JP2019175838A - Anode, and sulfide solid-state battery - Google Patents

Anode, and sulfide solid-state battery Download PDF

Info

Publication number
JP2019175838A
JP2019175838A JP2018182465A JP2018182465A JP2019175838A JP 2019175838 A JP2019175838 A JP 2019175838A JP 2018182465 A JP2018182465 A JP 2018182465A JP 2018182465 A JP2018182465 A JP 2018182465A JP 2019175838 A JP2019175838 A JP 2019175838A
Authority
JP
Japan
Prior art keywords
negative electrode
current collector
copper
solid electrolyte
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018182465A
Other languages
Japanese (ja)
Inventor
満 立石
Mitsuru Tateishi
満 立石
佑介 奥畑
Yusuke Okuhata
佑介 奥畑
元 長谷川
Hajime Hasegawa
元 長谷川
広和 川岡
Hirokazu Kawaoka
広和 川岡
三宅 秀明
Hideaki Miyake
秀明 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to EP19155528.3A priority Critical patent/EP3547424A1/en
Priority to RU2019105642A priority patent/RU2696596C1/en
Priority to CN201910192925.3A priority patent/CN110323412B/en
Priority to US16/354,426 priority patent/US11404685B2/en
Priority to KR1020190031807A priority patent/KR102216073B1/en
Priority to BR102019005517-0A priority patent/BR102019005517A2/en
Publication of JP2019175838A publication Critical patent/JP2019175838A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To solve such a problem that, when an anode current collector layer made from copper, and an anode mixture layer containing a sulfide solid electrolyte are used to compose an anode, copper reacts with the sulfide solid electrolyte to generate copper sulfide, and the resistance of the interface between the anode current collector layer and the anode mixture layer increases.SOLUTION: An anode current collector layer is alloyed to lower the reactivity to a sulfide solid electrolyte. Specifically, an anode includes an anode mixture layer, and an anode current collector layer that is in contact with the anode mixture layer. The anode mixture layer contains an anode active material and a sulfide solid electrolyte, and at least a surface of the anode current collector layer is made from a material that contains an alloy of copper and metal of a higher ionization tendency than copper, the surface being in contact with the anode mixture layer.SELECTED DRAWING: Figure 1

Description

本願は硫化物固体電解質を用いた負極及び硫化物固体電池を開示する。   The present application discloses a negative electrode and a sulfide solid state battery using a sulfide solid electrolyte.

負極、正極及び固体電解質層を備える硫化物固体電池において、銅からなる負極集電体層と硫化物固体電解質を含む負極合材層とを用いて負極を構成した場合、銅と硫化物固体電解質とが反応して硫化銅等が生成し負極集電体層と負極合材層との界面における抵抗が上昇したり、硫化銅とリチウムイオンとが不可逆的に反応することで電池容量が低下するといった課題がある。この課題を解決する手段の一つとして、特許文献1には、負極合材層と負極集電体層との間に所定の元素を含有する反応抑制層を設けることが開示されている。   In a sulfide solid state battery including a negative electrode, a positive electrode, and a solid electrolyte layer, when the negative electrode is configured using a negative electrode current collector layer made of copper and a negative electrode mixture layer containing a sulfide solid electrolyte, copper and sulfide solid electrolyte Reacts with each other to produce copper sulfide and the like, resulting in an increase in resistance at the interface between the negative electrode current collector layer and the negative electrode mixture layer, and irreversible reaction between copper sulfide and lithium ions, resulting in a decrease in battery capacity. There is a problem. As one means for solving this problem, Patent Document 1 discloses providing a reaction suppression layer containing a predetermined element between a negative electrode mixture layer and a negative electrode current collector layer.

尚、特許文献2に開示されているように、硫化物固体電池において活物質と硫化物固体電解質との反応を抑制する技術が知られているが、負極集電体層と硫化物固体電解質との反応を抑制する技術として利用することは難しい。   In addition, as disclosed in Patent Document 2, a technique for suppressing a reaction between an active material and a sulfide solid electrolyte in a sulfide solid battery is known, but a negative electrode current collector layer, a sulfide solid electrolyte, and It is difficult to use it as a technique for suppressing the reaction.

特開2012−049023号公報JP 2012-049023 A 特開2011−060649号公報JP 2011-060649 A

特許文献1に開示された技術においては、負極合材層と負極集電体層との間に反応抑制層を追加する必要があり、電池の製造工程が煩雑化するといった課題や電池の体積エネルギー密度が小さくなるといった課題がある。すなわち、反応抑制層を別途追加することなく、負極集電体層と負極合材層中の硫化物固体電解質との反応を如何に抑制するかが課題となる。   In the technique disclosed in Patent Document 1, it is necessary to add a reaction suppression layer between the negative electrode mixture layer and the negative electrode current collector layer, and the problem that the battery manufacturing process becomes complicated and the volume energy of the battery There is a problem that the density is reduced. That is, the problem is how to suppress the reaction between the negative electrode current collector layer and the sulfide solid electrolyte in the negative electrode mixture layer without adding a reaction suppression layer separately.

本願は、上記課題を解決するための手段の一つとして、負極合材層と前記負極合材層に接触する負極集電体層とを備え、前記負極合材層が、負極活物質と硫化物固体電解質とを含み、前記負極集電体層の表面のうち少なくとも前記負極合材層と接触する表面が、銅と銅よりもイオン化傾向が高い金属との合金を含む材料により構成される、負極を開示する。   The present application includes, as one means for solving the above problems, a negative electrode mixture layer and a negative electrode current collector layer in contact with the negative electrode mixture layer, and the negative electrode mixture layer includes a negative electrode active material and a sulfide. A solid electrolyte, and at least a surface of the surface of the negative electrode current collector layer that is in contact with the negative electrode mixture layer is made of a material including copper and an alloy of metal having a higher ionization tendency than copper, A negative electrode is disclosed.

本開示の負極においては、前記合金が、銅と、亜鉛、ベリリウム及び錫から選ばれる少なくとも一つとを含むことが好ましい。   In the negative electrode of the present disclosure, it is preferable that the alloy includes copper and at least one selected from zinc, beryllium, and tin.

本開示の負極においては、前記合金が銅と亜鉛とを含むことが好ましい。   In the negative electrode of the present disclosure, the alloy preferably includes copper and zinc.

本開示の負極においては、前記負極活物質がシリコン系活物質を含むことが好ましい。   In the negative electrode of the present disclosure, the negative electrode active material preferably contains a silicon-based active material.

本開示の負極においては、前記負極集電体層の引張強度が500MPa以上であることが好ましい。   In the negative electrode of the present disclosure, the negative electrode current collector layer preferably has a tensile strength of 500 MPa or more.

本開示の負極においては、前記負極集電体層の破断伸びが7.95%以上であることが好ましい。   In the negative electrode of the present disclosure, the elongation at break of the negative electrode current collector layer is preferably 7.95% or more.

本願は、上記課題を解決するための手段の一つとして、本開示の負極と、正極と、前記負極及び前記正極の間に設けられた固体電解質層とを備える、硫化物固体電池を開示する。   As one of means for solving the above-described problems, the present application discloses a sulfide solid state battery including the negative electrode of the present disclosure, a positive electrode, and a solid electrolyte layer provided between the negative electrode and the positive electrode. .

本発明者の新たな知見によると、銅と銅よりもイオン化傾向が高い金属とを組み合わせて合金化した場合、銅単独の場合と比較して、硫化物固体電解質に対する電気化学的な反応性が低くなる。また、当該合金が硫化物固体電解質と電気化学的に反応した場合でも、銅よりもイオン化傾向が高い金属と硫化物固体電解質とが優先的に反応するものと考えられ、充放電反応に不利となる硫化銅の生成を抑制できる。すなわち、本開示の負極のように、負極集電体層の表面を所定の合金を含む材料により構成することで、新たに反応抑制層を追加することなく、負極集電体層と負極合材層中の硫化物固体電解質との反応を抑制することができる。   According to the inventor's new knowledge, when alloyed with a combination of copper and a metal that has a higher ionization tendency than copper, compared to the case of copper alone, the electrochemical reactivity to the sulfide solid electrolyte is lower. Lower. In addition, even when the alloy reacts electrochemically with the sulfide solid electrolyte, it is considered that a metal having a higher ionization tendency than copper and the sulfide solid electrolyte react preferentially, which is disadvantageous for the charge / discharge reaction. The production | generation of the copper sulfide which becomes can be suppressed. That is, like the negative electrode of the present disclosure, the surface of the negative electrode current collector layer is made of a material containing a predetermined alloy, so that the negative electrode current collector layer and the negative electrode composite material can be added without adding a new reaction suppression layer. Reaction with the sulfide solid electrolyte in the layer can be suppressed.

負極100の一例を説明するための概略図である。1 is a schematic diagram for explaining an example of a negative electrode 100. FIG. 負極集電体10の例を説明するための概略図である。3 is a schematic diagram for explaining an example of a negative electrode current collector 10. FIG. 硫化物固体電池1000の構成を説明するための概略図である。It is the schematic for demonstrating the structure of the sulfide solid battery 1000. FIG. 実施例にて用いた評価装置の構成を説明するための概略図である。It is the schematic for demonstrating the structure of the evaluation apparatus used in the Example. 比較例1のCV評価結果を示す図である。It is a figure which shows the CV evaluation result of the comparative example 1. 実施例1のCV評価結果を示す図である。It is a figure which shows the CV evaluation result of Example 1. 実施例2のCV評価結果を示す図である。It is a figure which shows the CV evaluation result of Example 2. 実施例3のCV評価結果を示す図である。It is a figure which shows the CV evaluation result of Example 3. 比較例2のCV評価結果を示す図である。It is a figure which shows the CV evaluation result of the comparative example 2. 各種銅合金箔(実施例1A〜3A、実施例1B〜3B)及び銅箔(比較例1A、比較例1B)の引張強度を比較した図である。It is the figure which compared the tensile strength of various copper alloy foil (Example 1A-3A, Example 1B-3B) and copper foil (Comparative Example 1A, Comparative Example 1B). 各種銅合金箔(実施例1B、実施例3B)及び銅箔(比較例1A、比較例1B)の破断伸びを比較した図である。It is the figure which compared the breaking elongation of various copper alloy foil (Example 1B, Example 3B) and copper foil (Comparative Example 1A, Comparative Example 1B).

1.負極100
図1に示すように、負極100は、負極合材層20と負極合材層20に接触する負極集電体層10とを備えている。図1に示すように、負極合材層20は、負極活物質21と硫化物固体電解質22とを含む。また、図1及び2に示すように、負極集電体層10の表面のうち少なくとも負極合材層20に接触する表面は、銅と銅よりもイオン化傾向が高い金属との合金を含む材料11により構成される。
1. Negative electrode 100
As shown in FIG. 1, the negative electrode 100 includes a negative electrode mixture layer 20 and a negative electrode current collector layer 10 in contact with the negative electrode mixture layer 20. As shown in FIG. 1, the negative electrode mixture layer 20 includes a negative electrode active material 21 and a sulfide solid electrolyte 22. As shown in FIGS. 1 and 2, at least the surface of the negative electrode current collector layer 10 that is in contact with the negative electrode mixture layer 20 has a material 11 containing an alloy of copper and a metal having a higher ionization tendency than copper. Consists of.

1.1.負極集電体層10
負極集電体層10は、その表面のうち少なくとも負極合材層20に接触する表面が、銅と銅よりもイオン化傾向が高い金属との合金を含む材料11により構成される。これにより、負極集電体層10と負極合材層20中の硫化物固体電解質22との反応が抑制される。負極集電体層10の表面が材料11で構成されているか否かについては、負極集電体層10の表面の元素分析等によって容易に判断可能である。銅よりもイオン化傾向が高い金属の具体例としては、ビスマス(Bi)、アンチモン(Sb)、鉛(Pb)、錫(Sn)、ニッケル(Ni)、コバルト(Co)、カドミウム(Cd)、鉄(Fe)、クロム(Cr)、亜鉛(Zn)、タンタル(Ta)、マンガン(Mn)、ジルコニウム(Zr)、チタン(Ti)、アルミニウム(Al)、ベリリウム(Be)、トリウム(Th)、マグネシウム(Mg)、ナトリウム(Na)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、リチウム(Li)等が挙げられる。中でも、亜鉛(Zn)、ベリリウム(Be)、錫(Sn)が好ましく、亜鉛(Zn)が特に好ましい。すなわち、上記の合金は、銅と、亜鉛、ベリリウム及び錫から選ばれる少なくとも一つとを含んでいてもよいし、銅と亜鉛とを含んでいてもよい。合金は、銅よりもイオン化傾向が高い金属を1種のみ含んでいてもよいし、2種以上含んでいてもよい。
1.1. Negative electrode current collector layer 10
The negative electrode current collector layer 10 is made of a material 11 containing at least a surface in contact with the negative electrode mixture layer 20 of the surface thereof and containing an alloy of copper and a metal having a higher ionization tendency than copper. Thereby, the reaction between the negative electrode current collector layer 10 and the sulfide solid electrolyte 22 in the negative electrode mixture layer 20 is suppressed. Whether or not the surface of the negative electrode current collector layer 10 is composed of the material 11 can be easily determined by elemental analysis or the like of the surface of the negative electrode current collector layer 10. Specific examples of metals having a higher ionization tendency than copper include bismuth (Bi), antimony (Sb), lead (Pb), tin (Sn), nickel (Ni), cobalt (Co), cadmium (Cd), iron (Fe), chromium (Cr), zinc (Zn), tantalum (Ta), manganese (Mn), zirconium (Zr), titanium (Ti), aluminum (Al), beryllium (Be), thorium (Th), magnesium (Mg), sodium (Na), calcium (Ca), strontium (Sr), barium (Ba), potassium (K), rubidium (Rb), cesium (Cs), lithium (Li) and the like. Among these, zinc (Zn), beryllium (Be), and tin (Sn) are preferable, and zinc (Zn) is particularly preferable. That is, the above alloy may contain copper and at least one selected from zinc, beryllium and tin, or may contain copper and zinc. The alloy may contain only one type of metal having a higher ionization tendency than copper, or may contain two or more types.

銅と銅よりもイオン化傾向が高い金属との合金の組成は任意であり、負極集電体層10の導電性等を考慮しつつ適宜決定すればよい。例えば、当該合金は、銅と銅よりもイオン化傾向が高い金属との合計を100atm%として、銅を5atm%以上99atm%以下、銅よりもイオン化傾向が高い金属を(当該金属が2種類以上である場合は合計の濃度として)1atm%以上95atm%以下含むことが好ましい。より好ましくは、銅を20atm%以上96atm%以下、銅よりもイオン化傾向が高い金属を4atm%以上80atm%以下含む。さらに好ましくは、銅を50atm%以上96atm%以下、銅よりもイオン化傾向が高い金属を4atm%以上50atm%以下含む。特に好ましくは、銅を65atm%以上96atm%以下、銅よりもイオン化傾向が高い金属を4atm%以上35atm%以下含む。尚、合金には不可避不純物が含まれていてもよい。不可避不純物の濃度は、合金全体を100atm%として、1atm%以下であることが好ましい。   The composition of the alloy of copper and a metal having a higher ionization tendency than copper is arbitrary, and may be appropriately determined in consideration of the conductivity of the negative electrode current collector layer 10 and the like. For example, in the alloy, the total of copper and a metal having a higher ionization tendency than copper is 100 atm%, copper is 5 atm% or more and 99 atm% or less, a metal having a higher ionization tendency than copper (the metal is composed of two or more kinds). In some cases, the total concentration is preferably 1 atm% or more and 95 atm% or less. More preferably, copper is contained at 20 atm% or more and 96 atm% or less, and a metal having a higher ionization tendency than copper is contained at 4 atm% or more and 80 atm% or less. More preferably, copper is contained at 50 atm% or more and 96 atm% or less, and a metal having a higher ionization tendency than copper is contained at 4 atm% or more and 50 atm% or less. Particularly preferably, copper is contained at 65 atm% or more and 96 atm% or less, and a metal having a higher ionization tendency than copper is contained at 4 atm% or more and 35 atm% or less. The alloy may contain inevitable impurities. The concentration of inevitable impurities is preferably 1 atm% or less, with the entire alloy being 100 atm%.

材料11は、コンタミネーション等を考慮して、上記課題を解決できる範囲で、上記の合金以外のその他の元素や成分を含んでいてもよい。例えば、負極集電体層10の表面の一部には不可避的な酸化被膜等が形成されていてもよく、すなわち、材料11は不可避的な酸化物等を含んでいてもよい。また、材料11は不可避的な水分を含んでいてもよい。材料11は、上記課題を解決できる範囲で、銅よりもイオン化傾向の低い金属を一部に含んでいてもよい。ただし、より顕著な効果を発揮させる観点からは、材料11は実質的に銅と銅よりもイオン化傾向が高い金属との合金からなることが好ましい。   The material 11 may contain other elements and components other than the above alloy as long as the above problems can be solved in consideration of contamination and the like. For example, an inevitable oxide film or the like may be formed on a part of the surface of the negative electrode current collector layer 10, that is, the material 11 may contain an inevitable oxide or the like. The material 11 may contain unavoidable moisture. The material 11 may partially contain a metal having a lower ionization tendency than copper as long as the above problem can be solved. However, from the viewpoint of exerting a more remarkable effect, the material 11 is preferably made of an alloy of copper and a metal having a higher ionization tendency than copper.

負極集電体層10は、少なくとも負極合材層20に接触する表面が材料11から構成されていればよく、その形態(形状)は様々である。負極集電体層10は、表面のみが材料11で構成されていてもよいし、表面及び内部の全体が材料11で構成されていてもよい。例えば、図2(A)に示すように、上記した材料11からなる箔状又はシート状の負極集電体層10aであってもよいし、図2(B)に示すように、上記した材料11からなるメッシュ状やパンチングメタル状の負極集電体層10bであってもよい。負極集電体層10a、10bは、例えば、上記した材料11を成形することで容易に製造できる。或いは、図2(C)に示すように、上記した材料11とは異なる材料からなる基材12の表面に、上記した材料11を被覆してなる負極集電体層10cであってもよい。すなわち、負極集電体層10の表面と内部とを異なる材料で構成してもよい。負極集電体層10cは、例えば、めっきやスパッタ等によって基材12の表面に上記した材料11を薄く被覆することで容易に製造できる。基材12は、負極集電体10cとしての機械的強度や耐久性を確保できるものであればよい。例えば、上記した材料11とは異なる金属によって基材12を構成してもよいし、金属以外の材料(樹脂等)によって基材12を構成してもよい。   The negative electrode current collector layer 10 only needs to have at least a surface in contact with the negative electrode composite material layer 20 made of the material 11, and the forms (shapes) thereof are various. Only the surface of the negative electrode current collector layer 10 may be composed of the material 11, or the entire surface and inside may be composed of the material 11. For example, as shown in FIG. 2 (A), it may be a foil-like or sheet-like negative electrode current collector layer 10a made of the above-described material 11, or as shown in FIG. 2 (B). 11 or a negative electrode current collector layer 10b having a mesh shape or a punching metal shape. The negative electrode current collector layers 10a and 10b can be easily manufactured, for example, by molding the material 11 described above. Alternatively, as illustrated in FIG. 2C, a negative electrode current collector layer 10 c formed by covering the surface of a base material 12 made of a material different from the above-described material 11 with the above-described material 11 may be used. That is, the surface and the inside of the negative electrode current collector layer 10 may be composed of different materials. The negative electrode current collector layer 10c can be easily manufactured by thinly coating the above-described material 11 on the surface of the substrate 12 by, for example, plating or sputtering. The base material 12 should just be what can ensure the mechanical strength and durability as the negative electrode collector 10c. For example, the base material 12 may be made of a metal different from the material 11 described above, or the base material 12 may be made of a material (resin or the like) other than metal.

負極集電体層10の厚みは特に限定されるものではない。従来の負極における負極集電体層の厚みと同様とすることができる。例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。尚、本発明者の知見によれば、負極集電体層10の厚みによらず、負極集電体層10の表面のうち少なくとも負極合材層20に接触する表面を上記の材料11で構成することで、負極集電体層10と負極合材層20中の硫化物固体電解質22との反応を抑制することができる。負極集電体層10の表面のうち少なくとも硫化物固体電解質22と接触する部分を材料11で構成してもよい。   The thickness of the negative electrode current collector layer 10 is not particularly limited. The thickness can be the same as the thickness of the negative electrode current collector layer in the conventional negative electrode. For example, it is preferably 0.1 μm or more and 1 mm or less, and more preferably 1 μm or more and 100 μm or less. According to the knowledge of the present inventor, at least the surface of the surface of the negative electrode current collector layer 10 that contacts the negative electrode mixture layer 20 is composed of the material 11 regardless of the thickness of the negative electrode current collector layer 10. By doing so, the reaction between the negative electrode current collector layer 10 and the sulfide solid electrolyte 22 in the negative electrode mixture layer 20 can be suppressed. Of the surface of the negative electrode current collector layer 10, at least a portion in contact with the sulfide solid electrolyte 22 may be formed of the material 11.

負極100を製造する際、負極合材層20の充填率を向上させる観点から、負極合材層20を負極集電体層10とともに高圧でロールプレスする場合がある。ここで、生産性等の観点から、当該ロールプレス時における負極集電体層10の破断を抑制することが好ましい。ロールプレス時における負極集電体層の破断を抑制するためには、例えば、負極集電体層の厚みを増加させることが有効であるが、負極100において負極集電体層10の厚みを増加させた場合、電池の体積エネルギー密度が低下してしまう。そのため、負極集電体層10の厚みをできるだけ増加させることなく、ロールプレス時の負極集電体層10の破断を抑制することが好ましい。   When manufacturing the negative electrode 100, from the viewpoint of improving the filling rate of the negative electrode mixture layer 20, the negative electrode mixture layer 20 may be roll-pressed together with the negative electrode current collector layer 10 at a high pressure. Here, from the viewpoint of productivity and the like, it is preferable to suppress breakage of the negative electrode current collector layer 10 during the roll press. In order to suppress breakage of the negative electrode current collector layer during roll press, for example, it is effective to increase the thickness of the negative electrode current collector layer, but in the negative electrode 100, the thickness of the negative electrode current collector layer 10 is increased. In such a case, the volume energy density of the battery is lowered. Therefore, it is preferable to suppress breakage of the negative electrode current collector layer 10 during roll pressing without increasing the thickness of the negative electrode current collector layer 10 as much as possible.

本発明者の新たな知見によれば、負極集電体層10が所定の機械的強度を有することで、負極100のロールプレス時における負極集電体層10の破断を抑制することができる。具体的には、負極集電体層10の引張強度が500MPa以上であることが好ましい。或いは、負極集電体層10は引張強度が500MPa以上の金属箔を含んで構成されることがより好ましい。引張強度の下限はより好ましくは600MPa以上、さらに好ましくは800MPa以上である。上限は特に限定されるものではない。このような引張強度を有する負極集電体層10は、例えば、負極集電体層10における合金組成を調整したり、負極集電体層10に対して加工硬化処理を施したりすることで容易に作製することができる。加工硬化処理を施した負極集電体層に対して焼き鈍し等の熱処理をさらに施した場合、負極集電体層の引張強度が低下する傾向にある。
尚、本願において「負極集電体層の引張強度」とは、負極集電体層(例えば金属箔)そのものを試験片としてJIS Z 2241:2011に準拠して測定される引張強度をいう。
According to the new knowledge of the present inventor, the negative electrode current collector layer 10 having a predetermined mechanical strength can suppress breakage of the negative electrode current collector layer 10 during the roll press of the negative electrode 100. Specifically, the negative electrode current collector layer 10 preferably has a tensile strength of 500 MPa or more. Alternatively, the negative electrode current collector layer 10 is more preferably configured to include a metal foil having a tensile strength of 500 MPa or more. The lower limit of the tensile strength is more preferably 600 MPa or more, and still more preferably 800 MPa or more. The upper limit is not particularly limited. The negative electrode current collector layer 10 having such tensile strength can be easily obtained, for example, by adjusting the alloy composition in the negative electrode current collector layer 10 or by subjecting the negative electrode current collector layer 10 to work hardening. Can be produced. When the negative electrode current collector layer subjected to work hardening treatment is further subjected to a heat treatment such as annealing, the tensile strength of the negative electrode current collector layer tends to decrease.
In addition, in this application, "the tensile strength of a negative electrode collector layer" means the tensile strength measured based on JISZ2241: 2011 by making a negative electrode collector layer (for example, metal foil) itself into a test piece.

また、本発明者の新たな知見によれば、負極集電体層10の破断伸びが所定以上である場合、負極100のロールプレス時における負極集電体層10の破断を抑制することができる。具体的には、負極集電体層10の破断伸びが7.95%以上であることが好ましい。或いは、負極集電体層10は破断延びが7.95%以上の金属箔を含んで構成されることがより好ましい。破断延びの下限はより好ましくは14%以上である。このような破断伸びを有する負極集電体層10は、例えば、負極集電体層10における合金組成を調整すること等によって容易に作製することができる。
尚、本願において「負極集電体層の破断伸び」とは、負極集電体層(例えば金属箔)そのものを試験片としてJIS Z 2241:2011に準拠して測定される破断伸びをいう。
Further, according to the new knowledge of the present inventor, when the elongation at break of the negative electrode current collector layer 10 is not less than a predetermined value, the breakage of the negative electrode current collector layer 10 during the roll press of the negative electrode 100 can be suppressed. . Specifically, the elongation at break of the negative electrode current collector layer 10 is preferably 7.95% or more. Alternatively, the negative electrode current collector layer 10 is more preferably configured to include a metal foil having a fracture extension of 7.95% or more. The lower limit of elongation at break is more preferably 14% or more. The negative electrode current collector layer 10 having such elongation at break can be easily produced, for example, by adjusting the alloy composition in the negative electrode current collector layer 10.
In the present application, “breaking elongation of the negative electrode current collector layer” refers to elongation at break measured according to JIS Z 2241: 2011 using the negative electrode current collector layer (for example, metal foil) itself as a test piece.

1.2.負極合材層20
図1に示すように、負極合材層20は、負極活物質21と硫化物固体電解質22とを含む。負極合材層20に硫化物固体電解質22が含まれることで、負極集電体層10の表面のうち負極合材層20に接触する表面の一部が硫化物固体電解質22と接触することとなる。負極合材層20は、任意に、導電助剤やバインダーやその他の添加剤(増粘剤等)を含んでいてもよい。
1.2. Negative electrode mixture layer 20
As shown in FIG. 1, the negative electrode mixture layer 20 includes a negative electrode active material 21 and a sulfide solid electrolyte 22. By including the sulfide solid electrolyte 22 in the negative electrode mixture layer 20, a part of the surface of the negative electrode current collector layer 10 that contacts the negative electrode mixture layer 20 is in contact with the sulfide solid electrolyte 22. Become. The negative electrode mixture layer 20 may optionally contain a conductive additive, a binder, and other additives (thickener, etc.).

負極合材層20に含まれる負極活物質21は、硫化物固体電池の負極活物質として公知のものをいずれも採用できる。公知の活物質のうち、後述の正極活物質41よりも充放電電位が卑な電位を示す物質を負極活物質とすればよい。例えば、負極活物質21としてSiやSi合金や酸化ケイ素等のシリコン系活物質;グラファイトやハードカーボン等の炭素系活物質;チタン酸リチウム等の各種酸化物系活物質;金属リチウムやリチウム合金等を用いることができる。負極活物質21は1種のみを単独で用いてもよいし2種以上を混合して用いてもよい。負極活物質21の形状は特に限定されるものではない。例えば、粒子状や薄膜状とすることが好ましい。負極合材層20における負極活物質21の含有量は特に限定されるものではなく、従来の負極合材層に含まれる負極活物質の量と同等とすればよい。   As the negative electrode active material 21 contained in the negative electrode mixture layer 20, any known negative electrode active material of a sulfide solid state battery can be adopted. Of the known active materials, a material having a lower charge / discharge potential than the positive electrode active material 41 described later may be used as the negative electrode active material. For example, silicon-based active materials such as Si, Si alloys and silicon oxides as the negative electrode active material 21; carbon-based active materials such as graphite and hard carbon; various oxide-based active materials such as lithium titanate; metallic lithium and lithium alloys Can be used. The negative electrode active material 21 may be used alone or in combination of two or more. The shape of the negative electrode active material 21 is not particularly limited. For example, it is preferable to form particles or thin films. The content of the negative electrode active material 21 in the negative electrode mixture layer 20 is not particularly limited, and may be equal to the amount of the negative electrode active material contained in the conventional negative electrode mixture layer.

従来の負極において、銅からなる負極集電体層の表面にシリコン系活物質及び硫化物固体電解質を含む負極合材層を積層して負極を構成した場合、シリコン系活物質のOCVにて銅と硫化物固体電解質とが反応する虞があった。すなわち、負極集電体層の表面に負極合材層を形成した直後に、負極集電体層と負極合材層中の硫化物固体電解質とが反応する虞があった。これに対し、本開示の負極100においては、負極集電体10の表面のうち負極合材層20に接触する表面が上記の材料11で構成されることから、シリコン系活物質及び硫化物固体電解質を含む負極合材層20を積層して負極100を構成した場合でも、負極集電体層10と負極合材層20中の硫化物固体電解質22との反応が抑制される。すなわち、本開示の負極100においては、負極活物質21がシリコン系活物質を含む場合にも優れた効果を発揮できる。   In a conventional negative electrode, when a negative electrode is formed by laminating a negative electrode mixture layer containing a silicon-based active material and a sulfide solid electrolyte on the surface of a negative electrode current collector layer made of copper, the copper is formed in the silicon-based active material OCV. And sulfide solid electrolyte may react. That is, immediately after the negative electrode mixture layer is formed on the surface of the negative electrode current collector layer, the negative electrode current collector layer may react with the sulfide solid electrolyte in the negative electrode mixture layer. On the other hand, in the negative electrode 100 of the present disclosure, the surface of the negative electrode current collector 10 that comes into contact with the negative electrode mixture layer 20 is composed of the material 11 described above. Even when the negative electrode mixture layer 20 including the electrolyte is laminated to form the negative electrode 100, the reaction between the negative electrode current collector layer 10 and the sulfide solid electrolyte 22 in the negative electrode mixture layer 20 is suppressed. That is, in the negative electrode 100 of the present disclosure, an excellent effect can be exhibited even when the negative electrode active material 21 includes a silicon-based active material.

負極合材層20に含まれる硫化物固体電解質22は、硫化物固体電池の固体電解質として採用される硫化物として公知のものをいずれも採用できる。例えば、構成元素としてLi、P及びSを含む固体電解質を用いることができる。具体的には、LiS−P、LiS−SiS、LiI−LiS−SiS、LiI−SiS−P、LiI−LiBr−LiS−P、LiI−LiS−P、LiI−LiO−LiS−P、LiI−LiS−P、LiI−LiPO−P、LiS−P−GeS等が挙げられる。これらの中でも、特に、LiS−Pを含む硫化物固体電解質がより好ましい。硫化物固体電解質22は1種のみを単独で用いてもよいし、2種以上を混合して用いてもよい。硫化物固体電解質22の形状は特に限定されるものではない。例えば、粒子状とすることができる。負極合材層20における硫化物固体電解質22の含有量は特に限定されるものではなく、従来の負極合材層に含まれる硫化物固体電解質の量と同等とすればよい。 As the sulfide solid electrolyte 22 contained in the negative electrode mixture layer 20, any known sulfide can be adopted as a solid electrolyte of a sulfide solid battery. For example, a solid electrolyte containing Li, P and S as constituent elements can be used. Specifically, Li 2 S—P 2 S 5 , Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , LiI—Si 2 S—P 2 S 5 , LiI—LiBr—Li 2 S—P 2 S 5, LiI-Li 2 S-P 2 S 5, LiI-Li 2 O-Li 2 S-P 2 S 5, LiI-Li 2 S-P 2 O 5, LiI-Li 3 PO 4 -P 2 S 5, Li 2 S-P 2 S 5 -GeS 2 , and the like. Among these, a sulfide solid electrolyte containing Li 2 S—P 2 S 5 is more preferable. The sulfide solid electrolyte 22 may be used alone or in combination of two or more. The shape of the sulfide solid electrolyte 22 is not particularly limited. For example, it can be particulate. The content of the sulfide solid electrolyte 22 in the negative electrode mixture layer 20 is not particularly limited, and may be equal to the amount of the sulfide solid electrolyte contained in the conventional negative electrode mixture layer.

尚、負極合材層20には、所望の効果を発揮できる範囲で、硫化物固体電解質22に加えて、硫化物固体電解質22以外の無機固体電解質が含まれていてもよい。例えば、酸化物固体電解質等である。   The negative electrode mixture layer 20 may contain an inorganic solid electrolyte other than the sulfide solid electrolyte 22 in addition to the sulfide solid electrolyte 22 within a range in which a desired effect can be exhibited. For example, oxide solid electrolyte.

負極合材層20に任意成分として含まれる導電助剤は、硫化物固体電池において採用される導電助剤として公知のものをいずれも採用できる。例えば、アセチレンブラック(AB)やケッチェンブラック(KB)や気相法炭素繊維(VGCF)やカーボンナノチューブ(CNT)やカーボンナノファイバー(CNF)や黒鉛等の炭素材料;ニッケル、アルミニウム、ステンレス鋼等の金属材料を用いることができる。特に炭素材料が好ましい。導電助剤は1種のみを単独で用いてもよいし、2種以上を混合して用いてもよい。導電助剤の形状は特に限定されるものではない。例えば、粒子状や繊維状とすることが好ましい。負極合材層20における導電助剤の含有量は特に限定されるものではなく、従来の負極合材層に含まれる導電助剤の量と同等とすればよい。   As the conductive auxiliary agent contained as an optional component in the negative electrode mixture layer 20, any known conductive auxiliary agent used in a sulfide solid state battery can be adopted. For example, carbon materials such as acetylene black (AB), ketjen black (KB), vapor grown carbon fiber (VGCF), carbon nanotube (CNT), carbon nanofiber (CNF) and graphite; nickel, aluminum, stainless steel, etc. The metal material can be used. A carbon material is particularly preferable. Only 1 type may be used for a conductive support agent alone, and 2 or more types may be mixed and used for it. The shape of the conductive auxiliary agent is not particularly limited. For example, it is preferable to form particles or fibers. The content of the conductive additive in the negative electrode mixture layer 20 is not particularly limited, and may be equal to the amount of the conductive additive included in the conventional negative electrode mixture layer.

負極合材層20に任意成分として含まれるバインダーは、硫化物固体電池において採用されるバインダーとして公知のものをいずれも採用できる。例えば、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、アクリロニトリルブタジエンゴム(ABR)、ブタジエンゴム(BR)、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリイミド(PI)等を用いることができる。バインダーは1種のみを単独で用いてもよいし、2種以上を混合して用いてもよい。負極合材層20におけるバインダーの含有量は特に限定されるものではなく、従来の負極合材層に含まれるバインダーの量と同等とすればよい。   As the binder contained in the negative electrode mixture layer 20 as an optional component, any known binder can be employed as a binder employed in the sulfide solid state battery. For example, styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), acrylonitrile butadiene rubber (ABR), butadiene rubber (BR), polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyimide (PI), etc. are used. be able to. Only one type of binder may be used alone, or two or more types may be mixed and used. The content of the binder in the negative electrode mixture layer 20 is not particularly limited, and may be the same as the amount of the binder contained in the conventional negative electrode mixture layer.

以上の構成を備える負極100は、負極活物質21と、硫化物固体電解質22と、任意成分である導電助剤等及びバインダーとを非水溶媒に入れて混練することによりスラリー状の電極組成物を得た後、この電極組成物を負極集電体10の表面に塗布し乾燥して任意にプレスする等の過程を経ることにより容易に製造することができる。ただし、このような湿式法に限定されるものではなく、乾式にてプレス成形すること等によって負極100を製造することも可能である。このようにして負極集電体10の表面にシート状の負極合材層20を形成する場合、負極合材層20の厚みは、例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。   The negative electrode 100 having the above configuration includes a negative electrode active material 21, a sulfide solid electrolyte 22, a conductive auxiliary agent and a binder, which are optional components, and a kneaded mixture in a non-aqueous solvent. Then, the electrode composition can be easily manufactured by undergoing a process such as coating on the surface of the negative electrode current collector 10, drying and optionally pressing. However, the method is not limited to such a wet method, and the negative electrode 100 can be manufactured by press molding in a dry method. When the sheet-like negative electrode mixture layer 20 is thus formed on the surface of the negative electrode current collector 10, the thickness of the negative electrode mixture layer 20 is preferably, for example, 0.1 μm or more and 1 mm or less, and preferably 1 μm or more and 100 μm. The following is more preferable.

2.硫化物固体電池1000
図3に硫化物固体電池1000の構成を概略的に示す。硫化物固体電池1000は、本開示の負極100と、正極200と、負極100及び正極200の間に設けられた固体電解質層300とを備える。固体電解質層300は、負極100の負極合材層20と正極200の正極合材層40と接触している。尚、図3において、端子や電池ケース等は省略して示している。硫化物固体電池1000における正極200や固体電解質層300の構成は自明であるが、以下、一例について説明する。
2. Sulfide solid state battery 1000
FIG. 3 schematically shows the configuration of the sulfide solid state battery 1000. The sulfide solid state battery 1000 includes the negative electrode 100 of the present disclosure, the positive electrode 200, and the solid electrolyte layer 300 provided between the negative electrode 100 and the positive electrode 200. The solid electrolyte layer 300 is in contact with the negative electrode mixture layer 20 of the negative electrode 100 and the positive electrode mixture layer 40 of the positive electrode 200. In FIG. 3, terminals, battery cases, and the like are omitted. The configurations of the positive electrode 200 and the solid electrolyte layer 300 in the sulfide solid state battery 1000 are obvious, but an example will be described below.

2.1.正極200
図3に示すように、正極200は、正極合材層40と、正極合材層40に接触する正極集電体層30とを備える。
2.1. Positive electrode 200
As shown in FIG. 3, the positive electrode 200 includes a positive electrode mixture layer 40 and a positive electrode current collector layer 30 that contacts the positive electrode mixture layer 40.

2.1.1.正極集電体層30
正極集電体層30は、金属箔や金属メッシュ等により構成すればよい。特に金属箔が好ましい。正極集電体層30を構成する金属としては、ステンレス鋼、ニッケル、クロム、金、白金、アルミニウム、鉄、チタン、亜鉛等が挙げられる。正極集電体層30は、金属箔や基材にこれら金属をめっき、蒸着したものであってもよい。正極集電体層30の厚みは特に限定されるものではない。例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。
2.1.1. Positive electrode current collector layer 30
The positive electrode current collector layer 30 may be made of a metal foil, a metal mesh, or the like. Metal foil is particularly preferable. Examples of the metal constituting the positive electrode current collector layer 30 include stainless steel, nickel, chromium, gold, platinum, aluminum, iron, titanium, and zinc. The positive electrode current collector layer 30 may be a metal foil or base material plated and vapor-deposited with these metals. The thickness of the positive electrode current collector layer 30 is not particularly limited. For example, it is preferably 0.1 μm or more and 1 mm or less, and more preferably 1 μm or more and 100 μm or less.

2.1.2.正極合材層40
図3に示すように、正極合材層40は、正極活物質41を含む。また、正極合材層40は、任意に、固体電解質42や導電助剤やバインダーやその他の添加剤(増粘剤等)を含んでいてもよい。
2.1.2. Positive electrode mixture layer 40
As shown in FIG. 3, the positive electrode mixture layer 40 includes a positive electrode active material 41. Moreover, the positive electrode mixture layer 40 may optionally contain a solid electrolyte 42, a conductive additive, a binder, and other additives (thickeners and the like).

正極合材層40に含まれる正極活物質41は、硫化物固体電池の正極活物質として公知のものをいずれも採用できる。公知の活物質のうち、上述の負極活物質21よりも充放電電位が貴な電位を示す物質を正極活物質とすればよい。例えば、正極活物質41としてコバルト酸リチウム、ニッケル酸リチウム、Li(Ni,Mn,Co)O(Li1+αNi1/3Mn1/3Co-1/3)、マンガン酸リチウム、スピネル型リチウム複合酸化物、チタン酸リチウム、リン酸金属リチウム(LiMPO、MはFe、Mn、Co、Niから選ばれる少なくとも1種)等のリチウム含有酸化物を用いることができる。正極活物質41は1種のみを単独で用いてもよいし2種以上を混合して用いてもよい。正極活物質41は表面にニオブ酸リチウムやチタン酸リチウムやリン酸リチウム等の被覆層を有していてもよい。正極活物質41の形状は特に限定されるものではない。例えば、粒子状や薄膜状とすることが好ましい。正極合材層40における正極活物質41の含有量は特に限定されるものではなく、従来の正極合材層に含まれる正極活物質の量と同等とすればよい。 As the positive electrode active material 41 included in the positive electrode mixture layer 40, any known positive electrode active material of a sulfide solid state battery can be adopted. Of the known active materials, a material having a charge / discharge potential more noble than the above-described negative electrode active material 21 may be used as the positive electrode active material. For example, as the positive electrode active material 41, lithium cobaltate, lithium nickelate, Li (Ni, Mn, Co) O 2 (Li 1 + α Ni 1/3 Mn 1/3 Co- 1/3 O 2 ), lithium manganate, spinel Type lithium composite oxide, lithium titanate, lithium metal phosphate (LiMPO 4 , M is at least one selected from Fe, Mn, Co, Ni) and the like can be used. The positive electrode active material 41 may be used alone or in combination of two or more. The positive electrode active material 41 may have a coating layer such as lithium niobate, lithium titanate, or lithium phosphate on the surface. The shape of the positive electrode active material 41 is not particularly limited. For example, it is preferable to form particles or thin films. The content of the positive electrode active material 41 in the positive electrode mixture layer 40 is not particularly limited and may be equal to the amount of the positive electrode active material contained in the conventional positive electrode mixture layer.

正極合材層40に任意成分として含まれる固体電解質42は、硫化物固体電池の固体電解質として公知のものをいずれも採用でき、例えば、上述の硫化物固体電解質を採用することが好ましい。ただし、所望の効果を発揮できる範囲で、硫化物固体電解質に加えて、硫化物固体電解質以外の無機固体電解質が含まれていてもよい。固体電解質42の形状は特に限定されるものではない。例えば、粒子状とすることが好ましい。正極合材層40における固体電解質42の含有量は特に限定されるものではなく、従来の正極合材層に含まれる固体電解質の量と同等とすればよい。   As the solid electrolyte 42 contained as an optional component in the positive electrode mixture layer 40, any known solid electrolyte for a sulfide solid state battery can be used. For example, the above-described sulfide solid electrolyte is preferably used. However, an inorganic solid electrolyte other than the sulfide solid electrolyte may be included in addition to the sulfide solid electrolyte as long as a desired effect can be exhibited. The shape of the solid electrolyte 42 is not particularly limited. For example, it is preferable to use particles. The content of the solid electrolyte 42 in the positive electrode mixture layer 40 is not particularly limited, and may be equal to the amount of the solid electrolyte contained in the conventional positive electrode mixture layer.

正極合材層40に任意成分として含まれる導電助剤は、硫化物固体電池において採用される導電助剤として公知のものをいずれも採用できる。例えば、アセチレンブラック(AB)やケッチェンブラック(KB)や気相法炭素繊維(VGCF)やカーボンナノチューブ(CNT)やカーボンナノファイバー(CNF)や黒鉛等の炭素材料;ニッケル、アルミニウム、ステンレス鋼等の金属材料を用いることができる。特に炭素材料が好ましい。導電助剤は1種のみを単独で用いてもよいし、2種以上を混合して用いてもよい。導電助剤の形状は特に限定されるものではない。例えば、粒子状とすることが好ましい。正極合材層40における導電助剤の含有量は特に限定されるものではなく、従来の正極合材層に含まれる導電助剤の量と同等とすればよい。   As the conductive auxiliary agent contained as an optional component in the positive electrode mixture layer 40, any known conductive auxiliary agent used in a sulfide solid state battery can be used. For example, carbon materials such as acetylene black (AB), ketjen black (KB), vapor grown carbon fiber (VGCF), carbon nanotube (CNT), carbon nanofiber (CNF) and graphite; nickel, aluminum, stainless steel, etc. The metal material can be used. A carbon material is particularly preferable. Only one type of conductive auxiliary may be used alone, or two or more types may be used in combination. The shape of the conductive auxiliary agent is not particularly limited. For example, it is preferable to use particles. The content of the conductive additive in the positive electrode mixture layer 40 is not particularly limited, and may be equal to the amount of the conductive additive included in the conventional positive electrode mixture layer.

正極合材層40に任意成分として含まれるバインダーは、硫化物固体電池において採用されるバインダーとして公知のものをいずれも採用できる。例えば、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、アクリロニトリルブタジエンゴム(ABR)、ブタジエンゴム(BR)、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)等を用いることができる。バインダーは1種のみを単独で用いてもよいし、2種以上を混合して用いてもよい。正極合材層40におけるバインダーの含有量は特に限定されるものではなく、従来の正極合材層に含まれるバインダーの量と同等とすればよい。   As the binder contained in the positive electrode mixture layer 40 as an optional component, any known binder can be employed as a binder employed in the sulfide solid state battery. For example, styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), acrylonitrile butadiene rubber (ABR), butadiene rubber (BR), polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), or the like can be used. Only one type of binder may be used alone, or two or more types may be mixed and used. The content of the binder in the positive electrode mixture layer 40 is not particularly limited, and may be equal to the amount of the binder contained in the conventional positive electrode mixture layer.

以上の構成を備える正極200は、正極活物質41と、任意に含有させる固体電解質42、バインダー及び導電助剤等とを非水溶媒に入れて混練することによりスラリー状の電極組成物を得た後、この電極組成物を正極集電体30の表面に塗布し乾燥して任意にプレスする等の過程を経ることにより容易に製造することができる。ただし、このような湿式法に限定されるものではなく、乾式にてプレス成形すること等によって正極200を製造することも可能である。このようにして正極集電体30の表面にシート状の正極合材層40を形成する場合、正極合材層40の厚みは、例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。   The positive electrode 200 having the above configuration was obtained by mixing a positive electrode active material 41 and a solid electrolyte 42, a binder, a conductive auxiliary agent, and the like optionally contained in a non-aqueous solvent and kneading the slurry. Thereafter, the electrode composition can be easily manufactured by undergoing processes such as coating on the surface of the positive electrode current collector 30, drying, and optional pressing. However, the method is not limited to such a wet method, and the positive electrode 200 can be manufactured by press molding in a dry method. When the sheet-like positive electrode mixture layer 40 is formed on the surface of the positive electrode current collector 30 in this manner, the thickness of the positive electrode mixture layer 40 is preferably, for example, from 0.1 μm to 1 mm, and preferably from 1 μm to 100 μm. The following is more preferable.

2.2.固体電解質層300
固体電解質層300は、負極100と正極200とを絶縁するとともに、負極100と正極200との間でリチウムイオンを伝導させる機能を有する。固体電解質層300は、少なくとも固体電解質51を含んでいる。また、固体電解質層300は、バインダーを含んでいることが好ましい。
2.2. Solid electrolyte layer 300
The solid electrolyte layer 300 has a function of insulating the negative electrode 100 and the positive electrode 200 and conducting lithium ions between the negative electrode 100 and the positive electrode 200. The solid electrolyte layer 300 includes at least the solid electrolyte 51. Moreover, it is preferable that the solid electrolyte layer 300 contains the binder.

2.2.1.固体電解質
固体電解質層300に含まれる固体電解質51は、上記の負極合材層20や正極合材層40に含まれ得る固体電解質として例示したものの中から適宜選択すればよい。特に、硫化物固体電解質が好ましく、LiS−Pを含む硫化物固体電解質がより好ましい。固体電解質51は1種のみを単独で用いてもよいし、2種以上を混合して用いてもよい。固体電解質51の形状は一般的な形状、すなわち粒子状であればよい。固体電解質層300における固体電解質51の含有量は特に限定されるものではなく、目的とする電池の性能に応じて適宜決定すればよい。例えば、固体電解質層300全体を100質量%として、固体電解質の含有量を90質量%以上とすることが好ましい。より好ましくは95質量%以上である。
2.2.1. Solid Electrolyte The solid electrolyte 51 included in the solid electrolyte layer 300 may be appropriately selected from those exemplified as the solid electrolyte that can be included in the negative electrode mixture layer 20 and the positive electrode mixture layer 40 described above. In particular, a sulfide solid electrolyte is preferable, and a sulfide solid electrolyte containing Li 2 S—P 2 S 5 is more preferable. The solid electrolyte 51 may be used alone or in combination of two or more. The solid electrolyte 51 may have a general shape, that is, a particulate shape. The content of the solid electrolyte 51 in the solid electrolyte layer 300 is not particularly limited, and may be determined as appropriate according to the intended battery performance. For example, it is preferable that the solid electrolyte layer 300 as a whole is 100% by mass and the solid electrolyte content is 90% by mass or more. More preferably, it is 95 mass% or more.

2.2.2.バインダー
固体電解質層300はバインダーを含んでいることが好ましい。固体電解質層300に含まれ得るバインダーは公知である。例えば、上記の負極合材層20や正極合材層40に含まれ得るバインダーとして例示したものの中から適宜選択すればよい。
2.2.2. Binder The solid electrolyte layer 300 preferably contains a binder. Binders that can be included in the solid electrolyte layer 300 are known. For example, what is necessary is just to select suitably from what was illustrated as a binder which can be contained in said negative electrode compound material layer 20 or positive electrode compound material layer 40. FIG.

以上の構成を備える固体電解質層300は、固体電解質51と、任意に含有させるバインダー等とを非水溶媒に入れて混練することによりスラリー状の電解質組成物を得た後、この電解質組成物を基材の表面(或いは、負極合材層20の表面や正極合材層40の表面)に塗布し乾燥して任意にプレスする等の過程を経ることにより容易に製造することができる。ただし、このような湿式法に限定されるものではなく、乾式にてプレス成形すること等によって固体電解質層300を製造することも可能である。このようにしてシート状の固体電解質層300を形成する場合、固体電解質層300の厚みは、例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。   The solid electrolyte layer 300 having the above configuration is obtained by mixing the solid electrolyte 51 and a binder to be optionally contained in a non-aqueous solvent and kneading to obtain a slurry-like electrolyte composition. It can be easily manufactured through a process such as applying to the surface of the substrate (or the surface of the negative electrode mixture layer 20 or the surface of the positive electrode mixture layer 40), drying and optionally pressing. However, the method is not limited to such a wet method, and the solid electrolyte layer 300 can also be manufactured by press molding in a dry method. Thus, when forming the sheet-like solid electrolyte layer 300, it is preferable that the thickness of the solid electrolyte layer 300 is 0.1 micrometer or more and 1 mm or less, for example, and it is more preferable that they are 1 micrometer or more and 100 micrometers or less.

2.3.その他の構成
尚、硫化物固体電池1000は、必ずしも、その構成材料のすべてが固体である必要はない。硫化物固体電池1000には、電池性能を阻害しない範囲で、一部に電解液等の液体が含まれていてもよい。
2.3. Other Configurations The sulfide solid battery 1000 does not necessarily need to be all solid. The sulfide solid state battery 1000 may partially contain a liquid such as an electrolytic solution as long as the battery performance is not impaired.

以上の構成を備える硫化物固体電池1000は、例えば、以下のようにして製造することができる。すなわち、硫化物固体電池1000の製造方法は、上記の方法により負極100、正極200及び固体電解質層300を製造する工程と、負極100と正極200と固体電解質層300とを積層する工程とを備える。このように負極100と固体電解質層300と正極200とを積層して積層体とし、適当な端子等を取り付けたうえで、積層体を電池ケース内に封入すること等によって硫化物固体電池1000を製造することができる。   The sulfide solid state battery 1000 having the above configuration can be manufactured, for example, as follows. That is, the manufacturing method of the sulfide solid state battery 1000 includes a step of manufacturing the negative electrode 100, the positive electrode 200, and the solid electrolyte layer 300 by the above method, and a step of stacking the negative electrode 100, the positive electrode 200, and the solid electrolyte layer 300. . In this way, the negative electrode 100, the solid electrolyte layer 300, and the positive electrode 200 are laminated to form a laminated body, an appropriate terminal and the like are attached, and the laminated body is sealed in a battery case. Can be manufactured.

1.負極集電体層と硫化物固体電解質との反応性の評価
図4に示すように、所定の金属箔とIn−Li箔(厚み80μm)との間に硫化物固体電解質(LiS−Pを主成分とする)からなる層(厚み450μm)を挟みこみ、金属箔及びIn−Li箔を電源に接続し、金属箔と硫化物固体電解質との反応性をサイクリックボルタンメトリー(CV)によって評価した。実施例及び比較例にて使用した金属箔の種類は以下の通りである。
1. Evaluation of Reactivity between Negative Electrode Current Collector Layer and Sulfide Solid Electrolyte As shown in FIG. 4, a sulfide solid electrolyte (Li 2 SP) is interposed between a predetermined metal foil and an In-Li foil (thickness 80 μm). nipping a layer made of 2 S 5 from the main component) (thickness 450 [mu] m), to connect the metal foil and an in-Li foil to a power supply, cyclic voltammetry reactivity between the metal foil and the sulfide solid electrolyte (CV ). The types of metal foil used in Examples and Comparative Examples are as follows.

比較例1 … 銅(Cu)箔、厚み10μm
実施例1 … 銅−ベリリウム合金(CuBe)箔、銅:ベリリウム=88atm%:12atm%、厚み10μm
実施例2 … 銅−亜鉛合金(CuZn)箔、銅:亜鉛=65atm%:35atm%、厚み10μm
実施例3 … 銅−錫合金(CuSn)箔(不純物としてわずかにリン(P)を含む)、銅:錫=96atm%:3atm%、厚み10μm
比較例2 … 銅−銀合金(CuAg)箔、銅:銀=81atm%:19atm%、厚み50μm
Comparative Example 1 Copper (Cu) foil, thickness 10 μm
Example 1 Copper-beryllium alloy (CuBe) foil, copper: beryllium = 88 atm%: 12 atm%, thickness 10 μm
Example 2 Copper-zinc alloy (CuZn) foil, copper: zinc = 65 atm%: 35 atm%, thickness 10 μm
Example 3 Copper-tin alloy (CuSn) foil (containing a slight amount of phosphorus (P) as an impurity), copper: tin = 96 atm%: 3 atm%, thickness 10 μm
Comparative Example 2 Copper-silver alloy (CuAg) foil, copper: silver = 81 atm%: 19 atm%, thickness 50 μm

図5〜9に実施例及び比較例それぞれについてCV結果を示す。図5が比較例1、図6が実施例1、図7が実施例2、図8が実施例3、図9が比較例2と対応する。尚、図5については図6〜8と比べて縦軸を100倍としている。図5〜9において、電流密度(縦軸)の変動が大きいほど、硫化物固体電解質との電気化学的な反応性が高いといえる。   5-9 show the CV results for each of the examples and comparative examples. 5 corresponds to Example 1, FIG. 6 corresponds to Example 1, FIG. 7 corresponds to Example 2, FIG. 8 corresponds to Example 3, and FIG. In FIG. 5, the vertical axis is 100 times that of FIGS. 5-9, it can be said that the electrochemical reactivity with a sulfide solid electrolyte is so high that the fluctuation | variation of an electric current density (vertical axis) is large.

図5に示す結果から明らかなように、金属箔として銅箔を用いた比較例1については、CVにおける電流密度の変動が大きく、銅箔と硫化物固体電解質との電気化学的な反応性が高いことが分かる。   As is apparent from the results shown in FIG. 5, in Comparative Example 1 using a copper foil as the metal foil, the current density variation at CV is large, and the electrochemical reactivity between the copper foil and the sulfide solid electrolyte is high. I understand that it is expensive.

一方、図6〜8に示す結果から明らかなように、銅と銅よりもイオン化傾向の高い金属(ベリリウム、亜鉛又は錫)との合金箔を用いた実施例1〜3については、CVにおける電流密度の変動が小さく、合金箔と硫化物固体電解質との電気化学的な反応性が低い(比較例1と比べて1000分の1程度)ことが分かる。特に、銅と亜鉛との合金箔を用いた実施例2において、合金箔と硫化物固体電解質との電気化学的な反応性が一層小さくなることが分かる。   On the other hand, as is clear from the results shown in FIGS. 6 to 8, for Examples 1 to 3 using an alloy foil of copper and a metal (beryllium, zinc or tin) having a higher ionization tendency than copper, the current at CV It can be seen that the density fluctuation is small and the electrochemical reactivity between the alloy foil and the sulfide solid electrolyte is low (about 1/1000 compared with Comparative Example 1). In particular, in Example 2 using an alloy foil of copper and zinc, it can be seen that the electrochemical reactivity between the alloy foil and the sulfide solid electrolyte is further reduced.

また、図6〜8に示す結果から明らかなように、実施例1〜3については、CVを繰り返した場合でも、合金箔と硫化物固体電解質との反応は進行し難い。すなわち、合金箔のうち硫化物固体電解質に接触する表面において合金と硫化物固体電解質との反応が生じるものの、当該合金と硫化物固体電解質との反応は合金箔の深部にまでは進行し難いものと考えられる。すなわち、箔の厚みによらず、箔の表面のうち少なくとも硫化物固体電解質に接触する表面を所定の合金を含む材料によって構成することで、十分な効果が確保できるものと考えられる。   Moreover, as is clear from the results shown in FIGS. 6 to 8, in Examples 1 to 3, even when CV is repeated, the reaction between the alloy foil and the sulfide solid electrolyte hardly proceeds. That is, a reaction between the alloy and the sulfide solid electrolyte occurs on the surface of the alloy foil in contact with the sulfide solid electrolyte, but the reaction between the alloy and the sulfide solid electrolyte does not easily proceed to the deep part of the alloy foil. it is conceivable that. That is, regardless of the thickness of the foil, it is considered that a sufficient effect can be ensured by configuring at least the surface of the foil surface that contacts the sulfide solid electrolyte with a material containing a predetermined alloy.

尚、図9に示す結果から明らかなように、銅と銅よりもイオン化傾向の低い金属(銀)との合金箔を用いた比較例2については、実施例1〜3とは異なり、合金箔と硫化物固体電解質との反応を抑制できないことが分かる。   As is apparent from the results shown in FIG. 9, the comparative example 2 using an alloy foil of copper and a metal (silver) having a lower ionization tendency than copper is different from the examples 1 to 3 in the alloy foil. It can be seen that the reaction between the solid electrolyte and the sulfide solid electrolyte cannot be suppressed.

尚、上記の実施例1〜3では、銅よりもイオン化傾向の高い金属の一例としてベリリウム、亜鉛及び錫を示したが、本開示の技術は、銅よりもイオン化傾向の高い金属としてこれら以外の金属を用いた場合でも同様の効果が発揮されるものと考えられる。ベリリウム、亜鉛及び錫以外の具体例としては、ビスマス(Bi)、アンチモン(Sb)、鉛(Pb)、ニッケル(Ni)、コバルト(Co)、カドミウム(Cd)、鉄(Fe)、クロム(Cr)、タンタル(Ta)、マンガン(Mn)、ジルコニウム(Zr)、チタン(Ti)、アルミニウム(Al)、トリウム(Th)、マグネシウム(Mg)、ナトリウム(Na)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、リチウム(Li)等が挙げられる。   In Examples 1 to 3, beryllium, zinc, and tin are shown as examples of metals having a higher ionization tendency than copper. However, the technology of the present disclosure is not limited to metals other than these as metals having a higher ionization tendency than copper. Even when a metal is used, the same effect is considered to be exhibited. Specific examples other than beryllium, zinc and tin include bismuth (Bi), antimony (Sb), lead (Pb), nickel (Ni), cobalt (Co), cadmium (Cd), iron (Fe), chromium (Cr ), Tantalum (Ta), manganese (Mn), zirconium (Zr), titanium (Ti), aluminum (Al), thorium (Th), magnesium (Mg), sodium (Na), calcium (Ca), strontium (Sr) ), Barium (Ba), potassium (K), rubidium (Rb), cesium (Cs), lithium (Li) and the like.

上記の実施例1〜3では、所定の組成を有する銅系合金を示したが、本開示の技術において、銅系合金の組成は特に限定されるものではない。硫化物固体電解質との反応性のほか、負極集電体層としての導電性等を考慮しつつ、目的とする電池性能に応じて合金組成を適宜決定すればよい。   In Examples 1 to 3 described above, the copper-based alloy having a predetermined composition is shown. However, in the technology of the present disclosure, the composition of the copper-based alloy is not particularly limited. In addition to the reactivity with the sulfide solid electrolyte, the alloy composition may be appropriately determined according to the intended battery performance, taking into account the conductivity as the negative electrode current collector layer.

2.負極集電体層の機械的強度についての検討
2.1.引張強度
PP製容器に、酪酸ブチルと、PVdF系バインダー(クレハ社製)の5wt%酪酸ブチル溶液と、負極活物質としてシリコン(高純度化学社製、平均粒子径(D50):5μm)と、硫化物固体電解質とを加え、超音波分散装置(エスエムテー社製UH−50)で30秒間攪拌した。次に、容器を振とう器(柴田科学社製TTM−1)で30分間振とうさせ、さらに超音波分散装置で30秒間攪拌した。さらに振とう器で3分間振とうし、負極合材スラリーを得た。得られた負極合材スラリーをアプリケータを使用してブレード法にて種々の引張強度を有する金属箔上に塗工した。自然乾燥後、100℃のホットプレート上で30分間乾燥させ、金属箔の表面に負極合材層を形成した。その後、塗工により成膜した固体電解質層及び正極合材層を転写により負極合材層に重ねた後、転写により作製した電極体(負極合材層+固体電解質層+正極合材層)の充填率を向上させて電池の特性を引き出す目的で最大線圧(線圧5t/cm)、送り速度0.5m/minにてロールプレスを行った。
2. 2. Study on mechanical strength of negative electrode current collector layer 2.1. Tensile strength In a PP container, butyl butyrate, a 5 wt% butyl butyrate solution of a PVdF binder (manufactured by Kureha), and silicon (manufactured by Kojun Chemical Co., Ltd., average particle diameter (D 50 ): 5 μm) as a negative electrode active material Then, a sulfide solid electrolyte was added, and the mixture was stirred for 30 seconds with an ultrasonic dispersion device (UH-50 manufactured by SMT Corporation). Next, the container was shaken with a shaker (TTM-1 manufactured by Shibata Kagaku Co., Ltd.) for 30 minutes, and further stirred with an ultrasonic dispersion device for 30 seconds. Further, the mixture was shaken with a shaker for 3 minutes to obtain a negative electrode mixture slurry. The obtained negative electrode mixture slurry was coated on a metal foil having various tensile strengths by a blade method using an applicator. After natural drying, it was dried on a hot plate at 100 ° C. for 30 minutes to form a negative electrode mixture layer on the surface of the metal foil. Thereafter, after the solid electrolyte layer and the positive electrode mixture layer formed by coating are stacked on the negative electrode mixture layer by transfer, the electrode body (negative electrode mixture layer + solid electrolyte layer + positive electrode mixture layer) prepared by transfer is used. Roll press was performed at a maximum linear pressure (linear pressure 5 t / cm) and a feed rate of 0.5 m / min for the purpose of improving the filling rate and drawing out the characteristics of the battery.

ロールプレス後の金属箔の破断の有無を確認したところ、JIS Z 2241:2011に準拠して測定される引張強度が500MPa以上の金属箔を用いた場合、当該金属箔の組成によらず、当該金属箔の破断なく負極を製造可能であることが分かった。   When the presence or absence of breakage of the metal foil after the roll press was confirmed, when using a metal foil having a tensile strength of 500 MPa or more measured in accordance with JIS Z 2241: 2011, the metal foil does not depend on the composition. It was found that the negative electrode can be produced without breaking the metal foil.

下記に示す各種銅合金箔及び銅箔について、JIS Z 2241:2011に準拠して引張試験を行い、その引張強度を測定した。結果を図10に示す。   The various copper alloy foils and copper foils shown below were subjected to a tensile test in accordance with JIS Z 2241: 2011, and the tensile strength was measured. The results are shown in FIG.

比較例1A … 圧延銅(Cu)箔、厚み10μm
比較例1B … 高強度銅(Cu)箔(日本電解株式会社製SEED)、厚み約10μm、金属の強度向上を目的とした結晶粒微細化処理有
実施例1A … 銅−ベリリウム合金(CuBe)箔、銅:ベリリウム=88atm%:12atm%、厚み10μm、加工硬化処理有、加工硬化処理後の焼き鈍し無
実施例1B … 銅−ベリリウム合金(CuBe)箔、銅:ベリリウム=88atm%:12atm%、厚み10μm、加工硬化処理有、加工硬化処理後の焼き鈍し有
実施例2A … 銅−亜鉛合金(CuZn)箔、銅:亜鉛=65atm%:35atm%、厚み10μm、加工硬化処理有、加工硬化処理後の焼き鈍し無
実施例2B … 銅−亜鉛合金(CuZn)箔、銅:亜鉛=65atm%:35atm%、厚み10μm、加工硬化処理有、加工硬化処理後の焼き鈍し有
実施例3A … 銅−錫合金(CuSn)箔(不純物としてわずかにリン(P)を含む)、銅:錫=96atm%:3atm%、厚み10μm、加工硬化処理有、加工硬化処理後の焼き鈍し無
実施例3B … 銅−錫合金(CuSn)箔(不純物としてわずかにリン(P)を含む)、銅:錫=96atm%:3atm%、厚み10μm、加工硬化処理有、加工硬化処理後の焼き鈍し有
Comparative Example 1A Rolled copper (Cu) foil, thickness 10 μm
Comparative Example 1B: High-strength copper (Cu) foil (SEED manufactured by Nippon Electrolytic Co., Ltd.), thickness of about 10 μm, crystal grain refinement treatment with the purpose of improving the strength of metal Example 1A: copper-beryllium alloy (CuBe) foil , Copper: beryllium = 88 atm%: 12 atm%, thickness 10 μm, work hardening treatment present, annealing after work hardening treatment None 1B. Copper-beryllium alloy (CuBe) foil, copper: beryllium = 88 atm%: 12 atm%, thickness Example 2A: Copper-zinc alloy (CuZn) foil, copper: zinc = 65 atm%: 35 atm%, thickness 10 μm, work hardening treatment present, after work hardening treatment 10 μm, work hardening treatment present, annealing after work hardening treatment Unannealed Example 2B Copper-zinc alloy (CuZn) foil, copper: zinc = 65 atm%: 35 atm%, thickness 10 μm, work hardening treatment present, work hard Example 3A: Annealing after treatment Example: Copper-tin alloy (CuSn) foil (containing a slight amount of phosphorus (P) as an impurity), copper: tin = 96 atm%: 3 atm%, thickness 10 μm, work hardening treatment present, work hardening Annealing after treatment No Example 3B Copper-tin alloy (CuSn) foil (including a slight amount of phosphorus (P) as impurities), copper: tin = 96 atm%: 3 atm%, thickness 10 μm, work hardening treatment present, work hardening Annealed after treatment

図10に示すように、同じ組成で同じ厚みを有する金属箔であったとしても、加工硬化処理の有無や熱処理(焼き鈍し)の有無によって、金属箔の引張強度が変化し得る。図10に示すように、実施例1〜3に係る銅合金箔は、引張強度が500MPaを大きく超え得る材料であり、負極を製造する際のロールプレスにも十分に耐え得るものであることが分かった。すなわち、負極集電体層を構成する合金は、銅と、亜鉛、ベリリウム及び錫から選ばれる少なくとも一つとを含むことが好ましいといえる。   As shown in FIG. 10, even if it is a metal foil having the same composition and the same thickness, the tensile strength of the metal foil can be changed depending on the presence or absence of work hardening treatment or the presence or absence of heat treatment (annealing). As shown in FIG. 10, the copper alloy foils according to Examples 1 to 3 are materials whose tensile strength can greatly exceed 500 MPa, and can sufficiently withstand a roll press when manufacturing a negative electrode. I understood. That is, it can be said that the alloy constituting the negative electrode current collector layer preferably contains copper and at least one selected from zinc, beryllium and tin.

2.2.破断伸び
引張強度の評価における手順と同様の手順で金属箔の表面に負極合材層を形成し、その後、負極合材層の材料の特性を維持しつつ負極合材層の充填率を向上させることができる最大線圧(5t/cm)、送り速度0.5m/minにてロールプレスを行った。
2.2. Elongation at break Form a negative electrode mixture layer on the surface of the metal foil in the same procedure as in the evaluation of tensile strength, and then improve the filling rate of the negative electrode mixture layer while maintaining the material properties of the negative electrode mixture layer Roll pressing was performed at a maximum linear pressure (5 t / cm) and a feed rate of 0.5 m / min.

ロールプレス後の金属箔の破断の有無を確認したところ、JIS Z 2241:2011に準拠して測定される破断伸びが7.95%以上の金属箔を用いた場合、当該金属箔の組成によらず、また、当該金属箔の引張強度が500MPa未満であったとしても、線圧5t/cm、送り速度0.5m/minのロールプレスを実施しても、当該金属箔の破断なく負極を製造可能であることが分かった。   When the presence or absence of breakage of the metal foil after the roll press was confirmed, when a metal foil having a break elongation measured in accordance with JIS Z 2241: 2011 of 7.95% or more was used, the metal foil depends on the composition of the metal foil. In addition, even if the metal foil has a tensile strength of less than 500 MPa, a negative electrode is produced without breaking the metal foil even when a roll press with a linear pressure of 5 t / cm and a feed rate of 0.5 m / min is performed. I found it possible.

上記の実施例1B及び実施例3Bと同様の銅合金箔、並びに、比較例1A及び比較例1Bと同様の銅箔について、JIS Z 2241:2011に準拠して破断伸びを測定した。結果を図11に示す。図10及び11に示すように、実施例1B及び実施例3Bに係る銅合金箔は、引張強度が500MPa未満であるものの、破断伸びが7.95%を大きく超えており、負極を製造する際のロールプレスに十分に耐え得るものであることが分かった。   Breaking elongation was measured based on JIS Z 2241: 2011 about the copper alloy foil similar to said Example 1B and Example 3B, and the copper foil similar to Comparative Example 1A and Comparative Example 1B. The results are shown in FIG. As shown in FIGS. 10 and 11, the copper alloy foils according to Example 1B and Example 3B have a tensile strength of less than 500 MPa, but the elongation at break greatly exceeds 7.95%. It was found that it can sufficiently withstand the roll press.

以上の通り、負極製造時のロールプレス時に負極集電体層の破断を抑制するためには、負極集電体層が以下の要件(1)及び(2)の少なくとも一つを満たすことが好ましいことが分かった。
(1)負極集電体層の引張強度が500MPa以上である
(2)負極集電体層の破断伸びが7.95%以上である
As described above, in order to suppress breakage of the negative electrode current collector layer during roll press during negative electrode production, the negative electrode current collector layer preferably satisfies at least one of the following requirements (1) and (2). I understood that.
(1) The negative electrode current collector layer has a tensile strength of 500 MPa or more. (2) The negative electrode current collector layer has a breaking elongation of 7.95% or more.

本開示の負極を備える硫化物固体電池は、携帯機器用等の小型電源から車搭載用等の大型電源まで、広く好適に利用できる。   The sulfide solid state battery including the negative electrode of the present disclosure can be used widely and suitably from a small power source for portable devices to a large power source for on-vehicle use.

100 負極
10 負極集電体層
20 負極合材層
200 正極
30 正極集電体層
40 正極合材層
300 固体電解質層
1000 硫化物固体電池
DESCRIPTION OF SYMBOLS 100 Negative electrode 10 Negative electrode collector layer 20 Negative electrode composite material layer 200 Positive electrode 30 Positive electrode collector layer 40 Positive electrode composite material layer 300 Solid electrolyte layer 1000 Sulfide solid battery

Claims (7)

負極合材層と前記負極合材層に接触する負極集電体層とを備え、
前記負極合材層が、負極活物質と硫化物固体電解質とを含み、
前記負極集電体層の表面のうち少なくとも前記負極合材層に接触する表面が、銅と銅よりもイオン化傾向が高い金属との合金を含む材料により構成される、
負極。
A negative electrode mixture layer and a negative electrode current collector layer in contact with the negative electrode mixture layer,
The negative electrode mixture layer includes a negative electrode active material and a sulfide solid electrolyte,
Of the surfaces of the negative electrode current collector layer, at least the surface in contact with the negative electrode mixture layer is made of a material containing an alloy of copper and a metal having a higher ionization tendency than copper,
Negative electrode.
前記合金が、銅と、亜鉛、ベリリウム及び錫から選ばれる少なくとも一つとを含む、
請求項1に記載の負極。
The alloy includes copper and at least one selected from zinc, beryllium and tin;
The negative electrode according to claim 1.
前記合金が銅と亜鉛とを含む、
請求項1又は2に記載の負極。
The alloy includes copper and zinc;
The negative electrode according to claim 1 or 2.
前記負極活物質がシリコン系活物質を含む、
請求項1〜3のいずれか1項に記載の負極。
The negative electrode active material includes a silicon-based active material,
The negative electrode according to any one of claims 1 to 3.
前記負極集電体層の引張強度が500MPa以上である、
請求項1〜4のいずれか1項に記載の負極。
The negative electrode current collector layer has a tensile strength of 500 MPa or more.
The negative electrode of any one of Claims 1-4.
前記負極集電体層の破断伸びが7.95%以上である、
請求項1〜4のいずれか1項に記載の負極。
The breaking elongation of the negative electrode current collector layer is 7.95% or more,
The negative electrode of any one of Claims 1-4.
請求項1〜6のいずれか1項に記載の負極と、正極と、前記負極及び前記正極の間に設けられた固体電解質層とを備える、硫化物固体電池。 A sulfide solid state battery comprising: the negative electrode according to claim 1; a positive electrode; and a solid electrolyte layer provided between the negative electrode and the positive electrode.
JP2018182465A 2018-03-29 2018-09-27 Anode, and sulfide solid-state battery Pending JP2019175838A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP19155528.3A EP3547424A1 (en) 2018-03-29 2019-02-05 Anode, and sulfide solid-state battery
RU2019105642A RU2696596C1 (en) 2018-03-29 2019-02-27 Anode and sulphide solid-state accumulator battery
CN201910192925.3A CN110323412B (en) 2018-03-29 2019-03-14 Negative electrode and sulfide solid-state battery
US16/354,426 US11404685B2 (en) 2018-03-29 2019-03-15 Anode, and sulfide solid-state battery
KR1020190031807A KR102216073B1 (en) 2018-03-29 2019-03-20 Anode, and sulfide solid-state battery
BR102019005517-0A BR102019005517A2 (en) 2018-03-29 2019-03-20 SULFIDE SOLID STATE ANODE AND BATTERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018065852 2018-03-29
JP2018065852 2018-03-29

Publications (1)

Publication Number Publication Date
JP2019175838A true JP2019175838A (en) 2019-10-10

Family

ID=68170426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018182465A Pending JP2019175838A (en) 2018-03-29 2018-09-27 Anode, and sulfide solid-state battery

Country Status (3)

Country Link
JP (1) JP2019175838A (en)
KR (1) KR102216073B1 (en)
RU (1) RU2696596C1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991058A (en) * 2021-10-26 2022-01-28 蜂巢能源科技有限公司 Negative pole piece, solid-state battery and preparation method thereof
DE102021130666A1 (en) 2020-12-02 2022-06-02 Toyota Jidosha Kabushiki Kaisha SOLID STATE BATTERY

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020060199A1 (en) 2018-09-18 2020-03-26 주식회사 엘지화학 Method for preparing iron sulfide, cathode comprising iron sulfide prepared thereby for lithium secondary battery, and lithium secondary battery comprising same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181236A (en) * 2012-03-02 2013-09-12 Jx Nippon Mining & Metals Corp Electrolytic copper foil and negative electrode collector for secondary battery
WO2013140942A1 (en) * 2012-03-22 2013-09-26 住友電気工業株式会社 All-solid-state lithium secondary battery
WO2014156638A1 (en) * 2013-03-26 2014-10-02 古河電気工業株式会社 All-solid-state secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445434B1 (en) * 2002-07-10 2004-08-21 삼성에스디아이 주식회사 Positive active material composition for lithium sulfur battery and lithium sulfur battery fabricated using same
JP5381078B2 (en) * 2008-12-19 2014-01-08 日産自動車株式会社 Electrode and manufacturing method thereof
JP2011060649A (en) 2009-09-11 2011-03-24 Toyota Motor Corp Electrode active material layer, all solid battery, manufacturing method for electrode active material layer, and manufacturing method for all solid battery
JP5561029B2 (en) * 2010-08-27 2014-07-30 トヨタ自動車株式会社 battery
EP3043412B1 (en) * 2013-09-02 2020-04-29 Mitsubishi Gas Chemical Company, Inc. Solid-state battery and method for manufacturing electrode active material
JP6149657B2 (en) 2013-09-30 2017-06-21 トヨタ自動車株式会社 All solid battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181236A (en) * 2012-03-02 2013-09-12 Jx Nippon Mining & Metals Corp Electrolytic copper foil and negative electrode collector for secondary battery
WO2013140942A1 (en) * 2012-03-22 2013-09-26 住友電気工業株式会社 All-solid-state lithium secondary battery
WO2014156638A1 (en) * 2013-03-26 2014-10-02 古河電気工業株式会社 All-solid-state secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021130666A1 (en) 2020-12-02 2022-06-02 Toyota Jidosha Kabushiki Kaisha SOLID STATE BATTERY
KR20220077857A (en) 2020-12-02 2022-06-09 도요타 지도샤(주) All solid state battery
CN113991058A (en) * 2021-10-26 2022-01-28 蜂巢能源科技有限公司 Negative pole piece, solid-state battery and preparation method thereof

Also Published As

Publication number Publication date
RU2696596C1 (en) 2019-08-05
KR102216073B1 (en) 2021-02-16
KR20190114782A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP5590576B2 (en) Method for manufacturing electrode for power storage device, and power storage device
CN106558679B (en) Method for manufacturing electrode laminate and method for manufacturing all-solid-state battery
JP5448555B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, slurry for preparing negative electrode for lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
JP2012049023A (en) Battery
KR102216073B1 (en) Anode, and sulfide solid-state battery
US20170092988A1 (en) Method of manufacturing electrode laminate and method of manufacturing all-solid-state battery
JP6834921B2 (en) Manufacturing method of sulfide solid-state battery and sulfide solid-state battery
CN110323412B (en) Negative electrode and sulfide solid-state battery
CN111048825B (en) Solid state electrode with non-carbon electron conductive additive
US20160226096A1 (en) Secondary battery
JP6729479B2 (en) Laminated battery
JP2015065029A (en) All-solid battery
JP2016157608A (en) Method for processing all-solid battery
JP2015069711A (en) Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
CN115668534A (en) Battery and method for manufacturing battery
JP2018106984A (en) All-solid-state lithium ion battery
CN111293353B (en) Protective layer for lithium metal anode of solid state battery
JP2009199744A (en) Negative electrode for lithium secondary battery and its manufacturing method
US10199630B2 (en) Electrode terminal, electro-chemical device and electro-chemical device comprising same
JP2000011995A (en) Positive electrode plate for secondary battery and manufacture thereof
JPH1021928A (en) Electrode material for secondary battery
US20020119376A1 (en) Galvanic element having at least one lithium-intercalating electrode
JP2018045779A (en) All-solid lithium ion secondary battery
WO2017040894A1 (en) Electrochemical device including three-dimensional electrode substrate
JPWO2015141120A1 (en) Lithium primary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220607