JP2019209240A - Stirring method and stirring device - Google Patents

Stirring method and stirring device Download PDF

Info

Publication number
JP2019209240A
JP2019209240A JP2018105627A JP2018105627A JP2019209240A JP 2019209240 A JP2019209240 A JP 2019209240A JP 2018105627 A JP2018105627 A JP 2018105627A JP 2018105627 A JP2018105627 A JP 2018105627A JP 2019209240 A JP2019209240 A JP 2019209240A
Authority
JP
Japan
Prior art keywords
stirring
tank
stirred
stage
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018105627A
Other languages
Japanese (ja)
Other versions
JP7148279B2 (en
Inventor
沙羅 住岡
Sara Sumioka
沙羅 住岡
坂本 雅基
Masaki Sakamoto
雅基 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2018105627A priority Critical patent/JP7148279B2/en
Publication of JP2019209240A publication Critical patent/JP2019209240A/en
Application granted granted Critical
Publication of JP7148279B2 publication Critical patent/JP7148279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Accessories For Mixers (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

To provide a stirring method and a stirring device which can improve uniform mixing performance while maintaining shearing force.SOLUTION: In a stirring method in which an object 50 to be stirred stored in a stirring tank 10 is stirred using a stirring device 1 equipped with a cylindrical stirring tank 10, a rotating shaft 11 arranged along a center shaft of the stirring tank 10 and a plurality of stirring vanes 20 attached to the rotating shaft 11, the stirring vanes 20 are all stirring vanes having radial-directional flow and attached in three tiers at intervals in a shaft direction Z of the rotating shaft 11, where the rotating shaft 11 is rotated to stir the object 50 to be stirred under the condition that a ratio of a distance h2 between the stirring vane 20d in a lower tier and the stirring vane 20m in a middle tier to a distance h3 between the stirring vane 20u in the upper tier and the stirring vane 20m in the middle tier is set to be 0.50 and more and 0.95 or less, and a ratio of a distance h1 between the stirring vane 20d in the lower tier and a tank bottom 10a of the stirring tank to a height H from the tank bottom 10a of the stirring tank to an upper end 50a of the object to be stirred is set to be 0.190 or more and 0.345 or less.SELECTED DRAWING: Figure 1

Description

本発明は、撹拌方法及び撹拌装置に関する。   The present invention relates to a stirring method and a stirring device.

ディスクタービン翼やフラットパドル翼といった半径方向流型の撹拌翼は、得られるせん断応力が大きく、また羽根からの吐出流が撹拌槽の半径方向に向かうという特徴をもつ。一方で、撹拌槽の軸方向の流れを形成しにくく、槽内の流れが上下に分断されやすいため、槽全体の均一混合性が低いという課題がある。   A radial flow type stirring blade such as a disk turbine blade or a flat paddle blade has a characteristic that a large shear stress is obtained, and a discharge flow from the blade is directed in a radial direction of the stirring tank. On the other hand, since it is difficult to form an axial flow of the stirring tank and the flow in the tank is easily divided vertically, there is a problem that the uniform mixing property of the entire tank is low.

槽内の均一混合性を高める技術が種々開発されている。例えば、特許文献1及び2に開示された技術では、半径方向流型の撹拌翼と軸方向流型の撹拌翼とを組み合わせることで上下循環流の形成を可能としている。また、特許文献3に開示された技術では、槽の下部へ向かうにつれて撹拌翼の羽根面積が大きくなるように設計することで上下循環流の形成を可能としている。   Various techniques for improving uniform mixing in the tank have been developed. For example, in the techniques disclosed in Patent Documents 1 and 2, a vertical circulation flow can be formed by combining a radial flow type stirring blade and an axial flow type stirring blade. Moreover, in the technique disclosed in Patent Document 3, the upper and lower circulation flows can be formed by designing the blade area of the stirring blade to increase toward the lower part of the tank.

特許5921433号公報Japanese Patent No. 5921433 特開2015−054272号公報Japanese Patent Laying-Open No. 2015-054272 特開2006−87998号公報JP 2006-87998 A

しかしながら、特許文献1及び2の技術では、軸方向流型の撹拌翼は軸方向の大きな吐出流により槽内全体の上下循環流が形成されるが、得られるせん断力が小さい。そのため、軸方向流型の撹拌翼を用いることで均一混合性を向上し得るが、半径方向流型の撹拌翼によって得られるはずのせん断応力が小さくなってしまう問題がある。また、特許文献3の技術では、翼面積が大きいため非常に大きな動力を消費してしまい、さらに得られるせん断応力が過剰に大きくなってしまうという問題がある。   However, in the techniques of Patent Documents 1 and 2, the axial flow type stirring blade forms a vertically circulating flow in the entire tank by a large discharge flow in the axial direction, but the obtained shearing force is small. Therefore, uniform mixing can be improved by using an axial flow type stirring blade, but there is a problem that the shear stress that should be obtained by the radial flow type stirring blade is reduced. Further, the technique of Patent Document 3 has a problem that since the blade area is large, a very large amount of power is consumed, and the obtained shear stress becomes excessively large.

一般的に三段撹拌翼を用いる場合、下段翼はできるだけ槽底に近づけて配置し、上段翼は液面を撹乱しないように液面からある程度の距離をもたせて配置する。さらに中段翼は撹拌翼間距離が均等になるように上段翼と下段翼の中央に配置する。この通常の配置の場合、これまでは各撹拌翼によって生じる半径方向の吐出流は独立して流動すると考えられていたが、本発明者らが、槽内の流動状態を種々検討した結果、図7(b)に示すように下段翼によって生じる吐出流は槽底に向かって下を向き、上二段の撹拌翼によって生じる吐出流は合流するフローパターンとなることが判った。その上二段の撹拌翼によって生じる吐出流は、撹拌槽の壁あるいは邪魔板に衝突して上下方向に分かれる前に、合流するため良く混合される。しかし、下段の撹拌翼によって生じる吐出流による循環流は上二段の撹拌翼によって生じる吐出流とは別に生じるため、上方にある液組成が槽の下部まで移行しにくくなる。したがって、上述のような通常の撹拌翼の配置として、槽内を撹拌した場合、槽全体の均一混合性は低くなる。
半径方向流型の撹拌翼は、得られるせん断力が大きく、気液反応、乳化、固液分散等のせん断力が必要なプロセスによく用いられ、前述のプロセスにおいては最終生成物の均一性、製品品質の観点から均一混合性も重要である。しかしながら、上述のような通常の撹拌翼の配置で槽内を撹拌し、槽全体の均一混合性が低いと、製品の品質が悪化する等の不都合を生じやすくなる。
ここで、均一混合性を上げるために回転数を大きくすると、得られるせん断力も大きくなる。しかしながら、気液反応プロセスの場合、せん断力が大きくなると気体の物質移動係数が大きくなることで反応時間が短くなり、生成物の収率・品質が低下する可能性がある。また、乳化や固液分散プロセスにおいても、せん断力が大きくなることで、液滴径(粒径)が小さくなるため、所望の物性が得られず製品の品質が低下する可能性がある。したがって、製品規格に合致するせん断力を与えると同時に、均一混合性の高い撹拌方法が求められている。
In general, when using a three-stage stirring blade, the lower blade is disposed as close to the bottom of the tank as possible, and the upper blade is disposed at a certain distance from the liquid surface so as not to disturb the liquid surface. Furthermore, the middle blade is arranged at the center of the upper blade and the lower blade so that the distance between the stirring blades is uniform. In the case of this normal arrangement, the radial discharge flow generated by each stirring blade has been thought to flow independently until now, but the present inventors conducted various studies on the flow state in the tank. As shown in FIG. 7B, it was found that the discharge flow generated by the lower blades turned downward toward the bottom of the tank, and the discharge flow generated by the upper two stirring blades joined the flow pattern. In addition, the discharge flow generated by the two-stage agitating blades is well mixed because it joins before colliding with the wall of the agitation tank or the baffle plate and separating in the vertical direction. However, since the circulation flow by the discharge flow generated by the lower stirring blades is generated separately from the discharge flow generated by the upper two stirring blades, it is difficult for the liquid composition above to move to the lower part of the tank. Therefore, when the inside of the tank is stirred as the arrangement of the normal stirring blade as described above, the uniform mixing property of the entire tank is lowered.
The radial flow type stirring blade has a large shearing force, and is often used for processes that require shearing force such as gas-liquid reaction, emulsification, solid-liquid dispersion, etc. In the above-mentioned process, the uniformity of the final product, Uniform mixing is also important from the viewpoint of product quality. However, if the inside of the tank is agitated with the above-described arrangement of the stirring blades and the uniform mixing property of the whole tank is low, inconveniences such as deterioration in product quality are likely to occur.
Here, when the number of rotations is increased in order to improve the uniform mixing property, the shearing force obtained is also increased. However, in the case of a gas-liquid reaction process, when the shear force is increased, the gas mass transfer coefficient is increased, so that the reaction time is shortened and the yield and quality of the product may be lowered. Also in the emulsification and solid-liquid dispersion processes, the droplet diameter (particle diameter) decreases due to an increase in shearing force, so that desired physical properties cannot be obtained and the product quality may be degraded. Therefore, there is a demand for an agitation method that imparts a shearing force that conforms to product specifications and at the same time has high uniform mixing properties.

本発明の課題は、前述した従来技術の有する課題を解決し得る撹拌方法及び撹拌装置を提供することにある。   The subject of this invention is providing the stirring method and stirring apparatus which can solve the subject which the prior art mentioned above has.

本発明は、円筒状の撹拌槽と、該撹拌槽の中心軸に沿って配される回転軸と、該回転軸に取り付けられた複数の撹拌翼とを備えた撹拌装置を用いて、該撹拌槽内に収容された液状の被撹拌物を撹拌する撹拌方法であって、前記撹拌翼は、いずれも半径方向流型の撹拌翼であり、前記回転軸の軸方向に間隔を開けて三段取り付けられており、下段に位置する前記撹拌翼と中段に位置する前記撹拌翼との間の距離h2と、上段に位置する前記撹拌翼と前記中段に位置する前記撹拌翼との間の距離h3との比(h2/h3)を0.50以上0.95以下とし、且つ前記下段に位置する撹拌翼と前記撹拌槽の槽底との間の距離h1と、該撹拌槽の槽底から前記被撹拌物の上端までの高さHとの比(h1/H)を0.20以上0.30以下とした条件下に、前記回転軸を回転させて、前記被撹拌物を撹拌する撹拌方法を提供するものである。   The present invention uses a stirrer provided with a cylindrical stirring tank, a rotating shaft arranged along the central axis of the stirring tank, and a plurality of stirring blades attached to the rotating shaft. A stirring method for stirring a liquid to-be-stirred object accommodated in a tank, wherein each of the stirring blades is a radial flow type stirring blade, and has three stages at intervals in the axial direction of the rotating shaft. A distance h2 between the agitating blades attached to the lower stage and the agitating blades located in the middle stage, and a distance h3 between the agitating blade located in the upper stage and the agitating blades located in the middle stage. (H2 / h3) is 0.50 or more and 0.95 or less, and the distance h1 between the stirring blade located in the lower stage and the tank bottom of the stirring tank, and the tank bottom of the stirring tank Conditions where the ratio (h1 / H) to the height H to the upper end of the object to be stirred is 0.20 or more and 0.30 or less , Said rotary shaft is rotated, the there is provided a stirring method for stirring the object to be agitated thereof.

また本発明は、円筒状の撹拌槽と、該撹拌槽の中心軸に沿って配される回転軸と、該回転軸に取り付けられた複数の撹拌翼とを備えた撹拌装置であって、前記撹拌槽の内周面に邪魔板が取り付けられており、前記撹拌翼は、いずれも半径方向流型の撹拌翼であり、前記回転軸の軸方向に間隔を開けて三段取り付けられており、下段に位置する前記撹拌翼と中段に位置する前記撹拌翼との間の距離h2と、上段に位置する前記撹拌翼と前記中段に位置する前記撹拌翼との間の距離h3との比(h2/h3)が0.50以上0.95以下であり、且つ前記下段に位置する撹拌翼と前記撹拌槽の槽底との間の距離h1と、該撹拌槽の内径Dとの比(h1/D)が0.190以上0.345以下である、撹拌装置を提供するものである。   Further, the present invention is a stirring device comprising a cylindrical stirring tank, a rotating shaft disposed along the central axis of the stirring tank, and a plurality of stirring blades attached to the rotating shaft, A baffle plate is attached to the inner peripheral surface of the stirring tank, and each of the stirring blades is a radial flow type stirring blade, and is attached in three stages at intervals in the axial direction of the rotating shaft, A ratio (h2) between a distance h2 between the stirring blade located in the lower stage and the stirring blade located in the middle stage and a distance h3 between the stirring blade located in the upper stage and the stirring blade located in the middle stage / H3) is 0.50 or more and 0.95 or less, and the ratio (h1 /) between the distance h1 between the stirring blade located in the lower stage and the tank bottom of the stirring tank and the inner diameter D of the stirring tank The stirring apparatus in which D) is 0.190 or more and 0.345 or less is provided.

本発明の撹拌方法及び撹拌装置によれば、半径方向流型の撹拌翼によるせん断力を維持しつつ、均一混合性を向上させることができる。   According to the stirring method and the stirring device of the present invention, the uniform mixing property can be improved while maintaining the shearing force by the radial flow type stirring blade.

図1は、本発明の撹拌方法及び撹拌装置の一実施形態に係る撹拌装置の概略断面図である。FIG. 1 is a schematic cross-sectional view of a stirring device according to an embodiment of the stirring method and the stirring device of the present invention. 図2は、図1に示す撹拌装置における回転軸に直交する断面図であり、図1中のIa―Ia線、Ib―Ib線及びIc―Ic線の各線に沿う共通断面図である。FIG. 2 is a cross-sectional view orthogonal to the rotation axis in the stirring apparatus shown in FIG. 1, and is a common cross-sectional view taken along lines Ia-Ia, Ib-Ib, and Ic-Ic in FIG. 図3は、図1に示す撹拌装置が有する撹拌翼の斜視図である。FIG. 3 is a perspective view of a stirring blade included in the stirring device shown in FIG. 1. 図4(a)は、図3に示す撹拌翼の側面図であり、図4(b)は撹拌翼の羽根の傾斜角を説明する図である。4A is a side view of the stirring blade shown in FIG. 3, and FIG. 4B is a diagram for explaining the inclination angle of the blade of the stirring blade. 図5は、本発明の一実施形態に係る撹拌方法を使用したときと、撹拌槽内に生じるフローパターンを説明する図である。FIG. 5 is a diagram illustrating a flow pattern generated in the stirring tank when the stirring method according to the embodiment of the present invention is used. 図6(a)、図6(b)及び図6(c)は、本発明の他の実施形態に係る撹拌装置の邪魔板の形状を説明する図である。6 (a), 6 (b) and 6 (c) are diagrams for explaining the shape of a baffle plate of a stirring device according to another embodiment of the present invention. 図7(a)、図7(b)、図7(c)及び図7(d)は、実施例及び比較例の撹拌方法を使用したときの撹拌槽内に生じるフローパターンを説明する図である。7 (a), 7 (b), 7 (c), and 7 (d) are diagrams for explaining the flow pattern generated in the stirring tank when the stirring methods of the examples and comparative examples are used. is there. 図8(a)は実施例1の撹拌方法により撹拌したときの撹拌槽内の流跡線を示す図であり、図8(b)は比較例1の撹拌方法により撹拌したときの撹拌槽内の流跡線を示す図である。FIG. 8A is a diagram showing a trajectory line in the stirring tank when stirred by the stirring method of Example 1, and FIG. 8B is the inside of the stirring tank when stirred by the stirring method of Comparative Example 1. FIG. 図9は、実施例1及び比較例1の撹拌方法により撹拌したときの分離強度の継時変化を示す図である。FIG. 9 is a diagram showing changes over time in separation strength when stirring is performed by the stirring method of Example 1 and Comparative Example 1. FIG. 図10は、実施例1及び比較例1の撹拌方法により撹拌したときのトルク5区間移動平均を示す図である。FIG. 10 is a diagram illustrating a torque 5-section moving average when stirring is performed by the stirring method of Example 1 and Comparative Example 1. 図11は、実施例1及び比較例11の撹拌方法により撹拌したときのトルク5区間移動平均を示す図である。FIG. 11 is a diagram showing a torque 5-section moving average when stirring is performed by the stirring methods of Example 1 and Comparative Example 11.

以下、本発明をその好ましい実施形態に基づき説明する。
まず、本発明の撹拌方法の好ましい一実施形態に用いられる撹拌装置について説明する。本発明の撹拌方法の一実施態様に用いられる撹拌装置1は、図1及び図2に示すように、円筒状の撹拌槽10と、撹拌槽10の中心軸に沿って配される回転軸11と、回転軸11に取り付けられた複数の撹拌翼20と、撹拌槽10の内周面に取り付けられた邪魔板30とを備えている。
Hereinafter, the present invention will be described based on preferred embodiments thereof.
First, a stirring device used in a preferred embodiment of the stirring method of the present invention will be described. As shown in FIGS. 1 and 2, the stirring device 1 used in one embodiment of the stirring method of the present invention includes a cylindrical stirring tank 10 and a rotating shaft 11 disposed along the central axis of the stirring tank 10. And a plurality of stirring blades 20 attached to the rotating shaft 11 and a baffle plate 30 attached to the inner peripheral surface of the stirring tank 10.

撹拌槽10は、図1及び図2に示すように、円筒状であり、槽底10aを有している。槽底10aの形状は、一般的な撹拌槽10の槽底の形状とすることができ、特に制限されず、例えば、平型、10%皿型、半楕円型、円錐型等が挙げられる。槽底10aの形状は、処理物の抜出しや槽底部での吐出流の滞留防止の観点から、10%皿型であることが好ましい。   As shown in FIGS. 1 and 2, the stirring tank 10 is cylindrical and has a tank bottom 10a. The shape of the tank bottom 10a can be the shape of the tank bottom of the general stirring tank 10, and is not particularly limited, and examples thereof include a flat type, a 10% dish type, a semi-elliptical type, and a conical type. The shape of the tank bottom 10a is preferably a 10% dish type from the viewpoint of extracting the processed material and preventing the stay of the discharge flow at the tank bottom.

回転軸11は、図1及び図2に示すように、その中心軸が撹拌槽10の中心軸と同じ位置に位置するように取り付けられている。回転軸11は、その上端部が撹拌槽10の上部に位置する駆動装置(不図示)に接続されており、回転可能となっている。   As shown in FIGS. 1 and 2, the rotation shaft 11 is attached such that its central axis is located at the same position as the central axis of the stirring tank 10. The rotating shaft 11 is connected to a driving device (not shown) whose upper end is positioned above the stirring tank 10 and is rotatable.

撹拌翼20は、半径方向流型の撹拌翼である。「半径方向流型の撹拌翼」とは、撹拌翼を取り付けた回転軸を回転させたときに、該回転軸から離れる方向に向かって、該回転軸と略垂直に流れる流れを発生させる撹拌翼である。つまり半径方向流型の撹拌翼は、撹拌槽の半径方向に向かう吐出流を生じさせるようになっている。半径方向流型の撹拌翼としては、例えば、ディスクタービン翼、パドル翼、ディスパー翼、等が挙げられ、これらの中でも、比較的高速で撹拌可能であり、被撹拌物50に大きなせん断力を与えられるという観点から、ディスクタービン翼を用いることが好ましい。   The stirring blade 20 is a radial flow type stirring blade. The “radial flow type stirring blade” refers to a stirring blade that generates a flow that flows substantially perpendicular to the rotating shaft in a direction away from the rotating shaft when the rotating shaft to which the stirring blade is attached is rotated. It is. That is, the radial flow type stirring blade generates a discharge flow in the radial direction of the stirring tank. Examples of the radial flow type stirring blade include a disk turbine blade, a paddle blade, a disper blade, and the like. Among them, stirring is possible at a relatively high speed, and a large shearing force is applied to the object 50 to be stirred. Therefore, it is preferable to use a disc turbine blade.

撹拌翼20は、図1に示すように、回転軸11に、その軸方向Zに間隔を開けて三段取り付けられている。すなわち、撹拌装置1は、撹拌翼20として、上段に位置する撹拌翼20u、中段に位置する撹拌翼20m及び下段に位置する撹拌翼20dを有している。上段に位置する撹拌翼20uと中段に位置する撹拌翼20mと下段に位置する撹拌翼20dとは、回転軸11に取り付けられている位置が異なる以外、同一の構成を有している。三段の撹拌翼20u,20m,20dは、回転軸11の軸方向Zにおける各撹拌翼20u,20m,20d同士間の距離が不均等となるように回転軸11に取り付けられている。   As shown in FIG. 1, the stirring blade 20 is attached to the rotary shaft 11 in three stages at intervals in the axial direction Z. That is, the stirring device 1 includes, as the stirring blade 20, the stirring blade 20u located in the upper stage, the stirring blade 20m located in the middle stage, and the stirring blade 20d located in the lower stage. The stirring blade 20u located in the upper stage, the stirring blade 20m located in the middle stage, and the stirring blade 20d located in the lower stage have the same configuration except that the positions attached to the rotary shaft 11 are different. The three-stage stirring blades 20u, 20m, and 20d are attached to the rotating shaft 11 so that the distances between the stirring blades 20u, 20m, and 20d in the axial direction Z of the rotating shaft 11 are not uniform.

撹拌装置1では、図1に示すように、下段に位置する撹拌翼20dと中段に位置する撹拌翼20mとの間の距離h2は、上段に位置する撹拌翼20uと中段に位置する撹拌翼20mとの間の距離h3よりも小さくなっている。
距離h2及び距離h3は、回転軸11の軸方向Zに隣り合う撹拌翼20の中点Mどうし間の距離である。各撹拌翼20の中点Mの位置は、撹拌翼20の軸方向Zにおける羽根22の上端と下端との間の距離を2等分する位置であり、したがって、距離h2は、下段に位置する撹拌翼20dの中点Mdと中段に位置する撹拌翼20mの中点Mmとの間の距離であり、距離h3は、上段に位置する撹拌翼20uの中点Muと中段に位置する撹拌翼20mの中点Mmとの間の距離である。後述する距離h1及び距離h4も、撹拌翼20dの中点Mdと槽底10aとの間の距離、及び撹拌翼20uの中点Muと被撹拌物50の上端50aとの間の距離である。なお、一段の撹拌翼20が複数の羽根22を有し、各羽根22の中点Mの軸方向Zの位置が異なる場合は、各中点Mの軸方向Zの平均位置を該撹拌翼20の軸方向Zの中点Mの位置とする。
In the stirring apparatus 1, as shown in FIG. 1, the distance h2 between the stirring blade 20d located in the lower stage and the stirring blade 20m located in the middle stage is equal to the stirring blade 20u located in the upper stage and the stirring blade 20m located in the middle stage. The distance h3 is smaller than the distance h3.
The distance h <b> 2 and the distance h <b> 3 are distances between the midpoints M of the stirring blades 20 adjacent in the axial direction Z of the rotating shaft 11. The position of the middle point M of each stirring blade 20 is a position that bisects the distance between the upper end and the lower end of the blade 22 in the axial direction Z of the stirring blade 20, and therefore the distance h2 is located in the lower stage. The distance between the middle point Md of the stirring blade 20d and the middle point Mm of the stirring blade 20m located in the middle stage, and the distance h3 is the middle point Mu of the stirring blade 20u located in the upper stage and the stirring blade 20m located in the middle stage. Is the distance from the midpoint Mm. A distance h1 and a distance h4 described later are also a distance between the middle point Md of the stirring blade 20d and the tank bottom 10a, and a distance between the middle point Mu of the stirring blade 20u and the upper end 50a of the object 50 to be stirred. In addition, when the stirrer blade 20 of a single stage has a plurality of blades 22 and the positions of the midpoints M of the blades 22 in the axial direction Z are different, the average position of the midpoints M in the axial direction Z is determined as the stirrer blades 20. Is the position of the midpoint M of the axial direction Z.

下段に位置する撹拌翼20dと中段に位置する撹拌翼20mとの間の距離h2と、上段に位置する撹拌翼20uと中段に位置する撹拌翼20mとの間の距離h3との比(h2/h3)は、上段に位置する撹拌翼20uによって生じる吐出流が孤立し、中段及び下段に位置する撹拌翼20m,20dによって生じる吐出流が合流して槽底に向かい、槽内が二分割されて、混合性が低下してしまうことを防ぐ観点から、0.50以上であることが好ましく、0.70以上であることがより好ましく、0.76以上であることが更に好ましく、また、下段に位置する撹拌翼20dによって生じる吐出流が槽底へ向かい、上段及び中段に位置する撹拌翼20u,20mによって生じる吐出流が合流して槽内が二分割されて、混合性が低下してしまうことを防ぐ観点から、0.95以下であることが好ましく、0.90以下であることがより好ましく、0.87以下であることが更に好ましい。具体的には、距離h2と距離h3との比(h2/h3)は、0.50以上0.95以下であることが好ましく、0.70以上0.90以下であることがより好ましく、0.76以上0.87以下であることが更に好ましい。   A ratio of a distance h2 between the lower stirring blade 20d and the middle stirring blade 20m to a distance h3 between the upper stirring blade 20u and the middle stirring blade 20m (h2 / h3), the discharge flow generated by the stirring blades 20u located in the upper stage is isolated, the discharge flows generated by the stirring blades 20m and 20d positioned in the middle stage and the lower stage are merged toward the tank bottom, and the inside of the tank is divided into two From the viewpoint of preventing the mixability from decreasing, it is preferably 0.50 or more, more preferably 0.70 or more, still more preferably 0.76 or more, and The discharge flow generated by the agitating blade 20d positioned toward the bottom of the tank, the discharge flow generated by the agitating blades 20u and 20m positioned in the upper stage and the middle stage merge, the inside of the tank is divided into two, and the mixing property is reduced From the viewpoint of preventing, preferably 0.95 or less, more preferably 0.90 or less, further preferably 0.87 or less. Specifically, the ratio (h2 / h3) between the distance h2 and the distance h3 is preferably 0.50 or more and 0.95 or less, more preferably 0.70 or more and 0.90 or less, and 0 More preferably, it is not less than .76 and not more than 0.87.

また、下段に位置する撹拌翼20dは、撹拌槽10の槽底10aから一定の距離h1を有している。下段に位置する撹拌翼20dと撹拌槽10の槽底10aとの間の距離h1は、下段に位置する撹拌翼20dの中点Mdと、撹拌槽10の槽底10aの内面の下端との距離を意味する。槽底10aに排水口やマンホール、気体供給配管42等が設置されている場合は、それらを有しない槽底10aの内面の形状を想定したときの仮想の下端を、槽底10aの内面の下端とする。   Further, the stirring blade 20d located in the lower stage has a certain distance h1 from the tank bottom 10a of the stirring tank 10. The distance h1 between the stirring blade 20d located in the lower stage and the tank bottom 10a of the stirring tank 10 is the distance between the midpoint Md of the stirring blade 20d located in the lower stage and the lower end of the inner surface of the tank bottom 10a of the stirring tank 10 Means. When a drain outlet, a manhole, a gas supply pipe 42, or the like is installed on the tank bottom 10a, the virtual lower end when assuming the shape of the inner surface of the tank bottom 10a without them is used as the lower end of the inner surface of the tank bottom 10a. And

下段に位置する撹拌翼20dと撹拌槽10の槽底10aとの間の距離h1と、撹拌槽10の内径Dとの比(h1/D)は、下段に位置する撹拌翼20dによって生じる吐出流が槽底10aへ向かい、且つ上段及び中段に位置する撹拌翼20u,20mによって生じる吐出流のみが合流するか、あるいは中段及び下段に位置する撹拌翼20m,20dにより生じる吐出流のみが合流することにより撹拌槽10内が二分割されて混合性能が低下してしまうことを防ぐ観点から、0.190以上であることが好ましく、0.200以上であることがより好ましく、0.210以上であることが更に好ましく、三段の撹拌翼20u,20m,20dにより生じるそれぞれの吐出流が合流したとしても、該合流した流れが撹拌槽10の下部まで及ばず、混合性能が悪化してしまうことを防ぐ観点から、0.345以下であることが好ましく、0.322以下であることがより好ましく、0.300以下であることが更に好ましい。具体的には、距離h1と内径Dとの比(h1/D)は、0.190以上0.345以下であることが好ましく、0.200以上0.322以下であることがより好ましく、0.210以上0.300以下であることが更に好ましい。   The ratio (h1 / D) between the distance h1 between the stirring blade 20d located in the lower stage and the tank bottom 10a of the stirring tank 10 and the inner diameter D of the stirring tank 10 is the discharge flow generated by the stirring blade 20d located in the lower stage. To the tank bottom 10a and only the discharge flow generated by the stirring blades 20u and 20m located in the upper and middle stages is merged, or only the discharge flow generated by the stirring blades 20m and 20d located in the middle and lower stages is merged From the viewpoint of preventing the mixing tank 10 from being divided into two parts and lowering the mixing performance, it is preferably 0.190 or more, more preferably 0.200 or more, and 0.210 or more. More preferably, even if the respective discharge flows generated by the three-stage stirring blades 20u, 20m, and 20d merge, the combined flow does not reach the lower part of the stirring tank 10, From the viewpoint of preventing the engagement performance is deteriorated, preferably at 0.345 or less, more preferably 0.322 or less, still more preferably 0.300 or less. Specifically, the ratio (h1 / D) between the distance h1 and the inner diameter D is preferably 0.190 or more and 0.345 or less, more preferably 0.200 or more and 0.322 or less, and 0 More preferably, it is 210 or more and 0.300 or less.

本実施形態では、撹拌翼20は、図3に示すように、円板21と該円板21に取り付けられた羽根22とを備えるディスクタービン翼となっている。撹拌翼20は、同一の羽根22を6枚有している。羽根22は、板状形状を備えており、互いに平行な一対の撹拌面23を有している。撹拌面23は、撹拌翼20の回転方向と交差している。撹拌翼20の羽根22は、撹拌翼20を取り付けた回転軸11を回転させたときに撹拌槽の半径方向に向かう吐出流を生じさせる観点から、羽根22の撹拌面23が回転軸11の軸方向Zと平行な仮想線Lに対して略平行となるように設けられていることが好ましいが(図3、図4(a)参照)、羽根22の撹拌面23は仮想線Lに対して傾斜していてもよい。具体的には、羽根22の撹拌面23と仮想線Lとのなす角θは、撹拌翼20を取り付けた回転軸11を回転させたときに撹拌槽10の半径方向に向かう吐出流を生じさせる観点から、0°以上30°以下であることが好ましく、0°以上20°以下であることがより好ましい(図4(b)参照)。   In the present embodiment, the stirring blade 20 is a disk turbine blade including a disk 21 and blades 22 attached to the disk 21, as shown in FIG. The stirring blade 20 has six identical blades 22. The blades 22 have a plate shape and have a pair of stirring surfaces 23 parallel to each other. The stirring surface 23 intersects with the rotation direction of the stirring blade 20. The blade 22 of the stirring blade 20 is configured so that the stirring surface 23 of the blade 22 is the axis of the rotation shaft 11 from the viewpoint of generating a discharge flow in the radial direction of the stirring tank when the rotation shaft 11 to which the stirring blade 20 is attached is rotated. Although preferably provided so as to be substantially parallel to the imaginary line L parallel to the direction Z (see FIGS. 3 and 4A), the stirring surface 23 of the blade 22 is directed to the imaginary line L. It may be inclined. Specifically, the angle θ formed by the stirring surface 23 of the blade 22 and the phantom line L causes a discharge flow in the radial direction of the stirring tank 10 when the rotating shaft 11 to which the stirring blade 20 is attached is rotated. From the viewpoint, it is preferably 0 ° or more and 30 ° or less, and more preferably 0 ° or more and 20 ° or less (see FIG. 4B).

撹拌翼20が備える羽根22の数は、特に限定されるものではないが、好ましくは2枚以上10枚以下であり、より好ましくは4枚以上8枚以下であり、更に好ましくは5枚以上7枚以下である。撹拌翼20における羽根22の配置は、特に限定されるものではないが、複数の羽根が周方向に等間隔に形成されていることが好ましく、また回転軸11を中心に点対称に配置されていることが好ましい。   The number of blades 22 included in the stirring blade 20 is not particularly limited, but is preferably 2 or more and 10 or less, more preferably 4 or more and 8 or less, and further preferably 5 or more and 7 or less. Less than The arrangement of the blades 22 in the stirring blade 20 is not particularly limited, but a plurality of blades are preferably formed at equal intervals in the circumferential direction, and are arranged point-symmetrically around the rotation shaft 11. Preferably it is.

撹拌翼の外径dと撹拌槽の内径Dとの比(d/D)は特に限定されるものではないが、d/Dが大きすぎると撹拌翼の周端部から壁面までの距離が小さくなり、三段の撹拌翼からの吐出流が全て合流する前に壁面へ到達してしまう。またd/Dが小さすぎると、撹拌翼の周端部から壁面までの距離が大きくなり、半径方向の均一混合性が保てなくなる。したがって、撹拌翼の外径dと撹拌槽の内径Dとの比(d/D)は、一般的な設計値である0.25以上0.50以下、好ましくは0.30以上0.40以下、さらに好ましくは0.32以上0.35以下とするのが望ましい(図1,図2参照)。撹拌翼20の外径dとは、撹拌翼20の各羽根22の半径方向外側の端部を通る仮想円Rの直径を意味する(図2参照)。   The ratio (d / D) between the outer diameter d of the stirring blade and the inner diameter D of the stirring vessel is not particularly limited, but if d / D is too large, the distance from the peripheral edge of the stirring blade to the wall surface is small. Thus, the discharge flow from the three-stage stirring blades reaches the wall surface before joining. On the other hand, if d / D is too small, the distance from the peripheral edge of the stirring blade to the wall surface becomes large, and uniform mixing in the radial direction cannot be maintained. Therefore, the ratio (d / D) between the outer diameter d of the stirring blade and the inner diameter D of the stirring tank is a general design value of 0.25 to 0.50, preferably 0.30 to 0.40. More preferably, it is desired to be 0.32 or more and 0.35 or less (see FIGS. 1 and 2). The outer diameter d of the stirring blade 20 means the diameter of a virtual circle R that passes through the radially outer end of each blade 22 of the stirring blade 20 (see FIG. 2).

羽根22の撹拌面23の半径方向における長さcは、特に限定されるものではないが、長さcが小さすぎると吐出流が小さくなってしまうため、長さcと、撹拌翼20の外径dとの比(c/d)は、0.10以上0.50以下であることが好ましく、0.20以上0.50以下であることがより好ましい(図1,図2参照)。   The length c in the radial direction of the stirring surface 23 of the blade 22 is not particularly limited. However, if the length c is too small, the discharge flow becomes small. The ratio (c / d) to the diameter d is preferably 0.10 or more and 0.50 or less, and more preferably 0.20 or more and 0.50 or less (see FIGS. 1 and 2).

撹拌翼20の高さbは特に限定されるものではないが、高さbが小さすぎると吐出流が小さくなってしまうため、撹拌翼の外径dとの比(b/d)が、一般的な設計値である0.15以上0.25以下であることが好ましく、0.18以上0.23であることがより好ましい(図1,図4参照)。撹拌翼20の高さbとは、軸方向Zにおける、撹拌翼20の羽根22の上端から下端までの高さを意味する(図1,図4参照)。羽根22の撹拌面23が回転軸11の軸方向Zと平行な仮想線Lに対して平行となるように、羽根22が設けられている場合、撹拌翼20の高さbは撹拌面23の半径方向と直交する方向の長さeと一致する(図4(a)参照)。羽根22の撹拌面23が仮想線Lに対して傾斜している場合、撹拌翼20の高さbは、長さeにcоsθを乗じたものと一致する(図4(b)参照)。   The height b of the stirring blade 20 is not particularly limited, but if the height b is too small, the discharge flow becomes small. Therefore, the ratio (b / d) to the outer diameter d of the stirring blade is generally The typical design value is preferably 0.15 or more and 0.25 or less, and more preferably 0.18 or more and 0.23 (see FIGS. 1 and 4). The height b of the stirring blade 20 means the height from the upper end to the lower end of the blade 22 of the stirring blade 20 in the axial direction Z (see FIGS. 1 and 4). When the blade 22 is provided so that the stirring surface 23 of the blade 22 is parallel to the virtual line L parallel to the axial direction Z of the rotating shaft 11, the height b of the stirring blade 20 is It coincides with the length e in the direction orthogonal to the radial direction (see FIG. 4A). When the stirring surface 23 of the blade 22 is inclined with respect to the imaginary line L, the height b of the stirring blade 20 coincides with the length e multiplied by cоsθ (see FIG. 4B).

羽根22の撹拌面23の半径方向における長さcと撹拌翼20の高さbとの比(c/b)は、一般的な設計値である0.4以上3.4以下であることが好ましく、1.0以上2.5以下であることがより好ましい(図1参照)。   The ratio (c / b) between the length c in the radial direction of the stirring surface 23 of the blade 22 and the height b of the stirring blade 20 is 0.4 to 3.4, which is a general design value. Preferably, it is 1.0 or more and 2.5 or less (see FIG. 1).

撹拌翼20の羽根22の撹拌面23における撹拌槽10の軸方向Zに平行な面への投影面積は全て同じである必要はないが、該投影面積が大きすぎると撹拌翼20からの吐出流が速くなり、フローパターンが変わる可能性がある。また、投影面積が大きいほど撹拌に必要な動力が大きくなる。したがって、三段の撹拌翼20u,20m,20dそれぞれが有する羽根22u,22m,22dのうち、投影面積が最も大きいものの投影面積をA1、投影面積が最も小さいものの投影面積をA2としたとき、A1とA2との比(A1/A2)は、1.0以上1.1以下であることが好ましい。尚、羽根22の撹拌面23における撹拌槽10の軸方向Zに平行な面への投影面積は以下のように計算する。   The projected area of the stirring surface 23 of the blade 22 of the stirring blade 20 on the surface parallel to the axial direction Z of the stirring tank 10 does not have to be the same, but if the projected area is too large, the discharge flow from the stirring blade 20 May be faster and the flow pattern may change. Moreover, the power required for stirring increases as the projected area increases. Therefore, among the blades 22u, 22m, and 22d of the three-stage stirring blades 20u, 20m, and 20d, when the projected area of the largest projected area is A1, and the projected area of the smallest projected area is A2, A1 The ratio of A2 to A2 (A1 / A2) is preferably 1.0 or more and 1.1 or less. In addition, the projection area to the surface parallel to the axial direction Z of the stirring tank 10 in the stirring surface 23 of the blade | wing 22 is calculated as follows.

<羽根の撹拌面における撹拌槽の軸方向に平行な面への投影面積の計算方法>
撹拌翼20の羽根22の撹拌面23における撹拌槽10の軸方向Zに平行な面への投影面積Aは以下の式1により求めることができる。
投影面積A=撹拌翼の高さb×羽根の撹拌面の半径方向における長さc・・・(式1)
<Calculation method of projected area on plane parallel to axial direction of stirring tank on stirring face of blade>
The projected area A of the stirring surface 23 of the blade 22 of the stirring blade 20 onto the surface parallel to the axial direction Z of the stirring tank 10 can be obtained by the following formula 1.
Projected area A = height of stirring blade b × length c of blade stirring surface in radial direction (Equation 1)

撹拌槽10は、図1に示すように、邪魔板30を備えている。邪魔板30の形状は特に限定されるものではないが、一般的な板状邪魔板であるとより好ましい。図1に示す邪魔板30の幅s1と撹拌槽10の内径Dとの比(s1/D)は、特に限定されるものではないが、一般的な設計値である0.05以上0.20以下であることが好ましい。また、邪魔板30と撹拌槽10の内周面との間に隙間が空いていても良く、邪魔板30と撹拌槽10の内周面との間の隙間の幅s2と邪魔板30の幅s1との比(s2/s1)は、0以上0.50以下であることが好ましい。   As shown in FIG. 1, the stirring tank 10 includes a baffle plate 30. The shape of the baffle plate 30 is not particularly limited, but is preferably a general plate-like baffle plate. The ratio (s1 / D) between the width s1 of the baffle plate 30 shown in FIG. 1 and the inner diameter D of the stirring vessel 10 is not particularly limited, but is a general design value of 0.05 or more and 0.20. The following is preferable. Further, a gap may be formed between the baffle plate 30 and the inner peripheral surface of the stirring tank 10, and the width s <b> 2 of the gap between the baffle plate 30 and the inner peripheral surface of the stirring tank 10 and the width of the baffle plate 30. The ratio (s2 / s1) to s1 is preferably 0 or more and 0.50 or less.

また撹拌槽10の内周面から邪魔板30の半径方向内側端までの距離s3と撹拌槽10の内径Dとの比(s3/D)は、一般的な設計値である0.05以上0.25以下であることが好ましい。   Further, the ratio (s3 / D) between the distance s3 from the inner peripheral surface of the stirring tank 10 to the radially inner end of the baffle plate 30 and the inner diameter D of the stirring tank 10 is 0.05 or more, which is a general design value. .25 or less is preferable.

また邪魔板30の枚数は、特に限定されるものではないが、例えば1枚以上10枚以下であり、好ましくは2枚以上8枚以下である。   The number of baffle plates 30 is not particularly limited, but is, for example, 1 or more and 10 or less, and preferably 2 or more and 8 or less.

撹拌槽10内には、図1に示すように、気体供給のための気体供給配管42や、液体供給のための配管41などが設置されている。気体供給配管42は撹拌槽10の下部に設置されており、配管41は撹拌槽10の上部に設置されている。   In the agitation tank 10, as shown in FIG. 1, a gas supply pipe 42 for supplying gas, a pipe 41 for supplying liquid, and the like are installed. The gas supply pipe 42 is installed in the lower part of the stirring tank 10, and the pipe 41 is installed in the upper part of the stirring tank 10.

撹拌槽10の容量Vは、特に限定されるものではないが、容量Vが小さい場合は、被撹拌物50が不均一な状態から均一な状態になるまでの時間が短いため、本発明による効果が表れにいく場合もある。したがって、撹拌槽10の容量Vは、好ましくは30L、より好ましくは50L以上であり、また好ましくは50000L以下、より好ましくは30000L以下であり、また好ましくは30L以上50000L以下、より好ましくは50L以上30000L以下である。   The capacity V of the agitation tank 10 is not particularly limited. However, when the capacity V is small, the time required for the object 50 to be agitated to become uniform from a non-uniform state is short, and thus the effect of the present invention. May appear. Therefore, the volume V of the stirring tank 10 is preferably 30 L, more preferably 50 L or more, and preferably 50000 L or less, more preferably 30000 L or less, and preferably 30 L or more and 50000 L or less, more preferably 50 L or more and 30000 L. It is as follows.

次に、上述した撹拌装置1を用いた撹拌方法について説明する。
まず、上述のような構成の撹拌装置1の撹拌槽10に被撹拌物50を収容する。このとき、被撹拌物50の上端50aが一定の位置に位置するように、被撹拌物50を撹拌槽10に収容する。具体的には、軸方向Zにおける、被撹拌物50の上端50aと下段又は上段に位置する撹拌翼20d,20uとの位置関係を一定のものとすることが好ましい。被撹拌物50の上端50aの位置は、人が目視により上端50aの位置を確認しながら制御してもよいし、撹拌装置1に被撹拌物50の上端50aの位置を制御する制御部(不図示)を設けて、該制御部により制御してもよい。
Next, the stirring method using the stirring apparatus 1 mentioned above is demonstrated.
First, the to-be-stirred object 50 is accommodated in the stirring tank 10 of the stirring apparatus 1 having the above-described configuration. At this time, the to-be-stirred object 50 is accommodated in the stirring tank 10 so that the upper end 50a of the to-be-stirred object 50 is located at a fixed position. Specifically, it is preferable that the positional relationship between the upper end 50a of the object to be stirred 50 and the stirring blades 20d and 20u positioned in the lower stage or the upper stage in the axial direction Z be constant. The position of the upper end 50a of the object to be stirred 50 may be controlled by a person confirming the position of the upper end 50a by visual observation, or the control unit (non- (Shown) may be provided and controlled by the control unit.

下段に位置する撹拌翼20dと撹拌槽の槽底10aとの間の距離h1と、撹拌槽の槽底10aから被撹拌物50の上端50aまでの高さHとの比(h1/H)は、下段に位置する撹拌翼20dによって生じる吐出流が槽底10aへ向かい、且つ上段及び中段に位置する撹拌翼20u,20mによって生じる吐出流のみが合流するか、あるいは中段及び下段に位置する撹拌翼20m,20dにより生じる吐出流のみが合流することにより撹拌槽10内が二分割されて混合性能が低下してしまうことを防ぐ観点から、0.20以上であることが好ましく、0.21以上であることがより好ましく、0.22以上であることが更に好ましく、三段の撹拌翼20u,20m,20dにより生じるそれぞれの吐出流が合流したとしても、該合流した流れが撹拌槽10の下部まで及ばず、混合性能が悪化してしまうことを防ぐ観点から、0.30以下であることが好ましく、0.28以下であることがより好ましく、0.26以下であることが更に好ましい(図1参照)。具体的には、下段に位置する撹拌翼20dと撹拌槽の槽底10aとの間の距離h1と、撹拌槽の槽底10aから被撹拌物50の上端50aまでの高さHとの比(h1/H)は、0.20以上0.30以下であることが好ましく、0.21以上0.28以下であることがより好ましく、0.22以上0.26以下であることが更に好ましい。槽底10aから被撹拌物50の上端50aまでの高さHは、槽底10aの内面の下端から被撹拌物50の上端50aまでの高さを意味する。高さHは、撹拌翼を回転させずに、被撹拌物50の上端面が平面となった状態下に測定する。   The ratio (h1 / H) between the distance h1 between the stirring blade 20d located in the lower stage and the tank bottom 10a of the stirring tank and the height H from the tank bottom 10a of the stirring tank to the upper end 50a of the stirred object 50 is The discharge flow generated by the lower stirring blade 20d is directed to the tank bottom 10a and only the discharge flow generated by the upper and middle stirring blades 20u and 20m merges, or the middle and lower stirring blades. From the viewpoint of preventing the inside of the agitation tank 10 from being divided into two parts by mixing only the discharge flows generated by 20m and 20d and reducing the mixing performance, it is preferably 0.20 or more, and 0.21 or more. More preferably, it is more preferably 0.22 or more, even if the respective discharge flows generated by the three-stage stirring blades 20u, 20m, and 20d merge, From the viewpoint of preventing the mixing performance from deteriorating to the lower part of the stirring tank 10, it is preferably 0.30 or less, more preferably 0.28 or less, and 0.26 or less. Is more preferred (see FIG. 1). Specifically, the ratio of the distance h1 between the stirring blade 20d located in the lower stage and the tank bottom 10a of the stirring tank to the height H from the tank bottom 10a of the stirring tank to the upper end 50a of the stirred object 50 ( h1 / H) is preferably 0.20 or more and 0.30 or less, more preferably 0.21 or more and 0.28 or less, and further preferably 0.22 or more and 0.26 or less. The height H from the tank bottom 10a to the upper end 50a of the stirred object 50 means the height from the lower end of the inner surface of the tank bottom 10a to the upper end 50a of the stirred object 50. The height H is measured in a state where the upper end surface of the object to be stirred 50 is flat without rotating the stirring blade.

上段に位置する撹拌翼20uと被撹拌物50の上端50aとの間の距離h4と、撹拌槽の槽底10aから被撹拌物50の上端50aまでの高さHとの比(h4/H)は、被撹拌物50の上端面が大きく乱れ、上段に位置する撹拌翼20uが被撹拌物50の上端50aから露出してしまうことを防ぐ観点から、0.19以上であることが好ましく、0.25以上であることがより好ましく、三段の撹拌翼20u,20m,20dにより生じるそれぞれの吐出流が合流するフローパターンが得られたとしても、該合流した流れが撹拌槽10の上部まで及ばず、混合性能は悪化してしまうことを防ぐ観点から、0.30以下であることが好ましく、0.27以下であることがより好ましい(図1参照)。具体的には、上段に位置する撹拌翼20uと被撹拌物50の上端50aと間の距離h4と、撹拌槽の槽底10aから被撹拌物50の上端50aまでの高さHとの比(h4/H)は、0.19以上0.30以下であることが好ましく、0.25以上0.27以下であることがより好ましい。   Ratio (h4 / H) between the distance h4 between the stirring blade 20u located in the upper stage and the upper end 50a of the stirred object 50 and the height H from the tank bottom 10a of the stirred tank to the upper end 50a of the stirred object 50 Is preferably 0.19 or more from the viewpoint of preventing the upper end surface of the object to be stirred 50 from being greatly disturbed and exposing the stirring blade 20u located in the upper stage from the upper end 50a of the object to be stirred 50. Is more preferably 25 or more, and even if a flow pattern in which the respective discharge flows generated by the three-stage stirring blades 20u, 20m, and 20d join is obtained, the joined flow reaches the upper part of the stirring tank 10. In view of preventing the mixing performance from deteriorating, it is preferably 0.30 or less, and more preferably 0.27 or less (see FIG. 1). Specifically, the ratio of the distance h4 between the stirring blade 20u located in the upper stage and the upper end 50a of the stirring object 50 to the height H from the tank bottom 10a of the stirring tank to the upper end 50a of the stirring object 50 ( h4 / H) is preferably from 0.19 to 0.30, and more preferably from 0.25 to 0.27.

撹拌槽の槽底10aから被撹拌物50の上端50aまでの高さHと、撹拌槽の内径Dとの比(H/D)が大きすぎると三段の撹拌翼20u,20m,20dによって生じる吐出流がそれぞれ独立して循環流を形成するため混合性能が悪化してしまう。撹拌槽の槽底10aから被撹拌物50の上端50aまでの高さHと、撹拌槽の内径Dとの比(H/D)が小さすぎると、撹拌翼20u,20m,20dの周端部から壁面までの距離が大きくなり、半径方向の均一混合性が保てなくなる。したがって被撹拌物50の上端50aまでの高さHと、撹拌槽の内径Dとの比(H/D)は、0.95以上1.15以下、より好ましくは0.99以上1.13以下とするのが望ましい。   If the ratio (H / D) between the height H from the tank bottom 10a of the stirring tank to the upper end 50a of the stirred object 50 and the inner diameter D of the stirring tank is too large, it is generated by the three-stage stirring blades 20u, 20m, and 20d. Since the discharge flows independently form a circulation flow, the mixing performance is deteriorated. If the ratio (H / D) of the height H from the tank bottom 10a of the stirring tank to the upper end 50a of the object to be stirred 50 and the inner diameter D of the stirring tank is too small, the peripheral ends of the stirring blades 20u, 20m, 20d The distance from the wall to the wall becomes large, and uniform mixing in the radial direction cannot be maintained. Therefore, the ratio (H / D) of the height H to the upper end 50a of the stirring object 50 and the inner diameter D of the stirring tank is 0.95 or more and 1.15 or less, more preferably 0.99 or more and 1.13 or less. Is desirable.

そして、被撹拌物50を収容した撹拌装置1において、回転軸11を回転させて、撹拌槽10内の被撹拌物50を撹拌する。   And in the stirring apparatus 1 which accommodated the to-be-stirred object 50, the rotating shaft 11 is rotated and the to-be-stirred object 50 in the stirring tank 10 is stirred.

本実施形態の撹拌装置1によれば、三段の撹拌翼20u,20m,20d同士の間の距離が不均等であり、下段の撹拌翼20uが撹拌槽10の槽底10aから一定の距離を有しているので、該撹拌装置1の回転軸11を回転させて、撹拌槽10内の被撹拌物50を撹拌すると、図5に示すような、三段の撹拌翼20u,20m,20dによって生じるそれぞれの吐出流が全て合流するフローパターンが得られる。それぞれの撹拌翼20u,20m,20dによって生じた吐出流は、全て合流した後に撹拌槽10の内周面(または邪魔板)にぶつかり上下方向に分かれ、さらに下向きの流れは槽底10aまで達するので、撹拌槽10内の混合性能を向上させることができる。また、せん断力の大きな半径方向流型の撹拌翼20を使用しているため、撹拌に必要な動力を大きくすることなく、撹拌翼20が被撹拌物50に与えるせん断力を維持したまま、撹拌槽10内の混合性能を向上させることができる。   According to the stirring device 1 of the present embodiment, the distances between the three stages of the stirring blades 20u, 20m, and 20d are uneven, and the lower stirring blade 20u has a constant distance from the tank bottom 10a of the stirring tank 10. Therefore, when the rotating shaft 11 of the stirring device 1 is rotated to stir the object to be stirred 50 in the stirring tank 10, the three-stage stirring blades 20u, 20m, and 20d as shown in FIG. A flow pattern in which all the generated discharge flows are obtained is obtained. Since the discharge flows generated by the respective stirring blades 20u, 20m, and 20d are all merged, they collide with the inner peripheral surface (or baffle plate) of the stirring tank 10 and are divided in the vertical direction, and the downward flow reaches the tank bottom 10a. The mixing performance in the stirring tank 10 can be improved. Further, since the radial flow type stirring blade 20 having a large shearing force is used, stirring is performed while maintaining the shearing force that the stirring blade 20 gives to the object to be stirred 50 without increasing the power required for stirring. The mixing performance in the tank 10 can be improved.

一般に、被撹拌物の流動状態は、式2で定義される撹拌レイノルズ数Reによって判定することができる。撹拌レイノルズ数Reは、流体の慣性による運動エネルギーと粘性によって失われるエネルギーの比を表す無次元数である。ここで、ρは液体密度(kg/m)、nは回転数(rpm)、dは撹拌翼の外径(m)、μは液体粘度(Pa・s)である。
In general, the flow state of the object to be stirred can be determined by the stirring Reynolds number Re defined by Equation 2. The stirring Reynolds number Re is a dimensionless number that represents the ratio of kinetic energy due to fluid inertia to energy lost due to viscosity. Here, ρ is the liquid density (kg / m 3 ), n is the rotational speed (rpm), d is the outer diameter (m) of the stirring blade, and μ is the liquid viscosity (Pa · s).

本発明における撹拌レイノルズ数Reは特に限定されるものではないが、撹拌レイノルズ数Reが極端に小さい場合は被撹拌物の流動状態が非常に弱く吐出流が合流しにくくなる。したがって、撹拌レイノルズ数Reは4000以上であることが好ましい。   The stirring Reynolds number Re in the present invention is not particularly limited, but when the stirring Reynolds number Re is extremely small, the flow state of the object to be stirred is very weak and the discharge flows are difficult to join. Therefore, the stirring Reynolds number Re is preferably 4000 or more.

撹拌装置1を用いて撹拌槽10内の被撹拌物50を撹拌することにより、種々の化学プロセスに用いることができる。例えば、撹拌装置1を用いて撹拌槽10内の被撹拌物50を撹拌し、気液反応、乳化又は固液分散を行うことができる。   By stirring the to-be-stirred object 50 in the stirring tank 10 using the stirring apparatus 1, it can be used for various chemical processes. For example, the stirring object 1 in the stirring tank 10 can be stirred using the stirring device 1 to perform gas-liquid reaction, emulsification, or solid-liquid dispersion.

また、撹拌装置1を用いて撹拌槽10内の被撹拌物50を撹拌し、乳化物や懸濁液を製造することもできる。本実施形態によって製造することができる乳化物としては、例えば、水中油型乳化組成物、乳化状の化粧品と医薬部外品、飲食品用乳化液組成物、乳化油性食品等が挙げられる。本実施形態によって製造することができる懸濁液としては、例えば、化粧品用スラリー組成物、食品用スラリー組成物、インク顔料混合物等が挙げられる。   Moreover, the to-be-stirred thing 50 in the stirring tank 10 can be stirred using the stirring apparatus 1, and an emulsion and suspension can also be manufactured. Examples of the emulsion that can be produced according to the present embodiment include an oil-in-water emulsion composition, an emulsified cosmetic and quasi-drug, an emulsion composition for food and drink, an emulsified oily food, and the like. Examples of the suspension that can be produced according to this embodiment include a cosmetic slurry composition, a food slurry composition, and an ink pigment mixture.

また、撹拌装置1の撹拌槽10に、酵素及び基質を含んだ被撹拌物50を収容し、該被撹拌物50を撹拌し、酵素反応を行うことができる。これにより、酵素反応生成物を製造することができる。本実施形態によって製造することができる酵素反応生成物としては、例えば、ポリフェノール類、脂肪酸等が挙げられる。酵素反応には、酸素等の気体を必要とするものや、酵素反応が進むにつれて副生成物が増加し、反応液中のpHが変化するものも多い。このような場合には、撹拌槽10に設置された気体供給配管42から気体を供給しながら、あるいは配管41からpH調整剤を供給しながら、被撹拌物50を撹拌することができる。気体供給配管42から供給される気体としては、例えば、空気、酸素、窒素、二酸化炭素等が挙げられ、配管41から供給されるpH調整剤としては、例えば、水酸化ナトリウム等の、アルカリ金属若しくはアルカリ土類金属水酸化物のアルカリ性溶液、塩酸、酢酸、クエン酸、リン酸等の酸性溶液等が挙げられる。
本発明の撹拌方法又は撹拌装置により撹拌しながら行う酵素反応の例としては、例えば、タンナーゼ活性を有する酵素を用いた茶抽出物の加水分解(特許第4244230号公報参照)、リパーゼによる脂肪酸の加水分解等が挙げられる。
Moreover, the to-be-stirred object 50 containing an enzyme and a substrate is accommodated in the stirring tank 10 of the stirring apparatus 1, and this to-be-stirred object 50 can be stirred and an enzyme reaction can be performed. Thereby, an enzyme reaction product can be manufactured. Examples of the enzyme reaction product that can be produced according to this embodiment include polyphenols and fatty acids. Many enzyme reactions require a gas such as oxygen, and many by-products increase as the enzyme reaction proceeds and the pH in the reaction solution changes. In such a case, the object to be stirred 50 can be stirred while supplying a gas from the gas supply pipe 42 installed in the stirring tank 10 or supplying a pH adjusting agent from the pipe 41. Examples of the gas supplied from the gas supply pipe 42 include air, oxygen, nitrogen, carbon dioxide, and the like. Examples of the pH adjuster supplied from the pipe 41 include alkali metals such as sodium hydroxide or the like. Examples include alkaline solutions of alkaline earth metal hydroxides and acidic solutions of hydrochloric acid, acetic acid, citric acid, phosphoric acid, and the like.
Examples of the enzymatic reaction performed while stirring with the stirring method or the stirring device of the present invention include, for example, hydrolysis of tea extract using an enzyme having tannase activity (see Japanese Patent No. 4244230), hydrolysis of fatty acids with lipase. Decomposition and the like.

以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されない。例えば、本実施形態では、三段の撹拌翼20u,20m,20dは全て同一ものであるが、半径方向流型の撹拌翼であれば、一段の撹拌翼20が他の二段の撹拌翼20と異なるものであってもよいし、三段の撹拌翼20u,20m,20dが互いに異なるものであってもよい。また、本実施形態では、撹拌翼20が有する複数の羽根22は全て同一であるが、複数の羽根22の中に、大きさや取り付けられている角度が異なるものが含まれていてもよい。   As mentioned above, although this invention was demonstrated based on the preferable embodiment, this invention is not restrict | limited to the said embodiment. For example, in the present embodiment, the three stages of stirring blades 20u, 20m, and 20d are all the same, but if they are radial flow type stirring blades, one stage of stirring blades 20 is the other two stages of stirring blades 20 The three-stage stirring blades 20u, 20m, and 20d may be different from each other. Moreover, in this embodiment, although the some blade | wing 22 which the stirring blade 20 has is the same, the thing from which a magnitude | size and the attached angle differ in the some blade | wing 22 may be contained.

また、本実施形態に係る撹拌装置1では、邪魔板30が被撹拌物50の上端50aよりも上まで伸びているが、邪魔板30の上端は被撹拌物50の上端50aよりも下に位置していてもよい(図6(a)参照)。また本実施形態では、邪魔板30の下端は槽底10aよりも上に位置しているが、邪魔板30の下端は、槽底10aの形状に沿って槽底10aまで延在していてもよい(図6(b)参照)。また邪魔板30は高さ方向に分割されていてもよい(図6(c)参照)。   In the stirring device 1 according to the present embodiment, the baffle plate 30 extends above the upper end 50a of the stirring object 50, but the upper end of the baffle plate 30 is positioned below the upper end 50a of the stirring object 50. (See FIG. 6A). Moreover, in this embodiment, although the lower end of the baffle plate 30 is located above the tank bottom 10a, the lower end of the baffle plate 30 may extend to the tank bottom 10a along the shape of the tank bottom 10a. Good (see FIG. 6B). The baffle plate 30 may be divided in the height direction (see FIG. 6C).

以下、本発明を実施例により更に具体的に説明するが、本発明は斯かる実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to such examples.

〔実施例1〕
10%皿型の槽底形状を有し、内径2100mmの撹拌槽に、以下の寸法を有するディスクタービン翼を三段取り付けた。
撹拌翼の外径dと撹拌槽の内径Dとの比(d/D):0.333
撹拌翼の高さbと撹拌翼の外径dとの比(b/d):0.200
羽根の撹拌面の半径方向における長さcと撹拌翼の外径dとの比(c/d):0.25
羽根の撹拌面の半径方向における長さcと撹拌翼の高さbとの比:1.25
羽根の撹拌面における撹拌槽の軸方向に平行な面への投影面積のうち、最も大きい投影面積A1と最も小さい投影面積A2との比(A1/A2):1.00
羽根の撹拌面と回転軸の軸方向に平行な仮想線とのなす角θ:0°
[Example 1]
Three stages of disk turbine blades having the following dimensions were attached to a stirring tank having a 10% dish-shaped tank bottom shape and an inner diameter of 2100 mm.
Ratio of outer diameter d of stirring blade to inner diameter D of stirring tank (d / D): 0.333
Ratio (b / d) of the height b of the stirring blade to the outer diameter d of the stirring blade: 0.200
Ratio (c / d) of length c in the radial direction of the stirring surface of the blade to the outer diameter d of the stirring blade: 0.25
Ratio of the length c in the radial direction of the stirring surface of the blade to the height b of the stirring blade: 1.25
The ratio (A1 / A2) of the largest projected area A1 to the smallest projected area A2 among the projected areas on the stirring surface of the blades on the plane parallel to the axial direction of the stirring tank (A1 / A2): 1.00
Angle θ between the stirring surface of the blade and a virtual line parallel to the axial direction of the rotation axis: 0 °

撹拌槽には、以下の形状及び寸法を有する邪魔板を取り付けた。
邪魔板形状:板状邪魔板
邪魔板枚数:4枚
邪魔板の幅s1と撹拌翼の外径dとの比(s1/d):0.07
邪魔板と撹拌槽の内周面との間の隙間の幅s2と邪魔板の幅s1との比(s2/s1):0
A baffle plate having the following shape and dimensions was attached to the stirring tank.
Baffle plate shape: Plate baffle plate Number of baffle plates: 4 Ratio of baffle plate width s1 to stirring blade outer diameter d (s1 / d): 0.07
Ratio (s2 / s1) between the width s2 of the gap between the baffle plate and the inner peripheral surface of the stirring tank and the width s1 of the baffle plate (s2 / s1): 0

上述の撹拌槽及び撹拌翼を有する撹拌装置において、被撹拌物の量、各撹拌翼の位置及びレイノルズ数を表1に示すようにした。このような撹拌装置を用いて被撹拌物を撹拌したときのシミュレーションを行い、以下のように、フローパターンの判別、被撹拌物の混合性能の評価及びトルク平均値の測定を行った。   Table 1 shows the amount of the object to be stirred, the position of each stirring blade, and the Reynolds number in the stirring device having the stirring tank and the stirring blade described above. A simulation was performed when the object to be stirred was stirred using such a stirring device, and the flow pattern was determined, the mixing performance of the object to be stirred was evaluated, and the torque average value was measured as follows.

<シミュレーションによるフローパターンの判別方法>
汎用熱流体解析ソフトを用いてシミュレーションを行った。シミュレーションでは三次元非圧縮性流体を仮定し、流れ場の計算を行った。計算結果の速度ベクトル図(図示せず)より、各撹拌翼からの流れの方向を見てフローパターンを判別した。「三段合流フローパターン(三段)」とは、下段に位置する撹拌翼20dによって生じる吐出流が上を向き、上段に位置する撹拌翼20uの吐出流が下を向き、三段の撹拌翼の吐出流全てが合流するフローパターンのことである。三段合流フローパターンの例を図7(a)及び図7(d)に示す。「上二段合流フローパターン(上二段)」とは下段に位置する撹拌翼20dによって生じる吐出流は槽底10aに向かって下を向き、中段及び上段に位置する撹拌翼20m、20uによって生じる吐出流は合流するフローパターンのことである。上二段合流フローパターンの例を図7(b)に示す。「下二段合流フローパターン(下二段)」とは下段に位置する撹拌翼20dと中段に位置する撹拌翼20mが合流し、上段に位置する撹拌翼20uによって生じる吐出流は孤立するフローパターンのことである。下二段合流フローパターンの例を図7(c)に示す。
<Flow pattern discrimination method by simulation>
Simulation was performed using general-purpose thermal fluid analysis software. In the simulation, the flow field was calculated assuming a three-dimensional incompressible fluid. From the velocity vector diagram (not shown) of the calculation result, the flow pattern was determined by looking at the direction of flow from each stirring blade. The “three-stage merged flow pattern (three stages)” means that the discharge flow generated by the lower stirring blade 20d faces upward, the discharge flow of the upper stirring blade 20u faces downward, and the three-stage stirring blade This is a flow pattern in which all of the discharge flows are merged. An example of a three-stage merging flow pattern is shown in FIGS. 7 (a) and 7 (d). The “upper two-stage merged flow pattern (upper two stages)” means that the discharge flow generated by the stirring blades 20d located in the lower stage faces downward toward the tank bottom 10a and is generated by the stirring blades 20m and 20u located in the middle and upper stages. The discharge flow is a flow pattern that merges. An example of the upper two-stage merged flow pattern is shown in FIG. The “lower two-stage merged flow pattern (lower two stages)” is a flow pattern in which the stirring blade 20d located in the lower stage and the stirring blade 20m located in the middle stage merge, and the discharge flow generated by the stirring blade 20u located in the upper stage is isolated. That is. An example of the lower two-stage merging flow pattern is shown in FIG.

<シミュレーションによる被撹拌物の混合性能の評価方法>
流れ場が定常となるまで計算を行ったのち、その後被撹拌物の上部10%をトレーサー(スカラー量)に設定して、20秒間のトレーサー混合シミュレーションを行った。撹拌装置及び撹拌方法の混合性能を評価するための基準として混合時間を用いる。混合時間とは、トレーサーを投入してから被撹拌物内において規定の均質性を達成するのに必要な時間を指す。シミュレーションにおける混合時間の定量化には分離強度Sを用いた。分離強度Sとはトレーサーの不均一度を表す指標であり、以下の式3で表される。
分離強度Sは完全に分離した初期状態で1、完全に均一に混合した状態で0となる。計算では0.2秒毎に各計算セルにおけるトレーサー濃度を出力して分離強度Sを求め、トレーサー投入後S=0.001となるまでの時間を混合時間とした。20秒以降は指数近似式により外挿した。
<Evaluation method of mixing performance of agitated materials by simulation>
After the calculation until the flow field became steady, the upper 10% of the stirring object was set as a tracer (scalar amount), and a 20-second tracer mixing simulation was performed. The mixing time is used as a standard for evaluating the mixing performance of the stirring device and the stirring method. Mixing time refers to the time required to achieve the specified homogeneity within the agitated material after the tracer is charged. The separation strength S was used for quantifying the mixing time in the simulation. The separation strength S is an index representing the non-uniformity of the tracer and is expressed by the following formula 3.
The separation strength S is 1 in the completely separated initial state and 0 in the completely uniformly mixed state. In the calculation, the tracer concentration in each calculation cell was output every 0.2 seconds to obtain the separation strength S, and the time from when the tracer was charged until S = 0.001 was taken as the mixing time. After 20 seconds, extrapolation was performed using an exponential approximation formula.

<シミュレーションによるトルク平均値の測定方法>
シミュレーション結果から撹拌軸のトルクの経時変化を0.2秒毎に20秒間出力し、その平均値をトルク平均値とした。
<Method for measuring torque average value by simulation>
From the simulation results, the change over time in the torque of the stirring shaft was output every 0.2 seconds for 20 seconds, and the average value was used as the torque average value.

〔実施例2〕
下段に位置する撹拌翼と撹拌槽の槽底との間の距離h1と撹拌槽の槽底から被撹拌物の上端までの高さHとの比(h1/H)及び下段に位置する撹拌翼と撹拌槽の槽底との間の距離h1と撹拌槽の内径との比(h1/D)を表1に示すように変更した以外は、実施例1と同様にしてシミュレーションを行い、フローパターンの判別及び被撹拌物の混合性能の評価を行った。
[Example 2]
Ratio (h1 / H) of the distance h1 between the stirring blade located in the lower stage and the tank bottom of the stirring tank to the height H from the tank bottom of the stirring tank to the upper end of the object to be stirred, and the stirring blade located in the lower stage A simulation was performed in the same manner as in Example 1 except that the ratio (h1 / D) between the distance h1 between the tank and the tank bottom of the stirring tank and the inner diameter of the stirring tank was changed as shown in Table 1, and the flow pattern And the mixing performance of the material to be stirred was evaluated.

〔比較例1〕
下段に位置する撹拌翼と中段に位置する撹拌翼との間の距離h2と上段に位置する撹拌翼と中段に位置する撹拌翼との間の距離h3との比(h2/h3)を表1に示すように変更した以外は、実施例1と同様にしてシミュレーションを行い、フローパターンの判別、被撹拌物の混合性能の評価及びトルク平均値の測定を行った。
〔比較例2〕
下段に位置する撹拌翼と中段に位置する撹拌翼との間の距離h2と上段に位置する撹拌翼と中段に位置する撹拌翼との間の距離h3との比(h2/h3)を表1に示すように変更した以外は、実施例1と同様にしてシミュレーションを行い、フローパターンの判別及び被撹拌物の混合性能の評価を行った。
〔比較例3〕
下段に位置する撹拌翼と中段に位置する撹拌翼との間の距離h2と、上段に位置する撹拌翼と中段に位置する撹拌翼との間の距離h3との比(h2/h3)を表1に示すように変更した以外は、実施例1と同様にしてシミュレーションを行い、フローパターンの判別及び被撹拌物の混合性能の評価を行った。
[Comparative Example 1]
Table 1 shows the ratio (h2 / h3) of the distance h2 between the stirring blade located in the lower stage and the stirring blade located in the middle stage and the distance h3 between the stirring blade located in the upper stage and the stirring blade located in the middle stage. Except for the change, the simulation was performed in the same manner as in Example 1 to determine the flow pattern, evaluate the mixing performance of the stirring object, and measure the torque average value.
[Comparative Example 2]
Table 1 shows the ratio (h2 / h3) of the distance h2 between the stirring blade located in the lower stage and the stirring blade located in the middle stage and the distance h3 between the stirring blade located in the upper stage and the stirring blade located in the middle stage. Except for the change, the simulation was performed in the same manner as in Example 1 to determine the flow pattern and evaluate the mixing performance of the stirring object.
[Comparative Example 3]
The ratio (h2 / h3) of the distance h2 between the stirring blade located in the lower stage and the stirring blade located in the middle stage and the distance h3 between the stirring blade located in the upper stage and the stirring blade located in the middle stage is shown. A simulation was performed in the same manner as in Example 1 except that the change was made as shown in FIG. 1, and the flow pattern was determined and the mixing performance of the stirring object was evaluated.

実施例1及び2並びに比較例1ないし3のフローパターンの判別結果及び被撹拌物の混合時間の測定結果を表1に示し、実施例1及び比較例1のトルク5区間移動平均値の測定結果を図10に示す。トルク5区間移動平均とは、0.2秒毎に出力したトルクの5区間すなわち1秒間の平均値を意味する。表1に示すように、比較例1及び2では上段及び中段の撹拌翼によって生じた吐出流が合流する上二段合流フローパターン(図7(b)及び図8(b)参照)となり、比較例3では中段及び下段の撹拌翼によって生じた吐出流が合流する下二段合流フローパターン(図7(c)参照)となってしまったのに対し、実施例1及び2では、三段の撹拌翼それぞれによって生じた吐出流が合流する三段合流フローパターン(図7(a)及び図8(a)参照)となった。
従って、実施例1及び2の撹拌方法は、比較例1ないし3の撹拌方法に比して、均一混合性がよいことが分かった。また、実施例1及び2の撹拌方法は、比較例1ないし3の撹拌方法に比して混合時間が短くなっている(表1及び図9参照)。更に、図10に示すように、実施例1の撹拌方法は、比較例1の撹拌方法に比して、トルク平均値が低いことが分かる。従って、実施例1の撹拌方法は、比較例1に比して、大きな動力を必要とすることなく、混合性能を向上させることができることが分かった。
Table 1 shows the results of discriminating the flow patterns of Examples 1 and 2 and Comparative Examples 1 to 3 and the measurement result of the mixing time of the object to be stirred. Is shown in FIG. The torque 5-section moving average means an average value of 5 sections of torque output every 0.2 seconds, that is, an average value for 1 second. As shown in Table 1, in Comparative Examples 1 and 2, the upper two-stage merged flow pattern (see FIG. 7B and FIG. 8B) in which the discharge flows generated by the upper and middle agitating blades merged is compared. In Example 3, the lower two-stage merged flow pattern (see FIG. 7 (c)) in which the discharge flows generated by the middle and lower agitating blades merged, whereas in Examples 1 and 2, the three-stage merged flow pattern A three-stage merged flow pattern (see FIGS. 7A and 8A) in which the discharge flows generated by the respective stirring blades merged was obtained.
Therefore, it was found that the stirring methods of Examples 1 and 2 had better uniform mixing properties than the stirring methods of Comparative Examples 1 to 3. Moreover, the mixing time of Examples 1 and 2 is shorter than that of Comparative Examples 1 to 3 (see Table 1 and FIG. 9). Furthermore, as shown in FIG. 10, it can be seen that the stirring method of Example 1 has a lower torque average value than the stirring method of Comparative Example 1. Therefore, it was found that the stirring method of Example 1 can improve the mixing performance without requiring large power as compared with Comparative Example 1.

〔比較例4〕
下段に位置する撹拌翼と撹拌槽の槽底との間の距離h1と撹拌槽の槽底から被撹拌物の上端までの高さHとの比(h1/H)及び下段に位置する撹拌翼と撹拌槽の槽底との間の距離h1と撹拌槽の内径との比(h1/D)を表2に示すように変更した以外は、実施例1と同様にしてシミュレーションを行い、フローパターンの判別及び被撹拌物の混合性能の評価を行った。
〔比較例5〕
下段に位置する撹拌翼と撹拌槽の槽底との間の距離h1と撹拌槽の槽底から被撹拌物の上端までの高さHとの比(h1/H)及び下段に位置する撹拌翼と撹拌槽の槽底との間の距離h1と撹拌槽の内径との比(h1/D)を表2に示すように変更した以外は、実施例1と同様にしてシミュレーションを行い、フローパターンの判別及び被撹拌物の混合性能の評価を行った。
[Comparative Example 4]
Ratio (h1 / H) of the distance h1 between the stirring blade located in the lower stage and the tank bottom of the stirring tank to the height H from the tank bottom of the stirring tank to the upper end of the object to be stirred, and the stirring blade located in the lower stage The simulation was performed in the same manner as in Example 1 except that the ratio (h1 / D) between the distance h1 between the tank and the tank bottom of the stirring tank and the inner diameter of the stirring tank was changed as shown in Table 2, and the flow pattern And the mixing performance of the material to be stirred was evaluated.
[Comparative Example 5]
Ratio (h1 / H) of the distance h1 between the stirring blade located in the lower stage and the tank bottom of the stirring tank and the height H from the tank bottom of the stirring tank to the upper end of the object to be stirred, and the stirring blade located in the lower stage The simulation was performed in the same manner as in Example 1 except that the ratio (h1 / D) between the distance h1 between the tank and the tank bottom of the stirring tank and the inner diameter of the stirring tank was changed as shown in Table 2, and the flow pattern And the mixing performance of the material to be stirred was evaluated.

実施例1及び2並びに比較例4及び5のフローパターンの判別結果及び被撹拌物の混合時間の測定結果を表2に示す。表2に示すように、比較例4では下二段合流フローパターン(図7(c)参照)となってしまった。また、比較例5は三段合流フローパターン(図7(d)参照)ではあるが、合流した循環流が槽底まで届いておらず、実施例1及び2と比して、槽内の均一混合性が低いものとなっている。また、実施例1及び2の撹拌方法は、表2に示すように、比較例4及び5の撹拌方法に比して混合時間が短くなっている。   The flow pattern discrimination results of Examples 1 and 2 and Comparative Examples 4 and 5 and the measurement results of the mixing time of the materials to be stirred are shown in Table 2. As shown in Table 2, in Comparative Example 4, the lower two-stage merged flow pattern (see FIG. 7C) was obtained. Moreover, although the comparative example 5 is a 3 step | paragraph merge flow pattern (refer FIG.7 (d)), the circulating flow which joined is not reaching to the tank bottom, compared with Example 1 and 2, it is uniform in a tank. Mixability is low. In addition, as shown in Table 2, the stirring methods of Examples 1 and 2 have a shorter mixing time than the stirring methods of Comparative Examples 4 and 5.

〔実施例3〕
撹拌槽に収容する被撹拌物の液量L、被撹拌物の上端での高さH、撹拌槽の槽底から被撹拌物の上端までの高さHと撹拌槽の内径Dとの比(H/D)及び下段に位置する撹拌翼と撹拌槽の槽底との間の距離h1と撹拌槽の内径Dとの比(h1/D)を表3に示すように変更した以外は、実施例1と同様にしてシミュレーションを行い、フローパターンの判別及び被撹拌物の混合性能の評価を行った。
Example 3
The ratio of the amount L of the substance to be stirred to be accommodated in the stirring tank, the height H at the upper end of the object to be stirred, the height H from the tank bottom of the stirring tank to the upper end of the object to be stirred and the inner diameter D of the stirring tank ( H / D) and the ratio (h1 / D) of the distance h1 between the stirring blade located in the lower stage and the tank bottom of the stirring tank and the inner diameter D of the stirring tank (h1 / D) was changed as shown in Table 3. A simulation was performed in the same manner as in Example 1 to determine the flow pattern and evaluate the mixing performance of the stirring object.

〔比較例6〕
下段に位置する撹拌翼と中段に位置する撹拌翼との間の距離h2と、上段に位置する撹拌翼と中段に位置する撹拌翼との間の距離h3との比(h2/h3)を表3に示すように変更した以外は、実施例3と同様にしてシミュレーションを行い、フローパターンの判別及び被撹拌物の混合性能の評価を行った。
[Comparative Example 6]
The ratio (h2 / h3) of the distance h2 between the stirring blade located in the lower stage and the stirring blade located in the middle stage and the distance h3 between the stirring blade located in the upper stage and the stirring blade located in the middle stage is shown. Except for the changes shown in FIG. 3, a simulation was performed in the same manner as in Example 3 to determine the flow pattern and evaluate the mixing performance of the object to be stirred.

実施例3及び比較例6のフローパターンの判別結果及び被撹拌物の混合時間の測定結果を表3に示す。表3に示すように、比較例6では上二段合流フローパターン(図7(b)参照)となってしまうのに対し、実施例3では、三段の撹拌翼それぞれによって生じた吐出流が合流する三段合流フローパターン(図7(a)参照)となる。従って、実施例3の撹拌方法は、比較例6の撹拌方法に比して、均一混合性がよいことが分かった。また、実施例3の撹拌方法は、表3に示すように、比較例6の撹拌方法に比して混合時間が短くなっている。   Table 3 shows the flow pattern discrimination results of Example 3 and Comparative Example 6 and the measurement results of the mixing time of the object to be stirred. As shown in Table 3, in Comparative Example 6, the upper two-stage merged flow pattern (see FIG. 7B) is obtained, whereas in Example 3, the discharge flow generated by each of the three-stage stirring blades is This is a three-stage merge flow pattern (see FIG. 7A) that merges. Therefore, it was found that the stirring method of Example 3 had better uniform mixing properties than the stirring method of Comparative Example 6. In addition, as shown in Table 3, the stirring method of Example 3 has a shorter mixing time than the stirring method of Comparative Example 6.

〔実施例4ないし6〕
内径2300mmの撹拌槽を使用し、被撹拌物の量、各撹拌翼の位置及びレイノルズ数を表4に示すようにした。これら以外は実施例1と同様にしてシミュレーションを行い、フローパターンの判別及び被撹拌物の混合性能の評価を行った。
[Examples 4 to 6]
A stirring tank having an inner diameter of 2300 mm was used, and the amount of objects to be stirred, the position of each stirring blade, and the Reynolds number were set as shown in Table 4. Except for these, a simulation was performed in the same manner as in Example 1 to determine the flow pattern and evaluate the mixing performance of the stirring object.

〔比較例7ないし9〕
上段に位置する撹拌翼と中段に位置する撹拌翼との間の距離h3との比(h2/h3)、下段に位置する撹拌翼と撹拌槽の槽底との間の距離h1と撹拌槽の槽底から被撹拌物の上端までの高さHとの比(h1/H)及び下段に位置する撹拌翼と撹拌槽の槽底との間の距離h1と撹拌槽の内径Dとの比(h1/D)を表4に示すように変更した以外は、実施例4ないし6と同様にしてシミュレーションを行い、フローパターンの判別及び被撹拌物の混合性能の評価を行った。
[Comparative Examples 7 to 9]
The ratio (h2 / h3) of the distance h3 between the stirring blade located in the upper stage and the stirring blade located in the middle stage, the distance h1 between the stirring blade located in the lower stage and the tank bottom of the stirring tank, and the stirring tank The ratio (h1 / H) of the height H from the tank bottom to the upper end of the object to be stirred and the ratio of the distance h1 between the stirring blade located in the lower stage and the tank bottom of the stirring tank and the inner diameter D of the stirring tank ( Except for changing h1 / D) as shown in Table 4, simulations were performed in the same manner as in Examples 4 to 6 to determine the flow pattern and evaluate the mixing performance of the stirring object.

実施例4ないし6並びに比較例7ないし9のフローパターンの判別結果及び被撹拌物の混合時間の測定結果を表4に示す。表4に示すように、比較例7ないし9では上二段合流フローパターン(図7(b)参照)となってしまうのに対し、実施例4ないし6では、三段の撹拌翼それぞれによって生じた吐出流が合流する三段合流フローパターン(図7(a)参照)となる。従って、実施例4ないし6の撹拌方法は、比較例7ないし9の撹拌方法に比して、均一混合性がよいことが分かった。また、実施例4ないし6の撹拌方法は、表4に示すように、比較例7ないし9の撹拌方法に比して混合時間が短くなっている。   Table 4 shows the flow pattern discrimination results of Examples 4 to 6 and Comparative Examples 7 to 9 and the measurement results of the mixing time of the materials to be stirred. As shown in Table 4, in Comparative Examples 7 to 9, the upper two-stage merged flow pattern (see FIG. 7B) is obtained, whereas in Examples 4 to 6, it is generated by each of the three stages of stirring blades. A three-stage merged flow pattern (see FIG. 7A) in which the discharged flows merge. Therefore, it was found that the stirring methods of Examples 4 to 6 had better uniform mixing properties than the stirring methods of Comparative Examples 7 to 9. Further, as shown in Table 4, the stirring methods of Examples 4 to 6 have a shorter mixing time than the stirring methods of Comparative Examples 7 to 9.

〔実施例7〕
内径288mmの撹拌槽を使用し、被撹拌物の量、各撹拌翼の位置及びレイノルズ数を表5に示すようにした。これら以外は実施例1と同様にしてシミュレーションを行い、フローパターンの判別及び被撹拌物の混合性能の評価を行った。また、シミュレーションで用いた撹拌装置と同じ形状の撹拌装置を用いて実物実験を行い、フローパターンの判別及び混合性能の評価を行った。
Example 7
A stirring tank having an inner diameter of 288 mm was used, and the amount of objects to be stirred, the position of each stirring blade, and the Reynolds number were set as shown in Table 5. Except for these, a simulation was performed in the same manner as in Example 1 to determine the flow pattern and evaluate the mixing performance of the stirring object. In addition, an actual experiment was performed using an agitator having the same shape as that of the agitator used in the simulation, and the flow pattern was discriminated and the mixing performance was evaluated.

<実物実験によるフローパターンの判別方法>
樹脂ビーズ法を用いて可視化実験を行い、フローパターンを判別した。樹脂ビーズ法とは、無色の被撹拌物に色のついた樹脂ビーズを同伴させ、その動きをハイスピードカメラで観察し、各撹拌翼からの流れの方向を見てフローパターンを目視判定する方法である。フローパターンはシミュレーション結果からフローパターンを判別する方法と同様に、「三段合流フローパターン」、「上二段合流フローパターン」、「下二段合流フローパターン」に判別した。
<Flow pattern discrimination method by actual experiment>
Visualization experiments were performed using the resin bead method to determine the flow pattern. The resin bead method is a method in which colored resin beads are brought together with a colorless object to be stirred, the movement is observed with a high-speed camera, and the flow pattern is visually determined by looking at the flow direction from each stirring blade. It is. Similar to the method of discriminating the flow pattern from the simulation results, the flow pattern was discriminated as “three-stage merge flow pattern”, “upper two-stage merge flow pattern”, and “lower two-stage merge flow pattern”.

<実物実験による被撹拌物の混合性能の評価方法>
撹拌装置及び撹拌方法の混合性能を評価するための基準である混合時間の測定のため、アルカリ応答実験を行った。アルカリ応答実験では、撹拌槽内にトレーサーとしてアルカリ性の液体を投下し、槽内下部に設置したpHセンサーでpHの経時変化を検出して混合時間を求める。実験では、槽内液のpHを4.5±0.1に調整して撹拌した状態でNaOH溶液を投入し、pH計から出力される数値を経時的に取得した。サンプリングは0.2秒周期でNaOH溶液投入後300秒まで行った。各時刻歴のpHデータは0秒と300秒後の数値で規格化したのち、移動平均(5点)して求めた。混合時間は規格化後pHデータの移動平均値が最初に0.97を超えるまでの時間と定義した。
<Evaluation method of mixing performance of to-be-stirred object by actual experiment>
In order to measure the mixing time, which is a reference for evaluating the mixing performance of the stirring device and the stirring method, an alkali response experiment was conducted. In the alkali response experiment, an alkaline liquid is dropped as a tracer in the stirring tank, and a change in pH with time is detected by a pH sensor installed in the lower part of the tank to determine the mixing time. In the experiment, the NaOH solution was added while the pH of the solution in the tank was adjusted to 4.5 ± 0.1 and stirred, and the numerical value output from the pH meter was obtained over time. Sampling was performed at a cycle of 0.2 seconds until 300 seconds after the NaOH solution was added. The pH data of each time history was obtained by moving average (5 points) after normalization with numerical values after 0 seconds and 300 seconds. The mixing time was defined as the time until the moving average value of the pH data after normalization first exceeded 0.97.

〔比較例10〕
上段に位置する撹拌翼と中段に位置する撹拌翼との間の距離h3との比(h2/h3)、下段に位置する撹拌翼と撹拌槽の槽底との間の距離h1と撹拌槽の槽底から被撹拌物の上端までの高さHとの比(h1/H)及び下段に位置する撹拌翼と撹拌槽の槽底との間の距離h1と撹拌槽の内径Dとの比(h1/D)を表5に示すように変更した以外は、実施例7と同様にしてシミュレーション及び実物実験を行い、フローパターン及び被撹拌物の混合性能の評価を行った。
[Comparative Example 10]
The ratio (h2 / h3) of the distance h3 between the stirring blade located in the upper stage and the stirring blade located in the middle stage, the distance h1 between the stirring blade located in the lower stage and the tank bottom of the stirring tank, and the stirring tank The ratio (h1 / H) of the height H from the tank bottom to the upper end of the object to be stirred and the ratio of the distance h1 between the stirring blade located in the lower stage and the tank bottom of the stirring tank and the inner diameter D of the stirring tank ( Except for changing h1 / D) as shown in Table 5, simulations and real experiments were performed in the same manner as in Example 7 to evaluate the mixing performance of the flow pattern and the stirring object.

実施例7及び比較例10のフローパターンの判別結果及び被撹拌物の混合時間の測定結果を表5に示す。表5に示すように、シミュレーション及び実物実験のいずれの場合も、比較例10では上二段合流フローパターン(図7(b)参照)となってしまうのに対し、実施例7では、三段の撹拌翼それぞれによって生じた吐出流が合流する三段合流フローパターン(図7(a)参照)となる。従って、実施例7の撹拌方法は、比較例10の撹拌方法に比して、均一混合性がよいことが分かった。また、実施例10の撹拌方法は、表5に示すように、シミュレーション及び実物実験のいずれの場合も、比較例10の撹拌方法に比して混合時間が短くなっている。   Table 5 shows the flow pattern discrimination results of Example 7 and Comparative Example 10 and the measurement results of the mixing time of the object to be stirred. As shown in Table 5, in both the simulation and the actual experiment, the upper two-stage merged flow pattern (see FIG. 7B) is obtained in Comparative Example 10, whereas in Example 7, the three-stage A three-stage merged flow pattern (see FIG. 7A) in which the discharge flows generated by the respective stirring blades merge. Therefore, it was found that the stirring method of Example 7 had better uniform mixing properties than the stirring method of Comparative Example 10. In addition, as shown in Table 5, the stirring method of Example 10 has a shorter mixing time than the stirring method of Comparative Example 10 in both the simulation and the actual experiment.

〔比較例11〕
実施例1において、撹拌槽に取り付ける撹拌翼の寸法を表6に示すように変更した以外は、実施例1と同様にしてシミュレーションを行い、フローパターンの判別、撹拌物の混合時間の測定及びトルク平均値の測定を行った。
[Comparative Example 11]
In Example 1, except that the dimensions of the stirring blades attached to the stirring tank were changed as shown in Table 6, simulation was performed in the same manner as in Example 1 to determine the flow pattern, measure the mixing time of the stirring material, and torque The average value was measured.

実施例1及び比較例11のフローパターンの判別結果、被撹拌物の混合時間の測定結果及びトルク平均値の測定結果を表6に示し、実施例1及び比較例11のトルク5区間移動平均を図11に示す。表6及び図11に示すように、比較例11は、実施例1に比してトルク平均値が大きくなっている。従って、実施例1の撹拌方法は、比較例11に比して、大きな動力を必要とすることなく、混合性能を向上させることができることが判った。   The flow pattern discrimination results of Example 1 and Comparative Example 11, the measurement result of the mixing time of the agitated object, and the measurement result of torque average value are shown in Table 6, and the torque 5-section moving average of Example 1 and Comparative Example 11 is shown. As shown in FIG. As shown in Table 6 and FIG. 11, the torque average value of Comparative Example 11 is larger than that of Example 1. Therefore, it was found that the stirring method of Example 1 can improve the mixing performance without requiring large power as compared with Comparative Example 11.

1 撹拌装置
10 撹拌槽
10a 撹拌槽の槽底
11 回転軸
20u 上段に位置する撹拌翼
20m 中段に位置する撹拌翼
20d 下段に位置する撹拌翼
21 円板
22 羽根
23 撹拌面
30 邪魔板
41 配管
42 気体供給配管
50 被撹拌物
50a 被撹拌物の上端
h1 下段に位置する撹拌翼と撹拌槽の槽底との間の距離
h2 下段に位置する撹拌翼と中段に位置する撹拌翼との間の距離
h3 上段に位置する撹拌翼と中段に位置する撹拌翼との間の距離
H 撹拌槽の槽底から被撹拌物の上端までの高さ
D 撹拌槽の内径
DESCRIPTION OF SYMBOLS 1 Stirrer 10 Stirrer tank 10a Stirrer tank bottom 11 Rotating shaft 20u Stirrer blade 20m located in upper stage 20m Stirrer blade located in middle stage 20d Stirrer blade located in lower stage 21 Disc 22 Blade 23 Stirring surface 30 Baffle plate 41 Pipe 42 Gas supply pipe 50 Stirred object 50a Upper end of the stirred object h1 Distance between the lower stirring blade and the bottom of the stirring tank h2 Distance between the lower stirring blade and the middle stirring blade h3 Distance between the stirring blade located in the upper stage and the stirring blade located in the middle stage H Height from the bottom of the stirring tank to the upper end of the object to be stirred D Inner diameter of the stirring tank

Claims (9)

円筒状の撹拌槽と、該撹拌槽の中心軸に沿って配される回転軸と、該回転軸に取り付けられた複数の撹拌翼とを備えた撹拌装置を用いて、該撹拌槽内に収容された液状の被撹拌物を撹拌する撹拌方法であって、
前記撹拌翼は、いずれも半径方向流型の撹拌翼であり、前記回転軸の軸方向に間隔を開けて三段取り付けられており、
下段に位置する前記撹拌翼と中段に位置する前記撹拌翼との間の距離h2と、上段に位置する前記撹拌翼と前記中段に位置する前記撹拌翼との間の距離h3との比(h2/h3)を0.50以上0.95以下とし、且つ
前記下段に位置する撹拌翼と前記撹拌槽の槽底との間の距離h1と、該撹拌槽の槽底から前記被撹拌物の上端までの高さHとの比(h1/H)を0.20以上0.30以下とした条件下に、
前記回転軸を回転させて、前記被撹拌物を撹拌する撹拌方法。
Using a stirrer provided with a cylindrical stirring tank, a rotating shaft arranged along the central axis of the stirring tank, and a plurality of stirring blades attached to the rotating shaft, the container is accommodated in the stirring tank. A stirring method for stirring a liquid object to be stirred,
The stirring blades are all radial flow type stirring blades, and are attached in three stages at intervals in the axial direction of the rotating shaft,
A ratio (h2) between a distance h2 between the stirring blade located in the lower stage and the stirring blade located in the middle stage and a distance h3 between the stirring blade located in the upper stage and the stirring blade located in the middle stage / H3) is 0.50 or more and 0.95 or less, and the distance h1 between the stirring blade located in the lower stage and the tank bottom of the stirring tank, and the upper end of the object to be stirred from the tank bottom of the stirring tank Up to a height H ratio (h1 / H) of 0.20 to 0.30,
A stirring method of rotating the rotating shaft to stir the object to be stirred.
前記撹拌装置が、前記撹拌槽の内周面に邪魔板が取り付けられているものであり、
前記下段に位置する前記撹拌翼と前記撹拌槽の槽底との間の距離h1と、該撹拌槽の内径Dとの比(h1/D)が0.190以上0.345以下である、請求項1に記載の撹拌方法。
The stirring device has a baffle plate attached to the inner peripheral surface of the stirring tank,
The ratio (h1 / D) between the distance h1 between the stirring blade located in the lower stage and the tank bottom of the stirring tank and the inner diameter D of the stirring tank is 0.190 or more and 0.345 or less. Item 2. The stirring method according to Item 1.
前記撹拌装置を用いて前記撹拌槽内の被撹拌物を撹拌して、気液反応、乳化又は固液分散を行う、請求項1又は2に記載の撹拌方法。   The stirring method of Claim 1 or 2 which stirs the to-be-stirred thing in the said stirring tank using the said stirring apparatus, and performs gas-liquid reaction, emulsification, or solid-liquid dispersion. 前記撹拌装置を用いて前記撹拌槽内の被撹拌物を撹拌して、酵素反応を行う、請求項1ないし3の何れか1項に記載の撹拌方法。   The stirring method according to any one of claims 1 to 3, wherein an enzyme reaction is performed by stirring an object to be stirred in the stirring tank using the stirring device. 前記撹拌装置が、前記撹拌槽の下部に気体供給配管が設置され、且つ該撹拌槽の上部に配管が設置されているものであり、
前記気体供給配管からの気体の供給及び前記配管からの液体の供給の何れか一方又は双方を行いながら、前記撹拌槽内の被撹拌物を撹拌して、前記の酵素反応を行う、請求項4に記載の撹拌方法。
The stirring device has a gas supply pipe installed at the lower part of the stirring tank, and a pipe installed at the upper part of the stirring tank,
5. The enzyme reaction is performed by stirring the object to be stirred in the stirring tank while performing one or both of gas supply from the gas supply pipe and liquid supply from the pipe. The stirring method described in 1.
請求項3に記載の撹拌方法を用いた乳化物の製造方法。   The manufacturing method of the emulsion using the stirring method of Claim 3. 請求項3に記載の撹拌方法を用いた懸濁液の製造方法。   A method for producing a suspension using the stirring method according to claim 3. 請求項4又は5に記載の撹拌方法を用いた酵素反応生成物の製造方法。   The manufacturing method of the enzyme reaction product using the stirring method of Claim 4 or 5. 円筒状の撹拌槽と、該撹拌槽の中心軸に沿って配される回転軸と、該回転軸に取り付けられた複数の撹拌翼とを備えた撹拌装置であって、
前記撹拌槽の内周面に邪魔板が取り付けられており、
前記撹拌翼は、いずれも半径方向流型の撹拌翼であり、前記回転軸の軸方向に間隔を開けて三段取り付けられており、
下段に位置する前記撹拌翼と中段に位置する前記撹拌翼との間の距離h2と、上段に位置する前記撹拌翼と前記中段に位置する前記撹拌翼との間の距離h3との比(h2/h3)が0.50以上0.95以下であり、且つ
前記下段に位置する撹拌翼と前記撹拌槽の槽底との間の距離h1と、該撹拌槽の内径Dとの比(h1/D)が0.190以上0.345以下である、撹拌装置。
A stirring apparatus comprising a cylindrical stirring tank, a rotating shaft arranged along the central axis of the stirring tank, and a plurality of stirring blades attached to the rotating shaft,
A baffle plate is attached to the inner peripheral surface of the stirring tank,
The stirring blades are all radial flow type stirring blades, and are attached in three stages at intervals in the axial direction of the rotating shaft,
A ratio (h2) between a distance h2 between the stirring blade located in the lower stage and the stirring blade located in the middle stage and a distance h3 between the stirring blade located in the upper stage and the stirring blade located in the middle stage / H3) is 0.50 or more and 0.95 or less, and the ratio (h1 /) between the distance h1 between the stirring blade located in the lower stage and the tank bottom of the stirring tank and the inner diameter D of the stirring tank A stirring apparatus in which D) is 0.190 or more and 0.345 or less.
JP2018105627A 2018-05-31 2018-05-31 Stirring method and stirring device Active JP7148279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018105627A JP7148279B2 (en) 2018-05-31 2018-05-31 Stirring method and stirring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018105627A JP7148279B2 (en) 2018-05-31 2018-05-31 Stirring method and stirring device

Publications (2)

Publication Number Publication Date
JP2019209240A true JP2019209240A (en) 2019-12-12
JP7148279B2 JP7148279B2 (en) 2022-10-05

Family

ID=68845983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018105627A Active JP7148279B2 (en) 2018-05-31 2018-05-31 Stirring method and stirring device

Country Status (1)

Country Link
JP (1) JP7148279B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114682125A (en) * 2022-03-25 2022-07-01 安徽省农业科学院棉花研究所 Fertilizer pelletization equipment
CN115646271A (en) * 2022-12-28 2023-01-31 常州都铂高分子有限公司 Diluting device and diluting method for producing water-based pressure-sensitive adhesive

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10127271A (en) * 1996-11-01 1998-05-19 Tonen Corp Reactor for biological treatment of water-immiscible raw material
JP2003311147A (en) * 2002-04-24 2003-11-05 Sumitomo Chem Co Ltd Reaction tank and manufacturing method for oxide
JP2009072133A (en) * 2007-09-21 2009-04-09 Hitachi Plant Technologies Ltd Bioreactor, cell culture method, and substance production method
JP2012533419A (en) * 2009-07-24 2012-12-27 エフ.ホフマン−ラ ロシュ アーゲー Stirring system
JP2013075292A (en) * 2006-09-22 2013-04-25 Dow Global Technologies Llc Liquid-gas phase reactor system
JP2014530094A (en) * 2011-09-16 2014-11-17 ジーイー・ヘルスケア・バイオサイエンス・コーポレイション Single-use mixing / bioreactor system
JP2015054272A (en) * 2013-09-11 2015-03-23 住友金属鉱山株式会社 Agitation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10127271A (en) * 1996-11-01 1998-05-19 Tonen Corp Reactor for biological treatment of water-immiscible raw material
JP2003311147A (en) * 2002-04-24 2003-11-05 Sumitomo Chem Co Ltd Reaction tank and manufacturing method for oxide
JP2013075292A (en) * 2006-09-22 2013-04-25 Dow Global Technologies Llc Liquid-gas phase reactor system
JP2009072133A (en) * 2007-09-21 2009-04-09 Hitachi Plant Technologies Ltd Bioreactor, cell culture method, and substance production method
JP2012533419A (en) * 2009-07-24 2012-12-27 エフ.ホフマン−ラ ロシュ アーゲー Stirring system
JP2014530094A (en) * 2011-09-16 2014-11-17 ジーイー・ヘルスケア・バイオサイエンス・コーポレイション Single-use mixing / bioreactor system
JP2015054272A (en) * 2013-09-11 2015-03-23 住友金属鉱山株式会社 Agitation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114682125A (en) * 2022-03-25 2022-07-01 安徽省农业科学院棉花研究所 Fertilizer pelletization equipment
CN114682125B (en) * 2022-03-25 2023-09-01 安徽省农业科学院棉花研究所 Fertilizer pelletization equipment
CN115646271A (en) * 2022-12-28 2023-01-31 常州都铂高分子有限公司 Diluting device and diluting method for producing water-based pressure-sensitive adhesive

Also Published As

Publication number Publication date
JP7148279B2 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
Zhang et al. High shear mixers: A review of typical applications and studies on power draw, flow pattern, energy dissipation and transfer properties
US6000840A (en) Rotors and stators for mixers and emulsifiers
Joshi et al. CFD simulation of stirred tanks: Comparison of turbulence models (Part II: Axial flow impellers, multiple impellers and multiphase dispersions)
Aubin et al. Effect of axial agitator configuration (up-pumping, down-pumping, reverse rotation) on flow patterns generated in stirred vessels
Hashemi et al. Experimental investigation of the bubble behavior in an aerated coaxial mixing vessel through electrical resistance tomography (ERT)
US9138699B2 (en) Fractal impeller for stirring
JP5575139B2 (en) Processing equipment
Zhu et al. Mixing studies in a model aerated bioreactor equipped with an up-or a down-pumping ‘Elephant Ear’agitator: Power, hold-up and aerated flow field measurements
Böhm et al. Multiphase stirred tank bioreactors–new geometrical concepts and scale‐up approaches
JP2019209240A (en) Stirring method and stirring device
Ameur Some modifications in the Scaba 6SRGT impeller to enhance the mixing characteristics of Hershel–Bulkley fluids
McConville et al. Scale‐Up of Mixing Processes: A Primer
Cudak et al. Momentum transfer in an agitated vessel with off-centred impellers
Bombač et al. Gas-filled cavity structures and local void fraction distribution in vessel with dual-impellers
Delbridge et al. Power, mixing and flow dynamics of the novel Allegro™ stirred tank reactor
Hall et al. A PIV study of hydrodynamics in gas–liquid high throughput experimentation (HTE) reactors with eccentric impeller configurations
Myers et al. Performance of a gas dispersion impeller with vertically asymmetric blades
JPH07124456A (en) Agitating device
Andre et al. Influence of mixing system design and operating parameters on dissolution process
Zhao et al. Particle image velocimetry study of flow patterns and mixing characteristics in multiple impeller stirred tank
Major-Godlewska et al. Agitation of a gas-solid-liquid system in a vessel with high-speed impeller and vertical tubular coil
JP5305926B2 (en) Method for producing polymerized toner
Kaminoyama Review of visualization of flow and dispersion states of slurry system fluids in stirred vessels
JP2021084077A (en) Stirring device and gas-liquid mixing method
JP2009262003A (en) Grinding machine and equipment for manufacturing toner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220922

R151 Written notification of patent or utility model registration

Ref document number: 7148279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151