JP2019075258A - Power supply system with battery deterioration restraint device - Google Patents

Power supply system with battery deterioration restraint device Download PDF

Info

Publication number
JP2019075258A
JP2019075258A JP2017200031A JP2017200031A JP2019075258A JP 2019075258 A JP2019075258 A JP 2019075258A JP 2017200031 A JP2017200031 A JP 2017200031A JP 2017200031 A JP2017200031 A JP 2017200031A JP 2019075258 A JP2019075258 A JP 2019075258A
Authority
JP
Japan
Prior art keywords
secondary battery
power
temperature
load
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017200031A
Other languages
Japanese (ja)
Inventor
修二 戸村
Shuji Tomura
修二 戸村
将紀 石垣
Masaki Ishigaki
将紀 石垣
成晶 後藤
Shigeaki Goto
成晶 後藤
明 志知
Akira Shichi
明 志知
洋行 山田
Hiroyuki Yamada
洋行 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2017200031A priority Critical patent/JP2019075258A/en
Publication of JP2019075258A publication Critical patent/JP2019075258A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

To achieve restraint of battery deterioration for long service life of a battery by controlling a temperature of a secondary cell.SOLUTION: The power supply system, which supplies generated power by a solar battery 10 to a load 202, stores surplus power to a secondary cell 14, and supplies electric power from the secondary cell 14 to the load 202 during a period in which generated power is under electric power supplied to the load 202, includes a secondary cell temperature controller 18 for controlling a temperature of the secondary cell 14 using at least one of the generated power and electric power stored in the secondary cell 14, thereby controlling the temperature of the secondary cell 14 with the secondary cell temperature controller 18.SELECTED DRAWING: Figure 1

Description

本発明は、電池劣化抑制装置を備えた電源システムに関する。   The present invention relates to a power supply system provided with a battery deterioration suppression device.

非水二次電池と、自然エネルギーを利用して非水二次電池を充電する発電手段と、発電手段の発電量及び非水二次電池の温度の少なくとも一方を測定し、測定値が所定の設定値以上になった場合に非水二次電池の充電電圧の上昇及び充電電流の増加の少なくとも一方を実行する充電回路と、を備えた電源システムが開示されている(特許文献1)。   At least one of a non-aqueous secondary battery, a power generation means for charging the non-aqueous secondary battery using natural energy, and a power generation amount of the power generation means and a temperature of the non-aqueous secondary battery is measured. A power supply system is disclosed that includes a charging circuit that executes at least one of an increase in charging voltage and an increase in charging current of a non-aqueous secondary battery when the voltage exceeds a set value (Patent Document 1).

このように、自然エネルギーを利用した発電手段を用いて非水二次電池を充電する電源システムとすることで、二次電池の充電制御を最適化し、二次電池の劣化を防止し、長期に亘って安定した電源供給が可能となるとされている。   As described above, by using the power supply system to charge the non-aqueous secondary battery using the power generation means using natural energy, the charge control of the secondary battery is optimized, the deterioration of the secondary battery is prevented, and the long-term It is supposed that stable power supply will be possible.

特開2007−259509号公報JP 2007-259509 A

しかしながら、従来技術では、温度が45℃以上になったときに充電電流を下げることに言及されているのみであり、外部から受熱する場合において温度上昇を防ぐことができないという課題がある。   However, the prior art only mentions lowering the charging current when the temperature reaches 45 ° C. or more, and there is a problem that the temperature rise can not be prevented when receiving heat from the outside.

本発明の1つの態様は、再生可能エネルギーによる発電電力を負荷に供給すると共に、余剰電力を二次電池に蓄電し、前記発電電力が前記負荷への供給電力を下回る期間では前記二次電池から前記負荷へ電力を供給する電源システムにおいて、前記発電電力及び前記二次電池に蓄電された電力の少なくとも一方を用いて、前記二次電池の温度を調整する二次電池温調装置を備え、前記二次電池温調装置によって前記二次電池の温度を調整することを特徴とする電源システムである。   One aspect of the present invention is to supply power generated by renewable energy to a load and to store surplus power in a secondary battery, and from the secondary battery in a period in which the generated power is less than the power supplied to the load The power supply system for supplying power to the load, comprising: a secondary battery temperature control device for adjusting the temperature of the secondary battery using at least one of the generated power and the power stored in the secondary battery; It is a power supply system characterized by adjusting the temperature of the rechargeable battery by a rechargeable battery temperature control device.

ここで、前記二次電池から前記二次電池温調装置へ供給される電力量は、前記発電電力が前記負荷への供給電力を下回る期間における前記二次電池から前記負荷への供給電力量の予測値と、前記二次電池の蓄電量とにおいて、前記二次電池の蓄電量≧前記二次電池から前記負荷への供給電力量の予測値+前記二次電池から前記二次電池温調装置へ供給される電力量の関係を満たすことが好適である。   Here, the amount of power supplied from the secondary battery to the secondary battery temperature control device is the amount of power supplied from the secondary battery to the load during a period in which the generated power falls below the power supplied to the load. In the predicted value and the storage amount of the secondary battery, the storage amount of the secondary battery 予 測 predicted value of the power supply amount from the secondary battery to the load + temperature control device for the secondary battery from the secondary battery It is preferable to satisfy the relationship of the amount of power supplied to the circuit.

本発明によれば、二次電池の温度を調整することにより電池劣化を抑制し、電池の寿命を延ばすことができる。   According to the present invention, by adjusting the temperature of the secondary battery, battery deterioration can be suppressed and the battery life can be extended.

本発明の実施の形態に電源システムの構成を示す図である。FIG. 1 is a diagram showing a configuration of a power supply system according to an embodiment of the present invention. 二次電池の蓄電の役割を説明するための図である。It is a figure for demonstrating the role of electrical storage of a secondary battery. 二次電池のSOC及び温度の時間的推移の例を示す図である。It is a figure which shows the example of the time transition of SOC and temperature of a secondary battery. 本発明の実施の形態における二次電池の温度制御を説明するための図である。It is a figure for demonstrating temperature control of the secondary battery in embodiment of this invention. 本発明の実施の形態における二次電池の温度制御に使用可能な電力を説明する図である。It is a figure explaining the electric power which can be used for temperature control of the rechargeable battery in an embodiment of the invention.

本発明の実施の形態における電源システム100は、図1に示すように、太陽電池10、直流/直流変換器(DC/DC)12、二次電池14、直流/直流変換器(DC/DC)16、二次電池温調装置18、直流/直流変換器(DC/DC)20及び制御装置22を含んで構成される。   As shown in FIG. 1, a power supply system 100 according to an embodiment of the present invention includes a solar cell 10, a DC / DC converter (DC / DC) 12, a secondary battery 14, a DC / DC converter (DC / DC). And 16, a secondary battery temperature control device 18, a DC / DC converter (DC / DC) 20, and a control device 22.

電源システム100は、負荷200に対して電力を供給する。負荷200は、例えば、電気自動車のバッテリ等とすることができる。具体的には、インバータやコンバータ等の電力変換器202を介して電源システム100から負荷200へ電力が供給される。   Power supply system 100 supplies power to load 200. The load 200 can be, for example, a battery of an electric vehicle or the like. Specifically, power is supplied from the power supply system 100 to the load 200 through the power converter 202 such as an inverter or a converter.

太陽電池10は、太陽エネルギーを受けて光電変換を行うことによって発電を行う。太陽電池10は、その発電電力を必要に応じて二次電池14、二次電池温調装置18及び負荷200の少なくとも1つに供給することができる。例えば、太陽電池10は、DC/DC12を介して出力電圧を変換して、二次電池14、二次電池温調装置18及び負荷200の少なくとも1つに電力を供給する。   The solar cell 10 receives power from solar energy to perform power generation by performing photoelectric conversion. The solar cell 10 can supply the generated power to at least one of the secondary battery 14, the secondary battery temperature control device 18, and the load 200 as needed. For example, the solar cell 10 converts an output voltage via the DC / DC 12 and supplies power to at least one of the secondary battery 14, the secondary battery temperature regulator 18, and the load 200.

なお、本実施の形態では太陽電池10としたが、再生可能エネルギーを利用した発電手段を備えるものであればよい。再生可能エネルギーとは、太陽・地球物理学的・生物学的な源に由来し、自然界によって利用する以上の速度で補充されるエネルギー全般を指す。例えば、太陽光、風力、波力・潮力、流水・潮汐、地熱、バイオマス等、自然の力で定常的(もしくは反復的)に補充されるエネルギー資源より発電する手段であればよい。   In addition, although it was set as the solar cell 10 in this Embodiment, what is necessary is just to provide the electric power generation means using renewable energy. Renewable energy refers to general energy that is derived from solar, geophysical and biological sources and is replenished at a faster rate than is available to the natural world. For example, any means may be used to generate electricity from energy resources that are constantly (or repeatedly) replenished by natural forces such as sunlight, wind power, waves and tides, running water and tide, geothermal heat, biomass and the like.

二次電池14は、充電を行うことにより電力を蓄えられ、繰り返し使用できる電池である。二次電池14は、例えば、リチウムイオン電池、ニッケル・水素電池、鉛電池等とすることができる。二次電池14は、太陽電池10から電力を受けて充電される。また、二次電池14は、その発電電力を必要に応じて二次電池温調装置18及び負荷200の少なくとも1つに供給することができる。例えば、二次電池14は、DC/DC16を介して電圧を変換して、太陽電池10、二次電池温調装置18及び負荷200と電力のやり取りを行う。   The secondary battery 14 is a battery that can store electric power by being charged and can be used repeatedly. The secondary battery 14 can be, for example, a lithium ion battery, a nickel hydrogen battery, a lead battery or the like. The secondary battery 14 is charged by receiving power from the solar cell 10. In addition, the secondary battery 14 can supply the generated power to at least one of the secondary battery temperature control device 18 and the load 200 as needed. For example, the secondary battery 14 converts a voltage via the DC / DC 16 to exchange power with the solar cell 10, the secondary battery temperature control device 18, and the load 200.

二次電池温調装置18は、二次電池14の温度を調整する装置である。二次電池温調装置18は、太陽電池10及び二次電池14の少なくとも1つから電力の供給を受けて、二次電池14の温度を調整する。二次電池温調装置18は、制御装置22からの温度制御信号を受けて、二次電池14の温度が温度制御信号に応じた温度となるように温度調整を行う。例えば、DC/DC20を介して電圧を変換して、太陽電池10及び二次電池14の少なくとも1つから電力の供給を受け、熱媒体を加熱又は冷却し、熱媒体を介してヒータと二次電池14との間で熱交換を行わせることで二次電池14の温度を調整する。   The secondary battery temperature control device 18 is a device that adjusts the temperature of the secondary battery 14. The secondary battery temperature control device 18 receives power supply from at least one of the solar cell 10 and the secondary battery 14 to adjust the temperature of the secondary battery 14. In response to the temperature control signal from the control device 22, the secondary battery temperature adjustment device 18 performs temperature adjustment so that the temperature of the secondary battery 14 becomes a temperature corresponding to the temperature control signal. For example, voltage is converted via DC / DC 20, power is supplied from at least one of the solar cell 10 and the secondary cell 14, the heat medium is heated or cooled, and the heater and the secondary via the heat medium Heat exchange with the battery 14 is performed to adjust the temperature of the secondary battery 14.

ただし、二次電池温調装置18による二次電池14の温度調整方法は熱交換に限定されるものでなく、ペルチェ素子を用いた温調等の他の方法を適用してもよい。   However, the temperature control method of the secondary battery 14 by the secondary battery temperature control device 18 is not limited to heat exchange, and other methods such as temperature control using a Peltier element may be applied.

電源システム100では、図2に示すように、昼間に発電した電力から負荷200へ供給される負荷電力を差し引いた余剰電力を二次電池14に蓄え、太陽電池10で発電できない夜間や発電電力を負荷電力が上回る状況において二次電池14に蓄えた電力を使用することができる。   In the power supply system 100, as shown in FIG. 2, the surplus power obtained by subtracting the load power supplied to the load 200 from the power generated during the day is stored in the secondary battery 14, and the nighttime or the generated power can not be generated by the solar cell 10. The power stored in the secondary battery 14 can be used in the situation where the load power is exceeded.

また、二次電池14は、その設置場所の状況によっては、直射日光が当たったり、密閉空間に置かれたりすることもあり、二次電池14の温度は高温となったり、低温となったりすることがある。図3は、二次電池14の充電状態(SOC)と温度の時間的な変化の例を示す。図3の例では、夜間には二次電池14の電力が使用されてSOCが低下し、昼間には太陽電池10から二次電池14へ充電が行われてSOCが増加する(図3中、実線で示す)。また、外気温の変化に応じて、夜間には二次電池14の温度は低下し、昼間には二次電池14の温度は上昇する(図3中、破線で示す)。二次電池14は、高温及び高SOCの状態に置かれる時間が長いほど劣化速度が大きくなる。また、二次電池14がリチウムイオン電池である場合、二次電池14が低温に置かれるとリチウムの析出により劣化が促進される。   Further, depending on the conditions of the installation location, the secondary battery 14 may be exposed to direct sunlight or may be placed in an enclosed space, and the temperature of the secondary battery 14 may be high or low. Sometimes. FIG. 3 shows an example of temporal changes in state of charge (SOC) and temperature of the secondary battery 14. In the example of FIG. 3, the electric power of the secondary battery 14 is used at night and the SOC decreases, and the solar battery 10 charges the secondary battery 14 during the day to increase the SOC (in FIG. 3, Shown by a solid line). Further, the temperature of the secondary battery 14 decreases at night according to the change of the outside air temperature, and the temperature of the secondary battery 14 increases in the daytime (indicated by a broken line in FIG. 3). As the secondary battery 14 is placed in a high temperature and high SOC state for a long time, the deterioration rate is increased. When the secondary battery 14 is a lithium ion battery, when the secondary battery 14 is placed at a low temperature, the deposition is accelerated by the deposition of lithium.

そこで、電源システム100では、二次電池14の温度を調整することができる構成としている。電源システム100では、太陽電池10による発電電力及び二次電池14に蓄えられた電力の少なくとも一方の一部の電力を二次電池温調装置18へ供給して二次電池14の加熱又は冷却を行う。   Therefore, in the power supply system 100, the temperature of the secondary battery 14 can be adjusted. In the power supply system 100, at least one of the power generated by the solar cell 10 and the power stored in the secondary battery 14 is supplied to the secondary battery temperature controller 18 to heat or cool the secondary battery 14 Do.

制御装置22は、二次電池14に設けられたセンサ14aから二次電池14の現在の状態の測定値を受けて、当該測定値に応じて二次電池温調装置18への供給電力を制御すると共に、二次電池温調装置18へ温度制御信号を送信して二次電池14の温度を調整する。   Control device 22 receives the measured value of the current state of secondary battery 14 from sensor 14a provided in secondary battery 14, and controls the power supplied to secondary battery temperature regulator 18 according to the measured value. At the same time, a temperature control signal is sent to the secondary battery temperature control unit 18 to adjust the temperature of the secondary battery 14.

具体的には、センサ14aとして温度センサを設け、二次電池14の温度の測定値を制御装置22へ出力する。制御装置22は、二次電池14の温度の測定値を受けて、二次電池14の温度が所望の温度範囲になるようにDC/DC20及び二次電池温調装置18へ制御信号を出力する。すなわち、図4に示すように、二次電池14の温度の測定値が所望の温度範囲よりも高い場合には二次電池14を冷却するように制御する。また、二次電池14の温度の測定値が所望の温度範囲よりも低い場合には二次電池14を暖機するように制御する。   Specifically, a temperature sensor is provided as the sensor 14a, and the measured value of the temperature of the secondary battery 14 is output to the control device 22. Control device 22 receives the measured value of the temperature of secondary battery 14 and outputs a control signal to DC / DC 20 and secondary battery temperature regulator 18 so that the temperature of secondary battery 14 falls within the desired temperature range. . That is, as shown in FIG. 4, when the measured value of the temperature of the secondary battery 14 is higher than a desired temperature range, the secondary battery 14 is controlled to be cooled. Further, when the measured value of the temperature of the secondary battery 14 is lower than the desired temperature range, the secondary battery 14 is controlled to be warmed up.

なお、温調による二次電池14の温度の目標値(所望の温度範囲)は、二次電池14の種類に応じて設定することが好適である。例えば、二次電池14の温度の目標値としては10℃以上25℃以下とすることが好適である。   In addition, it is preferable to set the target value (desired temperature range) of the temperature of the secondary battery 14 by temperature control according to the type of the secondary battery 14. For example, the target temperature of the secondary battery 14 is preferably 10 ° C. or more and 25 ° C. or less.

このように、太陽電池10の発電電力及び二次電池14の蓄電電力の少なくとも1つを用いて二次電池14の温度を制御することによって、高温及び低温での二次電池14の劣化を抑制できる電源システム100を提供することができる。   Thus, by controlling the temperature of the secondary battery 14 using at least one of the generated power of the solar cell 10 and the stored power of the secondary battery 14, the deterioration of the secondary battery 14 at high and low temperatures is suppressed. The power supply system 100 can be provided.

なお、二次電池14の温度の測定値と共に、二次電池14の充電率(SOC)の測定値に応じて二次電池14の温度を調整する制御を行うようにしてもよい。この場合、センサ14aとして二次電池14の電圧を測定する電圧センサ及び電流を測定する電流センサを設け、これらの測定値を制御装置22へ出力する。制御装置22は、これらの測定値が二次電池14のSOCを算出し、当該SOC及び二次電池14の温度の測定値に応じて二次電池14の温度を制御する。例えば、SOCが所定の基準値よりも高く、二次電池14の温度の測定値が目標値より大きい場合に二次電池14を冷却するように制御する。   Control may be performed to adjust the temperature of the secondary battery 14 in accordance with the measured value of the state of charge (SOC) of the secondary battery 14 together with the measured value of the temperature of the secondary battery 14. In this case, a voltage sensor for measuring the voltage of the secondary battery 14 and a current sensor for measuring the current are provided as the sensor 14a, and these measured values are output to the control device 22. The control device 22 calculates the SOC of the secondary battery 14 by these measured values, and controls the temperature of the secondary battery 14 in accordance with the measured value of the SOC and the temperature of the secondary battery 14. For example, control is performed to cool the secondary battery 14 when the SOC is higher than a predetermined reference value and the measured value of the temperature of the secondary battery 14 is higher than the target value.

また、太陽電池10からの発電電力と二次電池14の蓄電電力のうちどの程度の電力を二次電池温調装置18へ供給することが好適であるかを決定する必要がある。太陽電池10による発電量が小さく、夜間の消費電力が大きく二次電池14から大量の電力を供給する必要があるような場合に二次電池温調装置18へ電力を使用してしまうと、二次電池14のSOCが低下し、電力供給が不安定になるおそれがある。そこで、図5に示すように、昼間において余剰電力として二次電池14に蓄電できる電力量を予測すると共に、夜間の消費電力量を予測し、数式(1)に示す条件を満たす範囲で二次電池14の蓄電電力を温調に利用することが好適である。
(数1)
二次電池の蓄電量 ≧ 二次電池から負荷への供給電力量の予測値+二次電池から二次電池温調装置へ供給される電力量 ・・・(1)
In addition, it is necessary to determine which of the power generated by the solar cell 10 and the stored power of the secondary battery 14 is suitable to be supplied to the secondary battery temperature control device 18. If the amount of power generated by the solar cell 10 is small, the nighttime power consumption is large, and a large amount of power needs to be supplied from the secondary battery 14, the power may be used for the secondary battery temperature control device 18. The SOC of the secondary battery 14 may decrease, and the power supply may become unstable. Therefore, as shown in FIG. 5, the amount of power that can be stored in the secondary battery 14 as surplus power in the daytime is predicted, and the amount of power consumed in the night is predicted. It is preferable to use the stored power of the battery 14 for temperature control.
(1)
Storage capacity of the secondary battery 予 測 Predicted value of the amount of electric power supplied from the secondary battery to the load + electric energy supplied from the secondary battery to the secondary battery temperature control device (1)

このようにすることによって、二次電池14の温調による二次電池14の劣化抑制と、夜間等の電力が不足しがちな状態における電力供給の不足を回避することができる。   By doing this, it is possible to prevent the deterioration of the secondary battery 14 from being suppressed by the temperature control of the secondary battery 14 and the shortage of the power supply in the state where the power tends to be insufficient at night.

なお、本実施の形態では、再生可能エネルギーを利用した発電手段として太陽電池10を採用した例について説明したが、他の再生可能エネルギーを利用した発電手段としてもよい。例えば、風力発電手段を適用してもよい。この場合、風が弱い時間帯における負荷200への電力使用量と二次電池14の蓄電量との差を余剰電力として二次電池14の温度調整に使用するようにすればよい。また、波力・潮力、流水・潮汐、地熱、バイオマス等の再生可能エネルギーを用いる場合も同様であり、発電に利用できるエネルギーの時間変化に応じて発電電力と二次電池14の蓄電電力とにおいて温度調整に使用できる電力の割合を決定するようにすればよい。   In the present embodiment, although an example in which the solar cell 10 is adopted as a power generation means using renewable energy is described, it may be a power generation means using other renewable energy. For example, wind power generation means may be applied. In this case, the difference between the amount of power used for the load 200 and the storage amount of the secondary battery 14 in a windy time zone may be used as surplus power to adjust the temperature of the secondary battery 14. The same applies to the case of using renewable energy such as wave power / tidal power, running water / tidal heat, geothermal energy, biomass, etc., and according to the time change of energy available for power generation, the generated power and the stored power of the secondary battery 14 The ratio of power that can be used for temperature adjustment may be determined in

10 太陽電池、12,16,20 直流/直流変換器、14 二次電池、14a センサ、18 二次電池温調装置、22 制御装置、100 電源システム、200 負荷、202 電力変換器。
DESCRIPTION OF SYMBOLS 10 Solar cell, 12, 16, 20 DC / DC converter, 14 secondary battery, 14a sensor, 18 secondary battery temperature control apparatus, 22 control apparatus, 100 power system, 200 load, 202 power converter.

Claims (2)

再生可能エネルギーによる発電電力を負荷に供給すると共に、余剰電力を二次電池に蓄電し、前記発電電力が前記負荷への供給電力を下回る期間では前記二次電池から前記負荷へ電力を供給する電源システムにおいて、
前記発電電力及び前記二次電池に蓄電された電力の少なくとも一方を用いて、前記二次電池の温度を調整する二次電池温調装置を備え、
前記二次電池温調装置によって前記二次電池の温度を調整することを特徴とする電源システム。
A power supply that supplies power generated by renewable energy to a load and stores surplus power in a secondary battery, and supplies power from the secondary battery to the load in a period during which the generated power falls below the power supplied to the load In the system
And a secondary battery temperature control device that adjusts the temperature of the secondary battery using at least one of the generated power and the power stored in the secondary battery,
A power supply system characterized in that the temperature of the secondary battery is adjusted by the secondary battery temperature control device.
請求項1に記載の電源システムであって、
前記二次電池から前記二次電池温調装置へ供給される電力量は、前記発電電力が前記負荷への供給電力を下回る期間における前記二次電池から前記負荷への供給電力量の予測値と、前記二次電池の蓄電量とにおいて、
前記二次電池の蓄電量≧前記二次電池から前記負荷への供給電力量の予測値+前記二次電池から前記二次電池温調装置へ供給される電力量
の関係を満たすことを特徴とする電源システム。
The power supply system according to claim 1,
The amount of power supplied from the secondary battery to the secondary battery temperature control device is a predicted value of the amount of power supplied from the secondary battery to the load in a period during which the generated power falls below the power supplied to the load. The storage amount of the secondary battery,
The storage amount of the secondary battery ≧ predicted value of the amount of power supplied from the secondary battery to the load + the relationship between the amount of power supplied from the secondary battery to the secondary battery temperature control device Power system.
JP2017200031A 2017-10-16 2017-10-16 Power supply system with battery deterioration restraint device Pending JP2019075258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017200031A JP2019075258A (en) 2017-10-16 2017-10-16 Power supply system with battery deterioration restraint device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017200031A JP2019075258A (en) 2017-10-16 2017-10-16 Power supply system with battery deterioration restraint device

Publications (1)

Publication Number Publication Date
JP2019075258A true JP2019075258A (en) 2019-05-16

Family

ID=66543294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017200031A Pending JP2019075258A (en) 2017-10-16 2017-10-16 Power supply system with battery deterioration restraint device

Country Status (1)

Country Link
JP (1) JP2019075258A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024120274A1 (en) * 2022-12-07 2024-06-13 华为数字能源技术有限公司 Energy storage-based heating control method, energy storage system, and photovoltaic energy storage system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024120274A1 (en) * 2022-12-07 2024-06-13 华为数字能源技术有限公司 Energy storage-based heating control method, energy storage system, and photovoltaic energy storage system

Similar Documents

Publication Publication Date Title
JP5395251B2 (en) Hybrid energy storage system, renewable energy system including the storage system, and method of use thereof
Castañeda et al. Sizing optimization, dynamic modeling and energy management strategies of a stand-alone PV/hydrogen/battery-based hybrid system
KR101181822B1 (en) Battery management system and method thereof, and power storage apparatus using the same
Bhatti et al. Electric vehicle charging using photovoltaic based microgrid for remote islands
Erdinc et al. The importance of detailed data utilization on the performance evaluation of a grid-independent hybrid renewable energy system
CN101340104B (en) Method for charging a storage element of an autonomous system
JP2008283853A (en) Method for charging battery of autonomic system
KR20120027782A (en) Apparatus and method of tracking maximum power point, and operating method of grid connected power storage system using the same
Li et al. Hybrid micropower source for wireless sensor network
KR20190048623A (en) Solar-based autonomous stand-alone micro grid system and its operation method
JP2013055874A (en) Solar power generation system with electrical energy adaptive control function and control method thereof
JP2017051083A (en) Power generation system, power generation method and program
US11196278B2 (en) Control system and method for an energy storage system
KR20140115502A (en) Power conversion device having battery heating function
CN117559499B (en) Photovoltaic power generation intelligent energy storage system
JP2012196022A (en) Charge controller, charge control method, and photovoltaic power generation system
JP2004312798A (en) Distributed energy system and control method thereof
Adam et al. Optimization of a photovoltaic hybrid energy storage system using energy storage peak shaving
Kosmadakis et al. Towards performance enhancement of hybrid power supply systems based on renewable energy sources
WO2018051417A1 (en) Hydrogen energy storage system, and method for controlling hydrogen energy storage system
JP2017225301A (en) Energy management system
JP2019075258A (en) Power supply system with battery deterioration restraint device
JP2015136215A (en) Renewable energy control system and renewable energy control device
JP2005048207A (en) Hydrogen production system
JP6055968B2 (en) Power system