JP2019177332A - Mixed methane fermentation method of sewage sludge and garbage - Google Patents

Mixed methane fermentation method of sewage sludge and garbage Download PDF

Info

Publication number
JP2019177332A
JP2019177332A JP2018067494A JP2018067494A JP2019177332A JP 2019177332 A JP2019177332 A JP 2019177332A JP 2018067494 A JP2018067494 A JP 2018067494A JP 2018067494 A JP2018067494 A JP 2018067494A JP 2019177332 A JP2019177332 A JP 2019177332A
Authority
JP
Japan
Prior art keywords
sludge
methane fermentation
garbage
membrane
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018067494A
Other languages
Japanese (ja)
Other versions
JP7103577B2 (en
Inventor
洋平 冨田
Yohei Tomita
洋平 冨田
辻 猛志
Takeshi Tsuji
猛志 辻
玉友 李
Yu-You Li
玉友 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
JFE Engineering Corp
Original Assignee
Tohoku University NUC
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, JFE Engineering Corp filed Critical Tohoku University NUC
Priority to JP2018067494A priority Critical patent/JP7103577B2/en
Publication of JP2019177332A publication Critical patent/JP2019177332A/en
Application granted granted Critical
Publication of JP7103577B2 publication Critical patent/JP7103577B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Abstract

To provide a method that can treat sewage sludge by methane fermentation in a facility that treats garbage by membrane-separated methane fermentation.SOLUTION: The present invention provides a mixed methane fermentation method of sewage sludge and garbage, in which, when sewage sludge and garbage are methane-fermented by membrane separation methane fermentation, surplus sludge from the sewage sludge is pre-solubilized and then introduced into the methane fermentation tank.SELECTED DRAWING: Figure 1

Description

本発明は、下水汚泥と生ごみを混合してメタン発酵槽内に供給し、槽内液を膜分離しながらメタン発酵を行うメタン発酵方法に関するものである。   The present invention relates to a methane fermentation method in which sewage sludge and raw garbage are mixed and supplied into a methane fermentation tank, and methane fermentation is performed while membrane separation of the liquid in the tank is performed.

近年では国土交通省所管の下水汚泥メタン発酵施設に環境省所管の一般ごみから生ごみを分別して、分別した生ごみを上記のメタン発酵施設に導入する検討がなされている。   In recent years, a study has been made to separate raw garbage from sewage sludge methane fermentation facilities under the jurisdiction of the Ministry of Land, Infrastructure, Transport and Tourism from the general waste under the jurisdiction of the Ministry of the Environment, and introduce the separated garbage into the above methane fermentation facilities.

浄化槽の汚泥と生ごみを処理する技術としては、し尿と浄化槽汚泥を脱水して脱水汚泥と脱水分離液に分離し、脱水分離液を生物処理工程で生物処理し、生物処理工程で発生する余剰汚泥をオゾン反応槽で可溶化して易分解性有機物を生成し、このオゾン可容化汚泥を生物処理工程に返送して生物処理することで余剰汚泥を消滅させ、脱水汚泥と生ごみ等の有機性廃棄物とをメタン発酵工程でメタン発酵させ、メタン発酵工程で発生する発酵汚泥をコンポスト工程でコンポスト化する方法(特許文献1)が開発されている。この方法は、発酵汚泥の一部もしくは全量を生物処理工程に導くことでコンポストの生産量を減産調整し、余剰汚泥の一部もしくは全量をメタン発酵工程に導くことでコンポストの生産量を増産調整するものである。   The technology to treat sludge and garbage in the septic tank is to dehydrate human waste and septic tank sludge, separate them into dehydrated sludge and dehydrated separation liquid, biologically treat the dehydrated separation liquid in the biological treatment process, and surplus generated in the biological treatment process. Sludge is solubilized in an ozone reaction tank to produce readily decomposable organic matter, and this ozone-tolerated sludge is returned to the biological treatment process to be biologically treated to eliminate surplus sludge and to remove dewatered sludge and garbage, etc. A method (Patent Document 1) has been developed in which organic waste is subjected to methane fermentation in a methane fermentation process, and fermented sludge generated in the methane fermentation process is composted in a compost process. This method adjusts the production amount of compost by reducing part or all of the fermented sludge to the biological treatment process, and increases production control of compost by guiding part or all of the excess sludge to the methane fermentation process. To do.

また、消化汚泥中において有機性物質のメタン発酵処理を行なうメタン発酵槽と、流動性を有し且つメタン発酵槽内の消化汚泥よりも高温である有機性物質をメタン発酵槽に供給する原料供給手段と、膜分離手段を有し、メタン発酵槽内の消化汚泥中の固形分を膜分離手段によって濃縮しながらメタン発酵処理を行なうメタン発酵処理装置であって、膜分離手段の分離膜を透過した膜透過液を外部へ取り出す膜透過液導出配管と、膜透過液導出配管内を流れる膜透過液と原料供給手段によってメタン発酵槽に供給される有機性物質との間で熱交換を行なって膜透過液を加温する熱交換手段が備えられていることを特徴とするメタン発酵処理装置(特許文献2)も開発されている。   In addition, a methane fermentation tank that performs methane fermentation of organic substances in digested sludge, and a raw material supply that supplies the methane fermentation tank with organic substances that have fluidity and are hotter than the digested sludge in the methane fermentation tank And a membrane separation means, and a methane fermentation treatment apparatus that performs a methane fermentation treatment while concentrating the solid content in the digested sludge in the methane fermentation tank by the membrane separation means, and permeates the separation membrane of the membrane separation means Heat exchange is performed between the membrane permeate outlet pipe for extracting the membrane permeate to the outside, the membrane permeate flowing in the membrane permeate outlet pipe and the organic substance supplied to the methane fermentation tank by the raw material supply means. A methane fermentation treatment apparatus (Patent Document 2) characterized in that a heat exchange means for heating the membrane permeate is provided.

この技術は、蒸留酒やアルコール製造工程からの蒸留廃液、食品工場廃棄物等のリン、マグネシウム、窒素分を多く含んだ有機性物質をメタン発酵処理する際に配管等に析出するリン酸マグネシウムアンモニウムを低コストで抑制しうるようにしたものである。   This technology is a magnesium ammonium phosphate that deposits on pipes and the like when methane fermentation of organic substances rich in phosphorus, magnesium and nitrogen such as distilled liquor from alcohol and alcohol production processes, food factory waste, etc. Can be suppressed at low cost.

生ゴミを破砕機でペースト状に細分化し、ペースト状生ゴミを圧送ポンプにより配管を通して密閉状態で生ゴミ処理設備へ供給し、生ゴミ処理設備でメタン発酵によりペースト状生ゴミ中の有機物を分解してメタンガスと炭酸ガスにガス化することを特徴とする生ゴミ処理方法(特許文献3)も知られている。   Raw garbage is broken up into pastes with a crusher, and paste-like garbage is supplied to the garbage treatment facility in a sealed state through a pipe by a pressure pump, and organic matter in the paste-like garbage is decomposed by methane fermentation in the garbage treatment facility. A garbage disposal method (Patent Document 3) characterized by gasification into methane gas and carbon dioxide gas is also known.

特開2002−273491号公報JP 2002-273491 A 特開2010−207700号公報JP 2010-207700 A 特開2002−119937号公報JP 2002-119937 A

本発明者らは、生ごみを膜分離メタン発酵法でメタン発酵処理している施設で下水汚泥も処理することを考え、検討したところ、下水汚泥を混合すると膜分離装置に目詰まりを生じて、下水汚泥の混合が困難であることを見出した。   The present inventors considered and treated sewage sludge in facilities where methane fermentation treatment was performed on membrane waste by membrane separation methane fermentation, and when the sewage sludge was mixed, the membrane separator was clogged. It was found that mixing sewage sludge was difficult.

この点に関し、特許文献1では、生物処理工程で発生する余剰汚泥は、基本的にオゾン反応槽で可溶化して生物処理工程に返送しており、メタン発酵工程で問題を生ずることは認識されていない。   In this regard, Patent Document 1 recognizes that surplus sludge generated in the biological treatment process is basically solubilized in the ozone reaction tank and returned to the biological treatment process, causing a problem in the methane fermentation process. Not.

また、特許文献2では、有機性廃棄物を可溶化することが示されているが、この有機性廃棄物には下水汚泥は含まれていない。   Further, Patent Document 2 shows that organic waste is solubilized, but this organic waste does not contain sewage sludge.

特許文献3でも、生ごみを可溶化しているが、やはり下水汚泥を可溶化することは示されていない。   Even in Patent Document 3, the garbage is solubilized, but it is not shown that the sewage sludge is solubilized.

本発明の目的は、下水汚泥と生ごみの混合発酵を行う施設において、効率的なメタン発酵処理できる方法を提供することにある。   An object of the present invention is to provide a method capable of performing an efficient methane fermentation treatment in a facility that performs mixed fermentation of sewage sludge and garbage.

本発明者らは、このような課題を解決するべく鋭意検討を進め、生ごみの消化汚泥は生分解性が高く膜ろ過性が良好であるが、余剰汚泥は既に下水を分解して発生した汚泥のため生分解性が低く、また、汚泥濃度が例えば約4容積%と低いためハンドリング性は問題ないが膜ろ過性が低いことを見出した。そこで、本発明者は下水汚泥を予め可溶化してからメタン発酵槽に加える方法に着目するに到り、これによって膜の目詰まりの問題を解決できることを見出して本発明を完成することができた。   The present inventors proceeded with intensive studies to solve such problems, and the digested sludge of garbage has high biodegradability and good membrane filterability, but excess sludge has already been generated by decomposing sewage. It has been found that biodegradability is low due to sludge, and that the sludge concentration is low, for example, about 4% by volume, so that there is no problem in handling, but membrane filtration is low. Therefore, the present inventor has come to focus on a method of pre-solubilizing sewage sludge and then adding it to the methane fermentation tank, thereby finding that the problem of clogging of the membrane can be solved and completing the present invention. It was.

すなわち、本発明は、下水汚泥と生ごみを膜分離メタン発酵法でメタン発酵させる際に、下水汚泥の余剰汚泥を予め可溶化してからメタン発酵槽に投入することを特徴とする、下水汚泥と生ごみの混合メタン発酵方法を提供するものである。   That is, the present invention is characterized in that when sewage sludge and garbage are subjected to methane fermentation by membrane separation methane fermentation method, surplus sludge of sewage sludge is pre-solubilized and then introduced into a methane fermentation tank. It provides a mixed methane fermentation method for food and garbage.

本発明により、生ごみを膜分離メタン発酵法で処理している既存の施設で下水汚泥も安価で効率よく処理することができ、メタン発酵で生じたバイオガスで発電できるなど、下水汚泥を有効利用できる。   According to the present invention, sewage sludge can be efficiently treated with biogas generated by methane fermentation. Available.

本発明の一実施態様を示すフローシートである。It is a flow sheet which shows one embodiment of the present invention. この実施態様を実施する装置の一例の概略構成を示す図である。It is a figure which shows schematic structure of an example of the apparatus which implements this embodiment.

本発明のメタン発酵が適用される生ごみは、特に限定されないが、家庭やスーパー、コンビニ、レストラン等から排出されるものの外、食品工場、魚加工場、畜産物加工場などから排出されるものなどである。それらは、必要により、破砕処理したり、生ごみ以外の廃棄物を分別する等の前処理をしてからメタン発酵される。この生ごみは一般的にハンドリング性(発酵槽へのポンプ投入等)のために水を加えて希釈してからメタン発酵槽に投入するのがよく、希釈度は全固形分濃度で7〜10容積%程度とするのが適当である。   Garbage to which the methane fermentation of the present invention is applied is not particularly limited, but is discharged from food factories, fish processing plants, livestock processing plants, etc. in addition to those discharged from households, supermarkets, convenience stores, restaurants, etc. Etc. If necessary, they are subjected to methane fermentation after pretreatment such as crushing or separation of waste other than garbage. In general, this garbage should be diluted by adding water to handle it (pumping into the fermenter, etc.) and then charged into the methane fermenter. It is appropriate that the volume is about%.

下水汚泥は、下水処理場から排出される汚泥であり、初沈汚泥と余剰汚泥に分けられる。初沈汚泥は、受入れた下水をまず沈殿池で沈降させて分離される汚泥であり、余剰汚泥は曝気槽や無酸素槽等の生物処理槽で発生するものである。   Sewage sludge is sludge discharged from a sewage treatment plant, and is classified into primary sludge and excess sludge. The initial settling sludge is sludge that is separated by first allowing the received sewage to settle in a settling basin, and excess sludge is generated in a biological treatment tank such as an aeration tank or an oxygen-free tank.

曝気槽等から排出された余剰汚泥は、機械濃縮等により約1容積%から4容積%に濃縮される。その後、可溶化槽に投入され、連続式に、または、回分式に可溶化処理され、メタン発酵槽に投入される。   Excess sludge discharged from the aeration tank or the like is concentrated from about 1% to 4% by volume by mechanical concentration or the like. Thereafter, it is put into a solubilization tank, solubilized in a continuous manner or batchwise, and then put into a methane fermentation tank.

余剰汚泥の可溶化とは、熱エネルギーや物理エネルギー、化学処理により細胞膜を破壊し、細胞質を抽出したり、高分子有機物の結合を切断させ、低分子化を図るものである。   The solubilization of surplus sludge is intended to reduce the molecular weight by destroying the cell membrane by extracting heat energy, physical energy, or chemical treatment, extracting the cytoplasm, or severing the bonds of high molecular organic substances.

この可溶化度を測定する方法としては、TS分解率(TS:Total Solid)や溶解性CODcr増加率(今後、溶解性CODcrをS-CODcrと表記する)がある。
TS分解率は、原汚泥のTSと処理後汚泥のTSを測定し、各々の分析値をTS1、TS2として、次の計算により求める。TSは全蒸発残留物のJISK0102に該当する。概要は、所定容量のサンプルを採取して、蒸発皿に投入する。105℃にて2時間加熱し、デシケーター中で放冷した後、乾燥物の重量を測定し、mg/Lにて換算する。
(TS1−TS2)/TS1×100
CODcr増加率は、原汚泥のCODcr、S-CODcr、処理後汚泥のS-CODcrを各々、CODcr1、S-CODcr1、S-CODcr2として以下の式で表される。
(S-CODcr2−S-CODcr1)/CODcr1×100
As a method for measuring the solubilization degree, there are a TS decomposition rate (TS: Total Solid) and a soluble CODcr increase rate (hereinafter, soluble CODcr is referred to as S-CODcr).
TS degradation rate is obtained by the following calculation, measuring TS of raw sludge and TS of treated sludge, and setting each analysis value as TS1 and TS2. TS corresponds to JISK0102 for all evaporation residues. In summary, a sample of a predetermined volume is collected and put into an evaporating dish. After heating at 105 ° C. for 2 hours and allowing to cool in a desiccator, the weight of the dried product is measured and converted to mg / L.
(TS1-TS2) / TS1 × 100
The increase rate of CODcr is expressed by the following formula, where CODcr, S-CODcr of raw sludge, and S-CODcr of treated sludge are CODcr1, S-CODcr1, and S-CODcr2, respectively.
(S-CODcr2-S-CODcr1) / CODcr1 × 100

本発明では、余剰汚泥を10〜70%程度、好ましくは15〜40%程度可溶化することが望ましい。   In the present invention, it is desirable to solubilize excess sludge by about 10 to 70%, preferably about 15 to 40%.

可溶化する方法としては、熱処理、ビーズミル処理、水熱処理、超音波処理、アルカリ超音波処理、アルカリ処理などがある。   Examples of the solubilizing method include heat treatment, bead mill treatment, hydrothermal treatment, ultrasonic treatment, alkali ultrasonic treatment, and alkali treatment.

熱処理は、余剰汚泥を熱処理槽に入れて、撹拌しながら60〜90℃に加熱処理をする方法で、加熱時間は、通常60〜90℃では0.5〜2時間程度でよい。60℃未満は、可溶化度10に達せず、やはり100℃以上は、卵がゆで卵になるように、たんぱく質が固まりやすく可溶化率が低下する。加熱処理は通常の攪拌機の付いた槽でよい。   The heat treatment is a method in which surplus sludge is put in a heat treatment tank and heated to 60 to 90 ° C. while stirring. The heating time is usually about 0.5 to 2 hours at 60 to 90 ° C. Below 60 ° C, the degree of solubilization does not reach 10, and after 100 ° C, the protein tends to harden and the solubilization rate decreases so that the egg becomes a boiled egg. The heat treatment may be performed in a tank with a normal stirrer.

ビーズミル処理は、粒径が0.2〜1.0mm程度のアルミナやセラミック製のビーズを30〜60%程度充填した反応槽に汚泥を投入し、常温程度で10分〜1時間程度混合すればよい。余剰汚泥はそのままでよく、特に水を加える必要はない。   In the bead mill treatment, if sludge is put into a reaction tank filled with about 30 to 60% of alumina or ceramic beads having a particle size of about 0.2 to 1.0 mm, and mixed at a room temperature for about 10 minutes to 1 hour. Good. Excess sludge can be left as is, and it is not necessary to add water.

水熱処理は、余剰汚泥に水蒸気を流入して、温度を160〜180℃、圧力を0.6〜0.8MPaとする高温高圧容器内で20分〜30分程度処理すればよい。圧力が0.5MPa以下では可溶化率が低下する。一方1MPa以上でもかまわないが、容器コストがかさむなどの点で好ましくない。   The hydrothermal treatment may be performed for about 20 to 30 minutes in a high-temperature and high-pressure vessel in which water vapor flows into excess sludge and the temperature is 160 to 180 ° C. and the pressure is 0.6 to 0.8 MPa. When the pressure is 0.5 MPa or less, the solubilization rate decreases. On the other hand, it may be 1 MPa or more, but it is not preferable in that the container cost is increased.

超音波処理は、余剰汚泥を超音波照射装置を有する水槽に投入して、0.01〜0.5kwhで5〜20kHz程度の波長の超音波を10〜60分程度照射すればよい。   In the ultrasonic treatment, surplus sludge may be put into a water tank having an ultrasonic irradiation device and irradiated with ultrasonic waves having a wavelength of about 5 to 20 kHz at about 0.01 to 0.5 kwh for about 10 to 60 minutes.

アルカリ超音波処理は、余剰汚泥にアルカリ添加してpH10〜12にし、これに超音波を照射する方法であり、予めアルカリ性にしておくことによって、可溶化度を高めあるいは超音波照射時間を短縮することができる。   Alkaline sonication is a method of adding alkali to excess sludge to adjust the pH to 10-12, and irradiating this with ultrasonic waves. By making it alkaline in advance, the solubilization degree is increased or the ultrasonic irradiation time is shortened. be able to.

アルカリ処理は、余剰汚泥にアルカリを添加してpH10〜12にし、これを30分〜2時間程度撹拌する方法である。   The alkali treatment is a method of adding alkali to excess sludge to adjust the pH to 10 to 12, and stirring the mixture for about 30 minutes to 2 hours.

これらのなかで、熱処理、ビーズミル処理、水熱処理および超音波処理が比較的、ランニングコストが安価で可溶化効果が高いことから好ましく、熱処理と水熱処理がガスエンジンの廃熱の一部を適用できることから特に好ましい。   Among these, heat treatment, bead mill treatment, hydrothermal treatment and ultrasonic treatment are preferable because of their relatively low running cost and high solubilizing effect, and heat treatment and hydrothermal treatment can apply part of the waste heat of the gas engine. Is particularly preferred.

本発明のメタン発酵方法は、生ごみにこの可溶化した余剰汚泥を混合して行われる。混合比は特に問わないが、通常は固形物の重量比で生ごみ1に対し可溶化した余剰汚泥0.25〜1.0程度である。但し、生ごみや余剰汚泥の被処理量は、季節等により大きく変動し、生ごみ単独の場合や余剰汚泥単独の場合もある。また、生ごみと余剰汚泥に限らずその他の有機性廃棄物等も併せてメタン発酵処理することができる。その他の有機性廃棄物もメタン発酵できるものであり、例えば、下水汚泥の初沈汚泥、し尿汚泥や家畜糞尿等を一緒にメタン発酵させることができる。   The methane fermentation method of the present invention is performed by mixing the solubilized surplus sludge with garbage. The mixing ratio is not particularly limited, but is usually about 0.25 to 1.0 of excess sludge solubilized in the garbage 1 at a weight ratio of solids. However, the amount of raw garbage and surplus sludge to be treated varies greatly depending on the season, etc., and there are cases where the raw garbage is alone or surplus sludge alone. Moreover, not only food waste and excess sludge but also other organic wastes can be treated with methane fermentation. Other organic waste can also be methane-fermented. For example, sewage sludge primary sedimentation sludge, human waste sludge, livestock manure, etc. can be methane-fermented together.

メタン発酵は公知の方法に従って行えばよい。メタン発酵槽は、メタン発酵が嫌気発酵であり、また、発酵で生成したメタンを有効利用するために密閉構造とする。形状は箱形や円筒形などでよい。内部には攪拌機は設けなくてもよいが、ドラフトチューブなどを設けてもよい。   Methane fermentation may be performed according to a known method. The methane fermentation tank has a sealed structure in order to effectively use methane produced by fermentation, in which methane fermentation is anaerobic fermentation. The shape may be a box shape or a cylindrical shape. A stirrer may not be provided inside, but a draft tube or the like may be provided.

メタン発酵槽でメタン発酵が行われて流出する発酵液には、メタン菌が大量に含まれているので、メタン菌を高濃度に維持して発酵を効率よく行わせるために、膜分離槽で処理水を分離して残った発酵汚泥を回収してメタン発酵槽に返送する。このメタン発酵槽に付設する膜分離槽は特開2001−170631号公報に開示されているものなどを利用でき、メタン発酵槽内外のいずれに設けてもよい。用いる膜は、精密濾過膜(MF膜)、限外濾過膜(UF膜)等を用いることができ、膜の形状は、平膜、中空糸膜等がある。膜の下には散気装置を設けて膜面の流速を高めるとともに発酵汚泥等の膜面への付着を防止する。散気装置に使用するガスは、窒素ガスや炭酸ガスなどを用いてもよいが、メタン発酵で発生するメタンを主成分とするバイオガスを利用するのがよい。   The fermented liquor that flows out after methane fermentation is carried out in the methane fermentation tank contains a large amount of methane bacteria, so in order to maintain the methane bacteria at a high concentration and perform fermentation efficiently, Separate the treated water and collect the remaining fermentation sludge and return it to the methane fermentation tank. The membrane separation tank attached to this methane fermentation tank can utilize what was disclosed by Unexamined-Japanese-Patent No. 2001-170631 etc., and may be provided in the inside and outside of a methane fermentation tank. As the membrane to be used, a microfiltration membrane (MF membrane), an ultrafiltration membrane (UF membrane) or the like can be used, and the shape of the membrane includes a flat membrane, a hollow fiber membrane and the like. An air diffuser is provided under the membrane to increase the flow velocity of the membrane surface and prevent adhesion of fermented sludge and the like to the membrane surface. Nitrogen gas, carbon dioxide gas, or the like may be used as the gas used in the air diffuser, but biogas mainly composed of methane generated by methane fermentation is preferably used.

本発明の一実施態様を図1および図2に示す。この装置は、余剰汚泥の可溶化槽(熱処理槽)、メタン発酵槽、膜分離装置、バイオガスの脱硫塔、ガスエンジンおよび熱交換器からなる。この装置では、機械濃縮などによりTS4容積%程度に濃度調整された余剰汚泥を可溶化槽に投入し、70℃で1時間程度加熱して、例えば、HRT1時間で連続処理して可溶化し、メタン発酵槽に投入される。重力沈降によりTS4容積%に濃縮された初沈汚泥はそのままメタン発酵槽に投入され、生ごみは必要により破砕処理され、TS7〜10容積%程度に水を用いて希釈してからメタン発酵槽に投入されて、メタン発酵が行われる。余剰汚泥、初沈汚泥、生ごみの投入量は、それぞれ搬入され、発生する量に応じており、投入量比は変動する。メタン発酵中は、メタン発酵液は膜分離装置でろ過して膜ろ過水を取出し、メタン菌を含む発酵汚泥はメタン発酵槽に返送される。膜ろ過水はアンモニア性窒素や有機物が含まれており、これらは別途生物処理等される。メタン発酵中にはメタンを主成分とするバイオガスが発生し、これを脱硫塔で脱硫してからガスエンジンに送って発電させる。ガスエンジンから排出される水蒸気は高温であるのでこれを熱交換器に送って水蒸気に含まれている廃熱を回収し、残余の熱は可溶化槽に送ってさらに有効利用する。一方、可溶化槽で加熱源として使用されて排出する温水は、上記の熱交換器で水蒸気の熱を回収して有効利用できる。   One embodiment of the present invention is shown in FIGS. This apparatus comprises an excess sludge solubilization tank (heat treatment tank), a methane fermentation tank, a membrane separator, a biogas desulfurization tower, a gas engine, and a heat exchanger. In this apparatus, surplus sludge whose concentration is adjusted to about 4% by volume by mechanical concentration or the like is put into a solubilization tank, heated at 70 ° C. for about 1 hour, and solubilized by, for example, continuous treatment for 1 hour in HRT, It is put into the methane fermenter. The initial sedimentation sludge concentrated to 4% by volume of TS by gravity sedimentation is put into the methane fermentation tank as it is, and the garbage is crushed if necessary, and diluted with water to about 7-10% by volume of TS, then into the methane fermentation tank. The methane fermentation is carried out. The amount of surplus sludge, initial settling sludge, and garbage input is carried in and depends on the amount generated, and the input ratio varies. During methane fermentation, the methane fermentation broth is filtered through a membrane separator to take out the membrane filtrate, and the fermentation sludge containing methane bacteria is returned to the methane fermentation tank. Membrane filtered water contains ammoniacal nitrogen and organic matter, which are separately biologically treated. During methane fermentation, biogas mainly composed of methane is generated, which is desulfurized in a desulfurization tower and then sent to a gas engine for power generation. Since the steam discharged from the gas engine is hot, it is sent to a heat exchanger to recover waste heat contained in the steam, and the remaining heat is sent to a solubilization tank for further effective use. On the other hand, the hot water used and discharged as a heat source in the solubilization tank can be effectively used by recovering the heat of water vapor with the heat exchanger.

仮に熱処理の場合における熱収支イメージ
40万人都市、下水発生量は200L/人/日、生ごみ発生量200g/日※とする。
※生ごみについて、家庭系生ごみは、1050万t/年(平成22年度、消費者庁推計)
人口1.2億人、365日換算で240g/人/日より、約200g/人/日
Temporary image of heat balance in the case of heat treatment 400,000 cities, sewage generation amount is 200L / person / day, garbage generation amount is 200g / day *.
* Regarding household waste, household waste is 10.5 million tons / year (2010, Consumer Affairs Agency estimates)
Population 120 million people, approx. 200 g / person / day from 240 g / person / day in terms of 365 days

[下水処理における汚泥発生量]
都市の合計処理量8万m/日、初沈越流水SS200mg/L、処理水SS約0mg/L、初沈からのSS発生率0.9、余剰汚泥(濃縮)4.0%とすると、余剰汚泥量180m/日
初沈でのSS除去率50%とすると、初沈汚泥量は余剰汚泥量と同等と試算される。(4.0%、180m/日)
[Sludge generation amount in sewage treatment]
Total city throughput 80,000 m 3 / day, initial subsidence water SS 200 mg / L, treated water SS approx. 0 mg / L, SS generation rate from initial subsidence 0.9, surplus sludge (concentration) 4.0% Assuming that the excess sludge amount is 180 m 3 / day and the SS removal rate is 50% in the initial sedimentation, the initial sludge amount is estimated to be equivalent to the excess sludge amount. (4.0%, 180m 3 / day)

[生ごみ発生量]
200g/人/日、40万人の場合には、生ごみ量8t/日
水分率10%とすると、乾燥重量7.2t
[Garbage generation amount]
In the case of 200 g / person / day and 400,000 persons, if the amount of garbage is 8 t / day and the moisture content is 10%, the dry weight is 7.2 t

[バイオガス量の試算] [Estimation of biogas amount]

Figure 2019177332
Figure 2019177332

SS(懸濁固形分):100℃で水を蒸発させた残渣の重量%
VTS:SSを600℃でそこに含まれている有機物を燃やして残った灰分の重量を求め、
SS (Suspended solids):% by weight of residue obtained by evaporating water at 100 ° C.
VTS: SS is obtained at 600 ° C, and the weight of the ash remaining after burning the organic matter contained therein is obtained.

Figure 2019177332
VS:VS=SS×VTS
Figure 2019177332
VS: VS = SS × VTS

[発電廃熱の試算]
バイオガス熱量22MJ/Nm、発電機の廃熱回収率40%とすると、バイオガスからの回収可能熱量82GJ/日
[Estimation of power generation waste heat]
If the biogas heat amount is 22MJ / Nm 3 and the waste heat recovery rate of the generator is 40%, the recoverable heat amount from biogas is 82GJ / day.

[必要熱量の試算]
15℃の余剰汚泥を90℃に加温、4.18kJ/kcalとすると、
56GJ/日
発電廃熱>必要熱量より発電廃熱にて必要熱量を賄うことが可能となりうる。
[Estimation of required heat]
When the excess sludge at 15 ° C is heated to 90 ° C and 4.18 kJ / kcal,
56 GJ / day Power generation waste heat> It may be possible to cover the required heat amount with the power generation waste heat.

生ごみ、初沈汚泥および余剰汚泥について、メタン発酵後の膜ろ過性について検討した。   Membrane filterability after methane fermentation was examined for garbage, primary sludge and excess sludge.

生ごみはTS7〜10容積%に希釈したスラリーを用いた。初沈汚泥は下水処理場の重力濃縮されたTS2〜4容積%の汚泥を用いた。余剰汚泥は機械濃縮された下水処理場のTS3〜5容積%の汚泥を用いた。余剰汚泥に関しては、無処理のものと熱処理のもので比較した。熱処理条件は70℃でHRT1時間の連続処理とした。これらの各々を膜分離メタン発酵処理を行った。メタン発酵は中温発酵(38℃)、HRT15日とした。膜ろ過は住友電工製の中空糸膜(有効面積0.1m、孔径0.2μm、PTFE製)を用いて膜透過速度0.1m/m/日にてろ過した。実験期間は3週間である。 As the garbage, a slurry diluted to 7 to 10% by volume of TS was used. The first settling sludge was 2-4% by volume of TS concentrated in the sewage treatment plant. As the excess sludge, 3-5% by volume of TS sludge from the mechanically concentrated sewage treatment plant was used. As for the excess sludge, the non-treated and heat-treated ones were compared. The heat treatment condition was a continuous treatment at 70 ° C. for 1 hour of HRT. Each of these was subjected to membrane separation methane fermentation treatment. Methane fermentation was medium temperature fermentation (38 ° C.) and HRT 15 days. Membrane filtration was performed using a hollow fiber membrane made by Sumitomo Electric (effective area 0.1 m 2 , pore diameter 0.2 μm, PTFE) at a membrane permeation rate of 0.1 m 3 / m 2 / day. The experimental period is 3 weeks.

結果を表2に示す。   The results are shown in Table 2.

Figure 2019177332
Figure 2019177332

表中の○は、3週間、0.1m/日のフラックス(膜1m当たりの1日の透過水量m)で9分吸引−1分停止の間欠吸引を行った際の膜間差圧の上昇度合いが10kPa未満であったことをあらわしている。 ○ in the table is the transmembrane pressure difference when intermittent suction of 9 minutes suction and 1 minute stop is performed for 3 weeks with a flux of 0.1 m / day (permeated water amount per day m 3 per 1 m 2 of membrane) for 3 weeks. This means that the degree of increase in the value was less than 10 kPa.

膜分離メタン発酵においては、メタン発酵により生じる汚泥を膜ろ過して、ろ過水と汚泥に分離することが必須であるため、メタン発酵汚泥の膜ろ過性を評価した。実験期間を通じて生ごみのメタン発酵から発生するメタン発酵汚泥濃度はTS1.5〜2容積%、初沈汚泥のメタン発酵汚泥濃度はTS1〜2容積%であり、3週間の膜ろ過において膜間差圧の上昇傾向は見られず、膜に汚泥が付着して膜が閉塞する傾向は見られなかった。しかし、余剰汚泥のメタン発酵汚泥はTS2〜4容積%であり、膜間差圧は10KPa以上上昇し、膜面が汚泥により閉塞する傾向が見られ、長期間の安定運転は困難であると考えられた。しかし、余剰汚泥を熱処理することで、可溶化度は25〜40%が得られた。この熱処理した余剰汚泥のメタン発酵汚泥はTS濃度が1.5〜2容積%まで低下し、安定した膜ろ過が可能となった。よって、熱処理により膜分離メタン発酵が適用可能な汚泥性状にできると考えられる。   In membrane separation methane fermentation, it is essential to filter the sludge produced by methane fermentation into filtered water and sludge, so the membrane filterability of methane fermentation sludge was evaluated. The concentration of methane fermentation sludge generated from methane fermentation of garbage during the experiment period is 1.5 to 2% by volume of TS, and the concentration of methane fermentation sludge of initial settling sludge is 1 to 2% by volume. No increase in pressure was observed, and there was no tendency for the membrane to clog due to sludge adhering to the membrane. However, the surplus sludge methane fermentation sludge is TS2-4% by volume, the transmembrane differential pressure rises by more than 10KPa, the membrane surface tends to be clogged by sludge, and long-term stable operation is considered difficult. It was. However, a solubilization degree of 25 to 40% was obtained by heat treating the excess sludge. This heat-treated surplus sludge methane fermentation sludge had a TS concentration of 1.5-2% by volume, and stable membrane filtration became possible. Therefore, it is thought that it can be made into the sludge property which can apply membrane separation methane fermentation by heat processing.

生ごみと下水汚泥(初沈汚泥、余剰汚泥)について膜ろ過性を検討した結果、余剰汚泥が膜ろ過性が低いこと、および、余剰汚泥を熱処理で可溶化することで、膜ろ過性が改善されることがわかった。   As a result of examining the membrane filterability of garbage and sewage sludge (primary sludge, excess sludge), the membrane filterability is improved by the fact that the excess sludge has low membrane filterability and the excess sludge is solubilized by heat treatment. I found out that

なお、本検討では、生ごみの収集量は毎週月、金曜に収集する等の収集日の影響を受けるため、各種ごみが混合することの影響を考慮せず、各汚泥による膜ろ過性が良好である必要があると考えた。   In this study, the amount of garbage collected is affected by the collection date such as collecting every month and Friday, so the membrane filterability by each sludge is good without considering the effect of mixing various kinds of waste. I thought it was necessary.

本発明により、下水汚泥も既存の生ごみをメタン発酵処理施設で安価で効率よく処理できるので、本発明は幅広く利用することができる。   According to the present invention, sewage sludge can also be used widely because the existing garbage can be treated efficiently and inexpensively at a methane fermentation treatment facility.

Claims (4)

下水汚泥と生ごみを膜分離メタン発酵法でメタン発酵させる際に、下水汚泥の余剰汚泥を予め可溶化してからメタン発酵槽に投入することを特徴とする、下水汚泥と生ごみの混合メタン発酵方法。   Mixed methane from sewage sludge and garbage, characterized by pre-solubilizing excess sludge from sewage sludge and introducing it into the methane fermentation tank when methane fermentation of sewage sludge and garbage by membrane separation methane fermentation Fermentation method. 可溶化を余剰汚泥の熱処理又は水熱処理で行なう請求項1記載の混合メタン発酵方法。   The mixed methane fermentation method according to claim 1, wherein the solubilization is performed by heat treatment or hydrothermal treatment of excess sludge. 余剰汚泥の可溶化度が10〜70%である請求項1又は2記載の混合メタン発酵方法。   The mixed methane fermentation method according to claim 1 or 2, wherein the solubilization degree of the excess sludge is 10 to 70%. メタン発酵中に発生したバイオガスを用いて発電し、その廃熱を余剰汚泥の可溶化に用いる請求項1ないし3のいずれかに記載の混合発酵方法。   The mixed fermentation method according to any one of claims 1 to 3, wherein power is generated using biogas generated during methane fermentation, and the waste heat is used for solubilization of excess sludge.
JP2018067494A 2018-03-30 2018-03-30 Mixed methane fermentation method of sewage sludge and swill Active JP7103577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018067494A JP7103577B2 (en) 2018-03-30 2018-03-30 Mixed methane fermentation method of sewage sludge and swill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018067494A JP7103577B2 (en) 2018-03-30 2018-03-30 Mixed methane fermentation method of sewage sludge and swill

Publications (2)

Publication Number Publication Date
JP2019177332A true JP2019177332A (en) 2019-10-17
JP7103577B2 JP7103577B2 (en) 2022-07-20

Family

ID=68277392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018067494A Active JP7103577B2 (en) 2018-03-30 2018-03-30 Mixed methane fermentation method of sewage sludge and swill

Country Status (1)

Country Link
JP (1) JP7103577B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075148A1 (en) * 2019-10-18 2021-04-22 ユニ・チャーム株式会社 Production method for biogas using used sanitary articles
JP7055916B1 (en) 2021-03-31 2022-04-18 テラサークルテクノロジーズ株式会社 Organic waste treatment system
JP2022101095A (en) * 2020-12-24 2022-07-06 株式会社サムズ Methane fermentation system of organic waste
JP7418251B2 (en) 2020-03-11 2024-01-19 メタウォーター株式会社 digestive system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11221548A (en) * 1998-02-05 1999-08-17 Kubota Corp Treatment of organic waste
JP2000015228A (en) * 1998-07-06 2000-01-18 Kubota Corp Method for fermenting organic waste
JP2004000837A (en) * 2002-05-31 2004-01-08 Mitsubishi Heavy Ind Ltd Anaerobic treatment method for organic waste and treatment system using the same
JP2005238103A (en) * 2004-02-26 2005-09-08 Jfe Engineering Kk Treatment method for organic waste
JP2008290041A (en) * 2007-05-28 2008-12-04 Toshiba Corp Organic waste treatment method and apparatus
CN102557373A (en) * 2011-08-01 2012-07-11 佛山市水业集团有限公司 Treatment method of excess sludge
JP2012192351A (en) * 2011-03-17 2012-10-11 Mitsubishi Kakoki Kaisha Ltd Method and device for treating organic waste

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11221548A (en) * 1998-02-05 1999-08-17 Kubota Corp Treatment of organic waste
JP2000015228A (en) * 1998-07-06 2000-01-18 Kubota Corp Method for fermenting organic waste
JP2004000837A (en) * 2002-05-31 2004-01-08 Mitsubishi Heavy Ind Ltd Anaerobic treatment method for organic waste and treatment system using the same
JP2005238103A (en) * 2004-02-26 2005-09-08 Jfe Engineering Kk Treatment method for organic waste
JP2008290041A (en) * 2007-05-28 2008-12-04 Toshiba Corp Organic waste treatment method and apparatus
JP2012192351A (en) * 2011-03-17 2012-10-11 Mitsubishi Kakoki Kaisha Ltd Method and device for treating organic waste
CN102557373A (en) * 2011-08-01 2012-07-11 佛山市水业集团有限公司 Treatment method of excess sludge

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075148A1 (en) * 2019-10-18 2021-04-22 ユニ・チャーム株式会社 Production method for biogas using used sanitary articles
CN114585592A (en) * 2019-10-18 2022-06-03 尤妮佳股份有限公司 Method for producing biogas using used sanitary product
JP7379076B2 (en) 2019-10-18 2023-11-14 ユニ・チャーム株式会社 Method for producing biogas using used sanitary products
JP7418251B2 (en) 2020-03-11 2024-01-19 メタウォーター株式会社 digestive system
JP2022101095A (en) * 2020-12-24 2022-07-06 株式会社サムズ Methane fermentation system of organic waste
JP7209975B2 (en) 2020-12-24 2023-01-23 株式会社サムズ Organic waste methane fermentation system
JP7055916B1 (en) 2021-03-31 2022-04-18 テラサークルテクノロジーズ株式会社 Organic waste treatment system
JP2022156354A (en) * 2021-03-31 2022-10-14 テラサークルテクノロジーズ株式会社 Organic waste treatment system

Also Published As

Publication number Publication date
JP7103577B2 (en) 2022-07-20

Similar Documents

Publication Publication Date Title
JP7103577B2 (en) Mixed methane fermentation method of sewage sludge and swill
US10781143B2 (en) Method and plant for treatment of organic waste
CA2660181C (en) Method and apparatus using hydrogen peroxide and microwave system for slurries treatment
JP2002511832A (en) Method and plant for treating liquid organic waste
KR102317178B1 (en) Livestock excrement and food disposal facility non-discharge system
JP4875864B2 (en) Biomass processing system
JP2003200198A (en) Method and apparatus for treating sludge
CN205295088U (en) Kitchen garbage's leachate treatment system
CN109704503A (en) With high salt, the high viscosity anaerobic fermented liquid recycling treatment system of one kind and method
GB2478383A (en) Treatment of aqueous organic streams by biodigestion and pervaporation
KR101700707B1 (en) Food waste Recycling System and Method thereof
Czerwińska et al. The treatment of post-processing liquid from the hydrothermal carbonization of sewage sludge
KR20000053273A (en) Method for separation organic waste
KR101300951B1 (en) Membrance coupled anaerobic digester system by using alternate and cross flow type and method for reating organic waste for thereof
JP2012200691A (en) Method and system for methane fermentation of sludge using hydrothermal reaction
Shafie et al. The performance study of Ultrasonic-assisted Membrane Anaerobic System (UMAS) for Chemical Oxygen Demand (COD) removal efficiency and methane gas production in Palm Oil Mill Effluent (POME) treatment
JPS5992098A (en) Disposal of waste liquor containing organic substance
CN104843850A (en) Method for treating industrial organic sewage
EP2746231A1 (en) Method and apparatus for the treatment of process water from a hydrothermal organic material conversion process
EP3469086A2 (en) Process for treating and generating energy from biomasses
JP2006281087A (en) Processing method of organic waste
JP2017006844A (en) Digestion treatment device and digestion treatment method
JP2002224645A (en) Method of high concentration methane fermentation
US20160264444A1 (en) Thermal treatment system and method for efficient processing of organic material
Zielinska et al. Membrane filtration for valorization of digestate from the anaerobic treatment of distillery stillage

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220624

R150 Certificate of patent or registration of utility model

Ref document number: 7103577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150