本発明の実施形態に係る無方向性電磁鋼板の製造方法、及びこの製造方法によって製造される無方向性電磁鋼板について詳細に説明する。
なお、本明細書中において、「〜」を用いて表される数値範囲は、特に断りの無い限り、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Next, a method for manufacturing a non-oriented electrical steel sheet according to an embodiment of the present invention and a non-oriented electrical steel sheet manufactured by this manufacturing method will be described in detail.
In addition, in this specification, unless otherwise specified, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.

<無方向性電磁鋼板>
本実施形態に係る無方向性電磁鋼の製造方法によって製造される無方向性電磁鋼板(以下単に「本実施形態に係る無方向性電磁鋼板」とも称す)は、圧延方向に対して、0°、22.5°、45°、67.5°、及び90°の角度の方向での、磁界強度5000A/mにおける磁束密度をそれぞれB50(0°)、B50(22.5°)、B50(45°)、B50(67.5°)、及びB50(90°)と表記した際に、下記式(1)で規定される異方性指標B50(anisotropy)が0.017以下である。

式(1)
<Non-oriented electrical steel sheet>
A non-oriented electrical steel sheet manufactured by the method for manufacturing a non-oriented electrical steel sheet according to the present embodiment (hereinafter, also simply referred to as a “non-oriented electrical steel sheet according to the present embodiment”) is 0 ° with respect to the rolling direction. , 22.5 °, 45 °, 67.5 °, and 90 °, the magnetic flux densities at a magnetic field strength of 5000 A / m are B 50 (0 °) , B 50 (22.5 °) , When expressed as B 50 (45 °) , B 50 (67.5 °) , and B 50 (90 °) , the anisotropy index B50 (anisotropic) defined by the following formula (1) is 0.017. It is as follows.

Equation (1)

ここで、式(1)中、B50AVEは、下記式(2)で規定される。

式(2)
Here, in the equation (1), B50AVE is defined by the following equation (2).

Equation (2)

・異方性指標B50(anisotropy)
本実施形態では磁束密度の全周方向の異方性は式(1)で評価する。つまり、式(1)で規定される異方性指標B50(anisotropy)は、圧延方向に対して、0°、22.5°、45°、67.5°、及び90°の角度の方向での、磁界強度5000A/mにおける磁束密度の差を指標化したものである。この式(1)で規定される異方性指標B50(anisotropy)が0.017以下であることにより、全周方向の磁束密度の異方性が小さくなる。
これにより、モータ等の回転機に適用した場合であれば、回転時のトルク変動が低減し、騒音および振動が低減し、最高回転数を上昇させられるなど、回転鉄心の特性が向上する。
また、その他のEIコア、額縁コア等に適用した場合においても、ヨークの方向による磁束の流れやすさの変化が低減し、磁気特性の均一性が高い鉄心となり、磁気吸引力が向上する、磁化力向上により電流が少なくてすむなど、鉄心特性が向上可能である。
なお、異方性指標B50(anisotropy)の下限値は0以上である。
-Anisotropy index B50 (anisotropic)
In the present embodiment, the anisotropy in the circumferential direction of the magnetic flux density is evaluated by Expression (1). That is, the anisotropy index B50 (anisotropic) defined by the expression (1) is 0 °, 22.5 °, 45 °, 67.5 °, and 90 ° with respect to the rolling direction. Of the magnetic flux density at a magnetic field intensity of 5000 A / m. When the anisotropy index B50 (anisotropy) defined by the expression (1) is 0.017 or less, the anisotropy of the magnetic flux density in all circumferential directions decreases.
Thus, when applied to a rotating machine such as a motor, the characteristics of the rotating core are improved, such as a reduction in torque fluctuation during rotation, a reduction in noise and vibration, and an increase in the maximum number of revolutions.
Also, when applied to other EI cores, picture frame cores, etc., the change in the ease of flow of the magnetic flux depending on the direction of the yoke is reduced, the iron core with high uniformity of the magnetic characteristics is obtained, and the magnetic attraction force is improved. The iron core characteristics can be improved, for example, the current can be reduced by improving the force.
The lower limit of the anisotropy index B50 (anisotropy) is 0 or more.

異方性指標B50(anisotropy)は、全周方向の磁束密度の異方性低減の観点から、より好ましくは0.015以下であり、さらに好ましくは0.013以下である。
また、異方性指標B50(anisotropy)の下限値は、特に限定されるものではないが、製造性安定の観点では、0.003以上が好ましく、0.005以上がより好ましい。
The anisotropy index B50 (anisotropy) is more preferably 0.015 or less, and still more preferably 0.013 or less, from the viewpoint of reducing the anisotropy of the magnetic flux density in all circumferential directions.
In addition, the lower limit of the anisotropy index B50 (anisotropic) is not particularly limited, but is preferably 0.003 or more, more preferably 0.005 or more, from the viewpoint of stable production.

磁束密度は、エプスタイン試料を切断し、JISのC2550−1に定められたエプスタイン法に従って、磁界強度5000A/mにおける磁束密度の測定を行う。
無方向性電磁鋼板における異方性指標B50(anisotropy)は、以下に示す本実施形態に係る無方向性電磁鋼板の製造方法によって作製することで、上記の範囲に制御することができる。
The magnetic flux density is obtained by cutting an Epstein sample and measuring the magnetic flux density at a magnetic field intensity of 5000 A / m according to the Epstein method specified in JIS C2550-1.
The anisotropy index B50 (anisotropic) of the non-oriented electrical steel sheet can be controlled in the above range by producing the anisotropy index B50 (anisotropic) by the following method for manufacturing a non-oriented electrical steel sheet according to the present embodiment.

・平均磁束密度B50(LC)
本実施形態に係る無方向性電磁鋼板は、圧延方向での磁界強度5000A/mにおける磁束密度BB50(0°)及び圧延方向に対して直角となる方向での磁界強度5000A/mにおける磁束密度BB50(90°)の算術平均である平均磁束密度B50(LC)は、高い方が好ましく、例えば1.64T以上が好ましい。平均磁束密度B50(LC)が1.64T以上であることにより、無方向性電磁鋼板の高い磁束密度が実現され、モータ等の回転機に適用した場合であれば高速回転や高周波励磁を実現でき、高効率化が図れる。
平均磁束密度B50(LC)は、より好ましくは1.66T以上であり、さらに好ましくは1.68T以上である。
また、平均磁束密度B50(LC)の上限値は、特に限定されるものではないが、異方性を安定的に低減する観点では、1.90T以下が好ましく、1.80T以下がより好ましい。
平均磁束密度B50(LC)を1.64T以上の範囲に制御する方法としては、特に限定されるものではないが、例えば以下に示す本実施形態に係る無方向性電磁鋼板の製造方法によって作製する方法が挙げられる。
・ Average magnetic flux density B 50 (LC)
The non-oriented electrical steel sheet according to this embodiment has a magnetic flux density BB50 (0 °) at a magnetic field strength of 5000 A / m in the rolling direction and a magnetic flux density at a magnetic field strength of 5000 A / m perpendicular to the rolling direction. The average magnetic flux density B50 ( LC) , which is the arithmetic average of BB50 (90 °) , is preferably higher, for example, 1.64T or more. When the average magnetic flux density B50 (LC) is 1.64T or more, high magnetic flux density of the non-oriented electrical steel sheet is realized, and when applied to a rotating machine such as a motor, high-speed rotation and high-frequency excitation are realized. And high efficiency can be achieved.
Average magnetic flux density B50 (LC) is more preferably 1.66 T or more, and still more preferably 1.68 T or more.
The upper limit of the average magnetic flux density B50 (LC) is not particularly limited, but is preferably 1.90 T or less, more preferably 1.80 T or less, from the viewpoint of stably reducing anisotropy. .
The method for controlling the average magnetic flux density B50 (LC) to be in the range of 1.64 T or more is not particularly limited. For example, the method is manufactured by the following method for manufacturing a non-oriented electrical steel sheet according to the present embodiment. Method.

・鉄損
本実施形態に係る無方向性電磁鋼板においては、その鉄損(W10/400)は、低い方が好ましい。
例えばその範囲としては、板厚0.20mm材においては、7.5W/kg以上11.0W/kg以下(より好ましくは7.8W/kg以上10.5W/kg以下)であることが好ましく、板厚0.25mm材においては、8.0W/kg以上12.5W/kg以下(より好ましくは8.5W/kg以上11.5W/k以下)が好ましく、板厚0.30mm材においては、11.0W/kg以上15.0W/kg以下(より好ましくは11.5W/kg以上13.5W/kg以下)であることが好ましく、板厚0.35mm材においては、14.0W/kg以上20.0W/kg以下(より好ましくは14.5W/kg以上18.0W/kg以下)であることが好ましい。板厚がさらに増す場合はそれに応じて適切な鉄損の範囲が定まる。鉄損の下限は、冷間圧延安定性および安定した特性を得るなどの製造安定性の観点から定まる。鉄損の上限は、高効率鉄心に求められる板厚ごとに定まる特性から定められる。
鉄損としては、エプスタイン試料に切断し、インバータ励磁をエプスタイン法で測定した時に生じる鉄損を用いる。具体的には、磁束密度1.0T、周波数400Hzで磁化した際の鉄損W10/400(W/kg)を用いる。
-Iron loss In the non-oriented electrical steel sheet according to the present embodiment, the iron loss ( W10 / 400 ) is preferably lower.
For example, the range is preferably 7.5 W / kg or more and 11.0 W / kg or less (more preferably 7.8 W / kg or more and 10.5 W / kg or less) for a 0.20 mm thick material. In a 0.25 mm-thick material, it is preferably 8.0 W / kg or more and 12.5 W / kg or less (more preferably, 8.5 W / kg or more and 11.5 W / k or less). In a 0.30 mm-thick material, It is preferably 11.0 W / kg or more and 15.0 W / kg or less (more preferably 11.5 W / kg or more and 13.5 W / kg or less). For a 0.35 mm thick material, 14.0 W / kg or more. It is preferably 20.0 W / kg or less (more preferably 14.5 W / kg or more and 18.0 W / kg or less). When the sheet thickness further increases, an appropriate iron loss range is determined accordingly. The lower limit of the iron loss is determined from the viewpoint of production stability such as cold rolling stability and obtaining stable characteristics. The upper limit of the iron loss is determined from characteristics determined for each sheet thickness required for a high-efficiency iron core.
As the iron loss, an iron loss generated when the sample is cut into an Epstein sample and the inverter excitation is measured by the Epstein method is used. Specifically, an iron loss W 10/400 (W / kg) when magnetized at a magnetic flux density of 1.0 T and a frequency of 400 Hz is used.

<無方向性電磁鋼板の製造方法>
本実施形態に係る無方向性電磁鋼板の製造方法は、スラブに熱間圧延を施し、熱延鋼板とする熱間圧延工程と、熱間圧延後の熱延鋼板に、800℃以上1080℃以下で5秒以上2分以下の熱延板焼鈍を施す熱延板焼鈍工程と、熱延板焼鈍の冷却過程において、400℃以上700℃以下の温度域で圧下率3%以上75%以下の温間圧延を圧延板に施す温間圧延工程と、温間圧延後の圧延板に、仕上焼鈍を施す仕上焼鈍工程と、を備える。そして、これらの工程を経ることで、前記式(1)で規定される異方性指標B50(anisotropy)が前述の範囲である無方向性電磁鋼板を製造する。
<Production method of non-oriented electrical steel sheet>
The manufacturing method of the non-oriented electrical steel sheet according to the present embodiment is to perform hot rolling on the slab, to perform a hot rolling step to make a hot-rolled steel sheet, and to hot-rolled steel sheet after hot rolling, at 800 ° C or more and 1080 ° C or less. In the hot-rolled sheet annealing step of performing hot-rolled sheet annealing for 5 seconds or more and 2 minutes or less, and in the cooling process of hot-rolled sheet annealing, a temperature reduction of 3% or more and 75% or less in a temperature range of 400 ° C or more and 700 ° C or less. The method includes a warm rolling step of performing cold rolling on a rolled sheet, and a finish annealing step of performing finish annealing on the rolled sheet after the warm rolling. Then, through these steps, a non-oriented electrical steel sheet in which the anisotropy index B50 (anisotropic) defined by the formula (1) is in the above range is manufactured.

温間圧延は2回以上に分けて行うことも可能である。2回目以降の温間圧延は、温間圧延の温度域より十分に高い温度域で中間焼鈍を実施し、その冷却過程の400℃以上700℃以下の温度域で実施してもよい。   The warm rolling can be performed twice or more. The second and subsequent warm rolling may be performed by performing intermediate annealing in a temperature range sufficiently higher than the temperature range of the warm rolling, and may be performed in a temperature range of 400 ° C. or more and 700 ° C. or less in the cooling process.

本実施形態の無方向性電磁鋼板の製造方法によれば、磁束密度を向上させつつかつ磁束密度の異方性を低減した無方向性電磁鋼板が得られる。   According to the method for manufacturing a non-oriented electrical steel sheet of the present embodiment, a non-oriented electrical steel sheet having improved magnetic flux density and reduced anisotropy of magnetic flux density can be obtained.

以下、本実施形態に係る無方向性電磁鋼板の製造方法について、工程順に詳細に説明する。   Hereinafter, the method for manufacturing a non-oriented electrical steel sheet according to the present embodiment will be described in detail in the order of steps.

1.熱間圧延工程
本実施形態の無方向性電磁鋼板の製造方法は、まずスラブに熱間圧延(熱延)が施される。なお、本実施形態に用い得るスラブ、スラブから得られる無方向性電磁鋼板等の化学組成等については、後に詳述する。
熱間圧延の各種条件は特に限定されるものではなく、公知の条件に従って実施すればよい。例えば、厚さが150〜300mmのスラブが、1000〜1300℃に加熱され、最終的な圧延スタンドの出側温度を800〜1100℃として、1〜3mmの厚さに圧延される。圧延スタンドを出た鋼板は、400〜900℃に冷却されたうえで、コイルに巻き取られる。
1. Hot Rolling Step In the method for producing a non-oriented electrical steel sheet of the present embodiment, first, a slab is subjected to hot rolling (hot rolling). The slab that can be used in the present embodiment and the chemical composition of the non-oriented electrical steel sheet and the like obtained from the slab will be described later in detail.
Various conditions of the hot rolling are not particularly limited, and may be performed according to known conditions. For example, a slab having a thickness of 150 to 300 mm is heated to 1000 to 1300 ° C., and is rolled to a thickness of 1 to 3 mm with the final temperature of the exit of the rolling stand being 800 to 1100 ° C. The steel sheet that has exited the rolling stand is cooled to 400 to 900 ° C. and wound around a coil.

2.熱延板焼鈍工程
本実施形態の製造方法では、熱間圧延工程を完了した熱延鋼板に熱延板焼鈍を施す。
熱延板焼鈍の各種条件は特に限定されるものではなく、公知の条件に従って実施すればよい。
最高到達温度は、例えば800℃以上1080℃以下、好ましくは830℃以上1050℃以下、さらに好ましくは850以上1000℃以下で施す。800℃未満ではその効果が不十分であり、1080℃超では、鋼板の表面酸化を防ぐことが困難となるので1080℃以下に定める。
また、保定時間は、例えば5秒以上2分以下、好ましくは10秒以上90秒以下、さらに好ましくは15秒以上60秒以下である。
2. Hot Rolled Sheet Annealing Step In the manufacturing method of the present embodiment, hot rolled sheet annealing is performed on the hot rolled steel sheet that has completed the hot rolling step.
Various conditions for hot-rolled sheet annealing are not particularly limited, and may be performed according to known conditions.
The maximum temperature is, for example, 800 ° C. to 1080 ° C., preferably 830 ° C. to 1050 ° C., and more preferably 850 ° C. to 1000 ° C. If the temperature is lower than 800 ° C., the effect is insufficient. If the temperature exceeds 1080 ° C., it is difficult to prevent the surface oxidation of the steel sheet.
The retention time is, for example, 5 seconds or more and 2 minutes or less, preferably 10 seconds or more and 90 seconds or less, and more preferably 15 seconds or more and 60 seconds or less.

3.温間圧延工程
本実施形態の製造方法では、熱延板焼鈍の後、熱延板焼鈍の冷却過程において温間圧延を実施する。この温間圧延を、前記の熱延板焼鈍の冷却過程で実施することは、本実施形態の製造方法の大きな特徴である。
本明細書において温間圧延とは、400℃以上700℃以下の温度域で実施する圧延を指す。圧延においては、加工発熱による鋼板温度の上昇も考えられるが、上記温度範囲であれば一般的には圧延ロールによる抜熱が大きく、圧延中に鋼板温度は低下する傾向が大きい。よって、熱延板焼鈍の冷却過程において、上記温度範囲での圧延を実施するためには、鋼板温度が400℃に達する前に圧延を開始すべきである。
好ましくは425℃以上650℃以下、さらに好ましくは450℃以上600℃以下で行う。なお、本実施形態においては、圧延スタンド入側および出側温度の両方が上記温度範囲内にある場合を温間圧延が実施されたとする。これは、温間圧延中の加工発熱やロールの抜熱による鋼板の温度変化を含めて鋼板が本実施形態の温度範囲を満たす必要があるからである。
3. Warm Rolling Step In the manufacturing method of the present embodiment, after the hot rolled sheet annealing, warm rolling is performed in a cooling process of the hot rolled sheet annealing. Performing this warm rolling in the cooling process of the hot-rolled sheet annealing is a major feature of the manufacturing method of the present embodiment.
In this specification, warm rolling refers to rolling performed in a temperature range of 400 ° C. or more and 700 ° C. or less. In rolling, it is conceivable that the temperature of the steel sheet increases due to the heat generated during processing. However, in the above temperature range, generally, the heat removal by the rolling rolls is large, and the temperature of the steel sheet tends to decrease during rolling. Therefore, in the cooling process of hot-rolled sheet annealing, in order to perform rolling in the above temperature range, rolling should be started before the steel sheet temperature reaches 400 ° C.
The heating is preferably performed at 425 ° C to 650 ° C, more preferably at 450 ° C to 600 ° C. In the present embodiment, it is assumed that warm rolling is performed when both the entrance and exit temperatures of the rolling stand are within the above temperature range. This is because the steel sheet needs to satisfy the temperature range of the present embodiment, including the temperature change of the steel sheet due to the heat generated during processing and the removal of heat from the roll during warm rolling.

温間圧延は上で説明した熱延板焼鈍の冷却過程における1回の工程で実施するだけでなく、これに加えて2回以上の工程で実施することも可能である。
2回目以降の温間圧延を実施する場合、1回目の温間圧延を完了した鋼板を再加熱して温間圧延を実施することとなる。この際、温間圧延前に再加熱を行ったことをもって1回目と2回目、さらに3回目以降の温間圧延を区別する。2回目以降の温間圧延の前には、後述する中間焼鈍を実施してもよいが、この場合、2回目以降の温間圧延を中間焼鈍の冷却過程の400℃以上700℃以下の温度域で実施することも可能である。
The warm rolling can be performed not only in one step in the cooling process of the hot-rolled sheet annealing described above, but also in two or more steps in addition to this.
When performing the second or subsequent warm rolling, the steel sheet that has been subjected to the first warm rolling is reheated to perform the warm rolling. At this time, the first time, the second time, and the third and subsequent warm rolling are distinguished by performing reheating before the warm rolling. Before the second and subsequent warm rolling, intermediate annealing described below may be performed. In this case, the second and subsequent warm rolling is performed in a temperature range of 400 ° C or more and 700 ° C or less in the cooling process of the intermediate annealing. It is also possible to carry out.

温間圧延を熱延板焼鈍の冷却過程で実施することで、全周方向の磁束密度の異方性を低減した無方向性電磁鋼板を作製し得る理由については明確ではないが、以下のように推測している。
熱延板焼鈍の冷却過程という状況の特徴としては、次の3点が挙げられる。1点目は、冷却過程であるため、圧延される鋼板において表層の温度が中心層よりも有意に低くなっていることが考えられる。例えば、710℃に加熱保持した鋼板の700℃時点での表内層の温度差よりも、1000℃に加熱保持した鋼板の冷却過程での700℃時点での表内層温度差の方が大きいと考えられる。2点目は、直前の熱処理温度が異なれば、冷却中の析出物の状態が異なっていることが考えられる。特に熱延板焼鈍のような高温短時間の熱処理においては、鋼板表層は過加熱状態になることが考えられ、単純に1000℃での熱延板焼鈍においても鋼板表層では析出物の溶解や酸化または窒化などを含めて、析出物の形態が大きく変化していることが考えられる。さらに3点目としては、単純に圧延される鋼板の板厚が厚いということである。これは、同じ圧下率であっても厚手の方が板厚減厚量が大きいため、温間圧延の効果がより顕著になると発明者らは推察している。
これらの状況において、上記範囲での圧延を実施することで、鋼板表層と中心層の結晶回転が特別なものとなり、必要に応じて実施する冷間圧延、さらに仕上焼鈍後の集合組織が本実施形態で規定する異方性指標B50(anisotropy)を満足するものとなると考えられる。
It is not clear why warm rolling is performed in the cooling process of hot-rolled sheet annealing to produce a non-oriented electrical steel sheet with reduced anisotropy of magnetic flux density in all circumferential directions, but it is not clear as follows. I guess.
The following three points are characteristic of the situation of the cooling process of hot-rolled sheet annealing. The first point is that the temperature of the surface layer of the steel sheet to be rolled is significantly lower than that of the center layer because of the cooling process. For example, it is considered that the temperature difference between the inner surface layer at the time of 700 ° C. in the cooling process of the steel sheet heated and maintained at 1000 ° C. is larger than the temperature difference of the inner surface layer at the time of 700 ° C. of the steel plate heated and maintained at 710 ° C. Can be Second, it is considered that if the immediately preceding heat treatment temperature is different, the state of the precipitate during cooling is different. In particular, in a heat treatment at a high temperature for a short time such as hot-rolled sheet annealing, the surface layer of the steel sheet is considered to be in an overheated state. Alternatively, it is conceivable that the form of the precipitate is largely changed, including nitriding. A third point is that the thickness of the steel sheet to be simply rolled is large. The inventors presume that this is because the effect of warm rolling becomes more remarkable because a thicker sheet has a larger thickness reduction even at the same reduction ratio.
In these circumstances, by performing rolling in the above range, the crystal rotation of the steel sheet surface layer and the central layer becomes special, and the cold rolling to be performed as necessary, and further the texture after finish annealing are carried out. It is considered that the anisotropy index B50 (anisotropy) defined by the form is satisfied.

温間圧延の圧下率は3%以上75%以下、好ましくは5%以上70%以下、さらに好ましくは10%以上65%以下である。3%未満であると、磁束密度の異方性低減の効果が得られないので3%以上と定める。75%超であると、磁束密度の異方性が拡大するので75%以下に定める。
温間圧延を2回以上に分けて実施する場合、圧下率は各回の温間圧延で付与された真歪の合計を換算して求める。すなわち、1回の温間圧延における入側板厚をl、出側板厚をlとしたとき、1回の温間圧延において付与された真歪をln(l/l)として、複数回の温間圧延についての真歪を合計する。上述した温間圧延の圧下率の適正範囲である3%以上75%以下は、真歪に換算すると、真歪の合計で0.031以上1.386以下となる。
The rolling reduction of the warm rolling is 3% or more and 75% or less, preferably 5% or more and 70% or less, and more preferably 10% or more and 65% or less. If it is less than 3%, the effect of reducing the anisotropy of the magnetic flux density cannot be obtained, so it is determined to be 3% or more. If it exceeds 75%, the anisotropy of the magnetic flux density increases, so it is set to 75% or less.
When performing the warm rolling in two or more times, the rolling reduction is obtained by converting the sum of the true strains imparted in each of the warm rolling. That is, assuming that the incoming side sheet thickness in one warm rolling is l 0 and the outgoing side sheet thickness is l, the true strain imparted in one warm rolling is ln (l 0 / l), and a plurality of times The true strain for warm rolling is summed. When the above-mentioned appropriate range of the rolling reduction of the warm rolling is 3% or more and 75% or less, the total true strain is 0.031 or more and 1.386 or less when converted to true strain.

4.中間焼鈍工程
中間焼鈍は、温間圧延の後、鋼板の温度を700℃超に上昇させる工程である。中間焼鈍は、直前の温間圧延板を冷却(例えば室温程度まで冷却)した後、再加熱して実施してもよいし、温間圧延後に400℃以上の温度を保ったまま(例えば温間圧延の終了温度から温度を下げないまま)再加熱して中間焼鈍を施してもよい。中間焼鈍の温度は700℃超とすることでその磁気特性向上効果が良好に得られる点で好ましい。中間焼鈍の温度の上限は1080℃とすることが好ましい。1080℃以下とすることで、鋼帯の表面酸化を良好に防ぐことができる。
中間焼鈍における保定時間は、好ましくは5秒以上2分以下、より好ましくは10秒以上90秒以下、さらに好ましくは15秒以上60秒以下である。中間焼鈍を2回以上施す場合、保定時間は各回の合計時間とする。5秒以上とすることでその磁気特性向上効果が良好に得られるので5秒以上が好ましい。2分以下であればその磁気特性改善効果が飽和せず、つまり磁気特性改善効果への寄与が低い焼鈍を抑制できるので2分以下が好ましい。
4. Intermediate annealing step Intermediate annealing is a step of raising the temperature of a steel sheet to over 700 ° C. after warm rolling. The intermediate annealing may be performed by cooling the immediately preceding hot-rolled sheet (for example, cooling to about room temperature) and then reheating the sheet, or may be performed while maintaining the temperature of 400 ° C. or more after the warm rolling (for example, during warming). Intermediate annealing may be performed by reheating (without lowering the temperature from the end temperature of rolling). It is preferable that the temperature of the intermediate annealing be higher than 700 ° C. since the effect of improving the magnetic properties can be obtained well. The upper limit of the temperature of the intermediate annealing is preferably set to 1080 ° C. By setting the temperature to 1080 ° C. or lower, surface oxidation of the steel strip can be favorably prevented.
The retention time in the intermediate annealing is preferably from 5 seconds to 2 minutes, more preferably from 10 seconds to 90 seconds, even more preferably from 15 seconds to 60 seconds. When the intermediate annealing is performed two or more times, the holding time is a total time of each time. When the time is 5 seconds or longer, the effect of improving the magnetic properties can be favorably obtained. If the time is less than 2 minutes, the effect of improving the magnetic properties is not saturated, that is, annealing that does not contribute to the effect of improving the magnetic properties can be suppressed.

なお、温間圧延または中間焼鈍を2回以上実施する場合、各回の実施条件は同じである必要はなく、異なっていても構わない。   When the warm rolling or the intermediate annealing is performed two or more times, the conditions for each time need not be the same, and may be different.

5.冷間圧延工程
本実施形態では、必要に応じて冷間圧延を実施してもよい。
本明細書において冷間圧延とは、400℃未満の温度域で実施する圧延を指す。上述の温間圧延との区別を考慮すれば、圧延スタンドの入側または出側温度の少なくとも一方が400℃未満である圧延を冷間圧延と判断する。好ましくは5℃以上250℃以下、より好ましくは25℃以上200℃以下、さらに好ましくは35℃以上150℃以下で行われる。冷間圧延の温度の下限は鋼板の圧延安定性確保の観点から上記範囲が好ましく、上限はロール、潤滑油の寿命を延長し、冷間圧延機の保守コストを低減する観点から上記範囲が好ましい。
ただし、鋼板の硬度が高いなどの場合には、圧延性安定のために、温水によるホットバス加熱、誘導加熱などの公知の方法によりコイル状態で鋼板を加熱し、圧延スタンドの入側での鋼板温度を例えば50℃以上まで上昇させてもよい。この場合、加工発熱により圧延スタンドの出側での鋼板の温度が200℃程度に到達することがある。
また、加工発熱を利用して鋼板の硬度を低下させ、薄板材の通板性を向上させるために、潤滑油を少なくして加工発熱を促進し、鋼板温度を250℃を上限として上昇させることを行ってもよい。
5. Cold Rolling Step In the present embodiment, cold rolling may be performed as necessary.
In this specification, cold rolling refers to rolling performed in a temperature range of less than 400 ° C. In consideration of the distinction from the above-mentioned warm rolling, the rolling in which at least one of the inlet and outlet temperatures of the rolling stand is less than 400 ° C. is determined to be cold rolling. The reaction is preferably carried out at 5 ° C to 250 ° C, more preferably at 25 ° C to 200 ° C, even more preferably at 35 ° C to 150 ° C. The lower limit of the temperature of the cold rolling is preferably the above range from the viewpoint of ensuring the rolling stability of the steel sheet, and the upper limit is preferably the above range from the viewpoint of extending the life of the roll and the lubricating oil and reducing the maintenance cost of the cold rolling mill. .
However, when the hardness of the steel sheet is high, the steel sheet is heated in a coil state by a known method such as hot bath heating with hot water, induction heating, or the like, in order to stabilize the rolling property, and the steel sheet at the entrance side of the rolling stand is heated. The temperature may be raised, for example, to 50 ° C. or higher. In this case, the temperature of the steel sheet at the exit side of the rolling stand may reach about 200 ° C. due to the heat generated during processing.
In addition, in order to reduce the hardness of the steel sheet by using the heat generated during processing and to improve the passability of the sheet material, the lubricating oil is reduced to promote the heat generated during processing, and the temperature of the steel sheet is raised up to 250 ° C. as an upper limit. May be performed.

なお、2回目以降の温間圧延と冷間圧延を実施するタイミングについては、様々なパターンが可能であるが、前述のように本実施形態における温間圧延は、板厚が厚い状況で実施すべきであることを考慮すると、2回目の温間圧延を冷間圧延よりも先に実施することが有利となる。
なお、熱間圧延完了以降、冷間圧延に先立つ過程において、酸洗を施してもよい。
Although various patterns are possible for the timing of performing the second and subsequent warm rolling and cold rolling, as described above, the warm rolling in the present embodiment is performed in a situation where the sheet thickness is large. Considering what should be done, it is advantageous to perform the second warm rolling before the cold rolling.
After completion of hot rolling, pickling may be performed in a process prior to cold rolling.

冷間圧延の圧下率は、本実施形態の作用効果を得ることができれば特に限定されるものではないが、50%以上97%以下とすることが好ましく、中でも60%以上88%以下とすることが好ましい。圧下率が50%以上であることで、仕上焼鈍後に適切な磁気特性を達成することが容易となる。また、圧下率が97%以下であることで、無方向性電磁鋼板の集合組織を適切に制御出来、鉄損を低下させ易くなる。   The rolling reduction of the cold rolling is not particularly limited as long as the operation and effect of the present embodiment can be obtained, but is preferably 50% or more and 97% or less, and particularly preferably 60% or more and 88% or less. Is preferred. When the rolling reduction is 50% or more, it becomes easy to achieve appropriate magnetic properties after finish annealing. When the rolling reduction is 97% or less, the texture of the non-oriented electrical steel sheet can be appropriately controlled, and iron loss can be easily reduced.

本実施形態では、上記の温間圧延を経て(必要に応じてさらに冷間圧延を経て)、最終的な圧延板の板厚を0.10mm以上0.65mm以下とすることが好ましく、中でも0.15mm以上0.35mm以下とすることが好ましい。   In the present embodiment, the thickness of the final rolled plate is preferably 0.10 mm or more and 0.65 mm or less after the above-mentioned warm rolling (and further cold rolling if necessary), and particularly preferably It is preferable that the thickness be not less than .15 mm and not more than 0.35 mm.

6.仕上焼鈍工程
仕上焼鈍工程においては、温間圧延工程(さらに冷間圧延を施す場合には冷間圧延工程)を完了した圧延板に仕上焼鈍を施す。
6. Finish Annealing Step In the finish annealing step, a finish annealing is performed on the rolled sheet that has been subjected to the warm rolling step (and further to the cold rolling step when cold rolling is performed).

仕上焼鈍条件としては、本実施形態の作用効果を得ることができれば特に限定されるものではない。ただし、焼鈍時の酸化を防止して鉄損増大を防ぐとともに結晶粒を制御して鉄損を低減する目的から、700℃以上1100℃以下の温度域に保持することが好ましく、中でも750℃以上1050℃以下の温度域に保持することが好ましい。また、その際の保持時間としては、0.1秒間以上120秒間以下保持することが好ましく、10秒間以上60秒間以下保持することが好ましい。   The conditions of the finish annealing are not particularly limited as long as the operation and effect of the present embodiment can be obtained. However, for the purpose of preventing oxidation during annealing to prevent an increase in iron loss and controlling crystal grains to reduce iron loss, it is preferable that the temperature is maintained in a temperature range of 700 ° C. or more and 1100 ° C. or less, and especially 750 ° C. or more. It is preferable to maintain the temperature in a temperature range of 1050 ° C. or lower. In this case, the holding time is preferably from 0.1 to 120 seconds, and more preferably from 10 to 60 seconds.

7.その他の工程
本実施形態の無方向性電磁鋼板の製造方法は、上記仕上焼鈍工程後に、上記仕上焼鈍工程により得られた鋼板表面にコーティング液を塗布し、焼き付けることによって、絶縁被膜を形成する絶縁被膜形成工程を有していてもよい。絶縁被膜形成条件及びコーティング液は、通常用いられる材料により公知の方法によって行われる。
7. Other Steps The method for manufacturing a non-oriented electrical steel sheet according to the present embodiment is characterized in that, after the above-described finish annealing step, a coating liquid is applied to the steel sheet surface obtained by the above-mentioned finish annealing step and baked to form an insulating film. A film forming step may be provided. The conditions for forming the insulating film and the coating liquid are performed by a known method using commonly used materials.

<スラブ及び無方向性電磁鋼板の化学組成>
次いで、本実施形態に係る無方向性電磁鋼板の製造方法に用いられるスラブ、及び該製造方法によって得られる無方向性電磁鋼板の化学組成について説明する。
本実施形態に係る製造方法によって得られる無方向性電磁鋼板の化学組成としては、本実施形態の作用効果を得ることができれば特に限定されるものではなく、例えば、一般的な無方向性電磁鋼板における母鋼板の化学組成を用いることができる。また、本実施形態に係る製造方法に用い得るスラブの化学組成についても、前記無方向性電磁鋼板と同様である。
上記化学組成としては、質量%でSi:0.1%以上3.8%以下、Mn:0.1%以上2.5%以下、及びAl:0%以上2.5%以下、を含有し、残部がFe及び不純物からなるものが好ましい。
以下、各成分の好ましい含有量を説明する。以下において、各成分の含有量は質量%での値である。
<Chemical composition of slab and non-oriented electrical steel sheet>
Next, the slab used in the method for manufacturing a non-oriented electrical steel sheet according to the present embodiment and the chemical composition of the non-oriented electrical steel sheet obtained by the manufacturing method will be described.
The chemical composition of the non-oriented electrical steel sheet obtained by the manufacturing method according to the present embodiment is not particularly limited as long as the effects of the present embodiment can be obtained, for example, a general non-oriented electrical steel sheet Can be used. Also, the chemical composition of the slab that can be used in the manufacturing method according to the present embodiment is the same as that of the non-oriented electrical steel sheet.
The chemical composition contains, by mass%, Si: 0.1% to 3.8%, Mn: 0.1% to 2.5%, and Al: 0% to 2.5%. Preferably, the balance is made of Fe and impurities.
Hereinafter, preferable contents of each component will be described. In the following, the content of each component is a value in mass%.

a.Si
Si含有量は0.1%以上3.8%以下とすることが好ましい。
a. Si
It is preferable that the Si content be 0.1% or more and 3.8% or less.

Siは比抵抗を増加させる作用を有しているので、鉄損低減に寄与する。このため、鉄損低減の観点から、Si含有量は0.1%以上とすることが好ましく、中でも1.0%以上、特に2.0%以上とすることが好ましい。一方、磁気特性及び圧延製造性を改善し、仕上焼鈍温度の上昇を抑制する観点から、Si含有量は3.8%以下とすることが好ましく、中でも3.6%以下、特に3.4%以下とすることが好ましい。   Since Si has an effect of increasing the specific resistance, it contributes to reducing iron loss. Therefore, from the viewpoint of reducing iron loss, the Si content is preferably set to 0.1% or more, particularly preferably 1.0% or more, particularly preferably 2.0% or more. On the other hand, from the viewpoint of improving magnetic properties and rolling manufacturability and suppressing an increase in the finish annealing temperature, the Si content is preferably set to 3.8% or less, among which 3.6% or less, particularly 3.4%. It is preferable to set the following.

b.Mn
Mn含有量は0.1%以上2.5%以下とすることが好ましい。
b. Mn
It is preferable that the Mn content be 0.1% or more and 2.5% or less.

Mnも比抵抗を増加させる作用を有しているので、鉄損低減に寄与する。このため、鉄損低減の観点から、Mn含有量は0.1%以上とすることが好ましく、さらに0.2%以上、中でも0.5%以上とすることが好ましい。多過ぎると再結晶組織を微細化させ鉄損を増加させるため、2.5%以下とすることが好ましく、中でも1.3%以下、さらに1.0%以下とすることが好ましい。   Since Mn also has the effect of increasing the specific resistance, it contributes to reducing iron loss. Therefore, from the viewpoint of reducing iron loss, the Mn content is preferably set to 0.1% or more, more preferably 0.2% or more, particularly preferably 0.5% or more. If the content is too large, the recrystallized structure is refined and iron loss is increased. Therefore, the content is preferably 2.5% or less, more preferably 1.3% or less, and further preferably 1.0% or less.

c.Al
本実施形態におけるスラブ、及び本実施形態によって得られる無方向性電磁鋼板は、Alを意図的に含有させていないものでもよいし、Alを意図的に含有させたものでもよい。Al含有量は0%以上2.5%以下とすることが好ましい。
c. Al
The slab in the present embodiment and the non-oriented electrical steel sheet obtained by the present embodiment may not intentionally contain Al or may intentionally contain Al. Preferably, the Al content is 0% or more and 2.5% or less.

Alを含有する場合には、鉄損低減の観点から、Al含有量は0.1%以上2.5%以下とすることが好ましく、中でも0.3%以上2.3%以下、特に0.9%以上2.0%とすることが好ましい。   When Al is contained, from the viewpoint of reducing iron loss, the Al content is preferably 0.1% or more and 2.5% or less, more preferably 0.3% or more and 2.3% or less, particularly 0.1% or less. It is preferable that the content be 9% or more and 2.0%.

d.残部
残部はFe及び不純物である。
d. Remainder The remainder is Fe and impurities.

本実施形態の製造方法におけるスラブ、及び本実施形態によって得られる無方向性電磁鋼板は、本実施形態の作用効果を損なわない範囲で、混入し得る各種元素である不純物を含むものでもよい。不純物としては、C、N、Sのほか、Ti、Nb、As、Zr、P等が挙げられる。   The slab in the manufacturing method of the present embodiment and the non-oriented electrical steel sheet obtained by the present embodiment may include impurities that are various elements that can be mixed as long as the effects of the present embodiment are not impaired. Examples of the impurities include Ti, Nb, As, Zr, and P in addition to C, N, and S.

C含有量は、磁気特性を改善する点から、0%以上0.003%以下とすることが好ましく、中でも0%以上0.002%以下、特に0%以上0.001%以下とすることが好ましい。0.001%以下とすることにより、特に秀逸な磁気特性を得ることができる。   The C content is preferably 0% or more and 0.003% or less from the viewpoint of improving magnetic properties, and particularly preferably 0% or more and 0.002% or less, particularly 0% or more and 0.001% or less. preferable. By setting the content to 0.001% or less, particularly excellent magnetic characteristics can be obtained.

N含有量は、磁気特性を改善する点から、0%以上0.003%以下とすることが好ましく、中でも0%以上0.002%以下、特に0%以上0.001%以下とすることが好ましい。0.001%以下とすることにより、特に秀逸な磁気特性を得ることができる。   The N content is preferably 0% or more and 0.003% or less from the viewpoint of improving magnetic properties, and particularly preferably 0% or more and 0.002% or less, particularly 0% or more and 0.001% or less. preferable. By setting the content to 0.001% or less, particularly excellent magnetic characteristics can be obtained.

S含有量は、磁気特性を改善する点から、0%以上0.003%以下とすることが好ましく、中でも0%以上0.002%以下、特に0%以上0.001%以下とすることが好ましい。0.001%以下とすることにより、特に秀逸な磁気特性を得ることができる。   The S content is preferably 0% or more and 0.003% or less from the viewpoint of improving magnetic properties, and particularly preferably 0% or more and 0.002% or less, particularly 0% or more and 0.001% or less. preferable. By setting the content to 0.001% or less, particularly excellent magnetic characteristics can be obtained.

Ti含有量は、磁気特性を改善する点から、0%以上0.004%以下とすることが好ましく、中でも0%以上0.003%以下とすることが好ましい。特に秀逸な磁気特性を得るためには、特に0%以上0.002%以下とすることが好ましい。   The Ti content is preferably 0% or more and 0.004% or less, particularly preferably 0% or more and 0.003% or less, from the viewpoint of improving magnetic properties. In order to obtain particularly excellent magnetic properties, it is particularly preferable that the content be 0% or more and 0.002% or less.

Nb含有量は、磁気特性を改善する点から、0%以上0.003%以下とすることが好ましく、中でも0%以上0.002%以下、特に0%以上0.001%以下とすることが好ましい。0.001%以下とすることにより、特に秀逸な磁気特性を得ることができる。   The Nb content is preferably 0% or more and 0.003% or less from the viewpoint of improving magnetic properties, and particularly preferably 0% or more and 0.002% or less, particularly 0% or more and 0.001% or less. preferable. By setting the content to 0.001% or less, particularly excellent magnetic characteristics can be obtained.

As含有量は、磁気特性を改善する点から、0%以上0.003%以下とすることが好ましく、中でも0%以上0.002%以下、特に0%以上0.001%以下とすることが好ましい。0.001%以下とすることにより、特に秀逸な磁気特性を得ることができる。   From the viewpoint of improving magnetic properties, the As content is preferably 0% or more and 0.003% or less, and particularly preferably 0% or more and 0.002% or less, particularly 0% or more and 0.001% or less. preferable. By setting the content to 0.001% or less, particularly excellent magnetic characteristics can be obtained.

Zr含有量は、磁気特性を改善する点から、0%以上0.003%以下とすることが好ましく、中でも0%以上0.002%以下、特に0%以上0.001%以下とすることが好ましい。0.001%以下とすることにより、特に秀逸な磁気特性を得ることができる。   The Zr content is preferably 0% or more and 0.003% or less from the viewpoint of improving magnetic properties, and particularly preferably 0% or more and 0.002% or less, particularly 0% or more and 0.001% or less. preferable. By setting the content to 0.001% or less, particularly excellent magnetic characteristics can be obtained.

P含有量は、磁気特性を改善する点から、0%以上0.25%以下とすることが好ましく、中でも0%以上0.15%以下とすることが好ましい。特に秀逸な磁気特性を得るためには、特に0%以上0.10%以下とすることが好ましく、0%以上0.05%以下とすることがより好ましい。   The P content is preferably 0% or more and 0.25% or less, and more preferably 0% or more and 0.15% or less, from the viewpoint of improving magnetic properties. In order to obtain particularly excellent magnetic properties, the content is particularly preferably 0% or more and 0.10% or less, and more preferably 0% or more and 0.05% or less.

不純物全体の含有量は、磁気特性を改善する点から、0%以上0.1%以下とすることが好ましく、中でも0%以上0.05%以下とすることが好ましい。   From the viewpoint of improving magnetic properties, the content of the entire impurity is preferably 0% or more and 0.1% or less, and particularly preferably 0% or more and 0.05% or less.

−化学組成の測定方法−
本実施形態の製造方法におけるスラブ、及び本実施形態によって得られる無方向性電磁鋼板における各元素の含有量は、元素の種類に応じて、一般的な方法を用いて、一般的な測定条件により測定することができる。
-Chemical composition measurement method-
The slab in the production method of the present embodiment, and the content of each element in the non-oriented electrical steel sheet obtained by the present embodiment, depending on the type of element, using a general method, under general measurement conditions Can be measured.

Si、Mn、Al、Ti、Nb、及びZrの含有量は、例えば、ICP−MS法(誘導結合プラズマ質量分析法)を用いて測定することができる。As含有量は、例えば、AA法(フレームレス原子吸光法)により測定することができる。C及びSの含有量は、例えば、燃焼赤外線吸収法により測定することができる。N含有量は、加熱融解−熱伝導法により測定することができる。   The contents of Si, Mn, Al, Ti, Nb, and Zr can be measured using, for example, an ICP-MS method (inductively coupled plasma mass spectrometry). The As content can be measured, for example, by the AA method (flameless atomic absorption method). The contents of C and S can be measured by, for example, a combustion infrared absorption method. The N content can be measured by a heat melting-heat conduction method.

本実施形態の製造方法によって得られる無方向性電磁鋼板に絶縁被膜その他の層が形成されていない場合には、無方向性電磁鋼板の一部を切子状にして秤量し、測定用試料とする。無方向性電磁鋼板に絶縁被膜その他の層が形成されている場合には、一般的な方法により予め絶縁被膜その他の層を除去した上で、無方向性電磁鋼板の一部を切子状にして秤量し、測定用試料とする。   If no insulating coating or other layers are formed on the non-oriented electrical steel sheet obtained by the production method of the present embodiment, a part of the non-oriented electrical steel sheet is cut and weighed to obtain a measurement sample. . When the insulating coating and other layers are formed on the non-oriented electrical steel sheet, after removing the insulating coating and other layers in advance by a general method, a part of the non-oriented electrical steel sheet is cut off. Weigh and use as a sample for measurement.

ICP−MS法を用いる場合には、上記測定用試料を酸に溶解し、必要に応じて加熱することにより酸溶解液とする。そして、当該酸に溶解した際の残渣を、濾紙回収して別途アルカリ等に融解し、融解物を酸で抽出して溶液化する。当該溶液と当該酸溶解液とを混合し、必要に応じて希釈することにより、ICP−MS法測定用溶液とすることができる。   When the ICP-MS method is used, the above-described sample for measurement is dissolved in an acid, and if necessary, heated to obtain an acid solution. The residue dissolved in the acid is recovered by filter paper and separately melted in an alkali or the like, and the melt is extracted with an acid to form a solution. The solution and the acid solution are mixed together and, if necessary, diluted to obtain a solution for ICP-MS measurement.

本発明は、上述した実施形態に限定されるものではない。上述した実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様の作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the embodiments described above. The above-described embodiment is an exemplification, and any configuration having substantially the same configuration as the technical idea described in the claims of the present invention and having the same effect can be obtained. It is included in the technical scope of the invention.

以下、実施例及び比較例を例示して、本発明を具体的に説明する。なお、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一例であり、本発明は実施例の条件に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Hereinafter, the present invention will be specifically described by way of examples and comparative examples. It should be noted that the conditions of the examples are examples adopted for confirming the feasibility and effects of the present invention, and the present invention is not limited to the conditions of the examples. The present invention can employ various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(評価方法)
ここで、実施例及び比較例において評価に用いる各種の特性について説明する。
(Evaluation method)
Here, various characteristics used for evaluation in Examples and Comparative Examples will be described.

・鉄損
無方向性電磁鋼板の鉄損としては、エプスタイン試料に切断し、インバータ励磁時に生じる鉄損を用いる。具体的には、磁束密度1.0T、周波数400Hzで磁化した際の鉄損W10/400(W/kg)を用いる。測定はJISのC2550−1に定められたエプスタイン法で行う。
・ Iron loss As the iron loss of the non-oriented electrical steel sheet, cut into Epstein samples and use the iron loss generated when the inverter is excited. Specifically, an iron loss W 10/400 (W / kg) when magnetized at a magnetic flux density of 1.0 T and a frequency of 400 Hz is used. The measurement is performed by the Epstein method specified in JIS C2550-1.

・磁束密度
磁界強度5000A/mにおける磁束密度の測定は、以下の方法によって行う。エプスタイン試料を切断し、JISのC2550−1に定められたエプスタイン法に従って、その試料を用いて磁気測定を行う。
-Magnetic flux density The magnetic flux density at a magnetic field intensity of 5000 A / m is measured by the following method. An Epstein sample is cut, and magnetic measurement is performed using the sample according to the Epstein method specified in JIS C2550-1.

・騒音および振動測定用モータ
評価用の無方向性電磁鋼板により以下の2種の仕様のモータのうちの一方を製造し、騒音および振動を測定する。
モータA:ステータを評価用の無方向性電磁鋼板で作製し、ロータに板厚0.35mmで引張強さ750MPaの高張力鋼板を用いた、最高出力5kWの永久磁石同期式高速回転モータ
モータB:ステータを評価用の無方向性電磁鋼板で作製し、ロータはネオジムボンド磁石を回転軸に取り付け、高速回転に耐えるように炭素繊維でネオジムボンド磁石の周囲を巻いて補強した、出力200Wの永久磁石式同期ブラシレス同期モータ
-Motor for noise and vibration measurement One of the following two types of motors is manufactured from non-oriented electrical steel sheets for evaluation, and noise and vibration are measured.
Motor A: A permanent magnet synchronous high-speed motor with a maximum output of 5 kW using a high-strength steel plate having a thickness of 0.35 mm and a tensile strength of 750 MPa for the rotor, the stator being made of a non-oriented electrical steel sheet for evaluation, and a motor B : The stator was made of a non-oriented electrical steel sheet for evaluation, the rotor was attached with a neodymium bonded magnet on the rotating shaft, and wrapped around the neodymium bonded magnet with carbon fiber to withstand high-speed rotation and reinforced. Magnet synchronous brushless synchronous motor

・騒音
測定用モータを40万rpmで回転させた際の騒音を、JIS Z8731(1999)に基づき測定する。
-Noise The noise when the measuring motor is rotated at 400,000 rpm is measured based on JIS Z8731 (1999).

・振動
測定用モータを40万rpmで回転させた際の振動を、JIS C1510(1995)に基づき基準振動加速度は10−5m/sとして、単位dBで評価する。
Vibration Vibration when the measuring motor is rotated at 400,000 rpm is evaluated based on JIS C1510 (1995) with a reference vibration acceleration of 10 −5 m / s 2 in units of dB.

(実施例1)
鋼種Aのスラブを、加熱温度を1100℃、仕上温度900℃とした熱間圧延を行い、2.0mm厚に仕上げ、これを700℃に冷却した後、コイラに巻き取った。鋼種Aのスラブから得られた無方向性電磁鋼板の化学組成を表7に示す。
上記熱延鋼板に950℃30秒の熱延板焼鈍を施し、熱延板焼鈍後の冷却過程で540℃に到達した時点で1パスで25%の圧下を施し470℃で圧延(温間圧延)を終え、1.5mm厚に仕上げ、その後室温まで冷却した。
この温間圧延板を酸洗後、冷間圧延(圧延開始温度25℃、最高到達温度70℃)を施し0.25mm厚とし、900℃30秒の仕上げ焼鈍を施した(鋼板No.A−1)。
(Example 1)
The slab of steel type A was hot-rolled at a heating temperature of 1100 ° C. and a finishing temperature of 900 ° C., finished to a thickness of 2.0 mm, cooled to 700 ° C., and wound around a coiler. Table 7 shows the chemical composition of the non-oriented electrical steel sheet obtained from the steel type A slab.
The hot-rolled steel sheet is subjected to hot-rolled sheet annealing at 950 ° C. for 30 seconds. When the temperature reaches 540 ° C. in the cooling process after the hot-rolled sheet annealing, the steel sheet is subjected to a 25% reduction in one pass and rolled at 470 ° C. (warm rolling) ) Was finished, finished to a thickness of 1.5 mm, and then cooled to room temperature.
After pickling, the warm-rolled sheet was cold-rolled (rolling start temperature: 25 ° C., maximum temperature: 70 ° C.) to a thickness of 0.25 mm, and subjected to finish annealing at 900 ° C. for 30 seconds (steel sheet No. A-). 1).

また、コイラに巻き取るまでを上記と同一条件とした熱延鋼板に950℃30秒の熱延板焼鈍を施し、その後室温まで冷却した。この熱延焼鈍板を540℃まで再加熱して圧延開始温度540℃で1パスで25%の圧下を施し470℃で圧延(温間圧延)を終え、1.5mm厚に仕上げ、その後室温まで冷却した。
この温間圧延板を酸洗後、冷間圧延(圧延開始温度25℃、最高到達温度70℃)を施し0.25mm厚とし、900℃30秒の仕上げ焼鈍を施した(鋼板No.A−2)。
Further, the hot-rolled steel sheet was subjected to hot-rolled sheet annealing at 950 ° C. for 30 seconds under the same conditions as described above until wound into a coiler, and then cooled to room temperature. The hot-rolled annealed sheet was reheated to 540 ° C., subjected to 25% reduction in one pass at a rolling start temperature of 540 ° C., rolled at 470 ° C. (warm rolling), finished to a thickness of 1.5 mm, and then to room temperature. Cool.
After pickling, the warm-rolled sheet was cold-rolled (rolling start temperature: 25 ° C., maximum temperature: 70 ° C.) to a thickness of 0.25 mm, and subjected to finish annealing at 900 ° C. for 30 seconds (steel sheet No. A-). 2).

さらに、コイラに巻き取るまでを上記と同一条件とした熱延鋼板に950℃30秒の熱延板焼鈍を施し、その後室温まで冷却した。この熱延焼鈍板を酸洗後、冷間圧延(圧延開始温度25℃、最高到達温度70℃)を施し0.25mm厚とし、900℃30秒の仕上げ焼鈍を施した(鋼板No.A−3)。   Further, the hot-rolled steel sheet was subjected to hot-rolled sheet annealing at 950 ° C. for 30 seconds under the same conditions as described above until wound into a coiler, and then cooled to room temperature. After pickling, the hot-rolled annealed sheet was cold-rolled (rolling start temperature: 25 ° C., maximum temperature: 70 ° C.) to a thickness of 0.25 mm, and finish-annealed at 900 ° C. for 30 seconds (Steel sheet No. A-). 3).

得られた各無方向性電磁鋼板より圧延方向から22.5°おきにエプスタイン試料を切り出し、歪取り焼鈍を施した後、エプスタイン測定を行った。
これらの鋼板をステータに使用しモータAを作製し、40万rpmでの騒音および振動を測定し、騒音は80dB以下、振動は70dB以下を合格とした。
実施例と比較例の磁気測定結果およびモータの騒音と振動測定結果を表8に示す。
Epstein samples were cut out from each of the obtained non-oriented electrical steel sheets at intervals of 22.5 ° from the rolling direction, subjected to strain relief annealing, and then subjected to Epstein measurement.
A motor A was manufactured using these steel plates as a stator, and noise and vibration at 400,000 rpm were measured. The noise was 80 dB or less and the vibration was 70 dB or less.
Table 8 shows the magnetic measurement results and the motor noise and vibration measurement results of the example and the comparative example.

表8からわかるように、本実施例では磁束密度の異方性B50(anisotropy)の値が0.011と比較例よりも小さい。
また、本実施例は圧延方向における磁束密度B50(0°)及び圧延方向に対して直角方向における磁束密度B50(90°)の算術平均値である平均磁束密度B50(LC)が比較例よりも高い。
また、本実施例では、40万rpmでのモータAの騒音が80dB以下、振動が70dB以下であり、モータAの高速回転での騒音および振動が比較例よりも低減されていることがわかる。
また、同じ温間圧延条件で圧延を施しても、熱延板焼鈍後に鋼板の温度が一旦室温まで冷却されると本開示の効果が失われることが表8の鋼板No.A−2の磁気特性、モータの騒音および振動測定結果からわかる。
以上の様に、本実施例によれば、高磁束密度かつ磁束密度の異方性の小さい無方向性電磁鋼板の製造が可能である。また、鉄損の値W10/400も9.63W/kgと低く優れている。
As can be seen from Table 8, in this embodiment, the value of the anisotropy B50 (anisotropic) of the magnetic flux density is 0.011, which is smaller than that of the comparative example.
In this embodiment, the average magnetic flux density B 50 (LC), which is the arithmetic average of the magnetic flux density B 50 (0 °) in the rolling direction and the magnetic flux density B 50 (90 °) in the direction perpendicular to the rolling direction, is compared. Higher than the example.
Further, in the present embodiment, the noise of the motor A at 400,000 rpm is 80 dB or less and the vibration is 70 dB or less, and it can be seen that the noise and the vibration at the high speed rotation of the motor A are reduced as compared with the comparative example.
In addition, even if rolling is performed under the same warm rolling conditions, the effect of the present disclosure is lost when the temperature of the steel sheet is once cooled to room temperature after hot-rolled sheet annealing. It can be seen from the measurement results of the magnetic characteristics, motor noise and vibration of A-2.
As described above, according to the present embodiment, it is possible to manufacture a non-oriented electrical steel sheet having high magnetic flux density and small anisotropy of magnetic flux density. In addition, the iron loss value W 10/400 is as low as 9.63 W / kg, which is excellent.

(実施例2)
鋼種Bのスラブを、加熱温度を1100℃、仕上温度900℃とした熱間圧延を行い、2.0mm厚に仕上げ、これを650℃に冷却した後、コイラに巻き取った。鋼種Bのスラブから得られた無方向性電磁鋼板の化学組成を表9に示す。
上記熱延鋼板に60秒間の熱延板焼鈍を温度を変更して施し、熱延板焼鈍後の冷却過程で、480℃で30%の1パス圧下を施し410℃で圧延(温間圧延)を終え、1.4mm厚に仕上げ、その後室温まで冷却した。
この温間圧延板を酸洗後、冷間圧延(圧延開始温度20℃、最高到達温度75℃)を施し0.25mm厚とし、970℃20秒の仕上げ焼鈍を施した(鋼板No.B−1〜6)。
(Example 2)
The slab of steel type B was subjected to hot rolling at a heating temperature of 1100 ° C. and a finishing temperature of 900 ° C. to finish the slab to a thickness of 2.0 mm, cooled to 650 ° C., and wound around a coiler. Table 9 shows the chemical composition of the non-oriented electrical steel sheet obtained from the steel type B slab.
The hot-rolled steel sheet is subjected to hot-rolled sheet annealing for 60 seconds while changing the temperature, and in the cooling process after the hot-rolled sheet annealing, is subjected to 30% 1-pass reduction at 480 ° C and rolled at 410 ° C (warm rolling). Was completed, and finished to a thickness of 1.4 mm, and then cooled to room temperature.
After pickling, the warm-rolled sheet was cold-rolled (rolling start temperature: 20 ° C., maximum temperature: 75 ° C.) to a thickness of 0.25 mm, and subjected to finish annealing at 970 ° C. for 20 seconds (steel sheet No. B-). 1-6).

また、コイラに巻き取るまでを上記と同一条件とした熱延鋼板に60秒間の熱延板焼鈍を温度を変更して施し、その後室温まで冷却した。この熱延焼鈍板を酸洗後、冷間圧延(圧延開始温度20℃、最高到達温度75℃)を施し0.25mm厚とし、970℃20秒の仕上げ焼鈍を施した(鋼板No.B−7〜12)。   Further, a hot-rolled steel sheet was subjected to a hot-rolled sheet annealing for 60 seconds at a different temperature and then cooled to room temperature under the same conditions as above until winding into a coiler. After pickling, the hot-rolled annealed sheet was cold-rolled (rolling start temperature: 20 ° C., maximum temperature: 75 ° C.) to a thickness of 0.25 mm, and subjected to finish annealing at 970 ° C. for 20 seconds (steel sheet No. B-). 7-12).

得られた無方向性電磁鋼板を圧延方向から22.5°おきにエプスタイン試料に切り出し、歪取り焼鈍を施した後、エプスタイン測定を行った。
これらの鋼板をステータに使用しモータAを作製し、40万rpmでの騒音および振動を測定し、騒音は80dB以下、振動は70dB以下を合格とした。
実施例と比較例の磁気測定結果およびモータの騒音と振動測定結果を表10に示す。
The obtained non-oriented electrical steel sheet was cut into Epstein samples every 22.5 ° from the rolling direction, subjected to strain relief annealing, and then subjected to Epstein measurement.
A motor A was manufactured using these steel plates as a stator, and noise and vibration at 400,000 rpm were measured. The noise was 80 dB or less and the vibration was 70 dB or less.
Table 10 shows the magnetic measurement results and the motor noise and vibration measurement results of the example and the comparative example.

表10より、本実施例の熱延板焼鈍温度によれば、比較例よりもB50(LC)が向上し、磁束密度の異方性B50(anisotropy)が小さい無方向性電磁鋼板を得ることができることがわかる。また、鉄損の値W10/400も9.65W/kg以下と低く優れている。
また、本実施例では、磁束密度の異方性が低減された結果、40万rpmでのモータAの騒音が80dB以下、振動が70dBと比較例よりも小さく、モータAの高速回転での騒音および振動が低減されていることがわかる。
According to Table 10, according to the hot-rolled sheet annealing temperature of this example, B50 ( LC) is improved as compared with the comparative example, and a non-oriented electrical steel sheet having small anisotropy B50 (anisotropic) of magnetic flux density is obtained. You can see that you can do it. Further, the value W 10/400 of the iron loss is as low as 9.65 W / kg or less, which is excellent.
Further, in this embodiment, as a result of reducing the anisotropy of the magnetic flux density, the noise of the motor A at 400,000 rpm is less than 80 dB and the vibration is 70 dB smaller than that of the comparative example. It can be seen that the vibration has been reduced.

(実施例3)
鋼種Cのスラブを、加熱温度を1100℃、仕上温度910℃とした熱間圧延を行い、2.0mm厚に仕上げ、これを650℃に冷却した後、コイラに巻き取った。鋼種Cのスラブから得られた無方向性電磁鋼板の化学組成を表11に示す。
上記熱延鋼板に950℃の熱延板焼鈍を保定時間を変更して施し、熱延板焼鈍後の冷却過程で、460℃で1パスで30%圧下を施し405℃で圧延(温間圧延)を終え、1.4mm厚に仕上げ、その後室温まで冷却した。
この温間圧延板を酸洗後、冷間圧延(圧延開始温度27℃、最高到達温度80℃)を施し0.25mm厚とし、970℃30秒の仕上げ焼鈍を施した(鋼板No.C−1〜6)。
(Example 3)
The slab of steel type C was hot-rolled at a heating temperature of 1100 ° C. and a finishing temperature of 910 ° C., finished to a thickness of 2.0 mm, cooled to 650 ° C., and wound around a coiler. Table 11 shows the chemical composition of the non-oriented electrical steel sheet obtained from the steel type C slab.
The above hot-rolled steel sheet is subjected to hot-rolled sheet annealing at 950 ° C. for a different holding time, and in the cooling process after hot-rolled sheet annealing, is subjected to a 30% reduction in one pass at 460 ° C. and rolled at 405 ° C. (warm rolling) ), And finished to a thickness of 1.4 mm, and then cooled to room temperature.
After pickling, the warm-rolled sheet was cold-rolled (rolling start temperature 27 ° C., maximum temperature 80 ° C.) to a thickness of 0.25 mm, and subjected to finish annealing at 970 ° C. for 30 seconds (steel sheet No. C-). 1-6).

また、コイラに巻き取るまでを上記と同一条件とした熱延鋼板に950℃の熱延板焼鈍を保定時間を変更して施し、その後室温まで冷却した。
この熱延焼鈍板を酸洗後、冷間圧延(圧延開始温度27℃、最高到達温度80℃)を施し0.25mm厚とし、970℃30秒の仕上げ焼鈍を施した(鋼板No.C−7〜12)。
A hot-rolled steel sheet at 950 ° C. was subjected to a different holding time for a hot-rolled steel sheet under the same conditions as above until winding into a coiler, and then cooled to room temperature.
After pickling, the hot-rolled annealed sheet was cold-rolled (rolling start temperature 27 ° C., maximum temperature 80 ° C.) to a thickness of 0.25 mm, and finish-annealed at 970 ° C. for 30 seconds (steel No. C-). 7-12).

得られた無方向性電磁鋼板より圧延方向から22.5°おきにエプスタイン試料を切り出し、歪取り焼鈍を施した後、エプスタイン測定を行った。
これらの鋼板をステータに使用しモータAを作製し、40万rpmでの騒音および振動を測定し、騒音は80dB以下、振動は70dB以下を合格とした。
実施例と比較例の磁気測定結果およびモータの騒音と振動測定結果を表12に示す。
Epstein samples were cut out from the obtained non-oriented electrical steel sheet at intervals of 22.5 ° from the rolling direction, subjected to strain relief annealing, and then subjected to Epstein measurement.
A motor A was manufactured using these steel plates as a stator, and noise and vibration at 400,000 rpm were measured. The noise was 80 dB or less and the vibration was 70 dB or less.
Table 12 shows the magnetic measurement results and the motor noise and vibration measurement results of the example and the comparative example.

表12より、本実施例の熱延板焼鈍時間によれば、比較例よりもB50(LC)が向上し、磁束密度の異方性B50(anisotropy)が小さい無方向性電磁鋼板を得ることができることがわかる。また、鉄損の値W10/400も9.64W/kg以下と低く優れている。
また、本実施例では、磁束密度の異方性が低減された結果、40万rpmでのモータAの騒音が80dB以下、振動が70dBと比較例よりも小さく、モータAの高速回転での騒音および振動が低減されていることがわかる。
According to Table 12, according to the hot-rolled sheet annealing time of this example, B50 ( LC) is improved as compared with the comparative example, and a non-oriented electrical steel sheet having a small anisotropy B50 (anisotropic) of magnetic flux density is obtained. You can see that you can do it. In addition, the iron loss value W10 / 400 is as low as 9.64 W / kg or less, which is excellent.
Further, in this embodiment, as a result of reducing the anisotropy of the magnetic flux density, the noise of the motor A at 400,000 rpm is less than 80 dB and the vibration is 70 dB smaller than that of the comparative example. It can be seen that the vibration has been reduced.

(実施例4)
鋼種Dのスラブを、加熱温度を1100℃、仕上温度890℃とした熱間圧延を行い、2.0mm厚に仕上げ、これを600℃に冷却した後、コイラに巻き取った。鋼種Dのスラブから得られた無方向性電磁鋼板の化学組成を表13に示す。
上記熱延鋼板に950℃30秒の熱延板焼鈍を施し、熱延板焼鈍後の冷却過程で圧延開始温度及び圧延終了温度を変更して1パスで30%の圧下を施し、圧延板を1.4mm厚に仕上げ、その後室温まで冷却した。
本実験では、熱延板焼鈍後の圧延は、本開示に係る温間圧延の範囲を満たす態様と、満たさない態様の圧延を含むように条件を設定した。
この圧延板を酸洗後、冷間圧延(圧延開始温度26℃、最高到達温度80℃)を施し0.25mm厚とし、970℃30秒の仕上げ焼鈍を施した(鋼板No.D−1〜6)。
(Example 4)
The slab of steel type D was hot-rolled at a heating temperature of 1100 ° C. and a finishing temperature of 890 ° C., finished to a thickness of 2.0 mm, cooled to 600 ° C., and wound around a coiler. Table 13 shows the chemical composition of the non-oriented electrical steel sheet obtained from the steel type D slab.
The hot-rolled steel sheet is subjected to hot-rolled sheet annealing at 950 ° C. for 30 seconds, the rolling start temperature and the rolling end temperature are changed in the cooling process after the hot-rolled sheet annealing, and the rolling is performed by 30% reduction in one pass. Finished to 1.4 mm thickness and then cooled to room temperature.
In this experiment, the conditions were set so that the rolling after the hot-rolled sheet annealing included a mode satisfying the range of the warm rolling according to the present disclosure and a mode not satisfying the range.
After pickling, this rolled sheet was cold-rolled (rolling start temperature 26 ° C., maximum temperature 80 ° C.) to a thickness of 0.25 mm, and subjected to finish annealing at 970 ° C. for 30 seconds (steel sheet No. D-1 to No. D-1). 6).

また、コイラに巻き取るまでを上記と同一条件とした熱延鋼板に950℃30秒の熱延板焼鈍を施し、その後室温まで冷却した。
この熱延焼鈍板を酸洗後、冷間圧延(圧延開始温度26℃、最高到達温度80℃)を施し0.25mm厚とし、970℃30秒の仕上げ焼鈍を施した(鋼板No.D−7)。
Further, the hot-rolled steel sheet was subjected to hot-rolled sheet annealing at 950 ° C. for 30 seconds under the same conditions as described above until wound into a coiler, and then cooled to room temperature.
After pickling, the hot-rolled annealed sheet was cold-rolled (rolling start temperature: 26 ° C., maximum temperature: 80 ° C.) to a thickness of 0.25 mm and finish-annealed at 970 ° C. for 30 seconds (steel No. D-). 7).

得られた無方向性電磁鋼板を圧延方向から22.5°おきにエプスタイン試料に切り出し、歪取り焼鈍を施した後、エプスタイン測定を行った。
これらの鋼板をステータに使用しモータAを作製し、40万rpmでの騒音および振動を測定し、騒音は80dB以下、振動は70dB以下を合格とした。
実施例と比較例の磁気測定結果およびモータの騒音と振動測定結果を表14に示す。
The obtained non-oriented electrical steel sheet was cut into Epstein samples every 22.5 ° from the rolling direction, subjected to strain relief annealing, and then subjected to Epstein measurement.
A motor A was manufactured using these steel plates as a stator, and noise and vibration at 400,000 rpm were measured. The noise was 80 dB or less and the vibration was 70 dB or less.
Table 14 shows the magnetic measurement results and the motor noise and vibration measurement results of the example and the comparative example.

表14より、本実施例の温間圧延温度によれば、比較例よりもB50(LC)が向上し、磁束密度の異方性B50(anisotropy)が小さい無方向性電磁鋼板を得られることがわかる。また、鉄損の値W10/400も9.76W/kg以下と低く優れている。
また、本実施例では、磁束密度の異方性が低減された結果、40万rpmでのモータAの騒音が80dB以下、振動が70dBと比較例よりも小さく、モータAの高速回転での騒音および振動が低減されていることがわかる。
According to Table 14, according to the warm rolling temperature of the present example, B50 ( LC) is improved as compared with the comparative example, and a non-oriented electrical steel sheet having small anisotropy B50 (anisotropic) of magnetic flux density can be obtained. I understand. In addition, the value W 10/400 of iron loss is as low as 9.76 W / kg or less, which is excellent.
Further, in this embodiment, as a result of reducing the anisotropy of the magnetic flux density, the noise of the motor A at 400,000 rpm is less than 80 dB and the vibration is 70 dB smaller than that of the comparative example. It can be seen that the vibration has been reduced.

(実施例5)
鋼種Eのスラブを、加熱温度を1100℃、仕上温度885℃とした熱間圧延を行い、2.0mm厚に仕上げ、これを600℃に冷却した後、コイラに巻き取った。鋼種Eのスラブから得られた無方向性電磁鋼板の化学組成を表15に示す。
上記熱延鋼板に900℃30秒の熱延板焼鈍を施し、熱延板焼鈍後の冷却過程で550℃で1パスで圧下率を変えて圧下を施し、400℃以上で圧延(温間圧延)を終えて圧延板を仕上げ、その後室温まで冷却した。
この温間圧延板を酸洗後、冷間圧延(圧延開始温度30℃、最高到達温度78℃)を施し0.25mm厚とし、900℃30秒の仕上げ焼鈍を施した(鋼板No.E−1〜6)。
(Example 5)
The slab of steel type E was hot-rolled at a heating temperature of 1100 ° C. and a finishing temperature of 885 ° C., finished to a thickness of 2.0 mm, cooled to 600 ° C., and wound around a coiler. Table 15 shows the chemical composition of the non-oriented electrical steel sheet obtained from the steel type E slab.
The hot-rolled steel sheet is subjected to hot-rolled sheet annealing at 900 ° C. for 30 seconds, and in the cooling process after the hot-rolled sheet annealing, is subjected to rolling at 550 ° C. in one pass while changing the rolling reduction, and is rolled at 400 ° C. or more (warm rolling). ) Was completed to finish a rolled plate, and then cooled to room temperature.
After pickling this warm-rolled sheet, it was cold-rolled (rolling start temperature 30 ° C., maximum temperature 78 ° C.) to a thickness of 0.25 mm, and subjected to finish annealing at 900 ° C. for 30 seconds (steel sheet No. E-). 1-6).

また、コイラに巻き取るまでを上記と同一条件とした熱延鋼板に900℃30秒の熱延板焼鈍を施し、その後室温まで冷却した。
この熱延焼鈍板を酸洗後、冷間圧延(圧延開始温度30℃、最高到達温度78℃)を施し0.25mm厚とし、900℃30秒の仕上げ焼鈍を施した(鋼板No.E−7)。
Further, the hot-rolled steel sheet was subjected to the hot-rolled sheet annealing at 900 ° C. for 30 seconds under the same conditions as described above until wound into the coiler, and then cooled to room temperature.
After pickling the hot-rolled annealed sheet, it was cold-rolled (rolling start temperature 30 ° C., maximum temperature 78 ° C.) to a thickness of 0.25 mm, and was subjected to finish annealing at 900 ° C. for 30 seconds (steel sheet No. E- 7).

得られた無方向性電磁鋼板を圧延方向から22.5°おきにエプスタイン試料に切り出し、歪取り焼鈍を施した後、エプスタイン測定を行った。
これらの鋼板をステータに使用しモータBを作製し、40万rpmでの騒音および振動を測定し、騒音は80dB以下、振動は70dB以下を合格とした。
実施例と比較例の磁気測定結果およびモータの騒音と振動測定結果を表16に示す。
The obtained non-oriented electrical steel sheet was cut into Epstein samples every 22.5 ° from the rolling direction, subjected to strain relief annealing, and then subjected to Epstein measurement.
A motor B was manufactured using these steel plates for the stator, and noise and vibration at 400,000 rpm were measured. The noise was 80 dB or less and the vibration was 70 dB or less.
Table 16 shows the magnetic measurement results and the motor noise and vibration measurement results of the example and the comparative example.

表16より、本実施例の温間圧延時の圧下率によれば、比較例よりもB50(LC)が向上し、磁束密度の異方性B50(anisotropy)が小さい無方向性電磁鋼板を得られることがわかる。また、鉄損の値10/400も9.73W/kg以下と低く優れている。
また、本実施例では、磁束密度の異方性が低減された結果、40万rpmでのモータBの騒音が80dB以下、振動が70dBと比較例よりも小さく、モータBの高速回転での騒音および振動が低減されていることがわかる。
From Table 16, according to the rolling reduction at the time of the warm rolling in the present example, a non-oriented electrical steel sheet having improved B50 ( LC) and smaller anisotropy B50 (anisotropic) of the magnetic flux density than the comparative example was obtained. It can be seen that it can be obtained. In addition, the value of iron loss 10/400 is 9.73 W / kg or less, which is excellent.
Further, in this embodiment, as a result of reducing the anisotropy of the magnetic flux density, the noise of the motor B at 400,000 rpm is less than 80 dB and the vibration is 70 dB smaller than that of the comparative example. It can be seen that the vibration has been reduced.

(実施例6)
鋼種Fのスラブを、加熱温度を1100℃、仕上温度875℃とした熱間圧延を行い、1.8mm厚に仕上げ、これを500℃に冷却した後、コイラに巻き取った。鋼種Fのスラブから得られた無方向性電磁鋼板の化学組成を表17に示す。
上記熱延鋼板に950℃10秒の熱延板焼鈍を施し、熱延板焼鈍後の冷却過程で600℃に到達した時点で1パスで17%の圧下を施し470℃で圧延(温間圧延)を終え、直ちに昇温して950℃10秒の中間焼鈍を施し、その後室温まで冷却して1.5mm厚の中間焼鈍板を得た。
この中間焼鈍板を酸洗後、冷間圧延(圧延開始温度35℃、最高到達温度95℃)を施し0.25mm厚とし、900℃20秒の仕上げ焼鈍を施した(鋼板No.F−1)。
(Example 6)
The slab of steel type F was hot-rolled at a heating temperature of 1100 ° C. and a finishing temperature of 875 ° C., finished to a thickness of 1.8 mm, cooled to 500 ° C., and wound around a coiler. Table 17 shows the chemical composition of the non-oriented electrical steel sheet obtained from the steel type F slab.
The hot-rolled steel sheet is subjected to hot-rolled sheet annealing at 950 ° C. for 10 seconds. When the temperature reaches 600 ° C. in the cooling process after hot-rolled sheet annealing, the steel sheet is subjected to a 17% reduction in one pass and rolled at 470 ° C. (warm rolling) )), The temperature was immediately increased, intermediate annealing was performed at 950 ° C. for 10 seconds, and then cooled to room temperature to obtain a 1.5 mm thick intermediate annealed plate.
After pickling, the intermediate annealed sheet was cold-rolled (rolling start temperature 35 ° C., maximum temperature 95 ° C.) to a thickness of 0.25 mm, and subjected to finish annealing at 900 ° C. for 20 seconds (steel sheet No. F-1). ).

また、コイラに巻き取るまでの上記と同一条件とした熱延鋼板に950℃10秒の熱延板焼鈍を施し、一旦室温(25℃)まで冷却し、これを再加熱して600℃まで到達した時点で1パスで17%の圧下を施し470℃で圧延(温間圧延)を終え、直ちに昇温して950℃10秒の中間焼鈍を施し、その後室温まで冷却して1.5mm厚の中間焼鈍板を得た。
この中間焼鈍板を酸洗後、冷間圧延(圧延開始温度35℃、最高到達温度95℃)を施し0.25mm厚とし、900℃20秒の仕上焼鈍を施した(鋼板No.F−2)。
Further, the hot-rolled steel sheet subjected to the same conditions as described above until it is wound into the coiler is subjected to hot-rolled sheet annealing at 950 ° C. for 10 seconds, once cooled to room temperature (25 ° C.), and reheated to reach 600 ° C. At this point, the rolling (warm rolling) was completed at 470 ° C. by applying 17% reduction in one pass, the temperature was immediately raised, intermediate annealing was performed at 950 ° C. for 10 seconds, and then cooled to room temperature to obtain a 1.5 mm thick steel sheet. An intermediate annealed plate was obtained.
After pickling, the intermediate annealed sheet was cold-rolled (rolling start temperature 35 ° C., maximum temperature 95 ° C.) to a thickness of 0.25 mm, and subjected to finish annealing at 900 ° C. for 20 seconds (steel sheet No. F-2). ).

また、コイラに巻き取るまでを上記と同一条件とした熱延鋼板に950℃20秒の熱延板焼鈍を施し、その後室温まで冷却した。
この熱延焼鈍板を酸洗後、冷間圧延(圧延開始温度35℃、最高到達温度95℃)を施し、0.25mm厚とし、900℃20秒の仕上げ焼鈍を施した(鋼板No.F−3)。
Further, the hot-rolled steel sheet was subjected to hot-rolled sheet annealing at 950 ° C. for 20 seconds under the same conditions as described above until wound into a coiler, and then cooled to room temperature.
After pickling, the hot-rolled annealed sheet was cold-rolled (rolling start temperature 35 ° C., maximum temperature 95 ° C.) to a thickness of 0.25 mm, and finish-annealed at 900 ° C. for 20 seconds (Steel Sheet No. F). -3).

得られた無方向性電磁鋼板を圧延方向から22.5°おきにエプスタイン試料に切り出し、歪取り焼鈍を施した後、エプスタイン測定を行った。
これらの鋼板をステータに使用しモータBを作製し、40万rpmでの騒音および振動を測定し、騒音は80dB以下、振動は70dB以下を合格とした。
実施例と比較例の磁気測定結果およびモータの騒音と振動測定結果を表18に示す。
The obtained non-oriented electrical steel sheet was cut into Epstein samples every 22.5 ° from the rolling direction, subjected to strain relief annealing, and then subjected to Epstein measurement.
A motor B was manufactured using these steel plates for the stator, and noise and vibration at 400,000 rpm were measured. The noise was 80 dB or less and the vibration was 70 dB or less.
Table 18 shows the magnetic measurement results and the motor noise and vibration measurement results of the example and the comparative example.

表18より、本実施例の2回の熱延板焼鈍及び2回の熱延板焼鈍の間での温間圧延によれば、比較例よりもB50(LC)が向上し、異方性B50(anisotropy)が小さい無方向性電磁鋼板を得られることがわかる。また、鉄損の値W10/400も9.73W/kgと低く優れている。
また、本実施例では、磁束密度の異方性が低減された結果、40万rpmでのモータBの騒音が80dB以下、振動が70dBと比較例よりも小さく、モータBの高速回転での騒音および振動が低減されていることがわかる。
From Table 18, according to the hot rolling between the two hot-rolled sheet annealings and the two hot-rolled sheet annealings of the present example, B50 (LC) was improved as compared with the comparative example, and the anisotropy was improved. It can be seen that a non-oriented electrical steel sheet having a small B50 (anisotropic) can be obtained. In addition, the iron loss value W 10/400 is as low as 9.73 W / kg, which is excellent.
Further, in this embodiment, as a result of reducing the anisotropy of the magnetic flux density, the noise of the motor B at 400,000 rpm is less than 80 dB and the vibration is 70 dB smaller than that of the comparative example. It can be seen that the vibration has been reduced.

(実施例7)
鋼種Gのスラブを、加熱温度を1100℃、仕上温度875℃とした熱間圧延を行い、1.8mm厚に仕上げ、これを500℃に冷却した後、コイラに巻き取った。鋼種Gのスラブから得られた無方向性電磁鋼板の化学組成を表19に示す。
上記熱延鋼板に、温度と時間を変化させて焼鈍1を施し本開示に係る熱延板焼鈍とそうでない焼鈍を施し、その冷却過程で圧延1を圧下温度と圧下率を変化させて施した。
この圧延板に温度と時間を変化させて中間焼鈍を施し、焼鈍1の温度、それに続く圧延1の温度と圧下率、中間焼鈍温度の組合せをそれぞれ変えた。中間焼鈍後室温まで冷却し中間焼鈍板を得た。表20にその条件を示す。
この中間焼鈍板を酸洗後、冷間圧延(圧延開始温度25℃、最高到達温度80℃)を施し0.25mm厚とし、900℃20秒の仕上げ焼鈍を施した(鋼板No.G−1〜29)。
(Example 7)
The slab of steel type G was hot-rolled at a heating temperature of 1100 ° C. and a finishing temperature of 875 ° C., finished to a thickness of 1.8 mm, cooled to 500 ° C., and wound around a coiler. Table 19 shows the chemical composition of the non-oriented electrical steel sheet obtained from the steel type G slab.
The hot-rolled steel sheet was subjected to annealing 1 by changing the temperature and time to perform hot-rolled sheet annealing according to the present disclosure and non-annealing, and in the cooling process, rolling 1 was performed by changing the rolling temperature and the rolling reduction. .
This rolled sheet was subjected to intermediate annealing by changing the temperature and time, and the temperature of annealing 1 and the subsequent combination of the temperature and rolling reduction of rolling 1 and the intermediate annealing temperature were changed. After the intermediate annealing, it was cooled to room temperature to obtain an intermediate annealed plate. Table 20 shows the conditions.
After pickling, the intermediate annealed sheet was cold-rolled (rolling start temperature 25 ° C., maximum temperature 80 ° C.) to a thickness of 0.25 mm, and subjected to finish annealing at 900 ° C. for 20 seconds (steel sheet No. G-1). ~ 29).

得られた無方向性電磁鋼板を圧延方向から22.5°おきにエプスタイン試料に切り出し、歪取り焼鈍を施した後、エプスタイン測定を行った。
これらの鋼板をステータに使用しモータBを作製し、40万rpmでの騒音および振動を測定し、騒音は80dB以下、振動は70dB以下を合格とした。
実施例と比較例の磁気測定結果およびモータの騒音と振動測定結果を表20に示す。
The obtained non-oriented electrical steel sheet was cut into Epstein samples every 22.5 ° from the rolling direction, subjected to strain relief annealing, and then subjected to Epstein measurement.
A motor B was manufactured using these steel plates for the stator, and noise and vibration at 400,000 rpm were measured. The noise was 80 dB or less and the vibration was 70 dB or less.
Table 20 shows the magnetic measurement results and the motor noise and vibration measurement results of the example and the comparative example.

表20より、圧延をはさむ熱延板焼鈍を本実施例の条件に制御することにより、比較例よりもB50(LC)が向上し、磁束密度の異方性B50(anisotropy)が小さい無方向性電磁鋼板を得られることがわかる。また、鉄損の値W10/400も9.78W/kg以下と低く優れている。
また、本実施例では、磁束密度の異方性が低減された結果、40万rpmでのモータBの騒音が80dB以下、振動が70dBと比較例よりも小さく、モータBの高速回転での騒音および振動が低減されていることがわかる。
From Table 20, by controlling the hot-rolled sheet annealing including the rolling under the conditions of the present example, B50 ( LC) is improved and the anisotropy B50 (anisotropic) of the magnetic flux density is small compared to the comparative example. It can be seen that a conductive magnetic steel sheet can be obtained. Further, the iron loss value W10 / 400 is as low as 9.78 W / kg or less, which is excellent.
Further, in this embodiment, as a result of reducing the anisotropy of the magnetic flux density, the noise of the motor B at 400,000 rpm is less than 80 dB and the vibration is 70 dB smaller than that of the comparative example. It can be seen that the vibration has been reduced.

(実施例8)
鋼種Hのスラブを、加熱温度を1100℃として粗熱延を行い、次いで仕上温度875℃で仕上熱延を行い、1.5mm厚に仕上げ、これを500℃に冷却した後、コイラに巻き取った。鋼種Hのスラブから得られた無方向性電磁鋼板の化学組成を表21に示す。
上記熱延鋼板に950℃20秒の熱延板焼鈍を施し、熱延板焼鈍後の冷却過程で445℃に到達した時点で1パスで33%の圧下を施し405℃で圧延(温間圧延)を終え、室温まで冷却して巻き取った。この温間圧延板を再度昇温して900℃5秒の中間焼鈍を施し、その後室温まで冷却して1.0mm厚の中間焼鈍板を得た。
この中間焼鈍板を酸洗後、冷間圧延(圧延開始温度28℃、最高到達温度85℃)を施し、0.25mm厚とし、925℃15秒で仕上げ焼鈍を施した(鋼板No.H−1)。
(Example 8)
The slab of steel type H is roughly hot-rolled at a heating temperature of 1100 ° C., then hot-rolled at a finishing temperature of 875 ° C., finished to a thickness of 1.5 mm, cooled to 500 ° C., and wound into a coiler. Was. Table 21 shows the chemical composition of the non-oriented electrical steel sheet obtained from the steel type H slab.
The hot-rolled steel sheet is subjected to hot-rolled sheet annealing at 950 ° C. for 20 seconds. When the temperature reaches 445 ° C. in the cooling process after the hot-rolled sheet annealing, a 33% reduction is performed in one pass and rolling is performed at 405 ° C. (warm rolling) ), Cooled to room temperature, and wound up. The warm-rolled sheet was heated again, subjected to intermediate annealing at 900 ° C. for 5 seconds, and then cooled to room temperature to obtain a 1.0-mm thick intermediate-annealed sheet.
After pickling, the intermediate annealed sheet was cold-rolled (rolling start temperature 28 ° C., maximum temperature 85 ° C.) to a thickness of 0.25 mm, and finish annealed at 925 ° C. for 15 seconds (steel sheet No. H-). 1).

また、コイラに巻き取るまでの上記と同一条件とした熱延鋼板に950℃20秒の熱延板焼鈍を施し、一旦室温(25℃)まで冷却し、これを再加熱して445℃まで到達した時点で1パスで33%の圧下を施し405℃で圧延(温間圧延)を終え、室温まで冷却して巻き取った。この圧延板を再度昇温して900℃5秒の中間焼鈍を施し、その後室温まで冷却して1.0mm厚の中間焼鈍板を得た。
この中間焼鈍板を酸洗後、冷間圧延(圧延開始温度35℃、最高到達温度95℃)を施し0.25mm厚とし、900℃20秒の仕上焼鈍を施した(鋼板No.H−2)。
Further, the hot-rolled steel sheet subjected to the same conditions as above before winding into a coiler is subjected to hot-rolled sheet annealing at 950 ° C. for 20 seconds, once cooled to room temperature (25 ° C.), and reheated to reach 445 ° C. At that time, the rolling (warm rolling) was completed at 405 ° C. by applying a 33% reduction in one pass, cooled to room temperature, and wound up. The rolled sheet was heated again and subjected to intermediate annealing at 900 ° C. for 5 seconds, and then cooled to room temperature to obtain a 1.0 mm thick intermediate annealed sheet.
After pickling, the intermediate annealed sheet was cold-rolled (rolling start temperature: 35 ° C., maximum temperature: 95 ° C.) to a thickness of 0.25 mm, and subjected to finish annealing at 900 ° C. for 20 seconds (steel sheet No. H-2). ).

また、コイラに巻き取るまでを上記と同一条件とした熱延鋼板に950℃20秒の熱延板焼鈍を施し、室温まで冷却後、1パスで33%の冷間圧延(圧延開始温度25℃、最高到達温度65℃)施し、1.0mm厚に仕上げた。
次いで、この冷間圧延板を再度昇温して、900℃5秒の中間焼鈍を施し、その後室温まで冷却した。
この中間焼鈍板を酸洗後、冷間圧延(圧延開始温度28℃、最高到達温度85℃)を施し、0.25mm厚とし、925℃15秒で仕上げ焼鈍を施した(鋼板No.H−3)。
Further, the hot-rolled steel sheet was subjected to hot-rolled sheet annealing at 950 ° C. for 20 seconds under the same conditions as above until winding into a coiler, cooled to room temperature, and then 33% cold-rolled in one pass (rolling start temperature 25 ° C.). , A maximum temperature of 65 ° C) and a thickness of 1.0 mm.
Next, the temperature of the cold-rolled sheet was raised again, intermediate annealing was performed at 900 ° C. for 5 seconds, and then cooled to room temperature.
After pickling, the intermediate annealed sheet was cold-rolled (rolling start temperature 28 ° C., maximum temperature 85 ° C.) to a thickness of 0.25 mm, and finish annealed at 925 ° C. for 15 seconds (steel sheet No. H-). 3).

得られた無方向性電磁鋼板を圧延方向から22.5°おきにエプスタイン試料に切り出し、歪取り焼鈍を施した後、エプスタイン測定を行った。
これらの鋼板をステータに使用しモータBを作成し、40万rpmでの騒音および振動を測定し、騒音は80dB以下、振動は70dB以下を合格とした。
実施例と比較例の磁気測定結果およびモータの騒音と振動測定結果を表22に示す。
The obtained non-oriented electrical steel sheet was cut into Epstein samples every 22.5 ° from the rolling direction, subjected to strain relief annealing, and then subjected to Epstein measurement.
A motor B was prepared by using these steel plates for the stator, and noise and vibration at 400,000 rpm were measured. The noise was 80 dB or less, and the vibration was 70 dB or less.
Table 22 shows the magnetic measurement results and the motor noise and vibration measurement results of the example and the comparative example.

表22より、本実施例の、一回目の熱延板焼鈍の後の冷却過程において鋼板が室温に至るまでに温間圧延を施せば、比較例よりもB50(LC)が向上し、異方性B50(anisotropy)が小さい無方向性電磁鋼板が得られることがわかる。また、鉄損の値W10/400も9.43W/kgと低く優れている。
また、本実施例では、磁束密度の異方性が低減された結果、40万rpmでのモータBの騒音が80dB以下、振動が70dBと比較例よりも小さく、モータBの高速回転での騒音および振動が低減されていることがわかる。
As shown in Table 22, when the steel sheet is subjected to warm rolling until it reaches room temperature in the cooling process after the first hot-rolled sheet annealing in this example, B50 (LC) is improved as compared with the comparative example, It can be seen that a non-oriented electrical steel sheet having a small anisotropic B50 (anisotropic) can be obtained. In addition, the iron loss value W 10/400 is as low as 9.43 W / kg, which is excellent.
Further, in this embodiment, as a result of reducing the anisotropy of the magnetic flux density, the noise of the motor B at 400,000 rpm is less than 80 dB and the vibration is 70 dB smaller than that of the comparative example. It can be seen that the vibration has been reduced.

(実施例9)
鋼種Gのスラブを、加熱温度を1100℃として粗熱延を行い、次いで仕上温度880℃で仕上熱延を行い、圧延板を2.5mm厚に仕上げ、これをROT上で550℃に冷却した後、コイラに巻き取った。鋼種Gのスラブから得られた無方向性電磁鋼板の化学組成を表23に示す。
表24に示す鋼板No.G−1から鋼板No.G−6の通り、熱延板焼鈍、続く圧延(20%圧下)、中間焼鈍、中間焼鈍に続く圧延(25%圧下)を実施しコイルに巻き取り室温まで冷却した。
この圧延板を酸洗後、25℃(圧延開始温度)で冷間圧延を施し、0.25mm厚とし、925℃15秒で仕上げ焼鈍を施した。
(Example 9)
The slab of steel type G was subjected to rough hot rolling at a heating temperature of 1100 ° C., and then subjected to finish hot rolling at a finishing temperature of 880 ° C. to finish a rolled plate to a thickness of 2.5 mm and cooled it to 550 ° C. on a ROT. Later, it was wound on a coiler. Table 23 shows the chemical composition of the non-oriented electrical steel sheet obtained from the steel type G slab.
The steel sheet No. shown in Table 24. G-1 to steel sheet No. As in G-6, hot-rolled sheet annealing, subsequent rolling (20% reduction), intermediate annealing, and rolling following intermediate annealing (25% reduction) were performed, wound around a coil, and cooled to room temperature.
After pickling, the rolled sheet was cold-rolled at 25 ° C. (rolling start temperature) to a thickness of 0.25 mm, and subjected to finish annealing at 925 ° C. for 15 seconds.

得られた無方向性電磁鋼板を圧延方向から22.5°おきにエプスタイン試料に切り出し、歪取り焼鈍を施した後、エプスタイン測定を行った。
これらの鋼板をステータに使用しモータBを作製し、40万rpmでの騒音および振動を測定し、騒音は80dB以下、振動は70dB以下を合格とした。
実施例と比較例の磁気測定結果およびモータの騒音と振動測定結果を表25に示す。
The obtained non-oriented electrical steel sheet was cut into Epstein samples every 22.5 ° from the rolling direction, subjected to strain relief annealing, and then subjected to Epstein measurement.
A motor B was manufactured using these steel plates for the stator, and noise and vibration at 400,000 rpm were measured. The noise was 80 dB or less and the vibration was 70 dB or less.
Table 25 shows the magnetic measurement results and the motor noise and vibration measurement results of the example and the comparative example.

表24および表25より、本実施例の、一回目および二回目の両方の焼鈍の後、もしくは一回目か二回目の焼鈍の後の冷却過程において鋼板が室温に至るまでに温間圧延を施せば、比較例よりもB50(LC)が向上し、異方性B50(anisotropy)が小さい無方向性電磁鋼板が得られることがわかる。また、鉄損の値W10/400も9.55W/kg以下と低く優れている。
本実施例では、磁束密度の異方性が低減された結果、40万rpmでのモータBの騒音が80dB以下、振動が70dBと比較例よりも小さく、モータBの高速回転での騒音および振動が低減されていることがわかる。
特に注目すべきは、一回目と二回目の焼鈍後に温間圧延を施した鋼板No.G−1および一回目の熱延板焼鈍後に温間圧延を施した鋼板No.G−2では、異方性B50(anisotropy)の値が0.008以下と優れた低異方性を示し、磁束密度B50(LC)は1.70Tの値を示し、W10/400は9.39W/kg以下の優れた値を示し、モータBによる騒音測定結果は74dB以下、振動測定結果は63dB以下の優れた値を示している。
一回目の熱延板焼鈍後に室温まで冷却し、二回目の焼鈍の後の冷却過程に温間圧延を施した鋼板No.G−3および鋼板No.G−5では、異方性B50(anisotropy)が鋼板No.G−1および鋼板No.G−2に対し0.015と大きく、モータBによる騒音測定結果および振動測定結果が合格値ラインぎりぎりのそれぞれ79dB、69dBとなっている。
これは、厚手の鋼板に温間圧延を施した方が本開示の効果が明白に表れることを示すものと発明者らは推察している。
According to Tables 24 and 25, in the cooling process after both the first and second annealing or the first or second annealing in this example, the steel sheet was subjected to warm rolling until it reached room temperature. For example, it can be seen that a non-oriented electrical steel sheet having a higher B50 (LC) and a smaller anisotropy B50 (anisotropy) than the comparative example can be obtained. Further, the iron loss value W10 / 400 is as low as 9.55 W / kg or less, which is excellent.
In this embodiment, as a result of reducing the anisotropy of the magnetic flux density, the noise of the motor B at 400,000 rpm is less than 80 dB and the vibration is 70 dB smaller than that of the comparative example at 400,000 rpm. It can be seen that is reduced.
Particularly noteworthy is the steel sheet No. which was subjected to warm rolling after the first and second annealing. G-1 and the steel sheet No. warm-rolled after the first hot-rolled sheet annealing. In G-2, the value of anisotropy B50 (anisotropic) shows excellent low anisotropy of 0.008 or less, the magnetic flux density B50 (LC) shows a value of 1.70T , and W10 / 400 is It shows an excellent value of 9.39 W / kg or less, the result of noise measurement by the motor B shows an excellent value of 74 dB or less, and the result of vibration measurement shows an excellent value of 63 dB or less.
The steel sheet No. was cooled to room temperature after the first hot-rolled sheet annealing, and subjected to warm rolling in the cooling process after the second annealing. G-3 and steel sheet No. In G-5, the anisotropy B50 (anisotropy) was changed to steel sheet No. G-1 and steel sheet No. The noise measurement result and the vibration measurement result by the motor B are 79 dB and 69 dB, respectively, which are very close to the acceptable value line.
The inventors presume that this indicates that the effect of the present disclosure is more apparent when warm rolling is performed on a thick steel plate.

以上より、本発明によれば、より高速回転においても騒音および振動の少ない無方向性電磁鋼板を得ることが可能である。   As described above, according to the present invention, it is possible to obtain a non-oriented electrical steel sheet with less noise and vibration even at higher rotation speeds.

Claims (4)

スラブに熱間圧延を施し、熱延鋼板とする熱間圧延工程と、
熱延鋼板に、800℃以上1080℃以下で5秒以上2分以下の熱延板焼鈍を施す熱延板焼鈍工程と、
熱延板焼鈍の冷却過程において、400℃以上700℃以下の温度域で圧下率3%以上75%以下の温間圧延を施す温間圧延工程と、
温間圧延後の圧延板に、仕上焼鈍を施す仕上焼鈍工程と、
を備え、
圧延方向に対して、0°、22.5°、45°、67.5°、及び90°の角度の方向での、磁界強度5000A/mにおける磁束密度をそれぞれB50(0°)、B50(22.5°)、B50(45°)、B50(67.5°)、及びB50(90°)と表記した際に、下記式(1)で規定される異方性指標B50(anisotropy)が0.017以下である無方向性電磁鋼板を製造する、無方向性電磁鋼板の製造方法。

式(1)
ここで、式(1)中、B50AVEは、下記式(2)で規定される。

式(2)
Hot rolling the slab to a hot-rolled steel sheet,
A hot-rolled sheet annealing step of performing hot-rolled sheet annealing at 800 ° C. or more and 1080 ° C. or less for 5 seconds or more and 2 minutes or less,
In the cooling process of the hot-rolled sheet annealing, a warm rolling step of performing warm rolling at a rolling reduction of 3% to 75% in a temperature range of 400 ° C to 700 ° C,
Finish annealing step of performing finish annealing on the rolled sheet after warm rolling,
With
The magnetic flux densities at directions of 0 °, 22.5 °, 45 °, 67.5 °, and 90 ° with respect to the rolling direction at a magnetic field strength of 5000 A / m are represented by B50 (0 °) and B50, respectively. When expressed as 50 (22.5 °) , B 50 (45 °) , B 50 (67.5 °) , and B 50 (90 °) , the anisotropy index defined by the following formula (1) A method for producing a non-oriented electrical steel sheet, wherein the non-oriented electrical steel sheet has a B50 (anisotropic) of 0.017 or less.

Equation (1)
Here, in the equation (1), B50AVE is defined by the following equation (2).

Equation (2)
温間圧延を、700℃超1080℃以下の温度で5秒以上2分以下の中間焼鈍を挟んで2回以上実施する請求項1に記載の無方向性電磁鋼板の製造方法。   The method for producing a non-oriented electrical steel sheet according to claim 1, wherein the warm rolling is performed twice or more at a temperature of more than 700 ° C and not more than 1080 ° C with an intermediate annealing of 5 seconds or more and 2 minutes or less. 前記無方向性電磁鋼板は、圧延方向での磁界強度5000A/mにおける磁束密度B50(0°)と、圧延方向に対して直角となる方向での磁界強度5000A/mにおける磁束密度B50(90°)と、の算術平均である平均磁束密度B50(LC)が、1.64T以上である請求項1又は請求項2に記載の無方向性電磁鋼板の製造方法。 The non-oriented electrical steel sheets, the magnetic flux density B 50 in the magnetic field strength 5000A / m at the rolling direction (0 °), the magnetic flux density B 50 in the magnetic field strength 5000A / m in a direction at right angles to the rolling direction ( and 90 °), is the arithmetic mean is a mean magnetic flux density B 50 of (LC), the manufacturing method of the non-oriented electrical steel sheet according to claim 1 or claim 2 is at least 1.64T. 前記無方向性電磁鋼板は、質量%で、
Si:0.1%〜3.8%、
Mn:0.1%〜2.5%、
Al:0%〜2.5%、を含有し、
残部がFe及び不純物からなる組成である、請求項1〜請求項3のいずれか一項に記載の無方向性電磁鋼板の製造方法。
The non-oriented electrical steel sheet is, in mass%,
Si: 0.1% to 3.8%,
Mn: 0.1% to 2.5%,
Al: 0% to 2.5%,
The method for producing a non-oriented electrical steel sheet according to any one of claims 1 to 3, wherein the balance is a composition comprising Fe and impurities.
JP2018145352A 2018-08-01 2018-08-01 Method for manufacturing non-oriented electrical steel sheet Active JP7147340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018145352A JP7147340B2 (en) 2018-08-01 2018-08-01 Method for manufacturing non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018145352A JP7147340B2 (en) 2018-08-01 2018-08-01 Method for manufacturing non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2020020005A true JP2020020005A (en) 2020-02-06
JP7147340B2 JP7147340B2 (en) 2022-10-05

Family

ID=69589581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018145352A Active JP7147340B2 (en) 2018-08-01 2018-08-01 Method for manufacturing non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP7147340B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176933A1 (en) * 2021-02-17 2022-08-25 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and manufacturing method therefor
WO2023008510A1 (en) * 2021-07-30 2023-02-02 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, iron core, method for manufacturing iron core, motor, and method for manufacturing motor
WO2023182474A1 (en) * 2022-03-24 2023-09-28 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
CN118460826A (en) * 2024-07-10 2024-08-09 中北大学 High-strength medium manganese steel and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188756A (en) * 1993-12-28 1995-07-25 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2000054084A (en) * 1998-08-05 2000-02-22 Nippon Steel Corp Silicon-containing hot rolled sheet excellent in magnetic property, and its manufacture
JP2000129409A (en) * 1998-10-23 2000-05-09 Kawasaki Steel Corp Nonoriented silicon steel sheet excellent in actual machine characteristic of rotary machine and its production
JP2002003944A (en) * 2000-06-16 2002-01-09 Kawasaki Steel Corp Method for manufacturing nonoriented silicon steel sheet having excellent magnetic property
JP2007186790A (en) * 2005-12-15 2007-07-26 Jfe Steel Kk High strength non-oriented electrical steel sheet and method for manufacture the same
JP2011111658A (en) * 2009-11-27 2011-06-09 Nippon Steel Corp Method for producing non-oriented magnetic steel sheet having high magnetic flux density
CN105369125A (en) * 2015-12-07 2016-03-02 武汉钢铁(集团)公司 Non-oriented high silicon steel sheet and preparation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188756A (en) * 1993-12-28 1995-07-25 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2000054084A (en) * 1998-08-05 2000-02-22 Nippon Steel Corp Silicon-containing hot rolled sheet excellent in magnetic property, and its manufacture
JP2000129409A (en) * 1998-10-23 2000-05-09 Kawasaki Steel Corp Nonoriented silicon steel sheet excellent in actual machine characteristic of rotary machine and its production
JP2002003944A (en) * 2000-06-16 2002-01-09 Kawasaki Steel Corp Method for manufacturing nonoriented silicon steel sheet having excellent magnetic property
JP2007186790A (en) * 2005-12-15 2007-07-26 Jfe Steel Kk High strength non-oriented electrical steel sheet and method for manufacture the same
JP2011111658A (en) * 2009-11-27 2011-06-09 Nippon Steel Corp Method for producing non-oriented magnetic steel sheet having high magnetic flux density
CN105369125A (en) * 2015-12-07 2016-03-02 武汉钢铁(集团)公司 Non-oriented high silicon steel sheet and preparation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176933A1 (en) * 2021-02-17 2022-08-25 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and manufacturing method therefor
TWI796955B (en) * 2021-02-17 2023-03-21 日商日本製鐵股份有限公司 Non-oriented electrical steel sheet and manufacturing method thereof
WO2023008510A1 (en) * 2021-07-30 2023-02-02 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, iron core, method for manufacturing iron core, motor, and method for manufacturing motor
JP7243937B1 (en) * 2021-07-30 2023-03-22 日本製鉄株式会社 Non-oriented electrical steel sheet, iron core, iron core manufacturing method, motor, and motor manufacturing method
WO2023182474A1 (en) * 2022-03-24 2023-09-28 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
CN118460826A (en) * 2024-07-10 2024-08-09 中北大学 High-strength medium manganese steel and preparation method thereof

Also Published As

Publication number Publication date
JP7147340B2 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
JP5228379B2 (en) Non-oriented electrical steel sheet with excellent strength and magnetic properties and manufacturing method thereof
JP4586669B2 (en) Method for producing non-oriented electrical steel sheet for rotor
JP5186036B2 (en) IPM motor rotor and IPM motor using the same
JP2007016278A (en) Non-oriented electromagnetic steel sheet for rotor, and its manufacturing method
JP2000129409A (en) Nonoriented silicon steel sheet excellent in actual machine characteristic of rotary machine and its production
JP2020020005A (en) Method for manufacturing non-oriented silicon steel sheet
JP2004300535A (en) High strength nonoriented silicon steel sheet having excellent magnetic property, and its production method
JPH06330255A (en) High tensile strength non-oriented silicon steel sheet and its production
JPH028346A (en) High tensile electrical steel sheet and its manufacture
JP6604120B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR102503899B1 (en) motor
JP2005120403A (en) Non-oriented electrical steel sheet with low core loss in high-frequency region
JP2013044012A (en) Non-oriented electromagnetic steel sheet, and method of producing the same
JP2001303213A (en) Nonoriented silicon steel sheet for high efficiency motor
JP2017057456A (en) High strength member for motor using non-oriented electromagnetic steel sheet and manufacturing method therefor
JP5333415B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP2007162096A (en) Non-oriented electrical steel sheet for rotor, and its manufacturing method
JP2015002649A (en) Rotor for ipm motor, and imp motor employing the same
JP6110097B2 (en) High power reluctance motor steel core steel plate and manufacturing method thereof, rotor for reluctance motor using the same, stator and reluctance motor
CN105331879A (en) Non-oriented silicon steel for high-power-density motor and production method
JP2002146493A (en) Nonoriented silicon steel sheet having excellent mechanical strength property and magnetic property and its production method
JP7488443B2 (en) Laminated core and rotating electrical machine
JP2012092445A (en) Steel sheet for rotor core of ipm motor excellent in magnetic property
KR100940719B1 (en) Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing
JP2005120431A (en) Method for manufacturing high-strength nonoriented silicon steel sheet having excellent magnetic characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220905

R151 Written notification of patent or utility model registration

Ref document number: 7147340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151