JP2019171284A - Photocatalyst and photocatalyst electrode for hydrogen generation - Google Patents

Photocatalyst and photocatalyst electrode for hydrogen generation Download PDF

Info

Publication number
JP2019171284A
JP2019171284A JP2018062215A JP2018062215A JP2019171284A JP 2019171284 A JP2019171284 A JP 2019171284A JP 2018062215 A JP2018062215 A JP 2018062215A JP 2018062215 A JP2018062215 A JP 2018062215A JP 2019171284 A JP2019171284 A JP 2019171284A
Authority
JP
Japan
Prior art keywords
photocatalyst
cgizs
electrode
same manner
metal compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018062215A
Other languages
Japanese (ja)
Other versions
JP6956963B2 (en
Inventor
林 利生
Toshio Hayashi
利生 林
工藤 昭彦
Akihiko Kudo
昭彦 工藤
顕秀 岩瀬
Akihide Iwase
顕秀 岩瀬
仁志 石原
Hitoshi Ishihara
仁志 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Tokyo University of Science
Japan Technological Research Association of Artificial Photosynthetic Chemical Process
Original Assignee
Mitsui Chemicals Inc
Tokyo University of Science
Japan Technological Research Association of Artificial Photosynthetic Chemical Process
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc, Tokyo University of Science, Japan Technological Research Association of Artificial Photosynthetic Chemical Process filed Critical Mitsui Chemicals Inc
Priority to JP2018062215A priority Critical patent/JP6956963B2/en
Publication of JP2019171284A publication Critical patent/JP2019171284A/en
Application granted granted Critical
Publication of JP6956963B2 publication Critical patent/JP6956963B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)

Abstract

To provide a photocatalyst allowing for generation of hydrogen from water using a visible light, having excellent hydrogen generation activity, and allowing for improvement of optical electrochemical property of a photocatalyst electrode for hydrogen generation using the photocatalyst.SOLUTION: The photocatalyst is provided which is composed of a composite metal compound having a chalcopyrite type crystal structure and allows for generation of hydrogen from water using a visible light, and in which the composite metal compound contains Cu, S, at least one of Ga and In, and alkali metal as essential components, contains at least one of Zn and Se if needed, and contains alkali metal of 0.001 to 5 mol% based on all metal atoms in the composite metal compound.SELECTED DRAWING: None

Description

本発明は、可視光を用いて水から水素の生成が可能な光触媒およびそれを用いた水素生成用光触媒電極に関する。   The present invention relates to a photocatalyst capable of generating hydrogen from water using visible light and a photocatalyst electrode for hydrogen generation using the photocatalyst.

太陽エネルギーを利用する光エネルギー変換システムの実用化は、地球温暖化の抑制や、枯渇しつつある化石資源への依存からの脱却を目指す観点から、近年その重要性が増している。なかでも、太陽エネルギーを用いて水を分解し水素を製造する技術は、現行の石油精製技術や、アンモニア、メタノールの原料供給技術としてのみならず、燃料電池をベースとした将来の水素エネルギー社会における水素供給技術として、有望視されている。   In recent years, the practical use of light energy conversion systems using solar energy has increased in importance from the viewpoint of suppressing global warming and moving away from dependence on depleted fossil resources. In particular, the technology for decomposing water using solar energy to produce hydrogen is not only used in the current oil refining technology and ammonia and methanol feedstock technology, but also in the future hydrogen energy society based on fuel cells. Promising as a hydrogen supply technology.

また、光エネルギーを用いて水から水素を製造する技術は、光エネルギーを化学エネルギーに変換する技術と目されているが、実用化されて久しい太陽光発電は生成する電気エネルギーの貯蔵が容易でないために蓄電技術の進展が望まれている一方で、水素をはじめとする化学エネルギーは、エネルギーの貯蔵、輸送や、単位当りのエネルギー量において優位なエネルギーになると期待されている。   In addition, the technology for producing hydrogen from water using light energy is regarded as a technology for converting light energy into chemical energy, but it has not been easy to store the electric energy that has been put into practical use for a long time. For this reason, while advancement of power storage technology is desired, chemical energy such as hydrogen is expected to be dominant energy in energy storage and transportation and energy amount per unit.

水分解にて水素と酸素とを生成(発生)する光触媒には、水素生成用と酸素生成用の大きく分けて2種に大別される。なかでも、金属硫化物は、長波長の光に応答する材料が多く、水素生成用光触媒としての提案が数多くある。   Photocatalysts that generate (generate) hydrogen and oxygen by water splitting are roughly divided into two types for hydrogen generation and oxygen generation. Among them, many metal sulfides respond to long-wavelength light, and there are many proposals as photocatalysts for hydrogen generation.

金属硫化物系の光触媒の提案としては、例えば、特許文献1では、水素発生に有効な光触媒として、組成式Zn1−2x(CuGa)Inで表される複合金属硫化物に関する報告がある。また、特許文献2では、水素発生に有効な光触媒として、CuInSのCuまたはInの一部をAgまたはGaで置換した硫化物固溶体からなる光触媒に関する報告がなされている。また、特許文献3では、水素発生に有効な光触媒として、組成式(CuAg)In2xZn2(1−2x)で表される可視光活性硫化物固溶体に関する報告がある。 As a proposal of a metal sulfide-based photocatalyst, for example, in Patent Document 1, as a photocatalyst effective for hydrogen generation, a report on a composite metal sulfide represented by a composition formula Zn 1-2x (CuGa) x In 2 S 4 There is. Patent Document 2 reports a photocatalyst composed of a sulfide solid solution in which a part of Cu or In in CuInS 2 is substituted with Ag or Ga as a photocatalyst effective for hydrogen generation. In Patent Document 3, as an effective photocatalyst to hydrogen generation, there is a report on a visible light active sulfide solid solution represented by a composition formula (CuAg) x In 2x Zn 2 (1-2x) S 2.

非特許文献1では、同じく、水素発生に有効な光触媒として、組成式Cu0.8Ga0.8−xInZn0.4で表される金属硫化物光触媒が報告されている。 Similarly, Non-Patent Document 1 reports a metal sulfide photocatalyst represented by the composition formula Cu 0.8 Ga 0.8-x In x Zn 0.4 S 2 as a photocatalyst effective for hydrogen generation.

特開2009−066529号公報JP 2009-0666529 A 特開2006−167652号公報JP 2006-167852 A 特開2005−199222号公報JP 2005-199222 A

日本化学会第92年会(2012年)1G1−43「Cu0.8Ga0.8−xInxZn0.4S2の混合硫化物光触媒によるソーラー水素製造」The 92nd Annual Meeting of the Chemical Society of Japan (2012) 1G1-43 “Solar Hydrogen Production Using Mixed Sulfide Photocatalyst of Cu0.8Ga0.8-xInxZn0.4S2”

可視光を利用して水を分解して水素を生成しうる光触媒として、種々の金属硫化物が提案されているが、特に、銅を含む硫化物である黄銅鉱(カルコパイライト)は、太陽電池として利用されているCIGSe(Cu−In−Ga−Se)をはじめとして光応答材料として有用であるものが多い。しかしながら、可視光照射下で水分解に用いられる、それら硫化物材料の有する光触媒特性(水素生成活性)や光電気化学特性は、まだ、十分とは言えない。   Various metal sulfides have been proposed as photocatalysts that can decompose hydrogen using visible light to generate hydrogen. In particular, chalcopyrite, which is a sulfide containing copper, is a solar cell. Many of them are useful as photoresponsive materials including CIGSe (Cu—In—Ga—Se), which is used as However, the photocatalytic properties (hydrogen generation activity) and photoelectrochemical properties of these sulfide materials used for water splitting under visible light irradiation are still not sufficient.

本発明は、かかる現状に鑑み、可視光を用いて水から水素の生成が可能な光触媒であって、優れた水素生成活性を有し、それを用いた水素生成用光触媒電極の光電気化学特性を向上することができる光触媒、および、水素生成用光触媒電極を提供することを目的とする。   In view of the present situation, the present invention is a photocatalyst capable of generating hydrogen from water using visible light, has excellent hydrogen generation activity, and photoelectrochemical characteristics of a photocatalytic electrode for hydrogen generation using the photocatalyst It is an object of the present invention to provide a photocatalyst capable of improving the efficiency and a photocatalytic electrode for hydrogen generation.

本発明者らは、カルコパイライト型の結晶構造を有するカルコゲナイド系複合金属化合物において、Cuと、Sと、GaおよびInの少なくとも一方と、Li、Na、K、Csなどのアルカリ金属とを必須成分として含有し、必要に応じてZnおよびSeの少なくとも一方を含有し、かつ、アルカリ金属を特定量含有させることにより、この複合金属化合物からなる光触媒および該光触媒を用いた光触媒電極が、可視光を用いて水から水素を生成する光触媒および水素生成用光触媒電極として高性能(優れた水素生成活性および光電気化学特性)を発揮することを見出した。具体的には、本発明は以下のようなものを提供する。   In the chalcogenide-based composite metal compound having a chalcopyrite type crystal structure, the present inventors include Cu, S, at least one of Ga and In, and an alkali metal such as Li, Na, K, and Cs as essential components. By containing at least one of Zn and Se as required and containing a specific amount of an alkali metal, the photocatalyst comprising this composite metal compound and the photocatalyst electrode using the photocatalyst emit visible light. It has been found that it exhibits high performance (excellent hydrogen generation activity and photoelectrochemical properties) as a photocatalyst for generating hydrogen from water and a photocatalytic electrode for hydrogen generation. Specifically, the present invention provides the following.

[1]カルコパイライト型の結晶構造を有する複合金属化合物からなり、可視光を用いて水から水素の生成が可能な光触媒であって、前記複合金属化合物が、Cuと、Sと、GaおよびInの少なくとも一方と、アルカリ金属とを必須成分として含有し、必要に応じてZnおよびSeの少なくとも一方を含有し、かつ、前記複合金属化合物中の全金属原子に対して前記アルカリ金属を0.001〜5モル%含有する、光触媒。 [1] A photocatalyst comprising a composite metal compound having a chalcopyrite type crystal structure and capable of generating hydrogen from water using visible light, wherein the composite metal compound comprises Cu, S, Ga and In At least one of the above and an alkali metal as an essential component, and optionally contains at least one of Zn and Se, and 0.001% of the alkali metal with respect to all the metal atoms in the composite metal compound. A photocatalyst containing ˜5 mol%.

[2]前記複合金属化合物が、Cuと、Sと、GaおよびInの少なくとも一方と、アルカリ金属と、Znとを含有する、[1]に記載の光触媒。 [2] The photocatalyst according to [1], wherein the composite metal compound contains Cu, S, at least one of Ga and In, an alkali metal, and Zn.

[3]上記[1]又は[2]に記載の光触媒を有する、水素生成用光触媒電極。 [3] A photocatalytic electrode for hydrogen generation having the photocatalyst described in [1] or [2].

本発明によれば、Cuと、Sと、GaおよびInの少なくとも一方と、アルカリ金属とを必須成分として含有し、必要に応じてZnおよびSeの少なくとも一方を含有し、かつ、アルカリ金属を全金属原子に対して0.001〜5モル%含有するカルコパイライト型の結晶構造を有する複合金属化合物からなる光触媒とすることにより、水素生成活性に優れた光触媒およびそれを用いた光電気化学特性に優れた水素生成用光触媒電極を提供することができる。   According to the present invention, Cu, S, at least one of Ga and In, and an alkali metal are contained as essential components, and if necessary, at least one of Zn and Se is contained. By using a photocatalyst composed of a composite metal compound having a chalcopyrite-type crystal structure containing 0.001 to 5 mol% with respect to a metal atom, a photocatalyst excellent in hydrogen generation activity and photoelectrochemical characteristics using the photocatalyst An excellent photocatalytic electrode for hydrogen generation can be provided.

CGIZS光触媒のXRD測定結果XRD measurement result of CGIZS photocatalyst CGIZS光触媒の光電気化学特性評価結果Photoelectrochemical property evaluation result of CGIZS photocatalyst CGIZS光触媒のXRD測定結果XRD measurement result of CGIZS photocatalyst CGIZS光触媒の光電気化学特性評価結果Photoelectrochemical property evaluation result of CGIZS photocatalyst CGIZS光触媒のXRD測定結果XRD measurement result of CGIZS photocatalyst CGIZS光触媒の光電気化学特性評価結果Photoelectrochemical property evaluation result of CGIZS photocatalyst CGIZS光触媒のXRD測定結果XRD measurement result of CGIZS photocatalyst CGIZS光触媒の光電気化学特性評価結果Photoelectrochemical property evaluation result of CGIZS photocatalyst CGIZS光触媒のXRD測定結果XRD measurement result of CGIZS photocatalyst

以下、具体的に、発明を実施するための形態を示す。1.光触媒の組成と結晶構造、2.光触媒の製造方法、3.助触媒および表面修飾、4.光触媒電極の製造方法、5.光水分解による水素生成方法および光触媒電極の光電気化学特性の評価、について順に記述する。   Hereinafter, the form for implementing this invention concretely is shown. 1. 1. Photocatalyst composition and crystal structure 2. production method of photocatalyst; 3. Cocatalyst and surface modification. 4. Method for producing photocatalytic electrode, The hydrogen generation method by photohydrolysis and the evaluation of the photoelectrochemical properties of the photocatalytic electrode will be described in order.

1.光触媒の組成と結晶構造
本発明の光触媒を構成する複合金属化合物は、カルコパイライト型の結晶構造を有する。
カルコパイライト(Chalcopyrite)とは金色の鉱物である黄銅鉱CuFeSの英名である。この物質は、ZnSに代表される閃亜鉛鉱(ZB)構造を2段重ねにしてZnをCuとFeの2元素で秩序正しく置き換えた正方晶の結晶構造をとる反強磁性の半導体である。構成元素は全て他の元素の四面体で取り囲まれており、原子同士は強い共有結合で結びついている。
1. Composition and Crystal Structure of Photocatalyst The composite metal compound constituting the photocatalyst of the present invention has a chalcopyrite type crystal structure.
Chalcopyrite is the English name for chalcopyrite CuFeS 2 which is a golden mineral. This material is an antiferromagnetic semiconductor having a tetragonal crystal structure in which zinc-blende (ZB) structure typified by ZnS is stacked in two layers and Zn is orderedly replaced by two elements of Cu and Fe. All the constituent elements are surrounded by tetrahedrons of other elements, and atoms are connected by a strong covalent bond.

カルコパイライト構造は、基本的にABCの組成を示し、構成する元素別に大きく分けて、I−III−VI族型とII−IV−V族型の2種がある。I−III−VI族型では、主な構成元素として、I族がCuまたはAg、III族がAl、Ga、In、VI族がS、Se、Teであり、一方、II−IV−V族型では、II族がZnまたはCd、IV族がSi、GeまたはSn、V族がPまたはAsである。 Chalcopyrite structure basically shows the composition of the ABC 2, element composing separately roughly, there are I-III-VI 2 group type and II-IV-V 2 Group type two. In the group I-III-VI type 2 , the main constituent elements are Cu or Ag, group III is Al, Ga, In, group VI is S, Se, Te, while II-IV-V In the group 2 type, the group II is Zn or Cd, the group IV is Si, Ge or Sn, and the group V is P or As.

カルコパイライト構造を有する太陽電池材料として実用化されているCIGSe(Cu,In,Ga,Seからなるカルコゲナイド)はI−III−VI族型構造を有するが、CIGSeは太陽光の利用に適した可視光吸収特性を有する材料としてよく知られている。 CIGSe (chalcogenide consisting of Cu, In, Ga, Se), which is put into practical use as a solar cell material having a chalcopyrite structure, has a I-III-VI group 2 type structure, but CIGSe is suitable for the use of sunlight. It is well known as a material having visible light absorption characteristics.

本発明の光触媒を構成する複合金属化合物は、上記I−III−VI族型のカルコパイライト構造において、I族がCu、III族がGaまたはIn、VI族がSに相当し、カルコパイライト型の結晶構造を有するものである。 The composite metal compound constituting the photocatalyst of the present invention is the above-mentioned I-III-VI group 2 chalcopyrite structure, wherein group I corresponds to Cu, group III corresponds to Ga or In, group VI corresponds to S, and the chalcopyrite type It has a crystal structure of

そして、本発明の光触媒を構成するカルコパイライト型の結晶構造を有する複合金属化合物(以下、「本発明における複合金属化合物」とも記載する。)は、Cuと、Sと、GaおよびInの少なくとも一方と、アルカリ金属とを必須成分として含有し、必要に応じてZnおよびSeの少なくとも一方を含有し、かつ、複合金属化合物中の全金属原子に対してアルカリ金属を0.001〜5モル%含有することを特徴とする。なお、本発明における複合金属化合物は、Cuと、Sと、GaおよびInの少なくとも一方と、アルカリ金属と、Znとを含有することが好ましい。また、本発明における複合金属化合物は、Cu、S、Ga、In、Zn及びアルカリ金属以外の金属成分を含有していてもよい。   The composite metal compound having a chalcopyrite crystal structure (hereinafter also referred to as “composite metal compound in the present invention”) constituting the photocatalyst of the present invention is at least one of Cu, S, Ga, and In. And an alkali metal as an essential component, containing at least one of Zn and Se as required, and containing 0.001 to 5 mol% of an alkali metal with respect to all metal atoms in the composite metal compound It is characterized by doing. In addition, it is preferable that the composite metal compound in this invention contains Cu, S, at least one of Ga and In, an alkali metal, and Zn. Moreover, the composite metal compound in this invention may contain metal components other than Cu, S, Ga, In, Zn, and an alkali metal.

このような本発明における複合金属化合物は、そのまま光触媒として、あるいは、光触媒電極に組み込むことで、可視光照射下に、水を分解して水素を高い活性で生成する機能を有している。すなわち、本発明における複合金属化合物からなる光触媒は、可視光を用いて水から水素を生成する光触媒として、水素生成活性に優れる。また、このような光触媒を用いて製造された光触媒電極、例えば、光触媒が積層された集電導電体層を有する光触媒電極は、光電気化学特性が向上されたものとなる。   Such a composite metal compound in the present invention has a function of generating hydrogen with high activity by decomposing water under irradiation with visible light by incorporating it as a photocatalyst as it is or in a photocatalytic electrode. That is, the photocatalyst comprising the composite metal compound in the present invention is excellent in hydrogen generation activity as a photocatalyst that generates hydrogen from water using visible light. In addition, a photocatalyst electrode manufactured using such a photocatalyst, for example, a photocatalyst electrode having a current collecting conductor layer on which photocatalysts are laminated has improved photoelectrochemical characteristics.

本発明における複合金属化合物は、各金属成分の含有量によってバンド構造が変化する。該複合金属化合物の価電子帯はCuの3dとSの3pの各軌道がバンド形成に寄与し、該複合金属化合物の伝導帯はGaの4s4p、Inの5s5pおよびZnの4s4pの各軌道がバンド形成に寄与するとされる。Gaの4s4pおよびZnの4s4pに対して、Inの5s5pの位置は貴側に位置するため、該複合金属化合物の伝導帯の位置は、Ga、In、Znの3者の組成の変化に応じて変化する。   The band structure of the composite metal compound in the present invention varies depending on the content of each metal component. In the valence band of the composite metal compound, Cu 3d and S 3p orbitals contribute to band formation, and the composite metal compound conduction band is Ga 4s4p, In 5s5p and Zn 4s4p orbitals. It is supposed to contribute to formation. Since the position of 5s5p of In is located on the noble side with respect to 4s4p of Ga and 4s4p of Zn, the position of the conduction band of the composite metal compound depends on the change in the composition of the three of Ga, In and Zn Change.

水分解による水素生成を可能とする光触媒は、伝導帯下端の電位が0VRHEより卑側になる必要があり、本発明における複合金属化合物はいずれもそれを満たすと考えられる。 The photocatalyst that enables hydrogen generation by water splitting needs to have a potential at the lower end of the conduction band lower than 0 V RHE , and any of the composite metal compounds in the present invention is considered to satisfy it.

ここで、本発明者らは、鋭意検討したところ、CGIS(Cuと、In及びGaの少なくとも一方と、Sとを含むカルコゲナイド)光触媒が、固相法により合成されるものに比して、塩化リチウムと塩化カリウムからなる共晶溶融塩を用いるフラックス法により製造されるものの方が光触媒特性において高い活性が発現することが判明した。そしてその理由を探るためさらに検討したところ、光触媒中に含まれるアルカリ金属成分量に差異があることを突き止め本発明に至った。すなわち、アルカリ金属が存在しない固相法による合成時にアルカリ金属を積極的に添加して合成した際に光触媒の活性が向上すること、および、塩化リチウムと塩化カリウムからなる共晶溶融塩を用いるフラックス法により合成された触媒中にリチウムがいずれも残存していることを見出した。   Here, the present inventors have intensively studied and found that a CGIS (chalcogenide containing Cu, at least one of In and Ga, and S) photocatalysts were compared with those synthesized by a solid phase method. It was found that those produced by the flux method using a eutectic molten salt composed of lithium and potassium chloride exhibit higher activity in photocatalytic properties. Further investigation was conducted to find out the reason, and as a result, the present inventors found out that there is a difference in the amount of alkali metal components contained in the photocatalyst, and reached the present invention. That is, the activity of the photocatalyst is improved when synthesizing by the active addition of alkali metal during the synthesis by the solid phase method in which no alkali metal is present, and the flux using the eutectic molten salt composed of lithium chloride and potassium chloride It was found that lithium remained in the catalyst synthesized by the method.

なお、カルコパイライト型の結晶構造を有する太陽電池材料として知られるCIGSe(Cu,In,Ga,Seからなるカルコゲナイド)においては、アルカリ添加による効果が知られている。CIGSe太陽電池では、ソーダ石灰ガラスを基板として用いることにより、NaイオンがCIGSe光吸収層に拡散することで、Naを含んだCIGSe太陽電池において、その開放電圧の増大とそれに伴う変換効率の向上など性能面で優れた効果がある。CIGSe太陽電池におけるこうしたNaイオンの効果については、キャリア濃度の向上などの物性面の特性向上が要因と考えられているが、なぜそのような特性向上が発現するかについては諸説あり、理論的な裏付けは十分でない。本発明の光触媒およびそれを用いた光触媒電極においても、光吸収により励起電子とホールとに電荷分離する初期過程は、上記の太陽電池と同じ機構が想定されるため、類似のアルカリ添加による効果が期待されるものと思われるが、これまでそうした報告がなされた文献等は見当たらない。   In CIGSe (chalcogenide composed of Cu, In, Ga, Se), which is known as a solar cell material having a chalcopyrite type crystal structure, the effect of adding an alkali is known. In the CIGSe solar cell, by using soda lime glass as a substrate, Na ions diffuse into the CIGSe light absorption layer, so that in the CIGSe solar cell containing Na, the open circuit voltage is increased and the conversion efficiency is improved accordingly. There is an excellent effect in terms of performance. The effect of Na ions in CIGSe solar cells is thought to be due to improved physical properties such as improved carrier concentration, but there are various theories as to why such improved properties appear. Support is not enough. Also in the photocatalyst of the present invention and the photocatalyst electrode using the same, the initial process of charge separation into excited electrons and holes by light absorption is assumed to have the same mechanism as the above solar cell, and therefore the effect of similar alkali addition is effective. Although it seems to be expected, there are no documents that have been reported so far.

本発明における複合金属化合物が含有するアルカリ金属の量は、複合金属化合物中の全金属原子に対して、アルカリ金属が0.001〜5モル%、好ましくは、0.01〜2.5モル%である。なお、本明細書において、複合金属化合物中の金属原子とは、アルカリ金属及びアルカリ金属以外の金属原子であり、SeやSは金属原子ではない。複合金属化合物中の全金属原子に対するアルカリ金属の含有量(モル%)は、モル基準で、アルカリ金属の合計/(アルカリ金属及びアルカリ金属以外の金属原子の合計)×100で求められる。また、本発明における複合金属化合物が含有するアルカリ金属の量は、重量基準で、1ppm〜5000ppmが望ましく、5ppm〜2000ppmがより望ましい。   The amount of the alkali metal contained in the composite metal compound in the present invention is 0.001 to 5 mol%, preferably 0.01 to 2.5 mol% of the alkali metal with respect to all metal atoms in the composite metal compound. It is. In the present specification, the metal atom in the composite metal compound is a metal atom other than alkali metal and alkali metal, and Se and S are not metal atoms. The content (mol%) of the alkali metal with respect to all the metal atoms in the composite metal compound is determined on a molar basis by the sum of alkali metals / (total of metal atoms other than alkali metals and alkali metals) × 100. Further, the amount of the alkali metal contained in the composite metal compound in the present invention is preferably 1 ppm to 5000 ppm and more preferably 5 ppm to 2000 ppm on a weight basis.

本発明における複合金属化合物が含有するアルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムなどが好適に用いられ、リチウム、ナトリウム、カリウムがより好ましく、リチウムがさらに好ましい。   As the alkali metal contained in the composite metal compound in the present invention, lithium, sodium, potassium, rubidium, cesium and the like are suitably used, lithium, sodium and potassium are more preferred, and lithium is more preferred.

これらアルカリ金属がどのような状態で当該複合金属化合物に含まれているかについては詳細は十分に分かっていない。フラックス法にて製造される複合金属化合物については、その製造過程において、フラックス処理後に残存するハロゲン化アルカリを除去するために水洗工程を通常数回実施するが、水洗を5回以上繰り返してもアルカリが残存していることから、アルカリ金属はイオンの状態で結晶格子内に取り込まれている可能性があると考えられる。実際、リチウムを含む複合金属化合物のXRD測定により、結晶の格子定数が小さくなっており、他のCu、Ga、In、Zn金属よりイオン半径の小さなリチウムが結晶格子に取り込まれている可能性が確認されている。   The details of how these alkali metals are contained in the composite metal compound are not fully understood. For composite metal compounds produced by the flux method, in the production process, the water washing step is usually carried out several times in order to remove the alkali halide remaining after the flux treatment. Therefore, it is considered that the alkali metal may be taken into the crystal lattice in an ionic state. In fact, the XRD measurement of a composite metal compound containing lithium shows that the crystal lattice constant is small, and lithium having an ionic radius smaller than that of other Cu, Ga, In, and Zn metals may be taken into the crystal lattice. It has been confirmed.

また、本発明における複合金属化合物は、例えば、カルコパイライト型の結晶構造を有し下記式(1)で表される複合金属化合物である。なお、本発明における複合金属化合物が下記式(1)で表される複合金属化合物の場合は、複合金属化合物中の全金属原子に対するアルカリ金属の含有量(モル%)は、f/(f+a+b+c+d)×100で求められる。   Moreover, the composite metal compound in this invention is a composite metal compound which has a chalcopyrite type crystal structure and is represented by the following formula (1), for example. In addition, when the composite metal compound in this invention is a composite metal compound represented by following formula (1), content (mol%) of the alkali metal with respect to all the metal atoms in a composite metal compound is f / (f + a + b + c + d). It is calculated | required by x100.

CuGaInZn2−e・・・(1)
(上記式中、a、b、c、d、e、fは下記条件を満たし、XはSeを示し、Yはアルカリ金属を示す。
0<a≦2、0<(b+c)≦1.67、0≦d<2、0≦e<2、0<f<0.1。)
Cu a Ga b In c Zn d S 2-e X e Y f ··· (1)
(In the above formula, a, b, c, d, e, and f satisfy the following conditions, X represents Se, and Y represents an alkali metal.
0 <a ≦ 2, 0 <(b + c) ≦ 1.67, 0 ≦ d <2, 0 ≦ e <2, 0 <f <0.1. )

本発明における複合金属化合物が含有する成分の含有量比は、カルコパイライト型の結晶構造を有すれば特に限定されないが、式(1)において、好ましくは、0.2≦a≦1.2、0.0≦b≦1.0、0.0≦c≦1.0、0.0≦d≦1.5、0.0≦e≦1.0、0.0001≦f≦0.100、より好ましくは、0.4≦a≦1.0、0.0≦b≦0.8、0.0≦c≦0.8、0.0≦d≦1.2、0.0≦e≦0.5、0.0001≦f≦0.050である。また、上述の通り、アルカリ金属の含有量(モル%)、すなわち、f/(f+a+b+c+d)×100は、好ましくは、0.001〜5.0、より好ましくは、0.01〜2.5である。   The content ratio of the components contained in the composite metal compound in the present invention is not particularly limited as long as it has a chalcopyrite type crystal structure. In the formula (1), preferably, 0.2 ≦ a ≦ 1.2, 0.0 ≦ b ≦ 1.0, 0.0 ≦ c ≦ 1.0, 0.0 ≦ d ≦ 1.5, 0.0 ≦ e ≦ 1.0, 0.0001 ≦ f ≦ 0.100, More preferably, 0.4 ≦ a ≦ 1.0, 0.0 ≦ b ≦ 0.8, 0.0 ≦ c ≦ 0.8, 0.0 ≦ d ≦ 1.2, 0.0 ≦ e ≦ 0.5 and 0.0001 ≦ f ≦ 0.050. Moreover, as above-mentioned, content (mol%) of an alkali metal, ie, f / (f + a + b + c + d) * 100, Preferably, it is 0.001-5.0, More preferably, it is 0.01-2.5. is there.

2.光触媒の製造方法
本発明の光触媒の製造方法は特に限定はされない。上記の通り、光触媒を構成する複合金属化合物の元素成分および組成、カルコパイライト型の結晶構造が満たされれば、その製造方法は限定されるものではない。
2. Production method of photocatalyst The production method of the photocatalyst of the present invention is not particularly limited. As described above, the manufacturing method is not limited as long as the elemental component and composition of the composite metal compound constituting the photocatalyst and the chalcopyrite type crystal structure are satisfied.

本発明においては、固相法、フラックス法、固相法、MBE(分子線エピタキシー法)などの物理製膜法を用いることができる。特にフラックス法やMBE製膜が好適に用いられる。   In the present invention, a physical film forming method such as a solid phase method, a flux method, a solid phase method, or MBE (molecular beam epitaxy method) can be used. In particular, a flux method or MBE film formation is preferably used.

固相法においては、原料として、硫化第一銅(CuS)、硫化ガリウム(Ga)、硫化インジウム(In)、硫化亜鉛(ZnS)等の金属硫化物、あるいは、セレン化第一銅(CuSe)、セレン化ガリウム(GaSe)、セレン化インジウム(InSe)、セレン化亜鉛(ZnSe)等の金属セレン化物を用いることができる。また、アルカリ金属源としては、硫化物やセレン化物、例えば、硫化リチウム、硫化ナトリウム、硫化カリウム等の硫化アルカリ金属塩や、セレン化リチウムやセレン化ナトリウムなどのセレン化アルカリ金属塩などを用いることができる。これらは通常は固体であり、粉末状にてよく混合して用いられる。 In the solid phase method, as a raw material, a metal sulfide such as cuprous sulfide (Cu 2 S), gallium sulfide (Ga 2 S 3 ), indium sulfide (In 2 S 3 ), zinc sulfide (ZnS), or Metal selenides such as cuprous selenide (Cu 2 Se), gallium selenide (Ga 2 Se 3 ), indium selenide (In 2 Se 3 ), and zinc selenide (ZnSe) can be used. In addition, as an alkali metal source, a sulfide or selenide, for example, an alkali metal sulfide such as lithium sulfide, sodium sulfide, or potassium sulfide, or an alkali metal selenide such as lithium selenide or sodium selenide is used. Can do. These are usually solids, and are mixed well in powder form.

固相法における製造条件としては、原料の混合物を、真空または減圧下、あるいは、常圧下に、窒素やアルゴンなどの不活性ガスの共存下に、600℃以上、好ましくは700℃以上、より好ましくは800℃以上に数時間から数十時間熱処理を行うことにより製造される。熱処理後は室温に戻ってから粉砕等の処置を行うことで、光触媒あるいは光触媒電極製造に供することができる。   The production conditions in the solid phase method include a mixture of raw materials of 600 ° C. or higher, preferably 700 ° C. or higher, more preferably under vacuum or reduced pressure, or under normal pressure and in the presence of an inert gas such as nitrogen or argon. Is produced by heat treatment at 800 ° C. or higher for several hours to several tens of hours. After the heat treatment, it can be used for the production of a photocatalyst or a photocatalytic electrode by performing a treatment such as pulverization after returning to room temperature.

フラックス法においては、原料として、硫化第一銅(CuS)、硫化ガリウム(Ga)、硫化インジウム(In)、硫化亜鉛(ZnS)等の金属硫化物、あるいは、セレン化第一銅(CuSe)、セレン化ガリウム(GaSe)、セレン化インジウム(InSe)、セレン化亜鉛(ZnSe)等の金属セレン化物を用いることができる。これらは通常は固体であり、粉末状にてよく混合して用いられる。 In the flux method, as a raw material, a metal sulfide such as cuprous sulfide (Cu 2 S), gallium sulfide (Ga 2 S 3 ), indium sulfide (In 2 S 3 ), zinc sulfide (ZnS), or selenium Metal selenides such as cuprous iodide (Cu 2 Se), gallium selenide (Ga 2 Se 3 ), indium selenide (In 2 Se 3 ), and zinc selenide (ZnSe) can be used. These are usually solids, and are mixed well in powder form.

フラックス法において用いられるフラックス剤は、特に限定されない。例えば、金属塩化物、例えば、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化セシウムなどのアルカリ金属塩化物、塩化カルシウム、塩化ストロンチウム、塩化バリウムなどのアルカリ土類金属塩化物が好適に用いられる。なかでも、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化セシウムがより好ましく、これら塩化物を2種以上混合することが特に好ましい。これらの混合物は低い融点を示すので、フラックス剤として好ましく用いられる。   The flux agent used in the flux method is not particularly limited. For example, metal chlorides such as alkali metal chlorides such as lithium chloride, sodium chloride, potassium chloride, and cesium chloride, and alkaline earth metal chlorides such as calcium chloride, strontium chloride, and barium chloride are preferably used. Of these, lithium chloride, sodium chloride, potassium chloride, and cesium chloride are more preferable, and it is particularly preferable to mix two or more of these chlorides. Since these mixtures show a low melting point, they are preferably used as a fluxing agent.

例えば、塩化リチウム(融点605℃)と塩化カリウム(融点770℃)の混合物は、59.5:40.5のモル比で融点352℃の共晶溶融塩を形成する。また、塩化ナトリウム(融点801℃)と塩化セシウム(融点645℃)の混合物も35:65のモル比で融点486℃の共晶溶融塩となる。   For example, a mixture of lithium chloride (melting point 605 ° C.) and potassium chloride (melting point 770 ° C.) forms a eutectic molten salt with a melting point of 352 ° C. at a molar ratio of 59.5: 40.5. A mixture of sodium chloride (melting point 801 ° C.) and cesium chloride (melting point 645 ° C.) also becomes an eutectic molten salt having a melting point of 486 ° C. at a molar ratio of 35:65.

フラックス法において用いられる金属塩化物としては、塩化リチウムと塩化カリウムとの組合せが特に好ましい。塩化リチウムと塩化カリウムとの混合組成としては、その融点を低下させる点で、塩化リチウムと塩化カリウムとのモル比が40:60〜80:20であることが好ましく、50:50〜70:30であることがより好ましく、その融点が最低となる点で、59.5:40.5であることが特に好ましい。本実施態様では、金属塩化物として、塩化リチウムと塩化カリウムのモル比59.5:40.5付近の混合物が好適に用いられる。   As the metal chloride used in the flux method, a combination of lithium chloride and potassium chloride is particularly preferable. As a mixed composition of lithium chloride and potassium chloride, the molar ratio of lithium chloride to potassium chloride is preferably 40:60 to 80:20, and 50:50 to 70:30, in that the melting point is lowered. It is more preferable that it is 59.5: 40.5 in that the melting point is the lowest. In this embodiment, as the metal chloride, a mixture of lithium chloride and potassium chloride in a molar ratio of around 59.5: 40.5 is preferably used.

用いるフラックス剤、すなわち、上記金属塩化物の量は、特に限定されないが、原料の金属硫化物あるいは金属セレン化物の混合物の量に対して、モル比で1以上、約20以下が好ましく、通常は5以上、約10倍以下が好適である。かかる範囲内であると、上述の一般式で表される複合金属化合物ないし光触媒の製造方法における熱処理を低温化しやすく、また、上述の一般式の成分範囲を容易に達成することができる。   The amount of the fluxing agent to be used, that is, the amount of the metal chloride is not particularly limited, but is preferably 1 or more and about 20 or less in terms of molar ratio with respect to the amount of the raw material metal sulfide or metal selenide mixture. 5 or more and about 10 times or less are suitable. Within such a range, the heat treatment in the method for producing a composite metal compound or photocatalyst represented by the above general formula can be easily lowered, and the component range of the above general formula can be easily achieved.

本実施態様における熱処理、すなわち、フラックス時の温度としては、400℃以上、800℃以下が好ましく、450℃以上、750℃以下がより好ましい。   The heat treatment in this embodiment, that is, the temperature at the time of flux is preferably 400 ° C. or higher and 800 ° C. or lower, more preferably 450 ° C. or higher and 750 ° C. or lower.

熱処理の時間としては、0.5時間以上、50時間以下が好ましく、1時間以上、30時間以下がより好ましく、2時間以上、20時間以下がさらに好ましい。   The heat treatment time is preferably 0.5 hours or more and 50 hours or less, more preferably 1 hour or more and 30 hours or less, and further preferably 2 hours or more and 20 hours or less.

熱処理における昇温速度としては、0.5℃/分以上、20℃/分以下が好ましく、1℃/分以上、15℃/分以下がより好ましい。   The heating rate in the heat treatment is preferably 0.5 ° C./min or more and 20 ° C./min or less, more preferably 1 ° C./min or more and 15 ° C./min or less.

本実施態様における熱処理における降温速度としては、0.5℃/分以上、20℃/分以下が好ましく、1℃/分以上、15℃/分以下がより好ましい。特に、降温については、結晶成長への影響が大きいことから、一定速度で降温するだけでなく、途中で一定温度において保持する、途中で降温速度を変更するなどの工夫が有効な場合がある。具体的には、1℃/分以上、15℃/分以下の降温速度において降温した後、300℃以上、600℃以下における一定温度において30分以上、300分以下の時間保持し、次いで1℃/分以上、15℃/分以下の降温速度において室温付近まで降温する方法などが挙げられる。   The temperature lowering rate in the heat treatment in this embodiment is preferably 0.5 ° C./min or more and 20 ° C./min or less, more preferably 1 ° C./min or more and 15 ° C./min or less. In particular, since the temperature drop has a great influence on crystal growth, there are cases where not only the temperature is lowered at a constant speed, but also a device such as holding at a constant temperature in the middle or changing the temperature drop speed in the middle may be effective. Specifically, the temperature is lowered at a temperature lowering rate of 1 ° C./min or more and 15 ° C./min or less, then held at a constant temperature of 300 ° C. or more and 600 ° C. or less for 30 minutes or more and 300 minutes or less, and then 1 ° C. For example, a method of lowering the temperature to near room temperature at a temperature lowering rate of 15 ° C./min.

本実施態様における熱処理は、大気中で行うことができ、通常、0.1×10Pa以上、2000×10Pa以下、例えば1×10Pa以上、1000×10Pa以下の圧力において行うことができる。かかる熱処理は、例えば、開放系の反応容器内において行うことができる。従って、本実施態様における熱処理は、真空下に熱処理する必要がなく、また、原料とする金属硫化物や金属セレン化物およびフラックス剤とする金属塩化物を石英製ガラス管、石英アンプル管などの閉鎖系の反応容器内において熱処理する必要がないが、本実施態様における熱処理ないしフラックス時における雰囲気は特に限定されず、大気下、または不活性ガス雰囲気下、さらには、通常、減圧下ないし真空下のいずれの雰囲気も適用可能であり、密閉系あるいは開放系のいずれの反応容器内における熱処理を行ってもよい。本実施態様における熱処理ないしフラックス時における雰囲気としては、装置内、不活性ガス雰囲気下、または真空下が好ましく、真空下がより好ましい。 The heat treatment in the present embodiment can be performed in the atmosphere, and is usually performed at a pressure of 0.1 × 10 5 Pa or more and 2000 × 10 5 Pa or less, for example, 1 × 10 5 Pa or more and 1000 × 10 5 Pa or less. It can be carried out. Such heat treatment can be performed, for example, in an open reaction vessel. Therefore, the heat treatment in this embodiment does not require heat treatment under vacuum, and the metal sulfide or metal selenide used as a raw material and the metal chloride used as a flux agent are closed such as quartz glass tubes and quartz ampule tubes. It is not necessary to perform heat treatment in the reaction vessel of the system, but the atmosphere during the heat treatment or flux in the present embodiment is not particularly limited, and it is in the air or in an inert gas atmosphere, and usually under reduced pressure or vacuum. Any atmosphere is applicable, and heat treatment may be performed in either a closed or open reaction vessel. The atmosphere during heat treatment or flux in this embodiment is preferably in the apparatus, under an inert gas atmosphere, or under vacuum, and more preferably under vacuum.

上記熱処理(フラックス)を行った後は、水により洗浄することにより、触媒中に過剰に残ったフラックス剤を除去することが好ましい。金属硫化物や金属セレン化物および本発明の光触媒は水に不溶であり、金属塩化物は水に可溶であるので、水洗浄により効果的にフラックス剤である金属塩化物を除去することができる。   After performing the heat treatment (flux), it is preferable to remove the flux agent remaining excessively in the catalyst by washing with water. Since the metal sulfide, metal selenide and the photocatalyst of the present invention are insoluble in water and the metal chloride is soluble in water, the metal chloride which is a flux agent can be effectively removed by washing with water. .

洗浄に用いる水の量、洗浄回数、洗浄時間などは、特に限定されず、洗浄水に塩素が検出されなくなるまでというのが通常の指標となる。水による洗浄方法としては、例えば、1回の洗浄あたり固形物の2〜20倍の体積の水を用いて、洗浄回数は通常3回以上、洗浄時間は5分以上/回で行うことが挙げられる。通常、かかる範囲内であれば、洗浄回数は6回以下、洗浄時間は60分以下/回で行うことができる。   The amount of water used for cleaning, the number of times of cleaning, the cleaning time, etc. are not particularly limited, and the normal indication is that chlorine is no longer detected in the cleaning water. As a cleaning method with water, for example, using 2 to 20 times the volume of solids per cleaning, the number of cleaning is usually 3 times or more, and the cleaning time is 5 minutes / time or more. It is done. Usually, within such a range, the number of washings can be 6 times or less and the washing time can be 60 minutes or less / time.

洗浄後は、通常、乾燥させる。乾燥方法は、特に限定されないが、熱負荷をあまりかけずに水分を除去することが望ましい。室温〜50℃くらいで、常圧または減圧下に乾燥させることが好ましい。   After washing, it is usually dried. The drying method is not particularly limited, but it is desirable to remove moisture without applying much heat load. It is preferable to dry at room temperature to about 50 ° C. under normal pressure or reduced pressure.

上記製造方法により得られる本発明の光触媒を構成する複合金属化合物において、含まれるアルカリ金属の量は、水洗工程には依存せず、フラックス剤の種類、原料の金属硫化物あるいは金属セレン化物の混合物の量に対する量の関係、フラックス時の温度や時間など、また必要に応じて使用する硫化アルカリ金属塩やセレン化アルカリ金属塩の量などに依存する。上述の製造方法に従えば、所望量のアルカリ金属を含有する複合金属化合物を得ることができる。   In the composite metal compound constituting the photocatalyst of the present invention obtained by the above production method, the amount of alkali metal contained does not depend on the washing step, and the type of flux agent, the raw material metal sulfide or the mixture of metal selenide It depends on the relationship of the amount to the amount, the temperature and time at the time of flux, and the amount of alkali metal sulfide or selenide alkali metal salt used as required. According to the above production method, a composite metal compound containing a desired amount of alkali metal can be obtained.

MBE製膜は、真空条件下に、基板上に触媒成分を蒸着することで結晶成長させて製造する方法である。原料としては、Cu、Ga、In、Znなどの金属および硫黄やセレンを用いることができる。各原料は、特定のセルにおいて蒸発速度を規定することで基板への蒸着量を制御することで組成などを制御する。アルカリ金属は、蒸気圧を有する化合物、例えば、フッ化リチウム、フッ化ナトリウム、フッ化カリウムなどを用いて導入することができる。   The MBE film formation is a method of manufacturing by crystal growth by depositing a catalyst component on a substrate under vacuum conditions. As a raw material, metals such as Cu, Ga, In and Zn, and sulfur and selenium can be used. The composition of each raw material is controlled by controlling the evaporation amount on the substrate by defining the evaporation rate in a specific cell. The alkali metal can be introduced using a compound having a vapor pressure, for example, lithium fluoride, sodium fluoride, potassium fluoride and the like.

また、こうして製造された複合金属化合物について、後からアルカリ金属を添加することで含有させることもできる。例えば、粉末状で得られた複合金属化合物に、例えば、硫化リチウムや硫化ナトリウムなどのアルカリ金属化合物を混合する方法である。粉末状態で混合してもよいし、アルカリ金属を気体状態にして固体粉末状の複合金属化合物に混合する方法などでもよい。   Moreover, about the composite metal compound manufactured in this way, it can also be made to contain by adding an alkali metal later. For example, it is a method of mixing an alkali metal compound such as lithium sulfide or sodium sulfide with a composite metal compound obtained in a powder form. It may be mixed in a powder state, or may be a method in which an alkali metal is made into a gaseous state and mixed with a solid powdery composite metal compound.

さらに、後述の工程により光触媒電極化した後に、アルカリ金属を導入することもできる。   Furthermore, an alkali metal can be introduced after the photocatalytic electrode is formed by a process described later.

3.助触媒および表面修飾
本発明の光触媒である複合金属化合物は、光励起された電子を用いて水を還元して水素を生成するが、助触媒はその活性点として機能する。その際に、光励起された電子が助触媒の表面において水分子に電子を与えることで水素分子が生成すると考えられる。
3. Co-catalyst and surface modification The composite metal compound, which is the photocatalyst of the present invention, generates hydrogen by reducing water using photoexcited electrons, and the co-catalyst functions as an active site. At that time, it is considered that photo-excited electrons give hydrogen molecules to water molecules on the surface of the promoter, thereby generating hydrogen molecules.

従って、光水分解に供される光触媒が光水分解活性を効果的に発揮するためには、光触媒表面に水素生成を促進する助触媒を担持して用いることが好ましい。また、光励起された電子が効率よく電荷分離して触媒表面に担持された助触媒に移動するために、または、光触媒自体が水との接触によって経時劣化が起ることを緩和するなどのために、光触媒の表面を修飾することが性能向上や安定性付与に望ましい。   Therefore, in order for the photocatalyst to be used for photohydrolysis to exhibit the photowater splitting activity effectively, it is preferable to use a cocatalyst that promotes hydrogen generation on the photocatalyst surface. In addition, the photoexcited electrons can be efficiently separated by charge and transferred to the cocatalyst supported on the catalyst surface, or the photocatalyst itself can be alleviated from deterioration due to contact with water. It is desirable to modify the surface of the photocatalyst for performance improvement and stability.

本発明における助触媒としては、白金、ルテニウム、イリジウム、パラジウム、金などの貴金属が好ましく用いられる。助触媒は、2種以上を用いてもよいが、通常、1種のみを用いることでも十分に助触媒の機能を発揮することができる。それら助触媒の担持の形態は、特に限定されないが、触媒表面に粒子として担持された状態が好ましい。助触媒は平均直径が0.1〜10nmのナノサイズの微粒子であることが好ましい。   As the promoter in the present invention, noble metals such as platinum, ruthenium, iridium, palladium and gold are preferably used. Two or more cocatalysts may be used, but usually the function of the cocatalyst can be sufficiently exhibited by using only one cocatalyst. The form of supporting these cocatalysts is not particularly limited, but a state where they are supported as particles on the catalyst surface is preferable. The promoter is preferably nano-sized fine particles having an average diameter of 0.1 to 10 nm.

助触媒の担持方法としては、特に限定されず、例えば、含浸、光電着、電気泳動、スパッタなどの一般的な方法などが挙げられる。担持量も特に限定されるものでなく、光触媒の0.1〜10質量%が好ましく、0.5〜3質量%がより好ましい。   The method for supporting the cocatalyst is not particularly limited, and examples thereof include general methods such as impregnation, photodeposition, electrophoresis, and sputtering. The amount supported is not particularly limited, and is preferably 0.1 to 10% by mass, and more preferably 0.5 to 3% by mass of the photocatalyst.

含浸法では、貴金属のハロゲン化物やアンミン錯体等の水や有機溶媒に溶解する化合物を用いて、光触媒上に含浸した後、水素等の還元剤を用いて金属状に還元する。用いた水や溶媒は熱的にまたは減圧下の操作によって除去する。   In the impregnation method, a compound that dissolves in water or an organic solvent such as a noble metal halide or an ammine complex is impregnated on a photocatalyst, and then reduced to a metallic state using a reducing agent such as hydrogen. The used water and solvent are removed thermally or by operation under reduced pressure.

また、スパッタ法では、通常、白金(Pt)、ルテニウム(Ru)、イリジウム(Ir)等の貴金属の板に、真空下にグロー放電させた不活性ガスを衝突させて、飛び出してくる金属を光触媒の表面に付着させる。光触媒は、通常、電極状に加工された状態でスパッタ法に供せられる。   Further, in the sputtering method, normally, a noble metal plate such as platinum (Pt), ruthenium (Ru), iridium (Ir) or the like is collided with an inert gas that has been glow-discharged under vacuum, and the metal that jumps out is photocatalyzed. Adhere to the surface. The photocatalyst is usually subjected to a sputtering method after being processed into an electrode shape.

また、蒸着法には、物理蒸着と化学蒸着の2種がある。物理蒸着においては、通常、白金(Pt)、ルテニウム(Ru)、イリジウム(Ir)等の貴金属を熱することによって蒸発させ、光触媒の表面に凝結・固化させる。光触媒は、通常、電極状に加工された状態で蒸着法に供せられる。化学蒸着においては、白金(Pt)、ルテニウム(Ru)、イリジウム(Ir)等の貴金属を含む、揮発性の化合物を気化させて、光触媒上に堆積させた後、適切な還元剤を用いて還元する。   There are two types of vapor deposition methods, physical vapor deposition and chemical vapor deposition. In physical vapor deposition, a noble metal such as platinum (Pt), ruthenium (Ru), iridium (Ir), etc. is usually evaporated by heating, and condensed and solidified on the surface of the photocatalyst. The photocatalyst is usually subjected to a vapor deposition method after being processed into an electrode shape. In chemical vapor deposition, volatile compounds including noble metals such as platinum (Pt), ruthenium (Ru) and iridium (Ir) are vaporized and deposited on a photocatalyst, and then reduced using an appropriate reducing agent. To do.

また、表面修飾としては、まず、上述の複合金属化合物に対し、n型半導体となる物質を積層または担持することが好ましい。p型半導体である上述の複合金属化合物の表面にn型半導体を積層または担持することでpn接合が形成され、それによって励起電子がp型半導体からn型半導体へ、さらに助触媒へと励起電子が効果的に運ばれる。その際に、励起電子と空孔との再結合を抑制することも同時に期待されるので、効率よい電荷分離が実現できると考えられる。   As surface modification, it is preferable to first laminate or carry a substance that becomes an n-type semiconductor on the above-described composite metal compound. A pn junction is formed by laminating or supporting an n-type semiconductor on the surface of the above-described composite metal compound, which is a p-type semiconductor, whereby excited electrons are transferred from the p-type semiconductor to the n-type semiconductor and further to the promoter. Is carried effectively. At that time, suppression of recombination between excited electrons and vacancies is also expected at the same time, and it is considered that efficient charge separation can be realized.

本実施態様で好適に用いられる上記n型半導体としては、CdS、ZnS、Inなどの金属硫化物が挙げられ、CdS、ZnSがより好適に用いられる。かかるn型半導体ないし金属硫化物としては、2種以上を用いてもよいが、通常、1種のみを用いることでも十分に機能を発揮することができる。これらn型半導体金属硫化物の担持の形態としては、特に限定されないが、複合金属化合物の表面に、膜として積層または粒子として担持された状態が好ましく、積層の場合の層の膜厚は通常0.1〜1nmであり、担持の場合の粒子の大きさは平均直径が1〜50nmの微粒子であることが好ましい。 Examples of the n-type semiconductor preferably used in this embodiment include metal sulfides such as CdS, ZnS, and In 2 S 3 , and CdS and ZnS are more preferably used. As such an n-type semiconductor or metal sulfide, two or more kinds may be used, but usually only one kind can sufficiently function. The form of supporting these n-type semiconductor metal sulfides is not particularly limited, but it is preferably in the state of being stacked as a film or supported as particles on the surface of the composite metal compound, and the layer thickness in the case of stacking is usually 0. The particle size in the case of carrying is preferably fine particles having an average diameter of 1 to 50 nm.

n型半導体金属硫化物の担持の方法は、特に限定されるものでなく、例えば、含浸法、化学溶液析出法(CBD法、Chemical Bath Deposition)、光電着、電気泳動、スパッタなどが好適に用いられる。特に化学溶液析出法がより好ましい。   The method for supporting the n-type semiconductor metal sulfide is not particularly limited, and for example, an impregnation method, a chemical solution deposition method (CBD method, chemical bath deposition), photoelectric deposition, electrophoresis, sputtering, etc. are preferably used. It is done. In particular, a chemical solution precipitation method is more preferable.

化学溶液析出法でCdSを担持する場合について説明する。Cd源には、硫酸カドミウムや酢酸カドミウムなどのCd塩、硫黄源にはチオ尿素、中和剤としてアンモニア水が好適に用いられる。具体的には、Cd塩とチオ尿素とアンモニア水とを含む水溶液に、本発明の光触媒電極を、40〜80℃に加温した状態で浸漬する。電極表面にCdSが析出するので、所定時間浸漬した後、取り出して水で洗浄する。   The case where CdS is supported by the chemical solution deposition method will be described. Cd salts such as cadmium sulfate and cadmium acetate are preferably used as the Cd source, thiourea is used as the sulfur source, and aqueous ammonia is used as a neutralizing agent. Specifically, the photocatalytic electrode of the present invention is immersed in an aqueous solution containing a Cd salt, thiourea, and aqueous ammonia while being heated to 40 to 80 ° C. Since CdS is deposited on the surface of the electrode, it is immersed for a predetermined time, then taken out and washed with water.

また、安定性付与のための表面処理として、TiOやAZOなどの酸化物を電極表面に膜として積層することが好ましい。 Further, as a surface treatment for imparting stability, it is preferable to stack an oxide such as TiO 2 or AZO as a film on the electrode surface.

4.光触媒電極の製造方法
本発明の光触媒は、光水分解反応用(水素生成用)の光触媒として好適に利用することができる。その場合、光水分解反応に供される光触媒の形態としては、特に限定されず、例えば、水中に光触媒を分散させる形態、光触媒を成形体として当該成形体を水中に設置する形態、基材上に光触媒を含む層を設けて積層体とし当該積層体を水中に設置する形態、集電体上に光触媒を固定化して光水分解反応用の光触媒電極とし対極とともに水中に設置する形態等が挙げられる。
4). Method for Producing Photocatalytic Electrode The photocatalyst of the present invention can be suitably used as a photocatalyst for photowater splitting reaction (for hydrogen production). In that case, the form of the photocatalyst to be subjected to the photohydrolysis reaction is not particularly limited, for example, a form in which the photocatalyst is dispersed in water, a form in which the formed body is installed in water using the photocatalyst as a formed body, and a substrate. A layer comprising a layer containing a photocatalyst is used to form a laminate and the laminate is placed in water, a photocatalyst is immobilized on a current collector to be used as a photocatalyst electrode for a photowater splitting reaction and placed in water together with a counter electrode It is done.

これらのうち、光水分解反応用の光触媒電極は、例えば、公知の方法により作製可能である。例えば、ドロップキャスト法、粒子転写法、MBE等の物理的成膜法、ロールプレス法、電気泳動法などの一般的な方法が好適に用いられる。   Among these, the photocatalyst electrode for photo-water decomposition reaction can be produced by, for example, a known method. For example, general methods such as a drop casting method, a particle transfer method, a physical film forming method such as MBE, a roll press method, and an electrophoresis method are preferably used.

粒子転写法(Chem.Sci.、2013,4、1120−1124)は、好ましい方法であり、高性能な光触媒電極を容易に作製可能である。すなわち、ガラス等の第1の基材上に光触媒を載せて、光触媒層と第1の基材層との積層体を得る。得られた積層体の複合光触媒層表面に蒸着等によって集電体となる導電層(集電導電体)を設ける。ここで、光触媒層の導電層側表層にある光触媒が導電層に固定化される。その後、導電層表面に第2の基材を接着し、第1の基材層から導電層および光触媒層を剥がす。光触媒の一部は導電層の表面に固定化されているので、導電層とともに剥がされ、結果として、光触媒層と導電層と第2の基材層とを有する光水分解反応用電極を得ることができる。   The particle transfer method (Chem. Sci., 2013, 4, 1120-1124) is a preferable method, and a high-performance photocatalytic electrode can be easily produced. That is, a photocatalyst is placed on a first substrate such as glass to obtain a laminate of the photocatalyst layer and the first substrate layer. A conductive layer (current collector conductor) serving as a current collector is provided on the surface of the composite photocatalyst layer of the obtained laminate by vapor deposition or the like. Here, the photocatalyst in the conductive layer side surface layer of the photocatalyst layer is fixed to the conductive layer. Then, a 2nd base material is adhere | attached on the conductive layer surface, and a conductive layer and a photocatalyst layer are peeled from a 1st base material layer. Since a part of the photocatalyst is immobilized on the surface of the conductive layer, the photocatalyst is peeled off together with the conductive layer. As a result, a photohydrolysis electrode having a photocatalyst layer, a conductive layer, and a second base material layer is obtained. Can do.

また、光触媒が分散されたスラリーを集電体の表面に塗布して乾燥させることで、光水分解反応用電極を得てもよいし、光触媒と集電体とを加圧成形等して一体化することで光水分解反応用電極を得てもよい。また、光触媒が分散されたスラリー中に集電体を浸漬し、電圧を印可して光触媒を電気泳動により集電体上に集積してもよい。   In addition, a slurry in which the photocatalyst is dispersed may be applied to the surface of the current collector and dried to obtain a photohydrolysis electrode, or the photocatalyst and the current collector may be integrally formed by pressure molding or the like. The electrode for photohydrolysis reaction may be obtained. Alternatively, the current collector may be immersed in a slurry in which the photocatalyst is dispersed, the voltage is applied, and the photocatalyst may be accumulated on the current collector by electrophoresis.

尚、集電体には、Auやカーボン、または、ITOやFTOといった透明導電性フィルムやガラスが好適に用いられる。Auやカーボンの集電体の作製方法は、特に限定されるものでないが、蒸着やスパッタなどの物理的手段により積層担持することが好適である。   For the current collector, a transparent conductive film or glass such as Au, carbon, ITO, or FTO is preferably used. The method for producing the Au or carbon current collector is not particularly limited, but it is preferable that the Au and carbon current collectors are stacked and supported by physical means such as vapor deposition and sputtering.

5.光水分解による水素生成方法および光触媒電極の光電気化学特性の評価
本発明の光触媒や、光触媒電極を、水若しくは電解質水溶液に浸漬し、当該光触媒または光触媒電極に光を照射して光水分解を行うことで、水素を製造することができる。
5. Method for generating hydrogen by photohydrolysis and evaluation of photoelectrochemical properties of photocatalyst electrode The photocatalyst or photocatalyst electrode of the present invention is immersed in water or an aqueous electrolyte solution, and the photocatalyst or photocatalyst electrode is irradiated with light to effect photohydrolysis. By doing so, hydrogen can be produced.

例えば、上述のように導電体で構成される集電体(集電導電体)上に光触媒を固定化して水素生成用の光触媒電極を得て、電極間を電線などの導電性材料で接続した後、液体状または気体状の水を供給しながら光を照射し、水分解反応を進行させる。必要に応じて電極間に電位差を設けることで、水分解反応を促進することができる。   For example, a photocatalyst is immobilized on a current collector (current collector conductor) made of a conductor as described above to obtain a photocatalyst electrode for hydrogen generation, and the electrodes are connected with a conductive material such as an electric wire. Thereafter, light is irradiated while liquid or gaseous water is supplied to advance the water splitting reaction. The water splitting reaction can be promoted by providing a potential difference between the electrodes as necessary.

一方、絶縁基材上に複合光触媒を固定化した固定化物に、または、複合光触媒を加圧成形等した成形体に、水を供給しながら光を照射して水分解反応を進行させてもよい。または、複合光触媒を水または電解質水溶液に分散させて、ここに光を照射して水分解反応を進行させてもよい。この場合、必要に応じて撹拌することで、反応を促進することができる。本明細書において、複合光触媒とは、助触媒担持や表面修飾を施した光触媒を意味する。   On the other hand, the water splitting reaction may proceed by irradiating light while supplying water to an immobilization product in which the composite photocatalyst is immobilized on an insulating substrate or to a molded body obtained by pressure molding the composite photocatalyst. . Alternatively, the composite photocatalyst may be dispersed in water or an aqueous electrolyte solution, and light may be irradiated to proceed with the water splitting reaction. In this case, the reaction can be promoted by stirring as necessary. In this specification, the composite photocatalyst means a photocatalyst carrying a promoter or surface-modified.

水素の製造時の反応条件としては特に限定されないが、例えば、反応温度、反応圧力などを選択することができる。反応温度としては、例えば、0℃以上、200℃以下とし、反応圧力としては、例えば、2MPa(G)以下とする。   Although it does not specifically limit as reaction conditions at the time of manufacture of hydrogen, For example, reaction temperature, reaction pressure, etc. can be selected. The reaction temperature is, for example, 0 ° C. or more and 200 ° C. or less, and the reaction pressure is, for example, 2 MPa (G) or less.

照射光は、光触媒の種類にもよるが、波長350nm以上1000nm以下の波長を有する可視光を好適に利用することができる。照射光の光源としては太陽のほか、キセノンランプ、メタルハライドランプ等の太陽光近似光ないし疑似太陽光を照射可能なランプ、水銀ランプ、LED等が挙げられる。   Although the irradiation light depends on the type of photocatalyst, visible light having a wavelength of 350 nm to 1000 nm can be preferably used. Examples of the light source of the irradiation light include the sun, a lamp capable of irradiating approximate sunlight or pseudo-sunlight such as a xenon lamp and a metal halide lamp, a mercury lamp, and an LED.

また、本発明の光触媒を用いた光触媒電極は、カソード電流密度が大きい優れた光電気化学特性を有することができる。具体的には、例えば、下記条件下に作成する光触媒電極に対し下記条件下に疑似太陽光を照射する場合に、操作電位0.0VvsRHEにおいて、絶対値が0.8mA/cm以上、さらには絶対値が1.0mA/cm以上、絶対値が1.5mA/cm以上や、絶対値が3.0mA/cm以上のカソード電流密度にすることができる。また、例えば、下記条件下に作成する光触媒電極に対し下記条件下に疑似太陽光を照射する場合に、操作電位0.6VvsRHEにおいて、絶対値が0.6mA/cm以上、さらには絶対値が1.0mA/cm以上、絶対値が1.5mA/cm以上や、絶対値が2.0mA/cm以上のカソード電流密度にすることができる。該カソード電流密度の上限値は特に限定されないが、例えば、絶対値が30mA/cm以下とすることができる。 In addition, the photocatalytic electrode using the photocatalyst of the present invention can have excellent photoelectrochemical properties with a large cathode current density. Specifically, for example, in the case where pseudo-sunlight is irradiated to the photocatalyst electrode prepared under the following conditions under the following conditions, the absolute value is 0.8 mA / cm 2 or more at an operating potential of 0.0 V vs RHE, absolute value 1.0 mA / cm 2 or more, the absolute value of 1.5 mA / cm 2 or more and the absolute value can be 3.0 mA / cm 2 or more cathode current density. In addition, for example, in the case where pseudo-sunlight is irradiated under the following conditions to a photocatalyst electrode created under the following conditions, the absolute value is 0.6 mA / cm 2 or more at an operating potential of 0.6 V vs RHE, and further the absolute value is 1.0 mA / cm 2 or more, the absolute value of 1.5 mA / cm 2 or more and the absolute value can be 2.0 mA / cm 2 or more cathode current density. The upper limit value of the cathode current density is not particularly limited, but for example, the absolute value can be 30 mA / cm 2 or less.

光電気化学特性の評価については、作動電極として上述の光触媒電極、参照電極(Ag/AgCl、東洋測器(株);TRE−10)、対電極(Ptワイヤー)の3電極を用いる形式にて、光源に、ソーラーシミュレーター(AM1.5G(100mW/cm))を用いて、電解液中にて、アルゴン雰囲気下にポテンショスタット(北斗電工、HSV−110またはHZ−7000)を用いて測定する。通常、サイクリックボルタンメトリー (cyclic voltammetry, CV)と呼ばれる電極電位を直線的に掃引し応答電流(光電流密度)を測定する一般的な手法を用いた。なお、水素生成用の電極の評価においては、光電流密度の絶対値が大きいことが高い性能を意味し、同時に、光電流密度が立ち上がる電位がより貴側であることも高い性能と言える。 For the evaluation of the photoelectrochemical properties, the above-described photocatalytic electrode, reference electrode (Ag / AgCl, Toyo Sokki Co., Ltd .; TRE-10), and counter electrode (Pt wire) are used as the working electrode. Using a solar simulator (AM1.5G (100 mW / cm 2 )) as a light source, measurement is performed using a potentiostat (Hokuto Denko, HSV-110 or HZ-7000) in an electrolytic solution under an argon atmosphere. . Usually, a general technique called cyclic voltammetry (Cyclic voltammetry, CV) is used to measure the response current (photocurrent density) by linearly sweeping the electrode potential. In the evaluation of the electrode for hydrogen generation, a high absolute value of the photocurrent density means high performance, and at the same time, the potential at which the photocurrent density rises is more noble.

以下、実施例に基づいて本発明の複合金属化合物からなる光触媒および光触媒電極について具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, although the photocatalyst and photocatalyst electrode which consist of the composite metal compound of this invention are demonstrated concretely based on an Example, this invention is not limited to these Examples.

<実施例1>
[光触媒合成]
CuS((株)高純度化学研究所製、純度99.0%)を0.6366g、Ga((株)高純度化学研究所製、純度99.99%)を0.5655g、In((株)高純度化学研究所製、純度99.99%)を0.6517g、ZnS((株)高純度化学研究所製、純度99.999%)を0.3897g、そして、Li源としてLiSを0.0084gを秤量して、乳鉢にて混合後、片端が封じられた石英製ガラスチューブに入れた。この石英製ガラスチューブのもう一方の端を真空下に保ちながらバーナーにて熱して封じた。この真空下に封じられた密閉チューブを電気炉に入れて800℃10hr(時間)熱処理を行った。室温に放冷してから内容物(以下「CGIZS光触媒」とも記載する。)を取り出した。この内容物をICP分析したところ、その成分として、Li、Cu、Ga、In、Zn、Sの重量%は、各々順に、0.109、21.9、14.9、20.5、12.0、30.5%であり、組成比は、各々順に、0.0331、0.72、0.45、0.38、0.39、2.00(すなわち式(1)において、f=0.0331、a=0.72、b=0.45、c=0.38、d=0.39、e=0)であり、また、全金属原子に対するLiの割合は、1.68モル%であった。
<Example 1>
[Photocatalytic synthesis]
0.6366 g of Cu 2 S (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.0%) and 0.5655 g of Ga 2 S 3 (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) , an In 2 S 3 (Co. Kojundo Chemical Laboratory, Ltd., purity of 99.99%) to 0.6517G, ZnS and (Co. Kojundo Chemical Laboratory, Ltd., purity of 99.999%) 0.3897G, Then, 0.0084 g of Li 2 S as a Li source was weighed and mixed in a mortar, and then put into a quartz glass tube sealed at one end. The other end of the quartz glass tube was heated and sealed with a burner while keeping the vacuum. The sealed tube sealed under vacuum was put in an electric furnace and subjected to heat treatment at 800 ° C. for 10 hours (hours). After cooling to room temperature, the contents (hereinafter also referred to as “CGIZS photocatalyst”) were taken out. When the contents were analyzed by ICP, the weight percentages of Li, Cu, Ga, In, Zn, and S were 0.109, 21.9, 14.9, 20.5, 12. 0, 30.5%, and the composition ratios are 0.0331, 0.72, 0.45, 0.38, 0.39, 2.00 (that is, f = 0 in Formula (1)), respectively. 0.031, a = 0.72, b = 0.45, c = 0.38, d = 0.39, e = 0), and the ratio of Li to the total metal atoms is 1.68 mol%. Met.

[粉末X線回折(XRD)によるキャラクタリゼーション]
上記実施例1において得られた試料(CGIZS光触媒)について、粉末X線回折(XRD)を用いて結晶構造解析を行った。結果を図1に示す。図1のXRD測定結果において、カルコパイライト型の結晶構造の硫化物が得られていることが確認された。
[Characterization by powder X-ray diffraction (XRD)]
The sample (CGIZS photocatalyst) obtained in Example 1 was subjected to crystal structure analysis using powder X-ray diffraction (XRD). The results are shown in FIG. In the XRD measurement result of FIG. 1, it was confirmed that the sulfide of chalcopyrite type crystal structure was obtained.

[CGIZS光触媒電極の作製、粒子転写法]
実施例1において得られたCGIZS光触媒 30mgを1mLの2−プロパノールに懸濁させ、この懸濁液200μLをガラス基板上に滴下し、次いで乾燥することを3回繰り返してガラス基板上に光触媒層を形成した。次に、該光触媒層上に、集電導電体層となるAuを蒸着により2μm程度の膜厚で積層した。蒸着装置には、真空蒸着装置(アルバック機工(株)製、VPC−260F)を用いた。その後、両面テープを用いて集電導電体層の上から別のガラス基板を接着して、最初に付けたガラス基材を除去し、純水中で超音波洗浄した。最後に、エポキシ樹脂を用いて光触媒層以外の部分を封止し、さらにIn導線を集電導電体層に接着することで、光触媒層(CGIZS)/集電導電体層(Au)/ガラス基板からなるCGIZS光触媒電極を得た。
[Preparation of CGIZS photocatalytic electrode, particle transfer method]
30 mg of the CGIZS photocatalyst obtained in Example 1 was suspended in 1 mL of 2-propanol, 200 μL of this suspension was dropped on the glass substrate, and then dried three times to form a photocatalyst layer on the glass substrate. Formed. Next, on the photocatalyst layer, Au serving as a current collecting conductor layer was deposited to a thickness of about 2 μm by vapor deposition. As the vapor deposition apparatus, a vacuum vapor deposition apparatus (VPC-260F manufactured by ULVAC KIKOH Co., Ltd.) was used. Then, another glass substrate was adhered from the top of the current collecting conductor layer using a double-sided tape, the first glass substrate was removed, and ultrasonic cleaning was performed in pure water. Finally, a portion other than the photocatalyst layer is sealed with an epoxy resin, and an In conductive wire is bonded to the current collecting conductor layer, so that the photocatalytic layer (CGIZS) / current collecting conductor layer (Au) / glass substrate A CGIZS photocatalyst electrode was obtained.

[CdS表面修飾とPt助触媒担持]
50mLの水を70℃に加温して、同温度にて撹拌下に、硫酸カドミウム0.28g、28%アンモニア水0.4mL、チオ尿素1.4gを順次加えた後、上記で得られた各CGIZS光触媒電極を5分間浸漬した。取り出した光触媒電極を純水で洗浄した後、室温で一晩乾燥することでCdSで表面修飾されたCGIZS光触媒電極を得た。次に、助触媒となるPtをマルチ成膜装置を用いて1nm程度の厚さ相当の量を担持した。こうして、電極構成としてPt/CdS/光触媒層(CGIZS)/集電導電体層(Au)/ガラス基板からなる光触媒電極を得た。
[CdS surface modification and Pt promoter support]
50 mL of water was heated to 70 ° C., and 0.28 g of cadmium sulfate, 0.4 mL of 28% ammonia water, and 1.4 g of thiourea were sequentially added at the same temperature, and then obtained as described above. Each CGIZS photocatalytic electrode was immersed for 5 minutes. The taken-out photocatalyst electrode was washed with pure water, and then dried at room temperature overnight to obtain a CGIZS photocatalyst electrode modified with CdS. Next, Pt serving as a co-catalyst was supported in an amount corresponding to a thickness of about 1 nm using a multi-film forming apparatus. Thus, a photocatalytic electrode comprising Pt / CdS / photocatalyst layer (CGIZS) / current collecting conductor layer (Au) / glass substrate as an electrode configuration was obtained.

[電気化学特性評価]
上記[CdS表面修飾とPt助触媒担持]で得られた光触媒電極を用いて、以下の測定条件によって、光電気化学特性を調べた。結果を図2及び表1に示す。
・光源 ソーラーシミュレーター AM1.5G(100mW/cm
・電解液 0.5M NaSO、0.25M NaHPO、0.25M NaHPO pH 6.3
・参照電極 Ag/AgCl、対電極 Ptワイヤ
・アルゴン雰囲気
[Electrochemical characteristics evaluation]
Using the photocatalyst electrode obtained by the above [CdS surface modification and Pt promoter support], the photoelectrochemical characteristics were examined under the following measurement conditions. The results are shown in FIG.
・ Light source Solar simulator AM1.5G (100 mW / cm 2 )
Electrolyte 0.5M Na 2 SO 4 , 0.25M Na 2 HPO 4 , 0.25M NaH 2 PO 4 pH 6.3
Reference electrode Ag / AgCl, counter electrode Pt wire Argon atmosphere

Figure 2019171284
Figure 2019171284

<実施例2>
[光触媒合成]
LiSを0.0001gとした以外は実施例1と同様の操作でLiを含有するCGIZS光触媒を得た。得られたCGIZS光触媒をICP分析したところ、その成分として、Li、Cu、Ga、In、Zn、Sの重量%は、各々順に、0.001、22.7、15.2、21.0、11.7、29.6%であり、組成比は、各々順に、0.0002、0.77、0.47、0.40、0.38、2.00であった。また、全金属原子に対するLiの割合は、0.01モル%であった。
<Example 2>
[Photocatalytic synthesis]
A CGIZS photocatalyst containing Li was obtained by the same operation as in Example 1 except that Li 2 S was changed to 0.0001 g. When the obtained CGIZS photocatalyst was subjected to ICP analysis, the weight percentages of Li, Cu, Ga, In, Zn, and S as components were 0.001, 22.7, 15.2, 21.0, respectively. The composition ratios were 0.0002, 0.77, 0.47, 0.40, 0.38, and 2.00, respectively, in order. Moreover, the ratio of Li with respect to all the metal atoms was 0.01 mol%.

[XRDによるキャラクタリゼーション]
実施例1と同様にして、実施例2で得られたCGIZS光触媒のXRD測定を行なった。結果を図1に示す。図1のXRD測定結果において、カルコパイライト型の結晶構造の硫化物が得られていることが確認された。
[Characterization by XRD]
In the same manner as in Example 1, XRD measurement of the CGIZS photocatalyst obtained in Example 2 was performed. The results are shown in FIG. In the XRD measurement result of FIG. 1, it was confirmed that the sulfide of chalcopyrite type crystal structure was obtained.

[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]
実施例1と同様にして、[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]を行った。
[Preparation of CGIZS photocatalyst electrode, particle transfer method] and [CdS surface modification and Pt promoter support]
In the same manner as in Example 1, [CGIZS photocatalyst electrode production, particle transfer method] and [CdS surface modification and Pt promoter support] were performed.

[電気化学特性評価]
[CdS表面修飾とPt助触媒担持]で得られた光触媒電極を用いて、実施例1と同様にして、光電気化学特性を調べた。結果を図2に示す。
[Electrochemical characteristics evaluation]
Using the photocatalytic electrode obtained in [CdS surface modification and Pt promoter support], the photoelectrochemical characteristics were examined in the same manner as in Example 1. The results are shown in FIG.

<実施例3>
[光触媒合成]
LiSを0.0008gとした以外は実施例1と同様の操作でLiを含有するCGIZS光触媒を得た。得られたCGIZS光触媒をICP分析したところ、その成分として、Li、Cu、Ga、In、Zn、Sの重量%は、各々順に、0.007、21.8、15.5、21.7、11.7、29.3%であり、組成比は、各々順に、0.0023、0.75、0.49、0.41、0.39、2.00であった。また、全金属原子に対するLiの割合は、0.11モル%であった。
<Example 3>
[Photocatalytic synthesis]
A CGIZS photocatalyst containing Li was obtained in the same manner as in Example 1 except that Li 2 S was changed to 0.0008 g. When the obtained CGIZS photocatalyst was subjected to ICP analysis, the weight percentages of Li, Cu, Ga, In, Zn and S as components thereof were 0.007, 21.8, 15.5, 21.7, The composition ratios were 0.0023, 0.75, 0.49, 0.41, 0.39, and 2.00, respectively, in order. Moreover, the ratio of Li with respect to all the metal atoms was 0.11 mol%.

[XRDによるキャラクタリゼーション]
実施例1と同様にして、実施例3で得られたCGIZS光触媒のXRD測定を行なった。結果を図1に示す。図1のXRD測定結果において、カルコパイライト型の結晶構造の硫化物が得られていることが確認された。
[Characterization by XRD]
In the same manner as in Example 1, the XRD measurement of the CGIZS photocatalyst obtained in Example 3 was performed. The results are shown in FIG. In the XRD measurement result of FIG. 1, it was confirmed that the sulfide of chalcopyrite type crystal structure was obtained.

[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]
実施例1と同様にして、[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]を行った。
[Preparation of CGIZS photocatalyst electrode, particle transfer method] and [CdS surface modification and Pt promoter support]
In the same manner as in Example 1, [CGIZS photocatalyst electrode production, particle transfer method] and [CdS surface modification and Pt promoter support] were performed.

[電気化学特性評価]
[CdS表面修飾とPt助触媒担持]で得られた光触媒電極を用いて、実施例1と同様にして、光電気化学特性を調べた。結果を図2に示す。
[Electrochemical characteristics evaluation]
Using the photocatalytic electrode obtained in [CdS surface modification and Pt promoter support], the photoelectrochemical characteristics were examined in the same manner as in Example 1. The results are shown in FIG.

<実施例4>
[光触媒合成]
LiSを0.0126gとした以外は実施例1と同様の操作によりCGIZS光触媒を得た。得られたCGIZS光触媒をICP分析したところ、その成分として、Li、Cu、Ga、In、Zn、Sの重量%は、各々順に、0.156、23.0、14.6、20.8、11.7、29.7%であり、組成比は、各々順に、0.0486、0.78、0.45、0.39、0.39、2.00であった。また、全金属原子に対するLiの割合は、2.36モル%であった。
<Example 4>
[Photocatalytic synthesis]
A CGIZS photocatalyst was obtained by the same operation as in Example 1 except that Li 2 S was changed to 0.0126 g. When the obtained CGIZS photocatalyst was subjected to ICP analysis, as components, the weight percentages of Li, Cu, Ga, In, Zn, and S were 0.156, 23.0, 14.6, 20.8, The composition ratios were 0.0486, 0.78, 0.45, 0.39, 0.39, and 2.00, respectively, in order. Moreover, the ratio of Li with respect to all the metal atoms was 2.36 mol%.

[XRDによるキャラクタリゼーション]
実施例1と同様にして、実施例4で得られたCGIZS光触媒のXRD測定を行なった。結果を図1に示す。図1のXRD測定結果において、カルコパイライト型の結晶構造の硫化物が得られていることが確認された。
[Characterization by XRD]
In the same manner as in Example 1, XRD measurement of the CGIZS photocatalyst obtained in Example 4 was performed. The results are shown in FIG. In the XRD measurement result of FIG. 1, it was confirmed that the sulfide of chalcopyrite type crystal structure was obtained.

[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]
実施例1と同様にして、[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]を行った。
[Preparation of CGIZS photocatalyst electrode, particle transfer method] and [CdS surface modification and Pt promoter support]
In the same manner as in Example 1, [CGIZS photocatalyst electrode production, particle transfer method] and [CdS surface modification and Pt promoter support] were performed.

[電気化学特性評価]
[CdS表面修飾とPt助触媒担持]で得られた光触媒電極を用いて、実施例1と同様にして、光電気化学特性を調べた。結果を図2に示す。
[Electrochemical characteristics evaluation]
Using the photocatalytic electrode obtained in [CdS surface modification and Pt promoter support], the photoelectrochemical characteristics were examined in the same manner as in Example 1. The results are shown in FIG.

<実施例5>
[光触媒合成]
LiSを0.0185gとした以外は実施例1と同様の操作によりCGIZS光触媒を得た。得られたCGIZS光触媒をICP分析したところ、その成分として、Li、Cu、Ga、In、Zn、Sの重量%は、各々順に、0.226、23.3、15.2、20.7、11.5、29.0%であり、組成比は、各々順に、0.0721、0.81、0.48、0.40、0.39、2.00であった。また、全金属原子に対するLiの割合は、3.35モル%であった。
<Example 5>
[Photocatalytic synthesis]
A CGIZS photocatalyst was obtained by the same operation as in Example 1 except that Li 2 S was changed to 0.0185 g. When the obtained CGIZS photocatalyst was subjected to ICP analysis, the weight percentages of Li, Cu, Ga, In, Zn, and S as components thereof were 0.226, 23.3, 15.2, 20.7, The composition ratios were 0.0721, 0.81, 0.48, 0.40, 0.39, and 2.00, respectively, in order. Moreover, the ratio of Li with respect to all the metal atoms was 3.35 mol%.

[XRDによるキャラクタリゼーション]
実施例1と同様にして、実施例5で得られたCGIZS光触媒のXRD測定を行なった。結果を図1に示す。図1のXRD測定結果において、カルコパイライト型の結晶構造の硫化物が得られていることが確認された。
[Characterization by XRD]
In the same manner as in Example 1, XRD measurement of the CGIZS photocatalyst obtained in Example 5 was performed. The results are shown in FIG. In the XRD measurement result of FIG. 1, it was confirmed that the sulfide of chalcopyrite type crystal structure was obtained.

[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]
実施例1と同様にして、[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]を行った。
[Preparation of CGIZS photocatalyst electrode, particle transfer method] and [CdS surface modification and Pt promoter support]
In the same manner as in Example 1, [CGIZS photocatalyst electrode production, particle transfer method] and [CdS surface modification and Pt promoter support] were performed.

[電気化学特性評価]
[CdS表面修飾とPt助触媒担持]で得られた光触媒電極を用いて、実施例1と同様にして、光電気化学特性を調べた。結果を図2に示す。
[Electrochemical characteristics evaluation]
Using the photocatalytic electrode obtained in [CdS surface modification and Pt promoter support], the photoelectrochemical characteristics were examined in the same manner as in Example 1. The results are shown in FIG.

<比較例1>
[光触媒合成]
原料としてLiSを用いないこと以外は実施例1と同様の操作でLiを含有しないCGIZS光触媒を得た。得られたCGIZS光触媒をICP分析したところ、その成分として、Cu、Ga、In、Zn、Sの重量%は、各々順に、22.6、15.1、20.9、11.7、29.6%であり、組成比は、各々順に、0.77、0.47、0.40、0.39、2.00であった。また、全金属原子に対するLiの割合は、0.00モル%であった。
<Comparative Example 1>
[Photocatalytic synthesis]
A CGIZS photocatalyst not containing Li was obtained in the same manner as in Example 1 except that Li 2 S was not used as a raw material. When the obtained CGIZS photocatalyst was analyzed by ICP, the weight percentages of Cu, Ga, In, Zn and S as components thereof were 22.6, 15.1, 20.9, 11.7, 29. The composition ratio was 0.77, 0.47, 0.40, 0.39, and 2.00, respectively. Moreover, the ratio of Li with respect to all the metal atoms was 0.00 mol%.

[XRDによるキャラクタリゼーション]
実施例1と同様にして、比較例1で得られたCGIZS光触媒のXRD測定を行なった。結果を図1に示す。図1のXRD測定結果において、カルコパイライト型の結晶構造の硫化物が得られていることが確認された。
[Characterization by XRD]
In the same manner as in Example 1, XRD measurement of the CGIZS photocatalyst obtained in Comparative Example 1 was performed. The results are shown in FIG. In the XRD measurement result of FIG. 1, it was confirmed that the sulfide of chalcopyrite type crystal structure was obtained.

[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]
実施例1と同様にして、[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]を行った。
[Preparation of CGIZS photocatalyst electrode, particle transfer method] and [CdS surface modification and Pt promoter support]
In the same manner as in Example 1, [CGIZS photocatalyst electrode production, particle transfer method] and [CdS surface modification and Pt promoter support] were performed.

[電気化学特性評価]
[CdS表面修飾とPt助触媒担持]で得られた光触媒電極を用いて、実施例1と同様にして、光電気化学特性を調べた。結果を図2に示す。
[Electrochemical characteristics evaluation]
Using the photocatalytic electrode obtained in [CdS surface modification and Pt promoter support], the photoelectrochemical characteristics were examined in the same manner as in Example 1. The results are shown in FIG.

<実施例6>
[光触媒合成]
LiSの代わりに、Na源としてNaSを0.0028gを用いた以外は実施例1と同様の操作によりCGIZS光触媒を得た。得られたCGIZS光触媒ICP分析したところ、その成分として、Na、Cu、Ga、In、Zn、Sの重量%は、各々順に、0.072、21.7、15.2、21.3、11.9、29.8であり、組成比は、各々順に、0.0067、0.73、0.47、0.40、0.39、2.0%であった。また、全金属原子に対するNaの割合は、0.34モル%であった。
<Example 6>
[Photocatalytic synthesis]
A CGIZS photocatalyst was obtained in the same manner as in Example 1 except that 0.0028 g of Na 2 S was used as the Na source instead of Li 2 S. When the obtained CGIZS photocatalytic ICP analysis was performed, the weight percentages of Na, Cu, Ga, In, Zn, and S as components were 0.072, 21.7, 15.2, 21.3, and 11 in this order. The composition ratios were 0.0067, 0.73, 0.47, 0.40, 0.39, and 2.0%, respectively, in order. Moreover, the ratio of Na with respect to all the metal atoms was 0.34 mol%.

[XRDによるキャラクタリゼーション]
実施例1と同様にして、実施例6で得られたCGIZS光触媒のXRD測定を行なった。結果を図3に示す。図3のXRD測定結果において、カルコパイライト型の結晶構造の硫化物が得られていることが確認された。
[Characterization by XRD]
In the same manner as in Example 1, XRD measurement of the CGIZS photocatalyst obtained in Example 6 was performed. The results are shown in FIG. In the XRD measurement result of FIG. 3, it was confirmed that the sulfide of chalcopyrite type crystal structure was obtained.

[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]
実施例1と同様にして、[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]を行った。
[Preparation of CGIZS photocatalyst electrode, particle transfer method] and [CdS surface modification and Pt promoter support]
In the same manner as in Example 1, [CGIZS photocatalyst electrode production, particle transfer method] and [CdS surface modification and Pt promoter support] were performed.

[電気化学特性評価]
[CdS表面修飾とPt助触媒担持]で得られた光触媒電極を用いて、実施例1と同様にして、光電気化学特性を調べた。結果を図4に示す。
[Electrochemical characteristics evaluation]
Using the photocatalytic electrode obtained in [CdS surface modification and Pt promoter support], the photoelectrochemical characteristics were examined in the same manner as in Example 1. The results are shown in FIG.

<実施例7>
[光触媒合成]
LiSの代わりに、K源としてKSを0.0010gを用いた以外は実施例1と同様の操作によりCGIZS光触媒を得た。得られたCGIZS光触媒をICP分析したところ、Kは、検出限界のため測定不可であった。仕込んだK分がすべてCGIZS触媒に組み込まれたとした理論重量%は、0.03%、全金属原子に対するKの割合の理論値は、0.04モル%と見積もられた。
<Example 7>
[Photocatalytic synthesis]
A CGIZS photocatalyst was obtained in the same manner as in Example 1 except that 0.0010 g of K 2 S was used as a K source instead of Li 2 S. When the obtained CGIZS photocatalyst was analyzed by ICP, K could not be measured due to a detection limit. The theoretical weight% assuming that all the charged K was incorporated into the CGIZS catalyst was 0.03%, and the theoretical value of the ratio of K to all metal atoms was estimated to be 0.04 mol%.

[XRDによるキャラクタリゼーション]
実施例1と同様にして、実施例7で得られたCGIZS光触媒のXRD測定を行なった。結果を図3に示す。図3のXRD測定結果において、カルコパイライト型の結晶構造の硫化物が得られていることが確認された。
[Characterization by XRD]
In the same manner as in Example 1, XRD measurement of the CGIZS photocatalyst obtained in Example 7 was performed. The results are shown in FIG. In the XRD measurement result of FIG. 3, it was confirmed that the sulfide of chalcopyrite type crystal structure was obtained.

[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]
実施例1と同様にして、[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]を行った。
[Preparation of CGIZS photocatalyst electrode, particle transfer method] and [CdS surface modification and Pt promoter support]
In the same manner as in Example 1, [CGIZS photocatalyst electrode production, particle transfer method] and [CdS surface modification and Pt promoter support] were performed.

[電気化学特性評価]
[CdS表面修飾とPt助触媒担持]で得られた光触媒電極を用いて、実施例1と同様にして、光電気化学特性を調べた。結果を図4に示す。
[Electrochemical characteristics evaluation]
Using the photocatalytic electrode obtained in [CdS surface modification and Pt promoter support], the photoelectrochemical characteristics were examined in the same manner as in Example 1. The results are shown in FIG.

<実施例8>
[光触媒合成]
CuS((株)高純度化学研究所製、純度99.0%)を0.6366g、Ga((株)高純度化学研究所製、純度99.99%)を0.5655g、In((株)高純度化学研究所製、純度99.99%)を0.6517g、ZnS((株)高純度化学研究所製、純度99.999%)を0.3897g、そして、フラックス剤として、塩化リチウム(LiCl、関東化学(株)製、純度99.9%)2.29gと塩化カリウム(KCl、関東化学(株)製、純度99.5%)2.68gを秤量して、乳鉢にて混合後、片端が封じられた石英製ガラスチューブに入れた。この石英製ガラスチューブのもう一方の端を真空下に保ちながらバーナーにて熱して封じた。この真空下に封じられた密閉チューブを電気炉に入れて550℃15hr熱処理を行った。室温に放冷してから内容物(CGIZS光触媒)を取り出した。この内容物を100ccの水を用いて洗浄する操作を3回実施した。その後、ろ過したものを40℃で15時間乾燥させた。得られたCGIZS触媒を、ICP分析したところ、その成分として、Li、Cu、Ga、In、Zn、Sの重量%は、各々順に、0.031、22.7、15.2、21.0、11.1、30.0%であり、組成比は、各々順に、0.0094、0.76、0.47、0.39、0.36、2.00であった。また、全金属原子に対するLiの割合は、0.47モル%であった。
<Example 8>
[Photocatalytic synthesis]
0.6366 g of Cu 2 S (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.0%) and 0.5655 g of Ga 2 S 3 (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) , an In 2 S 3 (Co. Kojundo Chemical Laboratory, Ltd., purity of 99.99%) to 0.6517G, ZnS and (Co. Kojundo Chemical Laboratory, Ltd., purity of 99.999%) 0.3897G, As flux agents, 2.29 g of lithium chloride (LiCl, manufactured by Kanto Chemical Co., Ltd., purity 99.9%) and 2.68 g of potassium chloride (KCl, manufactured by Kanto Chemical Co., Ltd., purity 99.5%) After weighing and mixing in a mortar, it was placed in a quartz glass tube sealed at one end. The other end of the quartz glass tube was heated and sealed with a burner while keeping the vacuum. The sealed tube sealed under this vacuum was placed in an electric furnace and heat-treated at 550 ° C. for 15 hours. After cooling to room temperature, the contents (CGIZS photocatalyst) were taken out. The operation of washing the contents with 100 cc of water was performed three times. Thereafter, the filtered product was dried at 40 ° C. for 15 hours. When the obtained CGIZS catalyst was analyzed by ICP, the weight percentages of Li, Cu, Ga, In, Zn, and S were 0.031, 22.7, 15.2, and 21.0, respectively. The composition ratio was 0.0094, 0.76, 0.47, 0.39, 0.36, and 2.00, respectively. Moreover, the ratio of Li with respect to all the metal atoms was 0.47 mol%.

[XRDによるキャラクタリゼーション]
実施例1と同様にして、実施例8で得られた光触媒のXRD測定を行なった。結果を図5に示す。図5のXRD測定結果において、カルコパイライト型の結晶構造の硫化物が得られていることが確認された。
[Characterization by XRD]
In the same manner as in Example 1, XRD measurement of the photocatalyst obtained in Example 8 was performed. The results are shown in FIG. In the XRD measurement result of FIG. 5, it was confirmed that the sulfide of chalcopyrite type crystal structure was obtained.

[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]
実施例1と同様にして、[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]を行った。
[Preparation of CGIZS photocatalyst electrode, particle transfer method] and [CdS surface modification and Pt promoter support]
In the same manner as in Example 1, [CGIZS photocatalyst electrode production, particle transfer method] and [CdS surface modification and Pt promoter support] were performed.

[電気化学特性評価]
[CdS表面修飾とPt助触媒担持]で得られた光触媒電極を用いて、実施例1と同様にして、光電気化学特性を調べた。結果を図6に示す。
[Electrochemical characteristics evaluation]
Using the photocatalytic electrode obtained in [CdS surface modification and Pt promoter support], the photoelectrochemical characteristics were examined in the same manner as in Example 1. The results are shown in FIG.

<実施例9>
[光触媒合成]
熱処理条件を650℃15hr(時間)とした以外は実施例8と同様の操作によりCGIZS光触媒を得た。得られたCGIZS光触媒を、ICP分析したところ、その成分として、Li、Cu、Ga、In、Zn、Sの重量%は、各々順に、0.049、22.6、15.0、21.2、11.0、30.2%であり、組成比は、各々順に、0.0151、0.75、0.45、0.39、0.36、2.00であった。また、全金属原子に対するLiの割合は、0.77モル%であった。
<Example 9>
[Photocatalytic synthesis]
A CGIZS photocatalyst was obtained in the same manner as in Example 8 except that the heat treatment conditions were 650 ° C. and 15 hours (hours). When the obtained CGIZS photocatalyst was analyzed by ICP, the weight percentages of Li, Cu, Ga, In, Zn, and S as components were 0.049, 22.6, 15.0, and 21.2, respectively. The composition ratios were 0.015, 0.75, 0.45, 0.39, 0.36, and 2.00, respectively. Moreover, the ratio of Li with respect to all the metal atoms was 0.77 mol%.

[XRDによるキャラクタリゼーション]
実施例1と同様にして、実施例9で得られたCGIZS光触媒のXRD測定を行った。結果を図5に示す。図5のXRD測定結果において、カルコパイライト型の結晶構造の硫化物が得られていることが確認された。
[Characterization by XRD]
In the same manner as in Example 1, XRD measurement of the CGIZS photocatalyst obtained in Example 9 was performed. The results are shown in FIG. In the XRD measurement result of FIG. 5, it was confirmed that the sulfide of chalcopyrite type crystal structure was obtained.

[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]
実施例1と同様にして、[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]を行った。
[Preparation of CGIZS photocatalyst electrode, particle transfer method] and [CdS surface modification and Pt promoter support]
In the same manner as in Example 1, [CGIZS photocatalyst electrode production, particle transfer method] and [CdS surface modification and Pt promoter support] were performed.

[電気化学特性評価]
[CdS表面修飾とPt助触媒担持]で得られた光触媒電極を用いて、実施例1と同様にして、光電気化学特性を調べた。結果を図6に示す。
[Electrochemical characteristics evaluation]
Using the photocatalytic electrode obtained in [CdS surface modification and Pt promoter support], the photoelectrochemical characteristics were examined in the same manner as in Example 1. The results are shown in FIG.

<実施例10>
[光触媒合成]
熱処理条件を750℃3hrとした以外は実施例8と同様の操作によりCGIZS光触媒を得た。得られたCGIZS光触媒を、ICP分析したところ、その成分として、Li、Cu、Ga、In、Zn、Sの重量%は、各々順に、0.042、23.0、16.4、20.6、11.3、28.7%であり、組成比は、各々順に、0.0134、0.81、0.53、0.40、0.39、2.00であった。また、全金属原子に対するLiの割合は、0.63モル%であった。
<Example 10>
[Photocatalytic synthesis]
A CGIZS photocatalyst was obtained in the same manner as in Example 8 except that the heat treatment condition was 750 ° C. for 3 hours. When the obtained CGIZS photocatalyst was analyzed by ICP, the weight percentages of Li, Cu, Ga, In, Zn, and S were 0.042, 23.0, 16.4, 20.6, respectively. The composition ratios were 0.0134, 0.81, 0.53, 0.40, 0.39, and 2.00, respectively. Moreover, the ratio of Li with respect to all the metal atoms was 0.63 mol%.

[XRDによるキャラクタリゼーション]
実施例1と同様にして、実施例10で得られたCGIZS光触媒のXRD測定を行なった。結果を図5に示す。図5のXRD測定結果において、カルコパイライト型の結晶構造の硫化物が得られていることが確認された。
[Characterization by XRD]
In the same manner as in Example 1, XRD measurement of the CGIZS photocatalyst obtained in Example 10 was performed. The results are shown in FIG. In the XRD measurement result of FIG. 5, it was confirmed that the sulfide of chalcopyrite type crystal structure was obtained.

[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]
実施例1と同様にして、[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]を行った。
[Preparation of CGIZS photocatalyst electrode, particle transfer method] and [CdS surface modification and Pt promoter support]
In the same manner as in Example 1, [CGIZS photocatalyst electrode production, particle transfer method] and [CdS surface modification and Pt promoter support] were performed.

[電気化学特性評価]
[CdS表面修飾とPt助触媒担持]で得られた光触媒電極を用いて、実施例1と同様にして、光電気化学特性を調べた。結果を図6に示す。
[Electrochemical characteristics evaluation]
Using the photocatalytic electrode obtained in [CdS surface modification and Pt promoter support], the photoelectrochemical characteristics were examined in the same manner as in Example 1. The results are shown in FIG.

<実施例11>
[光触媒合成]
Gaを0.6127gとした以外は実施例8と同様の操作によりCGIZS光触媒を得た。得られたCGIZS光触媒を、ICP分析したところ、その成分として、Li、Cu、Ga、In、Zn、Sの重量%は、各々順に、0.025、21.5、16.4、20.4、11.2、30.5%であり、組成比は、各々順に、0.0075、0.71、0.49、0.37、0.36、2.00であった。また、全金属原子に対するLiの割合は、0.39モル%であった。
<Example 11>
[Photocatalytic synthesis]
A CGIZS photocatalyst was obtained in the same manner as in Example 8, except that Ga 2 S 3 was changed to 0.6127 g. When the obtained CGIZS photocatalyst was analyzed by ICP, the weight percentages of Li, Cu, Ga, In, Zn, and S were 0.025, 21.5, 16.4, and 20.4, respectively. The composition ratio was 0.0075, 0.71, 0.49, 0.37, 0.36, and 2.00, respectively. Moreover, the ratio of Li with respect to all the metal atoms was 0.39 mol%.

[XRDによるキャラクタリゼーション]
実施例1と同様にして、実施例11で得られた光触媒のXRD測定を行なった。結果を図5に示す。図5のXRD測定結果において、カルコパイライト型の結晶構造の硫化物が得られていることが確認された。
[Characterization by XRD]
In the same manner as in Example 1, XRD measurement of the photocatalyst obtained in Example 11 was performed. The results are shown in FIG. In the XRD measurement result of FIG. 5, it was confirmed that the sulfide of chalcopyrite type crystal structure was obtained.

[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]
実施例1と同様にして、[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]を行った。
[Preparation of CGIZS photocatalyst electrode, particle transfer method] and [CdS surface modification and Pt promoter support]
In the same manner as in Example 1, [CGIZS photocatalyst electrode production, particle transfer method] and [CdS surface modification and Pt promoter support] were performed.

[電気化学特性評価]
[CdS表面修飾とPt助触媒担持]で得られた光触媒電極を用いて、実施例1と同様にして、光電気化学特性を調べた。結果を図6に示す。
[Electrochemical characteristics evaluation]
Using the photocatalytic electrode obtained in [CdS surface modification and Pt promoter support], the photoelectrochemical characteristics were examined in the same manner as in Example 1. The results are shown in FIG.

<実施例12>
[光触媒合成]
Gaを0.6127gとし、熱処理条件を650℃25hrとした以外は実施例8と同様の操作によりCGIZS光触媒を得た。得られたCGIZS光触媒を、ICP分析したところ、その成分として、Li、Cu、Ga、In、Zn、Sの重量%は、各々順に、0.087、22.9、16.1、19.8、10.8、30.3%であり、組成比は、各々順に、0.0266、0.76、0.49、0.37、0.35、2.00であった。また、全金属原子に対するLiの割合は、1.33モル%であった。
<Example 12>
[Photocatalytic synthesis]
A CGIZS photocatalyst was obtained in the same manner as in Example 8, except that Ga 2 S 3 was 0.6127 g and the heat treatment condition was 650 ° C. and 25 hr. When the obtained CGIZS photocatalyst was analyzed by ICP, the weight percentages of Li, Cu, Ga, In, Zn, and S as components thereof were 0.087, 22.9, 16.1, and 19.8, respectively. The composition ratio was 0.0266, 0.76, 0.49, 0.37, 0.35, and 2.00, respectively. Moreover, the ratio of Li with respect to all the metal atoms was 1.33 mol%.

[XRDによるキャラクタリゼーション]
実施例1と同様にして、実施例12で得られたCGIZS光触媒のXRD測定を行なった。結果を図5に示す。図5のXRD測定結果において、カルコパイライト型の結晶構造の硫化物が得られていることが確認された。
[Characterization by XRD]
In the same manner as in Example 1, the XRD measurement of the CGIZS photocatalyst obtained in Example 12 was performed. The results are shown in FIG. In the XRD measurement result of FIG. 5, it was confirmed that the sulfide of chalcopyrite type crystal structure was obtained.

[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]
実施例1と同様にして、[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]を行った。
[Preparation of CGIZS photocatalyst electrode, particle transfer method] and [CdS surface modification and Pt promoter support]
In the same manner as in Example 1, [CGIZS photocatalyst electrode production, particle transfer method] and [CdS surface modification and Pt promoter support] were performed.

[電気化学特性評価]
[CdS表面修飾とPt助触媒担持]で得られた光触媒電極を用いて、実施例1と同様にして、光電気化学特性を調べた。結果を図6に示す。
[Electrochemical characteristics evaluation]
Using the photocatalytic electrode obtained in [CdS surface modification and Pt promoter support], the photoelectrochemical characteristics were examined in the same manner as in Example 1. The results are shown in FIG.

<実施例13>
[光触媒合成]
Inを0.7821g、ZnSを0.4677gとした以外は実施例8と同様の操作によりCGIZS光触媒を得た。得られたCGIZS光触媒を、ICP分析したころ、その成分として、Li、Cu、Ga、In、Zn、Sの重量%は、各々順に、0.020、18.4、13.8、22.8、13.9、31.0%であり、組成比は、各々順に、0.0058、0.60、0.41、0.41、0.44、2.00であった。また、全金属原子に対するLiの割合は、0.31モル%であった。
<Example 13>
[Photocatalytic synthesis]
A CGIZS photocatalyst was obtained in the same manner as in Example 8, except that 0.7821 g of In 2 S 3 and 0.4677 g of ZnS were used. When the obtained CGIZS photocatalyst was subjected to ICP analysis, the weight percentages of Li, Cu, Ga, In, Zn, and S as components were 0.020, 18.4, 13.8, and 22.8, respectively. 13.9 and 31.0%, and the composition ratios were 0.0058, 0.60, 0.41, 0.41, 0.44, and 2.00, respectively. Moreover, the ratio of Li with respect to all the metal atoms was 0.31 mol%.

[XRDによるキャラクタリゼーション]
実施例1と同様にして、実施例13で得られたCGIZS光触媒のXRD測定を行なった。結果を図5に示す。図5のXRD測定結果において、カルコパイライト型の結晶構造の硫化物が得られていることが確認された。
[Characterization by XRD]
In the same manner as in Example 1, XRD measurement of the CGIZS photocatalyst obtained in Example 13 was performed. The results are shown in FIG. In the XRD measurement result of FIG. 5, it was confirmed that the sulfide of chalcopyrite type crystal structure was obtained.

[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]
実施例1と同様にして、[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]を行った。
[Preparation of CGIZS photocatalyst electrode, particle transfer method] and [CdS surface modification and Pt promoter support]
In the same manner as in Example 1, [CGIZS photocatalyst electrode production, particle transfer method] and [CdS surface modification and Pt promoter support] were performed.

[電気化学特性評価]
[CdS表面修飾とPt助触媒担持]で得られた光触媒電極を用いて、実施例1と同様にして、光電気化学特性を調べた。結果を図6に示す。
[Electrochemical characteristics evaluation]
Using the photocatalytic electrode obtained in [CdS surface modification and Pt promoter support], the photoelectrochemical characteristics were examined in the same manner as in Example 1. The results are shown in FIG.

<実施例14>
[光触媒合成]
CuS((株)高純度化学研究所製、純度99.0%)を0.8038g、Ga((株)高純度化学研究所製、純度99.99%)を0.7070g、In((株)高純度化学研究所製、純度99.99%)を0.8147g、そして、フラックス剤として、塩化リチウム(LiCl、関東化学(株)製、純度99.9%)2.54gと塩化カリウム(KCl、関東化学(株)製、純度99.5%)2.98gを秤量して、乳鉢にて混合後、片端が封じられた石英製ガラスチューブに入れた。この石英製ガラスチューブのもう一方の端を真空下に保ちながらバーナーにて熱して封じた。この真空下に封じられた密閉チューブを電気炉に入れて650℃15hr熱処理を行った。室温に放冷してから内容物(CGIS光触媒)を取り出した。この内容物を100ccの水を用いて洗浄する操作を3回実施した。その後、ろ過したものを40℃で15時間乾燥させた。得られたCGIZS触媒を、ICP分析したところ、その成分として、Li、Cu、Ga、In、Zn、Sの重量%は、各々順に、0.0805、25.6、18.9、25.2、0.00、30.1%であり、組成比は、各々順に、0.0247、0.86、0.58、0.47、0.00、2.00であった。また、全金属原子に対するLiの割合は、1.28モル%であった。
<Example 14>
[Photocatalytic synthesis]
0.8038 g of Cu 2 S (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.0%) and 0.7070 g of Ga 2 S 3 (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) In 2 S 3 (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) 0.8147 g, and as a flux agent, lithium chloride (LiCl, Kanto Chemical Co., Ltd., purity 99.9%) ) 2.54 g and 2.98 g of potassium chloride (KCl, manufactured by Kanto Chemical Co., Inc., purity 99.5%) were weighed and mixed in a mortar, and then put into a quartz glass tube sealed at one end. The other end of the quartz glass tube was heated and sealed with a burner while keeping the vacuum. The sealed tube sealed under vacuum was put in an electric furnace and heat-treated at 650 ° C. for 15 hours. After cooling to room temperature, the contents (CGIS photocatalyst) were taken out. The operation of washing the contents with 100 cc of water was performed three times. Thereafter, the filtered product was dried at 40 ° C. for 15 hours. When the obtained CGIZS catalyst was analyzed by ICP, the weight percentages of Li, Cu, Ga, In, Zn, and S were 0.0805, 25.6, 18.9, and 25.2 in this order. 0.003 and 30.1%, and the composition ratios were 0.0247, 0.86, 0.58, 0.47, 0.00, and 2.00, respectively. Moreover, the ratio of Li with respect to all the metal atoms was 1.28 mol%.

[XRDによるキャラクタリゼーション]
実施例1と同様にして、実施例14で得られたCGIZS光触媒のXRD測定を行なった。結果を図7に示す。図7のXRD測定結果において、カルコパイライト型の結晶構造の硫化物が得られていることが確認された。
[Characterization by XRD]
In the same manner as in Example 1, the XRD measurement of the CGIZS photocatalyst obtained in Example 14 was performed. The results are shown in FIG. In the XRD measurement result of FIG. 7, it was confirmed that the sulfide of chalcopyrite type crystal structure was obtained.

[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]
実施例1と同様にして、[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]を行った。
[Preparation of CGIZS photocatalyst electrode, particle transfer method] and [CdS surface modification and Pt promoter support]
In the same manner as in Example 1, [CGIZS photocatalyst electrode production, particle transfer method] and [CdS surface modification and Pt promoter support] were performed.

[電気化学特性評価]
[CdS表面修飾とPt助触媒担持]で得られた光触媒電極を用いて、実施例1と同様にして、光電気化学特性を調べた。結果を図8に示す。
[Electrochemical characteristics evaluation]
Using the photocatalytic electrode obtained in [CdS surface modification and Pt promoter support], the photoelectrochemical characteristics were examined in the same manner as in Example 1. The results are shown in FIG.

<実施例15>
CuSe((株)高純度化学研究所製、純度99.9%)を0.8250g、Ga((株)高純度化学研究所製、純度99.99%)を0.5656g、In((株)高純度化学研究所製、純度99.99%)を0.6517g、ZnS((株)高純度化学研究所製、純度99.999%)を0.3897g、そして、フラックス剤として、塩化リチウム(LiCl、関東化学(株)製、純度99.9%)2.54gと塩化カリウム(KCl、関東化学(株)製、純度99.5%)2.98gを秤量して、乳鉢にて混合後、片端が封じられた石英製ガラスチューブに入れた。この石英製ガラスチューブのもう一方の端を真空下に保ちながらバーナーにて熱して封じた。この真空下に封じられた密閉チューブを電気炉に入れて650℃15hr熱処理を行った。室温に放冷してから内容物(CGIZS光触媒)を取り出した。この内容物を100ccの水を用いて洗浄する操作を3回実施した。その後、ろ過したものを40℃で15時間乾燥させた。得られたCGIZS触媒を、ICP分析したところ、その成分として、Li、Cu、Ga、In、Zn、S、Seの重量%は、各々順に、0.0616、21.3、13.9、19.3、10.3、22.6、12.5%であり、組成比は、各々順に、0.0207、0.78、0.46、0.39、0.37、1.64、0.36であった。また、全金属原子に対するLiの割合は、1.02モル%であった。
<Example 15>
Cu 2 Se ((Ltd.) by Kojundo Chemical Laboratory, purity 99.9%) and 0.8250g, Ga 2 S 3 ((Ltd.) by Kojundo Chemical Laboratory, 99.99% purity) and 0.5656g , an In 2 S 3 (Co. Kojundo Chemical Laboratory, Ltd., purity of 99.99%) to 0.6517G, ZnS and (Co. Kojundo Chemical Laboratory, Ltd., purity of 99.999%) 0.3897G, As a fluxing agent, 2.54 g of lithium chloride (LiCl, manufactured by Kanto Chemical Co., Ltd., purity 99.9%) and 2.98 g of potassium chloride (KCl, manufactured by Kanto Chemical Co., Ltd., purity 99.5%) After weighing and mixing in a mortar, it was placed in a quartz glass tube sealed at one end. The other end of the quartz glass tube was heated and sealed with a burner while keeping the vacuum. The sealed tube sealed under vacuum was put in an electric furnace and heat-treated at 650 ° C. for 15 hours. After cooling to room temperature, the contents (CGIZS photocatalyst) were taken out. The operation of washing the contents with 100 cc of water was performed three times. Thereafter, the filtered product was dried at 40 ° C. for 15 hours. When the obtained CGIZS catalyst was analyzed by ICP, the weight percentages of Li, Cu, Ga, In, Zn, S, and Se as components thereof were 0.0616, 21.3, 13.9, and 19 respectively. .3, 10.3, 22.6, and 12.5%, and the composition ratios are 0.0207, 0.78, 0.46, 0.39, 0.37, 1.64, 0 in order, respectively. .36. Moreover, the ratio of Li with respect to all the metal atoms was 1.02 mol%.

[XRDによるキャラクタリゼーション]
実施例1と同様にして、実施例15で得られたCGIZS光触媒のXRD測定を行なった。結果を図7に示す。図7のXRD測定結果において、カルコパイライト型の結晶構造の硫化物が得られていることが確認された。
[Characterization by XRD]
In the same manner as in Example 1, XRD measurement of the CGIZS photocatalyst obtained in Example 15 was performed. The results are shown in FIG. In the XRD measurement result of FIG. 7, it was confirmed that the sulfide of chalcopyrite type crystal structure was obtained.

[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]
実施例1と同様にして、[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]を行った。
[Preparation of CGIZS photocatalyst electrode, particle transfer method] and [CdS surface modification and Pt promoter support]
In the same manner as in Example 1, [CGIZS photocatalyst electrode production, particle transfer method] and [CdS surface modification and Pt promoter support] were performed.

[電気化学特性評価]
[CdS表面修飾とPt助触媒担持]で得られた光触媒電極を用いて、実施例1と同様にして、光電気化学特性を調べた。結果を図8に示す。
[Electrochemical characteristics evaluation]
Using the photocatalytic electrode obtained in [CdS surface modification and Pt promoter support], the photoelectrochemical characteristics were examined in the same manner as in Example 1. The results are shown in FIG.

<実施例16>
ZnSの代わりにZnSe(SIGMA−ALDRICH製99.99%)0.5775gを用いた以外は実施例15と同様の操作によりCGIZS光触媒を得た。得られた光触媒についてICP分析したところ、その成分として、Li、Cu、Ga、In、Zn、S、Seの重量%は、各々順に、0.0287、20.0、12.6、17.9、9.9、15.6、24.1%であり、組成比は、各々順に、0.0106、0.80、0.46、0.40、0.39、1.24、0.76であった。また、全金属原子に対するLiの割合は、0.51モル%であった。
<Example 16>
A CGIZS photocatalyst was obtained in the same manner as in Example 15 except that 0.5775 g of ZnSe (99.99% manufactured by SIGMA-ALDRICH) was used instead of ZnS. When the obtained photocatalyst was analyzed by ICP, the weight percentages of Li, Cu, Ga, In, Zn, S, and Se as components were 0.0287, 20.0, 12.6, and 17.9, respectively. 9.9, 15.6, 24.1%, and the composition ratios are 0.0106, 0.80, 0.46, 0.40, 0.39, 1.24, 0.76, respectively, in order. Met. Moreover, the ratio of Li with respect to all the metal atoms was 0.51 mol%.

[XRDによるキャラクタリゼーション]
実施例1と同様にして、実施例16で得られたCGIZS光触媒のXRD測定を行なった。結果を図8に示す。図8のXRD測定結果において、カルコパイライト型の結晶構造の硫化物が得られていることが確認された。
[Characterization by XRD]
In the same manner as in Example 1, XRD measurement of the CGIZS photocatalyst obtained in Example 16 was performed. The results are shown in FIG. In the XRD measurement result of FIG. 8, it was confirmed that the sulfide of chalcopyrite type crystal structure was obtained.

[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]
実施例1と同様にして、[CGIZS光触媒電極の作製、粒子転写法]および[CdS表面修飾とPt助触媒担持]を行った。
[Preparation of CGIZS photocatalyst electrode, particle transfer method] and [CdS surface modification and Pt promoter support]
In the same manner as in Example 1, [CGIZS photocatalyst electrode production, particle transfer method] and [CdS surface modification and Pt promoter support] were performed.

[電気化学特性評価]
[CdS表面修飾とPt助触媒担持]で得られた光触媒電極を用いて、実施例1と同様にして、光電気化学特性を調べた。結果を図8に示す。
[Electrochemical characteristics evaluation]
Using the photocatalytic electrode obtained in [CdS surface modification and Pt promoter support], the photoelectrochemical characteristics were examined in the same manner as in Example 1. The results are shown in FIG.

<実施例17>
[光触媒合成]
光触媒をフラックス法で合成した。原料にはCuS((株)高純度化学研究所製、純度99.0%)を1.019g(6.40mmol)、Ga((株)高純度化学研究所製、純度99.99%)を0.905g(3.84mmol)、In((株)高純度化学研究所製、純度99.99%)を1.251g(3.84mmol)、ZnS((株)高純度化学研究所製、純度99.999%)を0.748g(7.68mmol)用いた。この原料仕込みは、Cu、Ga、In、Zn、Sの組成比が、モル基準で、各々順に、0.68、0.41、0.41、0.41、2.0に相当する。原料の混合はメノー乳鉢を用いて、Nグローブボックス中で行った。フラックス剤にはLiCl(関東化学(株)製、純度99.0%)4.070g(48mmol)およびKCl(関東化学(株)製、純度99.5%)4.771g(32mmol)を用いた。フラックス剤の混合は、原料の金属硫化物の混合と同様に行った。これらの混合物を、原料、フラックス剤の順番で石英製シース管に入れ、縦型管状炉において大気中、650℃、3時間の熱処理を行った。熱処理において、昇温速度は10℃/分である。熱処理の降温は、5℃/分の降温速度で行った。熱処理後の試料は、純水で十分に洗浄してフラックス成分を除去してから、吸引濾過にて分離回収した。その後、大気中、室温で一晩乾燥させた。得られた乾燥物(光触媒)をICP分析したところ、Liの含有量は0.037重量%であり、全金属原子に対するLiの割合は、0.57モル%であった。
<Example 17>
[Photocatalytic synthesis]
A photocatalyst was synthesized by the flux method. As raw materials, 1.019 g (6.40 mmol) of Cu 2 S (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.0%), Ga 2 S 3 (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99) .99%) 0.905 g (3.84 mmol), In 2 S 3 (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) 1.251 g (3.84 mmol), ZnS (Corporation) 0.748 g (7.68 mmol) of a high-purity chemical laboratory, purity 99.999%) was used. In this raw material charge, the composition ratios of Cu, Ga, In, Zn, and S correspond to 0.68, 0.41, 0.41, 0.41, and 2.0, respectively, on a molar basis. The raw materials were mixed in a N 2 glove box using a menor mortar. LiCl (Kanto Chemical Co., Ltd., purity 99.0%) 4.070 g (48 mmol) and KCl (Kanto Chemical Co., Ltd., purity 99.5%) 4.771 g (32 mmol) were used as fluxing agents. . Mixing of the fluxing agent was performed in the same manner as mixing of the raw material metal sulfide. These mixtures were put in a quartz sheath tube in the order of the raw material and the fluxing agent, and heat-treated at 650 ° C. for 3 hours in the air in a vertical tubular furnace. In the heat treatment, the heating rate is 10 ° C./min. The temperature of the heat treatment was lowered at a rate of 5 ° C./min. The sample after the heat treatment was sufficiently washed with pure water to remove the flux component, and then separated and collected by suction filtration. Then, it was dried overnight at room temperature in the atmosphere. When the obtained dried product (photocatalyst) was analyzed by ICP, the Li content was 0.037 wt%, and the ratio of Li to the total metal atoms was 0.57 mol%.

[XRDによるキャラクタリゼーション]
実施例1と同様にして、実施例17で得られたCGIZS光触媒のXRD測定を行なった。結果を図9に示す。図9のXRD測定結果において、カルコパイライト型の結晶構造の硫化物が得られていることが確認された。
[Characterization by XRD]
In the same manner as in Example 1, the XRD measurement of the CGIZS photocatalyst obtained in Example 17 was performed. The results are shown in FIG. In the XRD measurement result of FIG. 9, it was confirmed that the sulfide of chalcopyrite type crystal structure was obtained.

[助触媒担持]
実施例17で得られたCGIZS光触媒に対して、助触媒としてRu 2重量%を光電着法により担持した。具体的には、RuCl 0.40mmolとメタノール20mLとを含む水溶液200mLに上記触媒粉末0.2gを室温にて撹拌下に懸濁させた状態で300Wのキセノンランプによる光照射を3時間行った。その後、濾過して水洗浄を行い、一晩室温にて乾燥させた。
[Cocatalyst support]
With respect to the CGIZS photocatalyst obtained in Example 17, 2% by weight of Ru was supported as a co-catalyst by the photodeposition method. Specifically, light irradiation with a 300 W xenon lamp was performed for 3 hours in a state where 0.2 g of the catalyst powder was suspended in 200 mL of an aqueous solution containing 0.40 mmol of RuCl 3 and 20 mL of methanol at room temperature. . Thereafter, the mixture was filtered, washed with water, and dried overnight at room temperature.

[CGIZS光触媒の水素生成活性評価(懸濁系)]
上記によりRu助触媒を担持させた、実施例17で得られたCGIZS光触媒について、水を分解して水素を生成する光触媒活性を、疑似太陽光照射下における亜硫酸カリウムおよび硫化ナトリウムを含む水溶液からの水素生成反応で評価した。評価には閉鎖循環型反応装置に接続した上方照射型反応セルを用いた。触媒粉末0.2gを、0.50mol/LのKSO、および、0.10mol/LのNaSを含む水溶液200mlに懸濁させ、マグネチックスターラーで評価中は撹拌した。反応条件としては、反応温度20℃、反応圧5kPaである。Pyrex(登録商標)ガラス製の窓の上から、ソーラーシミュレーター(AM1.5G)を用いて、疑似太陽光を照射した。照射強度は100mW/cmであった。発生した水素は、オンラインのガスクロマトグラフ(島津製作所製;GC−8A、MS−5A、TCD、Arキャリアー)で定量した。結果を表2に示す。
[Evaluation of hydrogen production activity of CGIZS photocatalyst (suspension system)]
With respect to the CGIZS photocatalyst obtained in Example 17 carrying a Ru promoter as described above, the photocatalytic activity of decomposing water to generate hydrogen was measured from an aqueous solution containing potassium sulfite and sodium sulfide under simulated sunlight irradiation. The hydrogen generation reaction was evaluated. For the evaluation, an upper irradiation type reaction cell connected to a closed circulation type reactor was used. 0.2 g of catalyst powder was suspended in 200 ml of an aqueous solution containing 0.50 mol / L of K 2 SO 3 and 0.10 mol / L of Na 2 S, and stirred during evaluation with a magnetic stirrer. The reaction conditions are a reaction temperature of 20 ° C. and a reaction pressure of 5 kPa. Pseudo sunlight was irradiated from above a Pyrex (registered trademark) glass window using a solar simulator (AM1.5G). The irradiation intensity was 100 mW / cm 2 . The generated hydrogen was quantified by an online gas chromatograph (manufactured by Shimadzu Corporation; GC-8A, MS-5A, TCD, Ar carrier). The results are shown in Table 2.

Figure 2019171284
Figure 2019171284

<実施例18>
Inを用いない以外は実施例17と同様にして、Cu、Ga、In、Zn、Sの組成比が、モル基準で、それぞれ順に、0.71、0.43、0.00、0.42、2.0に相当する光触媒を得た。ICP分析の結果、Liの含有量は0.048重量%であり、全金属原子に対するLiの割合は0.74モル%であった。
<Example 18>
Except not using In 2 S 3 , the composition ratio of Cu, Ga, In, Zn, S was 0.71, 0.43, 0.00, Photocatalysts corresponding to 0.42 and 2.0 were obtained. As a result of ICP analysis, the Li content was 0.048 wt%, and the ratio of Li to the total metal atoms was 0.74 mol%.

[XRDによるキャラクタリゼーション]
実施例1と同様にして、実施例18で得られたCGIZS光触媒のXRD測定を行なった。結果を図9に示す。図9のXRD測定結果において、カルコパイライト型の結晶構造の硫化物が得られていることが確認された。
[Characterization by XRD]
In the same manner as in Example 1, XRD measurement of the CGIZS photocatalyst obtained in Example 18 was performed. The results are shown in FIG. In the XRD measurement result of FIG. 9, it was confirmed that the sulfide of chalcopyrite type crystal structure was obtained.

[助触媒担持]及び[CGIZS光触媒の水素生成活性評価(懸濁系)]
実施例17と同様にして、[助触媒担持]および[CGIZS光触媒の水素生成活性評価(懸濁系)]を行って、水素生成活性を評価した。結果を表2に示す。
[Co-catalyst support] and [Evaluation of hydrogen production activity of CGIZS photocatalyst (suspension system)]
In the same manner as in Example 17, [cocatalyst support] and [hydrogen generation activity evaluation of CGIZS photocatalyst (suspension system)] were performed to evaluate the hydrogen generation activity. The results are shown in Table 2.

<実施例19>
Gaを用いない以外は実施例17と同様にして、Cu、Ga、In、Zn、Sの組成比が、モル基準で、それぞれ順に、0.71、0.00、0.42、0.42、2.0に相当する光触媒を得た。ICP分析の結果、Liの含有量は0.039重量%であり、全金属原子に対するLiの割合は0.67モル%であった。
<Example 19>
Except not using Ga 2 S 3 , the composition ratio of Cu, Ga, In, Zn, and S was 0.71, 0.00, 0.42, and so on, on a molar basis, in the same manner as in Example 17. Photocatalysts corresponding to 0.42 and 2.0 were obtained. As a result of ICP analysis, the Li content was 0.039 wt%, and the ratio of Li to all metal atoms was 0.67 mol%.

[XRDによるキャラクタリゼーション]
実施例1と同様にして、実施例19で得られたCGIZS光触媒のXRD測定を行なった。結果を図9に示す。図9のXRD測定結果において、カルコパイライト型の結晶構造の硫化物が得られていることが確認された。
[Characterization by XRD]
In the same manner as in Example 1, XRD measurement of the CGIZS photocatalyst obtained in Example 19 was performed. The results are shown in FIG. In the XRD measurement result of FIG. 9, it was confirmed that the sulfide of chalcopyrite type crystal structure was obtained.

[助触媒担持]及び[CGIZS光触媒の水素生成活性評価(懸濁系)]
実施例17と同様にして、[助触媒担持]および[CGIZS光触媒の水素生成活性評価(懸濁系)]を行って、水素生成活性を評価した。結果を表2に示す。
[Co-catalyst support] and [Evaluation of hydrogen production activity of CGIZS photocatalyst (suspension system)]
In the same manner as in Example 17, [cocatalyst support] and [hydrogen generation activity evaluation of CGIZS photocatalyst (suspension system)] were performed to evaluate the hydrogen generation activity. The results are shown in Table 2.

<比較例2>
光触媒を固相法で合成した。具体的には、原料の金属硫化物には、実施例17と同じものを同じ仕込み量で用い、これらの混合物を石英製ガラス管に入れ、0.5Paの真空下に封管した後、電気炉で800℃、10時間の熱処理を行った。放冷後、室温になった状態で開封して粉末を取り出して、Cu、Ga、In、Zn、Sの組成比が、モル基準で、各々順に、0.68、0.41、0.41、0.41、2.0に相当する光触媒を得た。
<Comparative example 2>
The photocatalyst was synthesized by solid phase method. Specifically, the same raw material metal sulfide as in Example 17 was used in the same amount, and these mixtures were placed in a quartz glass tube and sealed under a vacuum of 0.5 Pa, Heat treatment was performed at 800 ° C. for 10 hours in a furnace. After standing to cool, it is opened at room temperature, and the powder is taken out. The composition ratios of Cu, Ga, In, Zn, and S are 0.68, 0.41, and 0.41, respectively, on a molar basis. , 0.41 and 2.0 were obtained.

[XRDによるキャラクタリゼーション]
実施例1と同様にして、比較例2で得られたCGIZS光触媒のXRD測定を行なった。結果を図9に示す。図9のXRD測定結果において、カルコパイライト型の結晶構造の硫化物が得られていることが確認された。
[Characterization by XRD]
In the same manner as in Example 1, the XRD measurement of the CGIZS photocatalyst obtained in Comparative Example 2 was performed. The results are shown in FIG. In the XRD measurement result of FIG. 9, it was confirmed that the sulfide of chalcopyrite type crystal structure was obtained.

[助触媒担持]及び[CGIZS光触媒の水素生成活性評価(懸濁系)]
実施例17と同様にして、[助触媒担持]および[CGIZS光触媒の水素生成活性評価(懸濁系)]を行って、水素生成活性を評価した。結果を表2に示す。
[Co-catalyst support] and [Evaluation of hydrogen production activity of CGIZS photocatalyst (suspension system)]
In the same manner as in Example 17, [cocatalyst support] and [hydrogen generation activity evaluation of CGIZS photocatalyst (suspension system)] were performed to evaluate the hydrogen generation activity. The results are shown in Table 2.

<比較例3>
Inを用いない以外は比較例2と同様にして、Cu、Ga、In、Zn、Sの組成比が、モル基準で、各々順に、0.71、0.43、0.00、0.42、2.0に相当する光触媒を得た。
<Comparative Example 3>
The composition ratios of Cu, Ga, In, Zn, and S were 0.71, 0.43, 0.00, and in turn, respectively, on a molar basis in the same manner as in Comparative Example 2 except that In 2 S 3 was not used. Photocatalysts corresponding to 0.42 and 2.0 were obtained.

[XRDによるキャラクタリゼーション]
実施例1と同様にして、比較例3で得られたCGIZS光触媒のXRD測定を行なった。結果を図9に示す。図9のXRD測定結果において、カルコパイライト型の結晶構造の硫化物が得られていることが確認された。
[Characterization by XRD]
In the same manner as in Example 1, the XRD measurement of the CGIZS photocatalyst obtained in Comparative Example 3 was performed. The results are shown in FIG. In the XRD measurement result of FIG. 9, it was confirmed that the sulfide of chalcopyrite type crystal structure was obtained.

[助触媒担持]及び[CGIZS光触媒の水素生成活性評価(懸濁系)]
実施例17と同様にして、[助触媒担持]および[CGIZS光触媒の水素生成活性評価(懸濁系)]を行って、水素生成活性を評価した。結果を表2に示す。
[Co-catalyst support] and [Evaluation of hydrogen generation activity of CGIZS photocatalyst (suspension)]
In the same manner as in Example 17, [cocatalyst support] and [hydrogen generation activity evaluation of CGIZS photocatalyst (suspension system)] were performed to evaluate the hydrogen generation activity. The results are shown in Table 2.

<比較例4>
Gaを用いない以外は比較例2と同様にして、Cu、Ga、In、Zn、Sの組成比が、0.71、0.00、0.42、0.42、2.0に相当する光触媒を得た。
<Comparative Example 4>
The composition ratios of Cu, Ga, In, Zn, and S were 0.71, 0.00, 0.42, 0.42, and 2.0 in the same manner as in Comparative Example 2 except that Ga 2 S 3 was not used. Was obtained.

[XRDによるキャラクタリゼーション]
実施例1と同様にして、比較例4で得られたCGIZS光触媒のXRD測定を行なった。結果を図9に示す。図9のXRD測定結果において、カルコパイライト型の結晶構造の硫化物が得られていることが確認された。
[Characterization by XRD]
In the same manner as in Example 1, the XRD measurement of the CGIZS photocatalyst obtained in Comparative Example 4 was performed. The results are shown in FIG. In the XRD measurement result of FIG. 9, it was confirmed that the sulfide of chalcopyrite type crystal structure was obtained.

[助触媒担持]及び[CGIZS光触媒の水素生成活性評価(懸濁系)]
実施例17と同様にして、[助触媒担持]および[CGIZS光触媒の水素生成活性評価(懸濁系)]を行って、水素生成活性を評価した。結果を表2に示す。
[Co-catalyst support] and [Evaluation of hydrogen production activity of CGIZS photocatalyst (suspension system)]
In the same manner as in Example 17, [cocatalyst support] and [hydrogen generation activity evaluation of CGIZS photocatalyst (suspension system)] were performed to evaluate the hydrogen generation activity. The results are shown in Table 2.

図2及び表1から明らかなように、実施例1〜5において固相法で得られたLiを複合金属化合物中の全金属原子に対して0.001〜5モル%含有する各光触媒を用いて作製された光触媒電極は、比較例1においてLiを含有しない光触媒を用いて作製された光触媒電極に比して、いずれも高いカソード電流を与えた。これはLiの添加効果によるものと考えられる。   As is clear from FIG. 2 and Table 1, each photocatalyst containing 0.001 to 5 mol% of Li obtained by the solid phase method in Examples 1 to 5 with respect to all metal atoms in the composite metal compound was used. As compared with the photocatalyst electrode produced using the photocatalyst electrode not containing Li in Comparative Example 1, all of the photocatalyst electrodes produced in this manner gave a high cathode current. This is considered to be due to the effect of addition of Li.

また、図4及び表1においては、NaあるいはKを複合金属化合物中の全金属原子に対して0.001〜5モル%含有する光触媒を用いて作製された光触媒電極が、比較例1においてアルカリを含有しない光触媒を用いて作製された光触媒電極に比して、いずれも高いカソード電流を与えた。いずれもアルカリの添加効果によるものと考えられる。   4 and Table 1, the photocatalytic electrode prepared using a photocatalyst containing 0.001 to 5 mol% of Na or K with respect to all metal atoms in the composite metal compound is an alkali in Comparative Example 1. Compared with the photocatalyst electrode produced using the photocatalyst which does not contain, all gave a high cathode current. It is considered that both are due to the effect of addition of alkali.

さらに、図6及び表1においては、フラックス法により合成された各触媒が複合金属化合物中の全金属原子に対して0.001〜5モル%のLiを含有すること、および、各触媒を用いて作製された光触媒電極がいずれも高いカソード電流を与えることが示されている。いずれもLiの添加効果によるものと考えられる。   Furthermore, in FIG. 6 and Table 1, each catalyst synthesized by the flux method contains 0.001 to 5 mol% Li with respect to all metal atoms in the composite metal compound, and each catalyst is used. All of the photocatalytic electrodes produced in this way have been shown to provide high cathode currents. It is considered that both are due to the effect of addition of Li.

そして、図8及び表1から明らかなように、本発明における複合酸化物の範囲内で元素の種類を変更した実施例14〜16においても、いずれも高いカソード電流を与えた。   As is clear from FIG. 8 and Table 1, all of Examples 14 to 16 in which the types of elements were changed within the range of the composite oxide in the present invention gave a high cathode current.

また、表2に示すように、本発明における複合金属化合物を用いた実施例17〜19は、それぞれ、アルカリ金属を含まない以外は同様の比較例2〜4と比べて、水素発生量が多く、優れた水素生成活性を有していた。同様に、実施例17と同様の組成である実施例1〜13や14〜16も、優れた水素生成活性を有していると言える。   In addition, as shown in Table 2, Examples 17 to 19 using the composite metal compound in the present invention have a larger amount of hydrogen generation than Comparative Examples 2 to 4 except that no alkali metal is contained. And had an excellent hydrogen production activity. Similarly, it can be said that Examples 1 to 13 and 14 to 16 having the same composition as Example 17 also have excellent hydrogen generation activity.

Claims (3)

カルコパイライト型の結晶構造を有する複合金属化合物からなり、可視光を用いて水から水素の生成が可能な光触媒であって、
前記複合金属化合物が、Cuと、Sと、GaおよびInの少なくとも一方と、アルカリ金属とを必須成分として含有し、必要に応じてZnおよびSeの少なくとも一方を含有し、かつ、前記複合金属化合物中の全金属原子に対して前記アルカリ金属を0.001〜5モル%含有する、光触媒。
A photocatalyst comprising a complex metal compound having a chalcopyrite type crystal structure and capable of generating hydrogen from water using visible light,
The composite metal compound contains Cu, S, at least one of Ga and In, and an alkali metal as essential components, and optionally contains at least one of Zn and Se, and the composite metal compound The photocatalyst which contains the said alkali metal 0.001-5 mol% with respect to all the metal atoms in it.
前記複合金属化合物が、Cuと、Sと、GaおよびInの少なくとも一方と、アルカリ金属と、Znとを含有する、請求項1に記載の光触媒。   The photocatalyst according to claim 1, wherein the composite metal compound contains Cu, S, at least one of Ga and In, an alkali metal, and Zn. 請求項1又は2に記載の光触媒を有する、水素生成用光触媒電極。   A photocatalytic electrode for hydrogen generation, comprising the photocatalyst according to claim 1.
JP2018062215A 2018-03-28 2018-03-28 Photocatalyst and photocatalyst electrode for hydrogen production Active JP6956963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018062215A JP6956963B2 (en) 2018-03-28 2018-03-28 Photocatalyst and photocatalyst electrode for hydrogen production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018062215A JP6956963B2 (en) 2018-03-28 2018-03-28 Photocatalyst and photocatalyst electrode for hydrogen production

Publications (2)

Publication Number Publication Date
JP2019171284A true JP2019171284A (en) 2019-10-10
JP6956963B2 JP6956963B2 (en) 2021-11-02

Family

ID=68167844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018062215A Active JP6956963B2 (en) 2018-03-28 2018-03-28 Photocatalyst and photocatalyst electrode for hydrogen production

Country Status (1)

Country Link
JP (1) JP6956963B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114752948A (en) * 2022-04-21 2022-07-15 西安电子科技大学 Photoelectric coupling double-source excitation cracking aquatic product hydrogen reactor, system and method
CN115055192A (en) * 2022-06-16 2022-09-16 中南大学 Al 3+ /Zn 0.4 (CuGa) 0.3 Ga 2 S 4 Composite material and preparation method and application thereof
CN115155625A (en) * 2022-06-24 2022-10-11 江西理工大学 Novel multi-junction nano catalyst and preparation method and application thereof
CN115532284A (en) * 2022-10-14 2022-12-30 东莞理工学院 Multi-element sulfide heterojunction microsphere, preparation method and application thereof, and photocatalytic hydrogen production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167652A (en) * 2004-12-17 2006-06-29 Tokyo Univ Of Science Black photocatalyst for forming hydrogen absorbing all visible light
JP2015196155A (en) * 2014-04-03 2015-11-09 国際石油開発帝石株式会社 Photocatalyst and hydrogen generation method using the same
WO2017145707A1 (en) * 2016-02-23 2017-08-31 富士フイルム株式会社 Artificial photosynthesis module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167652A (en) * 2004-12-17 2006-06-29 Tokyo Univ Of Science Black photocatalyst for forming hydrogen absorbing all visible light
JP2015196155A (en) * 2014-04-03 2015-11-09 国際石油開発帝石株式会社 Photocatalyst and hydrogen generation method using the same
WO2017145707A1 (en) * 2016-02-23 2017-08-31 富士フイルム株式会社 Artificial photosynthesis module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114752948A (en) * 2022-04-21 2022-07-15 西安电子科技大学 Photoelectric coupling double-source excitation cracking aquatic product hydrogen reactor, system and method
CN114752948B (en) * 2022-04-21 2024-04-09 西安电子科技大学 Photoelectric coupling double-source excitation pyrolysis water hydrogen production reactor, system and method
CN115055192A (en) * 2022-06-16 2022-09-16 中南大学 Al 3+ /Zn 0.4 (CuGa) 0.3 Ga 2 S 4 Composite material and preparation method and application thereof
CN115155625A (en) * 2022-06-24 2022-10-11 江西理工大学 Novel multi-junction nano catalyst and preparation method and application thereof
CN115155625B (en) * 2022-06-24 2023-08-04 江西理工大学 Multi-junction nano catalyst and preparation method and application thereof
CN115532284A (en) * 2022-10-14 2022-12-30 东莞理工学院 Multi-element sulfide heterojunction microsphere, preparation method and application thereof, and photocatalytic hydrogen production method

Also Published As

Publication number Publication date
JP6956963B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
Wu et al. CO2 reduction: from the electrochemical to photochemical approach
Ng et al. Z‐scheme photocatalytic systems for solar water splitting
Gong et al. NiSe/Cd0. 5Zn0. 5S composite nanoparticles for use in p–n heterojunction-based photocatalysts for solar energy harvesting
Toe et al. Recent advances and the design criteria of metal sulfide photocathodes and photoanodes for photoelectrocatalysis
JP6883799B2 (en) A method for producing a metal compound, a method for producing a photocatalyst, and a method for producing a photocatalyst complex.
Abouelela et al. Metal chalcogenide-based photoelectrodes for photoelectrochemical water splitting
Yuan et al. Cu2ZnSnS4 decorated CdS nanorods for enhanced visible-light-driven photocatalytic hydrogen production
JP6956963B2 (en) Photocatalyst and photocatalyst electrode for hydrogen production
Gulen et al. Ternary copper-tungsten-disulfide nanocube inks as catalyst for highly efficient dye-sensitized solar cells
Singh et al. Halide perovskite-based photocatalysis systems for solar-driven fuel generation
Dhandole et al. CdIn2S4 chalcogenide/TiO2 nanorod heterostructured photoanode: An advanced material for photoelectrochemical applications
Sun et al. Acid-exfoliated metallic Co0. 85Se nanosheets as cocatalyst on Cd0. 5Zn0. 5S for photocatalytic hydrogen evolution under visible-light irradiation
JP5548923B2 (en) Electrode for water splitting, method for producing electrode for water splitting, and water splitting method
JPWO2019181392A1 (en) Photocatalyst for water decomposition, electrodes and water decomposition equipment
Kubendhiran et al. Enhanced photoelectrochemical water oxidation on BiVO4 by addition of ZnCo-MOFs as effective hole transfer co-catalyst
Markovskaya et al. Modification of sulfide-based photocatalyst with zinc-and nickel-containing compounds: Correlation between photocatalytic activity and photoelectrochemical parameters
Gulen Lithium perchlorate-assisted electrodeposition of CoS catalyst surpassing the performance of platinum in dye sensitized solar cell
Xu et al. Recent advances in heterogeneous catalysis of solar-driven carbon dioxide conversion
Yann et al. Growth of Ag2S-sensitizer on MoS2/ZnO nanocable arrays for improved solar driven photoelectrochemical water splitting
Majumder et al. Revealing the impact of significant improvement in the solar-driven water oxidation of 1-D Co2P2O7 modified BiVO4 photoanode
JP2012055843A (en) Synthesis method of photocatalyst, photocatalyst electrode and hydrogen generating apparatus, and hydrogen generation method
JP6836239B2 (en) Composite metal compounds and photocatalytic electrodes
Anuar et al. Porous architecture photoelectrode with boosted photoelectrochemical properties for solar fuel production
JP7320775B2 (en) Hydrogen generating electrode and method for producing hydrogen generating electrode
Khodabandeh et al. Photoelectrochemical water splitting based on chalcopyrite semiconductors: A review

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210922

R150 Certificate of patent or registration of utility model

Ref document number: 6956963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350