JP2019173081A - High hardness steel plate excellent in hardness at plate thickness center part and low temperature toughness and having plate thickness of over 200 mm and method of producing the same - Google Patents

High hardness steel plate excellent in hardness at plate thickness center part and low temperature toughness and having plate thickness of over 200 mm and method of producing the same Download PDF

Info

Publication number
JP2019173081A
JP2019173081A JP2018061804A JP2018061804A JP2019173081A JP 2019173081 A JP2019173081 A JP 2019173081A JP 2018061804 A JP2018061804 A JP 2018061804A JP 2018061804 A JP2018061804 A JP 2018061804A JP 2019173081 A JP2019173081 A JP 2019173081A
Authority
JP
Japan
Prior art keywords
less
hardness
temperature
plate thickness
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2018061804A
Other languages
Japanese (ja)
Inventor
史寿 高峰
Fumitoshi Takamine
史寿 高峰
仁志 古谷
Hitoshi Furuya
仁志 古谷
紀正 川端
Norimasa Kawabata
紀正 川端
拓海 三宅
Takumi Miyake
拓海 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018061804A priority Critical patent/JP2019173081A/en
Publication of JP2019173081A publication Critical patent/JP2019173081A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

To provide a high hardness steel plate having a plate thickness of over 200 mm, Ceq of 0.80 or less, a hardness of a surface layer and a plate thickness center part of HB350 or more, an absorption energy at -20°C of the plate thickness center part of 47 J or more, and a method of producing the same.SOLUTION: The high hardness steel plate is composed of a prescribed components, has a tempered martensite and/or tempered bainite of 99% or more by area percentage, other structures such as ferrite, pearlite, retained austenite and not tempered structure of less than 1 area%, Ceq represented by the formula (1) satisfying 0.750 to 0.800, a value f represented by the formula (2) and a value g represented by the formula (3) satisfying 4×f/g of 9.00, a 3 point average of C direction Charpy at -20°C in the plate thickness center part of 47 J or more, and a hardness of the surface layer and the plate thickness center part of 350 HB or more. Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 (1) f=4C+Si+2Mn+Ni+2Cr+5Mo (2) g=2Cr+3Mo+5 V (3).SELECTED DRAWING: None

Description

本発明は、ロータリーキルンなどの大型産業用機械の歯車などの回転機構に用いられる板厚中心部の硬度および低温靭性に優れた板厚200mm超の高硬度鋼板およびその製造方法に関するものである。   The present invention relates to a high-hardness steel plate having a thickness of more than 200 mm and excellent in low-temperature toughness and excellent in the hardness and low-temperature toughness used in a rotating mechanism such as a gear of a large-scale industrial machine such as a rotary kiln and a method for producing the same.

ロータリーキルンに代表される大型産業用機械の回転機構には、巨大な歯車(ギヤ)が用いられる。素材となる鋼板には、歯車の耐疲労性や耐久性の観点から、硬度と靭性が要求されるが、近年では表層ならびに板厚中心部でHB350以上、板厚中心部のvE−20℃≧47J、が要求されるようになった。これは板厚中心部まで鋼材を削り込んで歯車を製造するため、板厚中心部の特性が重視されることによる。   A huge gear (gear) is used for a rotation mechanism of a large industrial machine represented by a rotary kiln. The steel plate used as the material is required to have hardness and toughness from the viewpoint of the fatigue resistance and durability of the gear. 47J is now required. This is because gears are manufactured by cutting the steel material to the center of the plate thickness, and thus the characteristics of the center of the plate thickness are emphasized.

加えて近年、歯車の大型化を志向し、従来に無い板厚200mm超の鋼板が求められるようになってきた。板厚の増大に伴い、焼入れ時の板厚中心部の冷却速度が低下するため、焼戻し後も中心部の硬度が得難くなる。単に硬度をあげるだけの成分設計では靭性の低下を生じるため、板厚200mm超という極厚材では、層硬度および中心部硬度を確保し、かつ靭性も確保するための成分バランス調整は困難を極める。   In addition, in recent years, with the aim of increasing the size of gears, a steel plate having a thickness of more than 200 mm, which has not been heretofore, has been demanded. As the plate thickness increases, the cooling rate of the central portion of the plate thickness during quenching decreases, so that it is difficult to obtain the hardness of the central portion even after tempering. Ingredient design that simply increases the hardness causes a decrease in toughness, so it is extremely difficult to adjust the component balance to ensure layer hardness and center hardness and toughness with an extremely thick material with a plate thickness exceeding 200 mm. .

更に溶接性の改善を目的とし、主要含有元素によるカーボン当量Ceqを0.800以下とする要求が発生した。これが0.800を超えた場合、需要家に於いて溶接時の余熱温度を高めるなどの負荷が増加する。本鋼材のような極厚材では溶接パス数が非常に多いことから、溶接負荷の増加も大きい。尚、Ceqは例えば下記式(1)で示される。
Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 (1)
Further, for the purpose of improving the weldability, there has been a demand for the carbon equivalent Ceq due to the main contained elements to be 0.800 or less. When this exceeds 0.800, a load such as increasing the preheat temperature at the time of welding increases at the consumer. An extremely thick material such as this steel material has a very large number of welding passes, so the increase in welding load is also large. Ceq is represented by the following formula (1), for example.
Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (1)

従来、板厚200mm超でCeq≦0.800、かつ中心部硬度≧HB350を確保し、かつ−20℃での前述の低温靭性を保証する鋼材は存在しなかった。また歯車加工後の歪み取り焼鈍で材質が変化しないよう、素材となる鋼板は500℃以上で焼戻しされなければならず、硬度達成に不利な状況下であった。   Conventionally, there has been no steel material that has a plate thickness of over 200 mm, ensures Ceq ≦ 0.800, has a center hardness ≧ HB350, and guarantees the low-temperature toughness at −20 ° C. Moreover, the steel plate used as a raw material had to be tempered at 500 ° C. or higher so that the material did not change due to strain relief annealing after gear processing, which was a disadvantageous condition for achieving hardness.

現状の技術としては、例えば特許文献1のように板厚200mm超、HB330級で−40℃の極厚高硬度鋼で、焼入れ前の析出処理−AlN析出による固溶B確保を活用し、低Ceq(0.70程度)でも焼入れ性を高めているが、Ceq上限を規制しておらず、Cを0.14以下としているため、Ceq>0.800の場合に限り、板厚中心部の硬度HB350と靭性を兼備している。このため需要家に於いて溶接時の余熱温度を高めるなどの負荷は軽減できない。   As the current technology, for example, as disclosed in Patent Document 1, it is an extremely thick high hardness steel with a plate thickness of over 200 mm, HB 330 grade and −40 ° C., utilizing precipitation treatment before quenching—solid solution B securing by AlN precipitation, low Although the hardenability is improved even with Ceq (about 0.70), the upper limit of Ceq is not regulated and C is set to 0.14 or less. Therefore, only when Ceq> 0.800, Combines hardness HB350 and toughness. For this reason, it is not possible to reduce loads such as increasing the residual heat temperature during welding at the consumer.

また特許文献2は、板厚200mm超、HB330級かつ−20℃靭性の極厚高硬度鋼であり、表面と中心部の硬度差を抑えるため焼き戻し条件を規定しているが、板厚中心部硬度はHB300級であり、実施例にてCeq:0.850まで高めても中心部硬度≧HB350を達成できない。   Patent Document 2 is an ultra-thick high-hardness steel having a thickness of more than 200 mm, HB330 grade and -20 ° C toughness, and tempering conditions are specified in order to suppress the hardness difference between the surface and the central part. The part hardness is HB300 grade, and even if Ceq is increased to 0.850 in the examples, the center part hardness ≧ HB350 cannot be achieved.

特開2017−028135号公報Japanese Unexamined Patent Publication No. 2017-028135 特開2017−186592号公報JP 2017-186592 A

このような状況下、本発明では、特に板厚が200mm超であって、下式で示すCeqを0.800以下、かつ板厚中心部の硬度確保の都合上、Ceqを0.750以上とし、表層および板厚中心部の硬度がHB350以上、板厚中心部の−20℃での吸収エネルギーが47J以上の高硬度鋼板およびその製造方法を提供する。   Under such circumstances, in the present invention, in particular, the plate thickness is over 200 mm, Ceq shown by the following formula is 0.800 or less, and Ceq is set to 0.750 or more for the convenience of securing the hardness of the central portion of the plate thickness. The present invention provides a high-hardness steel plate having a hardness of HB 350 or more at the surface layer and the center portion of the plate thickness, and an absorption energy at −20 ° C. of the plate thickness center portion of 47 J or more, and a method for producing the same.

上記課題を解決するため、鋼の成分が質量%で、C:0.16%以上、0.20%以下、Si:0.50%以上、1.00以下、Mn:0.90%以上、1.50%以下、P:0.000%以上、0.010%以下、S:0.000%以上、0.002%以下、Cu:0.00%以上、0.40%以下、Ni:0.20%以上、1.00%以下、Cr:0.60%以上、1.00%以下、Mo:0.60%以上、1.00%以下、V::0.000%以上、0.050%以下、Al:0.050%以上、0.085%以下、N:0.0020%以上、0.0070%以下、B:0.0005%以上、0.0020%以下、残Feおよび不可避的不純物からなり、焼戻しマルテンサイトおよび/または焼戻しベイナイトが面積率で99%以上であって、フェライト・パーライト・残留オーステナイト・焼戻しされない組織などのその他組織が1面積%未満であり、下記式(1)で示すCeqが0.750以上、0.800以下を満足し、さらに下式(2)で示す値fおよび下式(3)で示す値gが4×f/gが9.00以上を満足し、板厚中心部に於ける-20℃でのC方向シャルピーの3点平均が47J以上であり、表層ならびに板厚中心部の硬度がHBで350以上であることを特徴とする、板厚中心部の硬度および低温靭性に優れた板厚200mm超の高強度鋼板とする。
Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 (1)
f=4C+Si+2Mn+Ni+2Cr+5Mo (2)
g=2Cr+3Mo+5V (3)
ここで、各式の各元素記号は、その成分の質量%を意味する。
In order to solve the above problems, the steel components are in mass%, C: 0.16% or more, 0.20% or less, Si: 0.50% or more, 1.00 or less, Mn: 0.90% or more, 1.50% or less, P: 0.000% or more, 0.010% or less, S: 0.000% or more, 0.002% or less, Cu: 0.00% or more, 0.40% or less, Ni: 0.20% or more, 1.00% or less, Cr: 0.60% or more, 1.00% or less, Mo: 0.60% or more, 1.00% or less, V :: 0.000% or more, 0 0.050% or less, Al: 0.050% or more, 0.085% or less, N: 0.0020% or more, 0.0070% or less, B: 0.0005% or more, 0.0020% or less, residual Fe and It consists of inevitable impurities, and tempered martensite and / or tempered bainite is 99% or more in area ratio. Thus, other structures such as ferrite, pearlite, retained austenite, and non-tempered structure are less than 1 area%, and Ceq represented by the following formula (1) satisfies 0.750 or more and 0.800 or less, and the following formula The value f shown in (2) and the value g shown in the following formula (3) satisfy 4 × f / g of 9.00 or more, and 3 points of C-direction Charpy at −20 ° C. at the center of the plate thickness A high-strength steel sheet having a thickness of more than 200 mm and excellent in hardness and low-temperature toughness in the thickness center, wherein the average is 47 J or more and the hardness of the surface layer and the thickness center is 350 or more in HB. .
Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (1)
f = 4C + Si + 2Mn + Ni + 2Cr + 5Mo (2)
g = 2Cr + 3Mo + 5V (3)
Here, each element symbol in each formula means mass% of the component.

また上記成分に加えてさらに、Nb:0.001%以上、0.050%以下、Ti:0.001%以上、0.020%以下、Ca:0.0001%以上、0.0030%以下、Mg:0.0001%以上、0.0030%以下、REM:0.0001%以上、0.0030%以下、のうち1種類以上を含有し、かつTiを含有する場合はTi/N≦3.4を満たすことも好ましい。   In addition to the above components, Nb: 0.001% or more, 0.050% or less, Ti: 0.001% or more, 0.020% or less, Ca: 0.0001% or more, 0.0030% or less, Mg: 0.0001% or more and 0.0030% or less, REM: 0.0001% or more and 0.0030% or less, and when containing Ti and containing Ti, Ti / N ≦ 3. 4 is also preferably satisfied.

さらに鋼の成分が質量%で、C:0.16%以上、0.20%以下、Si:0.50%以上、1.00以下、Mn:0.90%以上、1.50%以下、P:0.000%以上、0.010%以下、S:0.000%以上、0.002%以下、Cu:0.00%以上、0.40%以下、Ni:0.20%以上、1.00%以下、Cr:0.60%以上、1.00%以下、Mo:0.60%以上、1.00%以下、V::0.000%以上、0.050%以下、Al:0.050%以上、0.085%以下、N:0.0020%以上、0.0070%以下、B:0.0005%以上、0.0020%以下、残Feおよび不可避的不純物からなる成分の鋼を下式(4)で算出されるAlN固溶温度Ts以上の温度へ加熱・熱間圧延後冷却し、さらに550℃超Ac1未満の温度で、処理温度Tならびに処理時間tpが下式(5)を満たすように加熱する析出処理の後、常温まで冷却またはそのまま昇温し、900℃以上950℃以下の温度で下式(6)に示す焼入れ保持時間H以上に再加熱し水冷する焼入れ処理を施し、500℃以上550℃以下で焼戻して常温まで冷却する製造方法が好ましい。
Ts=7400/(1.95−log10[Al][N]) (4)
Log10(tp)+0.012×T≧8.7 (5)
H=0.033(950−Tq)2+(1.5f)2/10 (6)
ここでTsはAlNの固溶温度(℃)、[Al]、[N]は各元素の質量%であり、Tは析出処理温度(℃)、tpは析出処理時間(Hr)であり、Hは焼入れ保持時間(分)、Tqは焼入れ保持温度(℃)、fは上式(2)で得られる値である。
Further, the steel components are in mass%, C: 0.16% or more, 0.20% or less, Si: 0.50% or more, 1.00 or less, Mn: 0.90% or more, 1.50% or less, P: 0.000% or more, 0.010% or less, S: 0.000% or more, 0.002% or less, Cu: 0.00% or more, 0.40% or less, Ni: 0.20% or more, 1.00% or less, Cr: 0.60% or more, 1.00% or less, Mo: 0.60% or more, 1.00% or less, V :: 0.000% or more, 0.050% or less, Al : 0.050% or more, 0.085% or less, N: 0.0020% or more, 0.0070% or less, B: 0.0005% or more, 0.0020% or less, component composed of residual Fe and inevitable impurities The steel is cooled to a temperature equal to or higher than the AlN solid solution temperature Ts calculated by the following formula (4), cooled after hot rolling, and further After the precipitation treatment in which the treatment temperature T and the treatment time tp are heated so that the treatment temperature T and the treatment time tp satisfy the following formula (5) at a temperature higher than 50 ° C. and less than Ac1, the temperature is cooled to room temperature or is heated as it is, In the production method, a quenching treatment in which the steel is reheated to a quenching holding time H or more and is cooled with water as shown in the following formula (6), and tempered at 500 ° C. or more and 550 ° C. or less and cooled to room temperature is preferable.
Ts = 7400 / (1.95-log 10 [Al] [N]) (4)
Log 10 (tp) + 0.012 × T ≧ 8.7 (5)
H = 0.033 (950−Tq) 2+ (1.5f) 2/10 (6)
Here, Ts is a solid solution temperature (° C.) of AlN, [Al] and [N] are mass% of each element, T is a precipitation treatment temperature (° C.), tp is a precipitation treatment time (Hr), and H Is the quenching holding time (min), Tq is the quenching holding temperature (° C.), and f is a value obtained by the above equation (2).

上記成分に加えてさらに、Nb:0.001%以上、0.050%以下、Ti:0.001%以上、0.020%以下、Ca:0.0001%以上、0.0030%以下、Mg:0.0001%以上、0.0030%以下、REM:0.0001%以上、0.0030%以下、のうち1種類以上を含有し、かつTiを含有する場合はTi/N≦3.4を満たす製造方法が好ましい。   In addition to the above components, Nb: 0.001% to 0.050%, Ti: 0.001% to 0.020%, Ca: 0.0001% to 0.0030%, Mg : 0.0001% or more and 0.0030% or less, REM: 0.0001% or more and 0.0030% or less, and when Ti is contained and Ti / N ≦ 3.4 The manufacturing method which satisfy | fills is preferable.

本発明により、板厚200mm超の鋼板においても、表層から板厚中心の硬度ならびに板厚中心部の衝撃吸収エネルギー性能に優れ、かつCeqを0.800以下に抑えた鋼板を提供でき、ロータリーキルンに代表される大型産業用機械の回転機構に活用できる。   According to the present invention, even a steel plate having a thickness of more than 200 mm can provide a steel plate having excellent hardness from the surface layer to the center of the plate thickness and impact absorption energy performance at the center of the plate thickness and having Ceq suppressed to 0.800 or less. It can be used for the rotation mechanism of large industrial machines represented.

C量と板厚中心部硬度、板厚中心部靭性(vE−20℃)の関係を示す図である。It is a figure which shows the relationship between C amount, plate | board thickness center part hardness, and plate | board thickness center part toughness (vE-20 degreeC). Ceqと中心部硬度の関係を示す図である。It is a figure which shows the relationship between Ceq and center part hardness. 実施例の成分A4を用いて実験した4×f/gと板厚中心部靭性の関係を示す図である。It is a figure which shows the relationship between 4xf / g and the board thickness center part toughness which were experimented using component A4 of the Example. 析出処理温度と析出処理時間Log10(tp[Hr])の関係を示す図である。Precipitation treatment temperature and precipitation treatment time is a diagram showing a relationship between Log 10 (tp [Hr]) . 焼入れ保持温度と焼入れ保持時間の関係を示す図であり、(a)は実施例の成分A6を用いて実験した結果であり、(b)は実施例の成分A2を用いて実験した結果である。It is a figure which shows the relationship between quenching holding temperature and quenching holding time, (a) is the result of experimenting using component A6 of the example, and (b) is the result of experimenting using component A2 of the example. .

本発明においては、以下の(1)〜(5)が重要な意味を持つ。また特にCeq≦0.800にて板厚中心部のHB350級の硬度とvE−20℃≧47Jを達成するための要件としては、特に成分パラメータ式(3)と、析出処理(4)が重要である。
(1)(後述する条件下で)中心部硬度と中心部靭性を両立するためのC量の上下限規制
なお、一般的に中心部硬度がHB350以上である場合、表層もHB350以上が確保可能である。ここで表層とは、脱炭層ならびに加工時に除去される部位を除いた位置であり、一般的に最表層から1〜10mmの範囲である。
(2)中心部硬度の確保に向けたCeq下限
(3)中心部靭性の確保に向けたパラメータ式f/gの下限
(4)中心部硬度の確保に向けた焼入れ前の析出処理(温度および時間)
(5)中心部硬度の確保に向けた焼入れ条件(温度および時間)
以下、詳述する。
In the present invention, the following (1) to (5) are important. In particular, the component parameter formula (3) and the precipitation treatment (4) are particularly important as requirements for achieving HB350 grade hardness at the center of the plate thickness and vE-20 ° C. ≧ 47 J at Ceq ≦ 0.800. It is.
(1) Upper and lower limits of C amount to achieve both center hardness and center toughness (under the conditions described later) Generally, when the center hardness is HB350 or higher, the surface layer can also be secured to HB350 or higher. It is. Here, the surface layer is a position excluding the decarburized layer and the portion removed during processing, and is generally in the range of 1 to 10 mm from the outermost layer.
(2) Ceq lower limit for securing center hardness (3) Lower limit of parameter formula f / g for securing center toughness (4) Pre-quenching precipitation treatment (temperature and temperature) for securing center hardness time)
(5) Quenching conditions (temperature and time) for securing the center hardness
Details will be described below.

(1)(後述する条件下で)中心部硬度と中心部靭性を両立するためのC量の上下限規制;
第1の項目として、後述する条件下で板厚中心部の硬度・靭性を両立するためには、当該鋼の成分組成(質量%)としてCが0.16%以上0.20%以下を満足する必要がある。板厚200mm超の板厚中心部で靭性と硬度を確保するためには、脆性破壊起点となる炭化物を抑制する必要があり、図1に示すように、板厚中心部でvE−20℃(ave.)≧47Jを達成するためにはCは0.20%以下としなければならない。一方、Cの低下は鋼材の硬度を大きく低減させるため、500℃以上の焼戻しでも中心部の硬度をHB350を確保するためには、同様に図1に示すように、Cは0.16%以上とする必要がある。
(1) Upper and lower limits of C amount for achieving both center hardness and center toughness (under conditions described later);
As the first item, in order to achieve both hardness and toughness at the center of the thickness under the conditions described later, C satisfies 0.16% or more and 0.20% or less as the component composition (mass%) of the steel. There is a need to. In order to ensure toughness and hardness at the center of the plate thickness exceeding 200 mm, it is necessary to suppress the carbide that becomes the starting point of brittle fracture, and as shown in FIG. ave.) ≧ 47 J, C must be 0.20% or less. On the other hand, the decrease in C greatly reduces the hardness of the steel material. Therefore, in order to secure HB350 at the center even when tempering at 500 ° C. or higher, as shown in FIG. It is necessary to.

(2)中心部硬度の確保に向けたCeq下限の規定;
第2の項目として、板厚200mm超で中心部の硬度を確保するためには、十分な焼入れ性が必要であり、後述する析出処理を実施したうえで下式(1)のCeqで0.750以上を満足する必要がある。これは焼入れ時に軟質組織であるフェライトの生成を回避し、製品での焼戻しマルテンサイト、焼戻しベイナイトの基となるベイナイト・マルテンサイト組織を形成するためである。なお、中心部の硬度・靭性を兼備するうえでCeqに上限は無いが、Ceqの増大は溶接割れを生じやすくし、Ceqが0.800を超えた場合、割れ回避のために溶接前の予熱温度を上げる必要を生じるなど、作業効率を著しく悪化させるため、本発明に於けるCeqは0.80以下とする。
Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 (1)
各元素記号は成分組成を意味する(%)。
(2) Ceq lower limit for securing center hardness;
As a second item, in order to ensure the hardness of the central portion with a plate thickness of more than 200 mm, sufficient hardenability is necessary, and after performing the precipitation treatment described later, the Ceq of the following formula (1) is 0. It is necessary to satisfy 750 or more. This is to avoid the formation of ferrite, which is a soft structure during quenching, and to form a bainite-martensite structure that is the basis of tempered martensite and tempered bainite in the product. In addition, there is no upper limit for Ceq in order to combine the hardness and toughness of the center part, but the increase in Ceq tends to cause weld cracking. When Ceq exceeds 0.800, preheating before welding is performed to avoid cracking. Ceq in the present invention is set to 0.80 or less in order to remarkably deteriorate the work efficiency such as the necessity of raising the temperature.
Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (1)
Each element symbol means a component composition (%).

図2に示すように、板厚200mm超の鋼板に於いては、析出処理を実施した場合でもCeqが0.750未満の場合は板厚中心部の硬度がHB350未満となることを知見した。これは軟質組織であるフェライトの生成を回避したことによる。   As shown in FIG. 2, it was found that the hardness of the central portion of the plate thickness is less than HB350 when the Ceq is less than 0.750 in the steel plate having a plate thickness of over 200 mm even when the precipitation treatment is performed. This is because the generation of ferrite, which is a soft tissue, was avoided.

(3)中心部靭性の確保に向けたパラメータ式f/gの下限;
第3の項目として、板厚200mm超でCeq≦0.800としつつ中心部の硬度≧HB350を確保し、かつ板厚中心部でvE−20℃≧47Jの靭性を達成するためには、下式2で示すパラメータ式fと下式3で示すパラメータ式gの関係が4×f/gが9.00以上である必要がある。
f=4C+Si+2Mn+Ni+2Cr+5Mo (2)
g=2Cr+3Mo+5V (3)
ここで、各式の各元素記号は、その成分の質量%を意味する。
(3) The lower limit of the parameter formula f / g for ensuring the toughness of the center part;
As a third item, in order to secure the hardness of the central portion ≧ HB350 while setting Ceq ≦ 0.800 at a plate thickness of over 200 mm and to achieve the toughness of vE−20 ° C. ≧ 47 J at the plate thickness center portion, The relationship between the parameter formula f shown in Formula 2 and the parameter formula g shown in Formula 3 below requires that 4 × f / g is 9.00 or more.
f = 4C + Si + 2Mn + Ni + 2Cr + 5Mo (2)
g = 2Cr + 3Mo + 5V (3)
Here, each element symbol in each formula means mass% of the component.

図3に示すように、板厚が200mm超でCeq≦0.800であり、かつ板厚中心部の硬度がHB350以上である場合、パラメータ式gを用いた4×f/gが9.00未満の場合は板厚中心部靭性が確保できないことを知見した。パラメータ式fを形成する元素は焼入れ時に固溶することで焼入れ性を高める元素である。一方でパラメータ式gを形成する元素は焼き戻し時に析出物を形成する元素であり、これらの添加は焼入れ性を向上させる一方で焼き戻し時の析出物形成により靭性を低下させる。f/gが大きいということは、焼き戻し時に析出する元素を低減しつつ焼入れ性を高めていることを示す。なお、本発明範囲に於ける焼き戻し時の析出物は、透過型電子顕微鏡に於いて観察される程度に微細であるため、析出物そのものの分布状態を規定することは工業的には非現実的であり、パラメータ式f/gによって整理することの有用性が理解できる。   As shown in FIG. 3, when the plate thickness exceeds 200 mm, Ceq ≦ 0.800, and the hardness at the center of the plate thickness is HB350 or more, 4 × f / g using the parameter formula g is 9.00. In the case of less than this, it was found that the toughness at the center of the plate thickness could not be secured. The element that forms the parameter formula f is an element that enhances hardenability by being dissolved in quenching. On the other hand, the element forming the parameter formula g is an element that forms precipitates during tempering, and these additions improve the hardenability while reducing the toughness due to the formation of precipitates during tempering. A large f / g indicates that the hardenability is improved while reducing the elements precipitated during tempering. In addition, since the precipitates at the time of tempering in the scope of the present invention are fine enough to be observed with a transmission electron microscope, it is industrially impractical to define the distribution state of the precipitates themselves. The usefulness of organizing by the parameter formula f / g can be understood.

(4)中心部靭性を確保するためのプロセス条件 溶体化→圧延→析出処理;
上記のAlNのピン止め効果を得るためのプロセス要件として、下式(4)で算出されるAlN固溶温度Ts以上での溶体化後圧延し、固溶したAlNを微細析出させるため、圧延後かつ焼き入れ加熱前に、550℃超Ac1未満の温度で、処理温度Tならびに処理時間tpが下式(5)を満たすように析出処理を実施する必要がある。
Ts=7400/(1.95−log10[Al][N]) (4)
Log10(tp[Hr])+0.012×T[℃]≧8.7 (5)
ここでTsはAlNの固溶温度(℃)、[Al]、[N]は各元素の質量%であり、Tは析出処理温度(℃)、tpは析出処理時間(Hr)である。
(4) Process conditions for ensuring the toughness of the central part Solution → Roll → Precipitation treatment;
As a process requirement for obtaining the pinning effect of the above AlN, in order to finely precipitate the solid solution AlN by rolling after solution treatment at the AlN solid solution temperature Ts or higher calculated by the following formula (4), after rolling Before quenching and heating, it is necessary to carry out the precipitation treatment at a temperature higher than 550 ° C. and less than Ac1, so that the treatment temperature T and the treatment time tp satisfy the following formula (5).
Ts = 7400 / (1.95-log 10 [Al] [N]) (4)
Log 10 (tp [Hr]) + 0.012 × T [° C.] ≧ 8.7 (5)
Here, Ts is the solid solution temperature (° C.) of AlN, [Al] and [N] are mass% of each element, T is the precipitation treatment temperature (° C.), and tp is the precipitation treatment time (Hr).

圧延前に溶体化を実施しなかった場合は、鋳造時に生じた粗大AlNが残存し、鋼中のAlNの総量が減るため、析出処理によって得られる微細AlNが減少し、ピン止め効果を得られなくなる。なお、溶体化温度は公知のものである。   If solution treatment is not performed before rolling, coarse AlN generated during casting remains, and the total amount of AlN in the steel is reduced, so that the fine AlN obtained by precipitation treatment is reduced, and a pinning effect can be obtained. Disappear. The solution temperature is a known one.

図4に後述の実施例の成分A4を用いて実験した結果を示す。AlNのピン止め作用を得るためには、適切な温度・時間で析出処理を実施する必要がある。図中×印で示したLog10(tp[Hr])+0.012×T[℃]<8.7となる処理条件ではAlNの析出が十分に行われないためピン止め効果が発揮できず、靭性を確保できない。一方、温度がAc1を超えた場合、α-γ二相域での保持となるためγ域へのAlおよびNの濃化が生じ、局所的にAlNの粗大化を生じるため靭性を確保できない。処理時間の上限は、機械的性質の観点からは特に規制されるものではないが、工業上の生産効率の観点から5日間=120Hrを上限とする。 FIG. 4 shows the results of experiments using the component A4 of Examples described later. In order to obtain the pinning action of AlN, it is necessary to perform the precipitation treatment at an appropriate temperature and time. Under the processing conditions of Log 10 (tp [Hr]) + 0.012 × T [° C.] <8.7 indicated by x in the figure, AlN is not sufficiently precipitated, so that the pinning effect cannot be exhibited. Toughness cannot be ensured. On the other hand, when the temperature exceeds Ac1, the α-γ two-phase region is maintained, so that Al and N are concentrated in the γ region, and AlN is coarsened locally, so that toughness cannot be ensured. The upper limit of the treatment time is not particularly restricted from the viewpoint of mechanical properties, but 5 days = 120 Hr is the upper limit from the viewpoint of industrial production efficiency.

(5)中心部硬さの確保に向けた焼入れ条件(温度および時間);
第4の項目として、上記(2)(3)に示した本鋼材の成分範囲に於いて板厚中心部の硬度≧HB350とするためには上記の析出処理で十分なAlNの析出ならびにBNの分解を生じさせたうえ、焼入れ時に900℃以上950℃以下の温度に於いて、下式6に示す焼入れ保持時間H(分)以上を満たすような条件で再加熱し、水冷する焼入れ処理を実施する必要がある。
H=0.033(950−Tq)2+(1.5f)2/10 (6)
ここでTqは焼入れ保持温度、fは前述の式(2)で得られる値である。なお、焼入れ保持温度および時間は、熱処理炉ではなく鋼板板厚中心部の温度および時間を示す。これらは熱電対を挿入するなどして実測されたものであることが望ましいが、炉温と板厚を元にした熱伝導計算によるものでも良い。
(5) Quenching conditions (temperature and time) for securing the center hardness;
As a fourth item, in the component range of the steel materials shown in (2) and (3) above, sufficient precipitation of AlN and BN of the BN are sufficient in the above-described precipitation treatment in order to satisfy the hardness at the center of the plate thickness ≧ HB350. In addition to causing decomposition, a quenching treatment is performed by reheating and quenching with water at a temperature of 900 ° C. to 950 ° C. at the time of quenching under conditions that satisfy the quenching holding time H (minutes) shown in the following formula 6. There is a need to.
H = 0.033 (950-Tq) 2+ (1.5f) 2/10 (6)
Here, Tq is a quenching holding temperature, and f is a value obtained by the above-described equation (2). The quenching holding temperature and time indicate the temperature and time of the steel plate thickness center, not the heat treatment furnace. These are preferably measured by inserting a thermocouple or the like, but may be calculated by heat conduction based on the furnace temperature and plate thickness.

図5(a)に後述の実施例の成分A6を用いて実験した結果を、図5(b)に後述の実施例の成分A2を用いて実験した結果を示す。焼入れ保持時間が、前述の成分パラメーター式2およびそれを用いて計算する上記式6に示す焼入れ保持時間H(分)の値未満の場合は中心部硬度がHB350未満となる。これは、添加した合金が十分に固溶せずに焼入れ性が確保できなかったことによる。なお、上式がfの関数となるのは、合金量が多くなるほどそれらの固溶に時間を要するためである。   FIG. 5 (a) shows the result of the experiment using the component A6 of the example described later, and FIG. 5 (b) shows the result of the experiment using the component A2 of the example described later. When the quenching holding time is less than the value of the quenching holding time H (minute) shown in the above-described component parameter formula 2 and the above formula 6 calculated using the same, the center hardness is less than HB350. This is because the added alloy was not sufficiently dissolved and hardenability could not be secured. The reason why the above equation is a function of f is that as the amount of the alloy increases, it takes time to dissolve them.

温度Tqが900℃未満である場合は合金元素の固溶が十分に行われないため焼入れ性を確保できず、HB350を達成できない。一方、焼入れ温度が950℃を超えた場合はAlNが部分的に固溶し、遊離したNが鋼中のBと結びつくことでBの焼入れ性向上効果を阻害するため、HB350を達成できない。   When the temperature Tq is less than 900 ° C., the alloy elements are not sufficiently dissolved, so that the hardenability cannot be ensured and HB350 cannot be achieved. On the other hand, when the quenching temperature exceeds 950 ° C., AlN partially dissolves, and the liberated N is combined with B in the steel to inhibit the effect of improving the hardenability of B, so that HB350 cannot be achieved.

(6)中心部の硬度および靭性を確保するための焼戻し温度の上下限規制;
尚、第(6)の項目として、歯車の施工上の要件(歪み取り焼鈍での材質の低下防止)から、焼戻し温度は500℃以上とする必要があり、加えて、組織を十分に焼戻し靭性を確保するためにも、焼戻し温度は500℃以上とする必要がある。一方で、本鋼材は550℃超の焼戻しでは急激に硬度が低下することから、焼き戻し温度は550℃以下とする必要がある。この焼戻しの後、常温まで冷却する。
(6) Upper and lower limits of tempering temperature to ensure the hardness and toughness of the center part;
In addition, as the item (6), the tempering temperature needs to be 500 ° C. or more due to the construction requirements of the gears (preventing deterioration of the material by strain relief annealing). In addition, the structure is sufficiently tempered toughness. In order to ensure this, the tempering temperature must be 500 ° C. or higher. On the other hand, since the hardness of this steel material rapidly decreases when tempering above 550 ° C., the tempering temperature needs to be 550 ° C. or lower. After this tempering, it is cooled to room temperature.

次に本発明における組織について説明する。焼戻しマルテンサイトおよび/または焼戻しベイナイトが面積率で99%以上であって、フェライト・パーライト・残留オーステナイト・焼戻しされない組織などのその他組織が1面積%未満である。上記はフェライトの出ない条件での焼入れ、ならびに十分な高温での焼戻しによって達成される。具体的には(2)項(Ceq≧0.750以上)の成分を(3)(4)項の析出処理の後に(5)項に示す条件で焼入れし、(6)項に示す条件での焼戻しを行うことで達成される。   Next, the structure in the present invention will be described. Tempered martensite and / or tempered bainite is 99% or more in area ratio, and other structures such as ferrite, pearlite, retained austenite, and structure not tempered are less than 1 area%. The above is achieved by quenching under conditions where no ferrite is produced, and tempering at a sufficiently high temperature. Specifically, the component of item (2) (Ceq ≧ 0.750 or more) is quenched under the conditions shown in item (5) after the precipitation treatment in items (3) and (4), and under the conditions shown in item (6). This is achieved by tempering.

その他の組織として、フェライトは鋼材の硬度の低下要因である。とりわけ焼入れ冷却速度の遅い板厚中心部に生じ易く、中心部硬度を得難くするため,前述の(2)項記載の要件により皆無化されなければいけない。   As another structure, ferrite is a factor that decreases the hardness of steel. In particular, in order to make it difficult to obtain the hardness of the central portion, which is likely to occur in the central portion of the plate thickness where the quenching and cooling rate is slow, it must be eliminated by the requirement described in the above item (2).

パーライトは硬度確保には有効ではあるものの、その硬質さゆえに脆性破壊起点となるため、皆無化されなければならない。フェライト析出時に排出されるCが濃化することでパーライトは生成されるため、フェライト析出の回避によって同時に抑制される。   Although pearlite is effective in securing hardness, it is a brittle fracture starting point because of its hardness, so it must be eliminated. Since pearlite is generated by concentrating C discharged during ferrite precipitation, it is simultaneously suppressed by avoiding ferrite precipitation.

残留オーステナイトならびに焼戻しされない組織は脆性破壊起点となり鋼材の靭性を低下させるため、皆無化されなければならない。本鋼材は500℃以上の焼き戻しを実施するため、基本的に生じない。   The retained austenite and the structure that has not been tempered become brittle fracture starting points and reduce the toughness of the steel material, so all must be eliminated. Since this steel material is tempered at 500 ° C. or higher, it basically does not occur.

以上のように、本鋼材における有害組織であるフェライ、パーライト、残留オーステナイト、焼戻しされない組織は上述の成分・製法によって皆無化されることが必要であり、ミクロ偏析・操業ばらつきによる生成を考慮しても1%未満に低減されなければならない。組織は、圧延方向に直行する方向に巾方向から観察することで決定される。複数視野の観察については、視野の重複が無いように圧延長手方向に試料を移動させながら観察を行う。組織のうちフェライトならびにパーライトについては、ナイタールエッチングを実施した試験片を500倍の光学顕微鏡観察にて約250μm×350μmの領域を3視野行うことによって有無を確認する。残留γについては、組織観察時と同一の部位から試験片を採取し、X線回折法(積分法)によって体積分率を測定し、これをそのまま面積率とする。焼戻しされているものとされていないものは、ピクリン酸腐食後の光学顕微鏡観察に於いて、結晶粒内に析出した炭化物が腐食されることで判別できる(焼戻していない場合は結晶粒界のみが腐食される)。   As described above, the ferritic, pearlite, retained austenite, and non-tempered structures that are harmful structures in this steel material must be completely eliminated by the above-mentioned components and manufacturing methods. Must also be reduced to less than 1%. The structure is determined by observing from the width direction in a direction perpendicular to the rolling direction. Regarding the observation of a plurality of visual fields, the observation is performed while moving the sample in the rolling longitudinal direction so that there is no overlapping of visual fields. Regarding the ferrite and pearlite in the structure, the presence or absence is confirmed by performing three views of a region of about 250 μm × 350 μm with a 500 × optical microscope observation of the test piece subjected to nital etching. For residual γ, a test piece is taken from the same site as that during tissue observation, and the volume fraction is measured by the X-ray diffraction method (integration method), and this is used as the area ratio as it is. Those that have not been tempered can be identified by the corrosion of the carbides precipitated in the crystal grains in the observation with an optical microscope after picric acid corrosion. Corroded).

次に本発明の鋼板における各種成分範囲について説明する。   Next, various component ranges in the steel sheet of the present invention will be described.

C:0.16%以上、0.20%以下
Cは焼き入れ組織の硬さを高め硬度向上に有効な元素であり、前述の図1からも0.16%を下限とする。一方で過剰な添加は靭性を損ない、かつ表層と中心部の硬度差の要因にもなるため、同様に前述の図1から上限を0.20%とする
C: 0.16% or more and 0.20% or less C is an element that increases the hardness of the quenched structure and is effective for improving the hardness, and the lower limit is 0.16% from FIG. On the other hand, excessive addition impairs toughness and causes a difference in hardness between the surface layer and the central portion, so the upper limit is 0.20% from FIG.

Si:0.50%以上、1.00%以下
Siは脱酸材として、また強度を改善させるためにも有効な元素ではあり、Ceqを上昇させることなく焼入れ性を高めるが、多量の添加は焼戻し脆性を助長し靭性を低下させるため低減させることが好ましく、上限を1.00%とする。一方、下限は0.00%でも構わないが、溶鋼精錬時の脱酸効率や脱酸コストの観点から、0.05%以上とすることが好ましい。
Si: 0.50% or more, 1.00% or less Si is an element effective as a deoxidizer and also for improving the strength, and enhances the hardenability without increasing Ceq. In order to promote temper brittleness and reduce toughness, it is preferable to reduce the toughness, and the upper limit is made 1.00%. On the other hand, the lower limit may be 0.00%, but it is preferably 0.05% or more from the viewpoint of deoxidation efficiency at the time of molten steel refining and deoxidation cost.

Mn:0.90%以上、1.50%以下
Mnは脱酸材として、また焼き入れ性を改善し強度向上に有効な元素であり0.90%以上添加されるが、過剰な添加は焼戻し脆性を助長して靭性を低下させるため上限を1.50%とする。
Mn: 0.90% or more, 1.50% or less Mn is an element effective as a deoxidizing material, improving hardenability and improving strength, and is added in an amount of 0.90% or more. In order to promote brittleness and reduce toughness, the upper limit is made 1.50%.

P:0.000%以上、0.010%以下、
Pは鋼中に含有される不純物元素であり、粒界脆化を助長し靭性を低下させる有害元素であるため、出来るだけ少ないことが好ましく、0.010%以下まで低減される。下限は0.000%が望ましいが精錬コストの増大ならびに生産性の低下の観点から、0.001%とすることが好ましい。
P: 0.000% or more, 0.010% or less,
P is an impurity element contained in the steel and is a harmful element that promotes grain boundary embrittlement and lowers toughness. Therefore, P is preferably as small as possible, and is reduced to 0.010% or less. The lower limit is preferably 0.000%, but is preferably 0.001% from the viewpoint of increasing refining costs and reducing productivity.

S:0.000%以上、0.002%以下、
Sは鋼中に含有される不純物元素であり、偏析および硫化物の形成を通じて靭性を低下させる元素であるため、出来るだけ少ないことが好ましく、0.002%以下まで低減される。下限は0.000%が望ましいが精錬コストの増大ならびに生産性の低下の観点から、0.0004%とすることが好ましい。
S: 0.000% or more, 0.002% or less,
S is an impurity element contained in the steel, and is an element that lowers toughness through segregation and sulfide formation, so it is preferably as small as possible and is reduced to 0.002% or less. The lower limit is preferably 0.000%, but is preferably 0.0004% from the viewpoint of an increase in refining costs and a decrease in productivity.

Cu:0.00%以上、0.40%以下
Cuは低温靭性を損なうことなく鋼の強度を高めることができる元素であるが、多量の添加によって熱間加工時の割れを生じるほか金属Cuの析出などで靭性を低下させるため上限を0.40%とする。CuはCeqを高めることでフェライトの抑制に寄与するが、他の合金元素による代替が可能であり、下限について特に規制されるものではなく、代替できれば0.00%でも構わないが、精錬による皆無化が困難な合金元素であり、0.02%を下限とすることが好ましい。
Cu: 0.00% or more and 0.40% or less Cu is an element that can increase the strength of steel without impairing the low-temperature toughness. The upper limit is made 0.40% in order to reduce toughness by precipitation or the like. Although Cu contributes to the suppression of ferrite by increasing Ceq, it can be replaced by other alloy elements, and the lower limit is not particularly restricted, and if it can be replaced, 0.00% may be used. It is an alloy element that is difficult to be formed, and the lower limit is preferably 0.02%.

Ni:0.20%以上、1.00%以下
Niは鋼の強度および靭性を向上するのに有効な元素であり、0.20%以上が添加されるが、過度の添加では効果が飽和するうえ、高価な合金であるNiの多量添加は製造コストの悪化を招くため、工業生産が成り立つ範囲として、上限を1.00%とすることが望ましい。
Ni: 0.20% or more, 1.00% or less Ni is an element effective for improving the strength and toughness of steel, and 0.20% or more is added, but the effect is saturated by excessive addition. In addition, since a large amount of Ni, which is an expensive alloy, causes a deterioration in manufacturing cost, the upper limit is desirably set to 1.00% as a range in which industrial production can be achieved.

Cr:0.60%以上、1.00%以下
Mo:0.60%以上、1.00%以下
Cr・Moは焼き入れ性を改善し中心部硬度を上げるうえ、析出硬化により表層ならびに中心部の硬度を底上げする重要な元素であり、Cr・Moはそれぞれ0.60%以上が添加されるが、これらは合金炭化物形成により却って靭性を低下させる元素でもあるため、ともに上限を1.00%とする。
Cr: 0.60% or more, 1.00% or less Mo: 0.60% or more, 1.00% or less Cr / Mo improves the hardenability and increases the central hardness, and the surface layer and the central part by precipitation hardening. Is an important element that raises the hardness of Cr and Mo. Each of Cr and Mo is added in an amount of 0.60% or more, but these are elements that lower the toughness by forming alloy carbides. And

V:0.000%以上、0.050%以下
Vは炭化物の形成を通じて母材強度を向上させるが、多量の添加は合金炭化物形成による靭性の低下を引き起こすため上限を0.050%とする。Ceqを高めることでフェライトの抑制にも寄与するが、Vは高価な合金元素であり他の合金によって代替が可能であることから、下限について特に規制されるものではなく、代替できれば0.000%でも構わないが、皆無化が困難な合金元素であり、不可避的不純物として含まれる量として0.003%を下限とすることが好ましい。
V: 0.000% or more and 0.050% or less V improves the strength of the base metal through the formation of carbides, but adding a large amount causes a decrease in toughness due to the formation of alloy carbides, so the upper limit is made 0.050%. Increasing Ceq also contributes to suppression of ferrite, but V is an expensive alloy element and can be replaced by other alloys, so the lower limit is not particularly restricted, and if it can be replaced, 0.000% However, it is an alloy element that is difficult to eliminate at all, and the amount contained as an inevitable impurity is preferably set to 0.003% as a lower limit.

Al:0.050%以上、0.085%以下、
Alは脱酸材として有効な元素であるとともに、鋼中Nと結びついてAlNを形成し組織の細粒化に寄与する他、析出処理に於いてAlNとなり、BNの分解に寄与することでBの焼き入れ性を安定化させる作用もあるため0.050%以上が添加されるが、過剰な添加は粗大AlNにより靭性の低下ならびに鋳片の割れを生じるため上限を0.085%とする。
Al: 0.050% or more, 0.085% or less,
Al is an element that is effective as a deoxidizing material, and is combined with N in the steel to form AlN and contribute to the refinement of the structure. In addition, it becomes AlN in the precipitation treatment and contributes to the decomposition of BN. Since 0.05% or more is added because it also has the effect of stabilizing the hardenability of the steel, excessive addition causes a decrease in toughness and cracking of the slab due to coarse AlN, so the upper limit is made 0.085%.

N:0.0020%以上、0.0070%以下、
Nは合金元素と窒化物・炭窒化物を形成し細粒化に寄与するため0.0020%を下限として添加される。一方で鋼中に過剰に固溶した場合ならびに粗大な窒化物・炭窒化物を形成した場合は靭性を低下させるため、0.0070%を上限とする。
N: 0.0020% or more, 0.0070% or less,
N forms alloy elements and nitrides / carbonitrides and contributes to fine graining, so 0.0020% is added as the lower limit. On the other hand, when it is excessively dissolved in steel and when coarse nitrides / carbonitrides are formed, the toughness is lowered, so 0.0070% is made the upper limit.

B:0.0005%以上、0.0020%以下
Bは微量の添加により鋼の焼き入れ性を改善し強度を向上させる元素であり、0.0005%以上が添加される。しかし、添加過剰となった場合は金属の炭硼化物を形成し焼き入れ性が低下するため、上限を0.0020%とする。
B: 0.0005% or more and 0.0020% or less B is an element that improves the hardenability of steel by adding a small amount and improves the strength, and 0.0005% or more is added. However, if the addition is excessive, metal borate is formed and the hardenability is lowered, so the upper limit is made 0.0020%.

さらに選択元素として、靭性に影響を与える以下の元素を規定する。   Furthermore, the following elements that affect toughness are defined as selective elements.

Nb:0.001%以上、0.050%以下
Nbは炭窒化物を形成し鋼の内部組織の細粒化に寄与し靭性に影響を与える元素であり0.001%以上を含有させることが出来る。しかし、多量の添加によって生じる粗大な炭窒化物は却って靭性を低下させるため上限を0.050%とする。
Nb: 0.001% or more, 0.050% or less Nb is an element that forms carbonitrides and contributes to the refinement of the internal structure of steel and affects the toughness, and may contain 0.001% or more. I can do it. However, since the coarse carbonitride produced by adding a large amount lowers the toughness, the upper limit is made 0.050%.

Ti:0.001%以上、0.020%以下
Ti/N≦3.4
Tiは安定な窒化物を形成し組織の細粒化に寄与し靭性に影響を与える元素であり、0.001%以上を含有させることが出来る。しかし、Tiの過剰添加は粗大窒化物による靭性低下を生じるため、添加量は0.020%を上限とする。またTiの添加がある場合、TiNの化学量論比を超えて添加した場合、具体的はTi>3.4Nとなった場合には、過剰なTiが炭化物を形成し靭性を低下させるため、Ti≦3.4Nに規制することが好ましい。
Ti: 0.001% or more, 0.020% or less Ti / N ≦ 3.4
Ti is an element that forms a stable nitride, contributes to the refinement of the structure and affects the toughness, and can be contained in an amount of 0.001% or more. However, excessive addition of Ti causes toughness reduction due to coarse nitrides, so the addition amount is made 0.020% as an upper limit. Further, when Ti is added, when it is added exceeding the stoichiometric ratio of TiN, specifically when Ti> 3.4N, excessive Ti forms carbides and reduces toughness. It is preferable to restrict to Ti ≦ 3.4N.

Ca:0.0001%以上、0.0030%以下、
Mg:0.0001%以上、0.0030%以下、
REM:0.0001%以上、0.0030%以下、
Ca、Mg、REMは何れもSなどの有害不純物と結合し、無害な介在物を形成することで鋼の靭性などの機械的性質を改善させることができるため、0.0001%以上含有させることができる。しかし、過剰に添加すると効果が飽和するばかりか鋳造ノズルなどの耐火物の溶損を助長するため、上限を0.0030%とする。
Ca: 0.0001% or more, 0.0030% or less,
Mg: 0.0001% or more, 0.0030% or less,
REM: 0.0001% or more, 0.0030% or less,
Ca, Mg, and REM can be combined with harmful impurities such as S and form harmless inclusions to improve mechanical properties such as toughness of steel. Can do. However, if the addition is excessive, not only the effect is saturated, but also melting damage of refractories such as casting nozzles is promoted, so the upper limit is made 0.0030%.

次に本発明の鋼板の好ましい製造方法について説明する。   Next, the preferable manufacturing method of the steel plate of this invention is demonstrated.

上記の成分の鋼片を鋳造後、前述の式(4)で算出されるAlN固溶温度Ts以上の温度へ加熱・熱間圧延後冷却し、さらに550℃超Ac1未満の温度で、処理温度Tならびに処理時間tpが前述の式(5)を満たすように加熱する析出処理の後、常温まで冷却またはそのまま昇温し、900℃以上950℃以下の温度で前述の式(6)に示す焼入れ保持時間H以上に再加熱し水冷する焼入れ処理、500℃以上550℃以下で焼戻して常温まで冷却することが好ましい。   After casting the steel slab of the above components, it is cooled after heating and hot rolling to a temperature equal to or higher than the AlN solid solution temperature Ts calculated by the above formula (4), and further at a temperature of more than 550 ° C. and less than Ac1, and the processing temperature After the precipitation treatment in which T and the treatment time tp are heated so as to satisfy the above-mentioned formula (5), cooling to room temperature or raising the temperature as it is, quenching shown in the above-mentioned formula (6) at a temperature of 900 ° C. or higher and 950 ° C. or lower It is preferable that the holding time H is re-heated to a cooling time of H or more and water-cooled.

表1に示す化学成分を有するA1〜A10およびB1〜B24の鋼を溶製して得られた鋼片を、表2に示すNo.1〜10の本発明鋼とNo.11〜45の比較例それぞれの条件で加熱圧延・熱処理を実施し、板厚210mm〜230mmの鋼板を製造した。   The steel pieces obtained by melting the steels A1 to A10 and B1 to B24 having the chemical components shown in Table 1 are compared with No. 1 to 10 of the present invention steel shown in Table 2 and No. 11 to 45. Heat rolling and heat treatment were carried out under the conditions of each of the examples, and steel plates having a thickness of 210 mm to 230 mm were produced.

その後、全ての鋼板の表面ならびに板厚中心部から試片を採取し、ASTM A370に規定されるブリネル硬さ試験を実施した。表層硬度については、本発明では、脱炭層回避のために表層から0.7〜1mmを除去した位置を表層とし、硬度試験に供した。中心部硬度については、Z方向からの(即ち鋼板表面と平行な面の)硬度を測定できるよう試験片を採取した。ブリネル硬さ試験の判定として、表層硬度および板厚中心部硬度ともにHB350以上であるものを合格とした。
加えて、板厚中心部に於ける-40℃でのC方向吸収エネルギーは、全ての鋼板の板厚中心部からC方向で、ASTM A370に規定されるシャルピー衝撃試験片を採取し、試験を実施した。シャルピー衝撃試験の判定として、−40℃での3本の吸収エネルギーの平均値が47J以上であるものを合格とした。
Thereafter, specimens were collected from the surface of all the steel plates and the central portion of the plate thickness, and the Brinell hardness test specified in ASTM A370 was performed. About surface layer hardness, in this invention, the position which removed 0.7-1 mm from surface layer was made into surface layer in order to avoid a decarburized layer, and it used for the hardness test. For the center hardness, a test piece was taken so that the hardness from the Z direction (that is, the plane parallel to the steel plate surface) could be measured. As the determination of the Brinell hardness test, the surface layer hardness and the sheet thickness center portion hardness of HB350 or more were accepted.
In addition, the C direction absorbed energy at −40 ° C. at the center of the plate thickness was obtained by collecting Charpy impact test pieces specified in ASTM A370 in the C direction from the center of the plate thickness of all steel plates. Carried out. As a judgment of the Charpy impact test, a sample having an average value of three absorbed energy at −40 ° C. of 47 J or more was regarded as acceptable.

組織は、圧延方向に直行する方向に巾方向から観察することで決定した。本鋼材は焼入れ性が非常に高いため、パーライトについては全ての実施例に於いて、少なくとも前記光学顕微鏡観察では0%であった。また、本鋼材は十分に焼戻しを行うため、全ての実施例に於いて残留γは極微量の検出量であったので、実質的に0%とし、表に記載していない。加えて、本鋼材は十分に焼戻しを行うため、全ての実施例に於いて焼戻しされないマルテンサイト、焼戻しされないベイナイトは0%であったため、こちらも表には記載していない。   The structure was determined by observing from the width direction in a direction perpendicular to the rolling direction. Since this steel material has a very high hardenability, the pearlite was 0% in all the examples in at least the observation with the optical microscope. In addition, since the steel material was sufficiently tempered, the residual γ was an extremely small amount detected in all the examples, so it was substantially 0% and is not listed in the table. In addition, since this steel material is sufficiently tempered, martensite that is not tempered and bainite that is not tempered are 0% in all the examples, so this is also not shown in the table.

以下、表1に成分を、表2に製法および材質、評価等を示す。   Table 1 shows the components, and Table 2 shows the production method, material, evaluation and the like.

試験番号1〜10は本発明の化学成分範囲ならびに好適な製造条件を満たすものである。これらの鋼はいずれも表層硬度・中心部硬度・衝撃吸収エネルギーともに目標を満足している。   Test numbers 1 to 10 satisfy the chemical component range of the present invention as well as suitable production conditions. All these steels satisfy the targets for surface hardness, center hardness, and shock absorption energy.

試験番号11および12はCが本発明の化学成分範囲を逸脱している。試験番号11ではCが低めに外れており焼入れ時の硬度が十分でないことから焼き戻し後も硬度が目標値を満足できていない。一方、試験番号12はCが高めに外れた例であり、破壊起点となる硬質の炭化物析出の影響により衝撃吸収エネルギーが低位である。   In test numbers 11 and 12, C deviates from the chemical component range of the present invention. In Test No. 11, C is slightly lower and the hardness at the time of quenching is not sufficient, so the hardness does not satisfy the target value even after tempering. On the other hand, test number 12 is an example in which C is deviated to a higher level, and the impact absorption energy is low due to the influence of hard carbide precipitation that becomes the starting point of fracture.

試験番号13および14はSiが本発明の化学成分範囲を逸脱している。試験番号13ではSiが低めに外れており、焼入れ性を確保できなくなったことから中心部硬度が目標値を満足できていない。一方、試験番号14はSiが高めに外れた例であり、硬度は十分であるもののSiによる焼戻し脆化の助長により衝撃吸収エネルギーは目標を満足していない。   In test numbers 13 and 14, Si deviates from the chemical component range of the present invention. In Test No. 13, Si was removed at a low level, and the hardenability could not be ensured, so the center hardness did not satisfy the target value. On the other hand, Test No. 14 is an example in which Si is deviated to a higher level. Although the hardness is sufficient, the impact absorption energy does not satisfy the target due to the promotion of temper embrittlement by Si.

試験番号15および16はMnが本発明の化学成分範囲を逸脱している。試験番号15ではMnが低めに外れており焼入れ時の硬度が十分でないことから焼き戻し後も中心部硬度が目標値を満足できていない。一方、試験番号16はMnが高めに外れた例であり、焼戻し脆化の助長により衝撃吸収エネルギーが目標値を満足していない。   Test numbers 15 and 16 have Mn deviating from the chemical component range of the present invention. In Test No. 15, Mn is slightly lower and the hardness at the time of quenching is not sufficient, so that the hardness at the center does not satisfy the target value even after tempering. On the other hand, the test number 16 is an example in which Mn is deviated to a high level, and the impact absorption energy does not satisfy the target value due to the promotion of temper embrittlement.

試験番号17はPが本発明の化学成分範囲を逸脱して高く、硬度は十分であるもののPに起因した脆化によって衝撃吸収エネルギーが目標を満足していない。   In Test No. 17, P is high exceeding the chemical component range of the present invention and the hardness is sufficient, but the impact absorption energy does not satisfy the target due to embrittlement caused by P.

試験番号18はSが本発明の化学成分範囲を逸脱して高く、伸長介在物であるMnSの生成によって衝撃吸収エネルギーが目標を満足できていない。   In Test No. 18, S is high and deviates from the chemical component range of the present invention, and the impact absorption energy does not satisfy the target due to the formation of MnS which is an extension inclusion.

試験番号19はCuが本発明の化学成分範囲を逸脱して高く、析出した金属Cuが脆性破壊起点となったため衝撃吸収エネルギーが目標を満足していない。   In Test No. 19, Cu was high deviating from the chemical component range of the present invention, and the precipitated metal Cu became the brittle fracture starting point, so the impact absorption energy did not satisfy the target.

試験番号20はNiが本発明の化学成分範囲を逸脱して低く、靭性を向上させる添加量に満たないため衝撃吸収エネルギーが目標を満足していない。   In Test No. 20, Ni deviates from the chemical component range of the present invention, and the impact absorption energy does not satisfy the target because the Ni content is low and less than the addition amount for improving toughness.

試験番号21および22はCrが本発明の化学成分範囲に逸脱した例である。試験番号21はCrが低めに外れており、十分な焼入れ性及び析出強化作用が得られていないことから中心部硬度が目標を満足できていない。一方で試験番号22はCrが高めに外れており粗大なCr炭化物の析出影響により衝撃吸収エネルギーが目標を満足していない。   Test numbers 21 and 22 are examples in which Cr deviates from the chemical component range of the present invention. In Test No. 21, since Cr is slightly lower and sufficient hardenability and precipitation strengthening action are not obtained, the center hardness does not satisfy the target. On the other hand, in Test No. 22, Cr is not high and impact absorption energy does not satisfy the target due to the precipitation effect of coarse Cr carbide.

試験番号23および24はMoが本発明の化学成分範囲に逸脱した例である。試験番号23はMoが低めに外れており、十分な焼入れ性及び析出強化作用が得られていないことから中心部硬度が目標を満足できていない。一方で試験番号24はMoが高めに外れており粗大なMo炭化物の析出影響により衝撃吸収エネルギーが目標値を満足していない。   Test numbers 23 and 24 are examples in which Mo deviates from the chemical component range of the present invention. In Test No. 23, Mo is deviated slightly, and since sufficient hardenability and precipitation strengthening action are not obtained, the center hardness does not satisfy the target. On the other hand, in Test No. 24, Mo is not high and the impact absorption energy does not satisfy the target value due to the precipitation effect of coarse Mo carbide.

試験番号25はVが本発明の化学成分範囲を逸脱して高く、Vの粗大な炭化物・窒化物が脆性破壊起点となったことから衝撃吸収エネルギーが目標を満足していない。   In Test No. 25, V is higher than the chemical component range of the present invention, and since the coarse carbide / nitride of V has become a brittle fracture starting point, the impact absorption energy does not satisfy the target.

試験番号26および27はAlが本発明の化学成分範囲を逸脱した例である。試験番号26はAlが低めに外れた例であり、ピン止めに有効なAlNを確保できず、かつ余剰のNがBと結びつくことで焼入れ性向上効果を低減させたため、中心部硬度および衝撃吸収エネルギーが目標を満足できていない。一方で試験番号25はAlが高めに外れた例であり、AlNが過度に粗大化することで脆性破壊起点となったため衝撃吸収エネルギーが目標を満足できていない。   Test numbers 26 and 27 are examples in which Al deviates from the chemical component range of the present invention. Test No. 26 is an example in which Al was removed at a low level, and AlN effective for pinning could not be secured, and the effect of improving hardenability was reduced by combining excess N with B. Energy is not meeting the target. On the other hand, Test No. 25 is an example in which Al deviates to a high level, and since AlN becomes excessively coarse and becomes a brittle fracture starting point, the impact absorption energy does not satisfy the target.

試験番号28および29はNが本発明の化学成分範囲を逸脱した例である、試験番号26はNが低めに外れた例であり、窒化物・炭窒化物の生成量が不十分であることからピン止め効果が弱く、結晶粒の粗粒化により衝撃吸収エネルギーが目標を満足できていない。一方で試験番号29はNが高めに外れた例であり、窒化物・炭窒化物の過度な粗大化により、衝撃吸収エネルギーが目標を満足できていない。   Test Nos. 28 and 29 are examples in which N deviates from the chemical composition range of the present invention. Test No. 26 is an example in which N deviates slightly. Nitride / carbonitride generation is insufficient. Therefore, the pinning effect is weak, and the impact absorption energy does not satisfy the target due to the coarsening of crystal grains. On the other hand, test number 29 is an example in which N deviates to a high level, and the impact absorption energy does not satisfy the target due to excessive coarsening of nitrides / carbonitrides.

試験番号30および31はBが本発明の化学成分範囲を逸脱している。試験番号30はBが低めに外れた例であり、焼入れ性に必要な固溶B量を確保できなくなった結果、中心部硬度および衝撃吸収エネルギーが目標を満足できていない。一方で試験番号31はBを過剰に添加した例であり、金属元素の炭硼化物が析出することで衝撃吸収エネルギーが目標を満足できていない。   In test numbers 30 and 31, B deviates from the chemical component range of the present invention. Test No. 30 is an example in which B deviates slightly, and as a result of being unable to secure the solid solution B amount necessary for hardenability, the center hardness and impact absorption energy do not satisfy the targets. On the other hand, test number 31 is an example in which B is added excessively, and the impact absorption energy does not satisfy the target due to the precipitation of a metal element boride.

試験番号32は個々の成分範囲は本発明の範囲内であるものの、Ceqが本発明の好適範囲を逸脱して低く、焼入れ性の低下により組織にフェライトを生じた結果、中心部硬度および衝撃吸収エネルギーが目標を満足できていない。   In Test No. 32, although individual component ranges are within the range of the present invention, Ceq is low outside the preferred range of the present invention, and as a result of ferrite forming in the structure due to a decrease in hardenability, the hardness of the central portion and the impact absorption Energy is not meeting the target.

試験番号33および34は個々の成分範囲ならびにCeqは本発明の範囲内であるものの、パラメータ式4×f/gが本発明の好適範囲を逸脱して低く、焼き入れ性の向上と比して析出元素による硬化作用が大きくなったため衝撃吸収エネルギーが目標を満足できていない。   Although test numbers 33 and 34 are within the individual component ranges and Ceq is within the scope of the present invention, the parameter formula 4 × f / g is lower than the preferred range of the present invention, compared to the improvement in hardenability. The impact absorption energy does not satisfy the target because the hardening effect by the precipitated elements has increased.

試験番号35は成分範囲は本発明の範囲内であるものの、圧延前の加熱温度が固溶温度Tsを下回っており、未固溶の粗大AlNが残存することで脆性破壊起点となったため吸収エネルギーが目標を満足できていない。   Test No. 35, although the component range is within the range of the present invention, the heating temperature before rolling is lower than the solid solution temperature Ts, and since the undissolved coarse AlN remains and becomes a brittle fracture starting point, the absorbed energy Is not meeting the goal.

試験番号36および37は成分範囲は本発明の範囲内であるものの、析出処理温度が本発明の好適範囲を逸脱している。試験番号36は析出処理温度が低かった例であり、十分なAlNの析出が行われずピン止めに有効なAlNを確保できなかったことから吸収エネルギーが目標を満足できていない。一方で試験番号37は析出処理温度がAc1を超えた例であり、α-γ二相域での保持により局所的にAlNの粗大化を生じたため吸収エネルギーが目標を満足できていない。   In Test Nos. 36 and 37, although the component range is within the range of the present invention, the precipitation treatment temperature deviates from the preferred range of the present invention. Test No. 36 is an example in which the deposition temperature was low, and the absorbed energy did not satisfy the target because sufficient AlN was not deposited and AlN effective for pinning could not be secured. On the other hand, test number 37 is an example in which the precipitation treatment temperature exceeded Ac1, and the absorbed energy did not satisfy the target because AlN was locally coarsened by holding in the α-γ two-phase region.

試験番号38は成分範囲は本発明の範囲内であるものの、析出処理の温度ならびに時間が本発明の好適範囲を下回っており、十分なAlNの析出が行われずピン止めに有効なAlNを確保できなかったことから吸収エネルギーが目標を満足できていない。   Test No. 38 has a component range within the range of the present invention, but the temperature and time of the deposition process are below the preferred range of the present invention, and sufficient AlN is not deposited, so that AlN effective for pinning can be secured. The absorbed energy did not meet the target because there was no.

試験番号39は成分範囲は本発明の範囲内であるものの、焼入れ温度が本発明の好適範囲を下回っており、合金元素の固溶が十分になされなかったことから焼入れ性が低く、フェライトの生成により中心部硬度ならびに吸収エネルギーが目標を満足出来ていない。   In Test No. 39, although the component range is within the range of the present invention, the quenching temperature is lower than the preferred range of the present invention, and the alloy elements are not sufficiently dissolved, so that the hardenability is low and the formation of ferrite. As a result, the center hardness and the absorbed energy are not meeting the target.

試験番号40は成分範囲は本発明の範囲内であるものの、焼入れ温度が本発明の好適範囲を上回っており、結晶粒の過度な粗大化を生じたことから吸収エネルギーが目標を満足出来ていない。   In test No. 40, although the component range is within the range of the present invention, the quenching temperature is higher than the preferred range of the present invention, and the crystal grains are excessively coarsened, so the absorbed energy does not satisfy the target. .

試験番号41は成分範囲は本発明の範囲内であるものの、焼入れ保持時間が本発明の好適範囲を下回っており、合金元素の固溶が十分になされなかったことから焼入れ性が低く、フェライトの生成により中心部硬度ならびに吸収エネルギーが目標を満足出来ていない。   Test No. 41 has a component range within the range of the present invention, but the quenching retention time is less than the preferred range of the present invention, and the alloy elements are not sufficiently dissolved, so the hardenability is low, and the ferrite As a result, the core hardness and absorbed energy are not meeting the target.

試験番号42は成分範囲は本発明の範囲内であるものの、焼戻し温度が好適範囲を下回っており、焼き戻し脆化を生じたことから、吸収エネルギーが目標を満足出来ていない。   In Test No. 42, although the component range is within the range of the present invention, the tempering temperature is lower than the preferred range and temper embrittlement occurs, so the absorbed energy does not satisfy the target.

試験番号44は成分範囲は本発明の範囲内であるものの、焼戻し温度が好適範囲を上回っており、合金炭化物の析出硬化作用が減じられたため、中心部硬度が目標を満足出来ていない。   In Test No. 44, although the component range is within the range of the present invention, the tempering temperature is higher than the preferred range, and the precipitation hardening action of the alloy carbide is reduced, so that the center hardness cannot satisfy the target.

Claims (4)

鋼の成分が質量%で、
C:0.16%以上、0.20%以下、
Si:0.50%以上、1.00以下、
Mn:0.90%以上、1.50%以下、
P:0.000%以上、0.010%以下、
S:0.000%以上、0.002%以下、
Cu:0.00%以上、0.40%以下、
Ni:0.20%以上、1.00%以下、
Cr:0.60%以上、1.00%以下、
Mo:0.60%以上、1.00%以下、
V::0.000%以上、0.050%以下、
Al:0.050%以上、0.085%以下、
N:0.0020%以上、0.0070%以下、
B:0.0005%以上、0.0020%以下、
残Feおよび不可避的不純物からなり、
焼戻しマルテンサイトおよび/または焼戻しベイナイトが面積率で99%以上であって、フェライト・パーライト・残留オーステナイト・焼戻しされない組織などのその他組織が1面積%未満であり、
下記式(1)で示すCeqが0.750以上、0.800以下を満足し、さらに下式(2)で示す値fおよび下式(3)で示す値gが4×f/gが9.00以上を満足し、板厚中心部に於ける-20℃でのC方向シャルピーの3点平均が47J以上であり、表層ならびに板厚中心部の硬度がHBで350以上であることを特徴とする、板厚中心部の硬度および低温靭性に優れた板厚200mm超の高強度鋼板。
Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 (1)
f=4C+Si+2Mn+Ni+2Cr+5Mo (2)
g=2Cr+3Mo+5V (3)
ここで、各式の各元素記号は、その成分の質量%を意味する。
Steel component is mass%,
C: 0.16% or more, 0.20% or less,
Si: 0.50% or more, 1.00 or less,
Mn: 0.90% or more, 1.50% or less,
P: 0.000% or more, 0.010% or less,
S: 0.000% or more, 0.002% or less,
Cu: 0.00% or more, 0.40% or less,
Ni: 0.20% or more, 1.00% or less,
Cr: 0.60% or more, 1.00% or less,
Mo: 0.60% or more, 1.00% or less,
V :: 0.000% or more, 0.050% or less,
Al: 0.050% or more, 0.085% or less,
N: 0.0020% or more, 0.0070% or less,
B: 0.0005% or more, 0.0020% or less,
Consisting of residual Fe and inevitable impurities,
Tempered martensite and / or tempered bainite is 99% or more in area ratio, and other structures such as ferrite, pearlite, retained austenite, and structure not tempered are less than 1 area%,
Ceq represented by the following formula (1) satisfies 0.750 or more and 0.800 or less, and the value f represented by the following formula (2) and the value g represented by the following formula (3) are 4 × f / g is 9 0.003 or more, the three-point C-direction Charpy at −20 ° C. at the center of the plate thickness is 47 J or more, and the hardness of the surface layer and the center of the plate thickness is 350 or more in HB. A high-strength steel plate having a thickness of more than 200 mm and excellent in hardness and low-temperature toughness at the center of the plate thickness.
Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (1)
f = 4C + Si + 2Mn + Ni + 2Cr + 5Mo (2)
g = 2Cr + 3Mo + 5V (3)
Here, each element symbol in each formula means mass% of the component.
上記成分に加えてさらに、
Nb:0.001%以上、0.050%以下、
Ti:0.001%以上、0.020%以下、
Ca:0.0001%以上、0.0030%以下、
Mg:0.0001%以上、0.0030%以下、
REM:0.0001%以上、0.0030%以下、
のうち1種類以上を含有し、かつTiを含有する場合はTi/N≦3.4を満たすことを特徴とする請求項1に記載の板厚中心部の硬度および低温靭性に優れた板厚200mm超の高強度鋼板。
In addition to the above ingredients,
Nb: 0.001% or more, 0.050% or less,
Ti: 0.001% or more, 0.020% or less,
Ca: 0.0001% or more, 0.0030% or less,
Mg: 0.0001% or more, 0.0030% or less,
REM: 0.0001% or more, 0.0030% or less,
2 or more, and when Ti is contained, Ti / N ≦ 3.4 is satisfied, and the thickness of the sheet thickness center portion according to claim 1 excellent in hardness and low-temperature toughness High-strength steel sheet exceeding 200 mm.
鋼の成分が質量%で、
C:0.16%以上、0.20%以下、
Si:0.50%以上、1.00以下、
Mn:0.90%以上、1.50%以下、
P:0.000%以上、0.010%以下、
S:0.000%以上、0.002%以下、
Cu:0.00%以上、0.40%以下、
Ni:0.20%以上、1.00%以下、
Cr:0.60%以上、1.00%以下、
Mo:0.60%以上、1.00%以下、
V::0.000%以上、0.050%以下、
Al:0.050%以上、0.085%以下、
N:0.0020%以上、0.0070%以下、
B:0.0005%以上、0.0020%以下、
残Feおよび不可避的不純物からなる成分の鋼を下式(4)で算出されるAlN固溶温度Ts以上の温度へ加熱・熱間圧延後冷却し、さらに550℃超Ac1未満の温度で、処理温度Tならびに処理時間tpが下式(5)を満たすように加熱する析出処理の後、常温まで冷却またはそのまま昇温し、900℃以上950℃以下の温度で下式(6)に示す焼入れ保持時間H以上に再加熱し水冷する焼入れ処理を施し、500℃以上550℃以下で焼戻して常温まで冷却することを特徴とする、板厚中心部の硬度および低温靭性に優れた板厚200mm超の高強度鋼板の製造方法。
Ts=7400/(1.95−log10[Al][N]) (4)
Log10(tp)+0.012×T≧8.7 (5)
H=0.033(950−Tq)2+(1.5f)2/10 (6)
ここでTsはAlNの固溶温度(℃)、[Al]、[N]は各元素の質量%であり、Tは析出処理温度(℃)、tpは析出処理時間(Hr)であり、Hは焼入れ保持時間(分)、Tqは焼入れ保持温度(℃)、fは上式(2)で得られる値である。
Steel component is mass%,
C: 0.16% or more, 0.20% or less,
Si: 0.50% or more, 1.00 or less,
Mn: 0.90% or more, 1.50% or less,
P: 0.000% or more, 0.010% or less,
S: 0.000% or more, 0.002% or less,
Cu: 0.00% or more, 0.40% or less,
Ni: 0.20% or more, 1.00% or less,
Cr: 0.60% or more, 1.00% or less,
Mo: 0.60% or more, 1.00% or less,
V :: 0.000% or more, 0.050% or less,
Al: 0.050% or more, 0.085% or less,
N: 0.0020% or more, 0.0070% or less,
B: 0.0005% or more, 0.0020% or less,
The steel composed of residual Fe and inevitable impurities is heated to a temperature equal to or higher than the AlN solid solution temperature Ts calculated by the following formula (4), cooled after hot rolling, and further processed at a temperature higher than 550 ° C. and lower than Ac1. After the precipitation treatment in which the temperature T and the treatment time tp are heated so as to satisfy the following formula (5), it is cooled to room temperature or heated as it is, and is quenched and held at a temperature of 900 ° C. or more and 950 ° C. or less as shown in the following formula (6). It is subjected to quenching treatment that is reheated for time H or more and cooled with water, tempered at 500 ° C. or more and 550 ° C. or less and cooled to room temperature, and has a thickness of more than 200 mm excellent in hardness and low temperature toughness at the center of the thickness. Manufacturing method of high strength steel sheet.
Ts = 7400 / (1.95-log 10 [Al] [N]) (4)
Log 10 (tp) + 0.012 × T ≧ 8.7 (5)
H = 0.033 (950−Tq) 2+ (1.5f) 2/10 (6)
Here, Ts is a solid solution temperature (° C.) of AlN, [Al] and [N] are mass% of each element, T is a precipitation treatment temperature (° C.), tp is a precipitation treatment time (Hr), and H Is the quenching holding time (min), Tq is the quenching holding temperature (° C.), and f is a value obtained by the above equation (2).
上記成分に加えてさらに、
Nb:0.001%以上、0.050%以下、
Ti:0.001%以上、0.020%以下、
Ca:0.0001%以上、0.0030%以下、
Mg:0.0001%以上、0.0030%以下、
REM:0.0001%以上、0.0030%以下、
のうち1種類以上を含有し、かつTiを含有する場合はTi/N≦3.4を満たすことを特徴とする請求項3に記載の硬度および低温靭性ならびに溶接部靭性に優れた板厚200mm超の高強度鋼板の製造方法。
In addition to the above ingredients,
Nb: 0.001% or more, 0.050% or less,
Ti: 0.001% or more, 0.020% or less,
Ca: 0.0001% or more, 0.0030% or less,
Mg: 0.0001% or more, 0.0030% or less,
REM: 0.0001% or more, 0.0030% or less,
4 or more, and when Ti is contained, Ti / N ≦ 3.4 is satisfied, and the plate thickness of 200 mm excellent in hardness and low temperature toughness and weld toughness according to claim 3 Manufacturing method of super high strength steel sheet.
JP2018061804A 2018-03-28 2018-03-28 High hardness steel plate excellent in hardness at plate thickness center part and low temperature toughness and having plate thickness of over 200 mm and method of producing the same Withdrawn JP2019173081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018061804A JP2019173081A (en) 2018-03-28 2018-03-28 High hardness steel plate excellent in hardness at plate thickness center part and low temperature toughness and having plate thickness of over 200 mm and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018061804A JP2019173081A (en) 2018-03-28 2018-03-28 High hardness steel plate excellent in hardness at plate thickness center part and low temperature toughness and having plate thickness of over 200 mm and method of producing the same

Publications (1)

Publication Number Publication Date
JP2019173081A true JP2019173081A (en) 2019-10-10

Family

ID=68166516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018061804A Withdrawn JP2019173081A (en) 2018-03-28 2018-03-28 High hardness steel plate excellent in hardness at plate thickness center part and low temperature toughness and having plate thickness of over 200 mm and method of producing the same

Country Status (1)

Country Link
JP (1) JP2019173081A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149811A (en) * 1985-12-24 1987-07-03 Kobe Steel Ltd Production of prehardened steel by direct hardening
JP2000345281A (en) * 1999-06-02 2000-12-12 Nippon Steel Corp Low alloy heat resistant steel excellent in weldability and low temperature toughness, and its production
JP2012036501A (en) * 2010-07-16 2012-02-23 Jfe Steel Corp High-tensile strength steel sheet having superior bending property and low-temperature toughness, and method for manufacturing the same
CN106498289A (en) * 2016-09-29 2017-03-15 舞阳钢铁有限责任公司 A kind of big thickness S550Q steel plates of 550MPa levels and production method
CN107130172A (en) * 2017-05-27 2017-09-05 江阴兴澄特种钢铁有限公司 The overall constrictive type high tenacity of 400HBW grades of Brinell hardness easily welds special thick wear-resisting steel plate and its manufacture method
JP2017193739A (en) * 2016-04-19 2017-10-26 Jfeスチール株式会社 Wear-resistant steel plate and manufacturing process therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149811A (en) * 1985-12-24 1987-07-03 Kobe Steel Ltd Production of prehardened steel by direct hardening
JP2000345281A (en) * 1999-06-02 2000-12-12 Nippon Steel Corp Low alloy heat resistant steel excellent in weldability and low temperature toughness, and its production
JP2012036501A (en) * 2010-07-16 2012-02-23 Jfe Steel Corp High-tensile strength steel sheet having superior bending property and low-temperature toughness, and method for manufacturing the same
JP2017193739A (en) * 2016-04-19 2017-10-26 Jfeスチール株式会社 Wear-resistant steel plate and manufacturing process therefor
CN106498289A (en) * 2016-09-29 2017-03-15 舞阳钢铁有限责任公司 A kind of big thickness S550Q steel plates of 550MPa levels and production method
CN107130172A (en) * 2017-05-27 2017-09-05 江阴兴澄特种钢铁有限公司 The overall constrictive type high tenacity of 400HBW grades of Brinell hardness easily welds special thick wear-resisting steel plate and its manufacture method

Similar Documents

Publication Publication Date Title
CN110100034B (en) High-hardness wear-resistant steel and method for manufacturing same
CN112752861B (en) Wear-resistant steel having excellent hardness and impact toughness and method for manufacturing same
JP6007847B2 (en) Wear-resistant thick steel plate having low temperature toughness and method for producing the same
JP5423806B2 (en) High toughness wear resistant steel and method for producing the same
WO2014020891A1 (en) Abrasion-resistant steel plate and manufacturing process therefor
CN111479945B (en) Wear-resistant steel having excellent hardness and impact toughness and method for manufacturing same
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP7368461B2 (en) Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
JP5630322B2 (en) High-tensile steel plate with excellent toughness and manufacturing method thereof
JP2015180771A (en) Wear-resistant steel sheet excellent in low-temperature toughness and low-temperature temper embrittlement cracking resistance characteristic and production method thereof
WO2021241606A1 (en) Wear resistant steel sheet and method for producing wear resistant steel sheet
TW202113098A (en) Wear-resistant steel sheet and method for producing same
JP6733269B2 (en) A steel plate having a hardness of the surface layer and the central portion of the plate thickness and having a small hardness difference between the surface layer and the center and having a thickness of more than 200 mm, and a manufacturing method thereof
CN112877591A (en) High-strength and high-toughness steel for hardware tool and chain and manufacturing method thereof
JP2012172242A (en) High-tensile steel sheet having superior toughness and method for manufacturing the same
JP6394378B2 (en) Abrasion resistant steel plate and method for producing the same
JP6493645B1 (en) Steel sheet and method of manufacturing the same
JP5130472B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP2019504192A (en) High hardness wear resistant steel with excellent toughness and cut crack resistance, and method for producing the same
JP2022509978A (en) Chromium molybdenum steel sheet with excellent creep strength and its manufacturing method
CN111511952A (en) Wear-resistant steel having excellent hardness and impact toughness and method for manufacturing same
JP5443277B2 (en) High-strength steel with excellent machinability and method for producing the same
JP5935678B2 (en) High toughness high strength steel and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20211209