JP2019072697A - Method of treating wastewater in producing polarized film - Google Patents

Method of treating wastewater in producing polarized film Download PDF

Info

Publication number
JP2019072697A
JP2019072697A JP2017202346A JP2017202346A JP2019072697A JP 2019072697 A JP2019072697 A JP 2019072697A JP 2017202346 A JP2017202346 A JP 2017202346A JP 2017202346 A JP2017202346 A JP 2017202346A JP 2019072697 A JP2019072697 A JP 2019072697A
Authority
JP
Japan
Prior art keywords
polarizing film
concentration
wastewater
film production
potassium iodide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017202346A
Other languages
Japanese (ja)
Inventor
恵理 鈴木
Eri Suzuki
恵理 鈴木
靖也 岸
Seiya Kishi
靖也 岸
義浩 藤原
Yoshihiro Fujiwara
義浩 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2017202346A priority Critical patent/JP2019072697A/en
Priority to TW107131750A priority patent/TWI757543B/en
Priority to CN201811226465.3A priority patent/CN109678182A/en
Publication of JP2019072697A publication Critical patent/JP2019072697A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/12Iodides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/14Purification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/06Flash evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Abstract

To provide a method of treating wastewater in producing a polarizing film capable of efficiently recovering potassium iodide contained in wastewater in producing a polarizing film inexpensively.SOLUTION: A method for treating wastewater in producing a polarizing film which recovers potassium iodide from wastewater in producing a polarizing film, comprises: a first concentration step of adjusting a pH value wastewater in producing the polarizing film to 8.5 to 11 to carry out evaporation concentration; a cooling crystallization step of forming a slurry containing precipitates by performing cooling crystallization while maintaining the pH value of the concentrated wastewater obtained in the first concentration step to 8.5 to 11;a solid-liquid separation step of separating precipitates from the slurry obtained in the cooling crystallization step to produce a filtrate of potassium iodide solution; and a second concentration step of evaporating and concentrating the filtrate obtained in the solid-liquid separation step.SELECTED DRAWING: Figure 1

Description

本発明は、偏光フィルム製造排水の処理方法に関し、より詳しくは、偏光フィルムの製造工程で生じる排水からヨウ化カリウムを回収する偏光板製造排水の処理方法に関する。   The present invention relates to a method of treating a polarizing film-producing wastewater, and more particularly, to a method of treating a polarizing plate-producing wastewater from which potassium iodide is recovered from the wastewater generated in the process of producing a polarizing film.

液晶ディスプレイ等に使用される偏光フィルムの製造工程で生じる排水には、ヨウ素やホウ素、カリウム等の無機物成分や、ポリビニルアルコール(PVA)等の有機物成分が含まれており、このような排水の処理方法が従来から検討されている。   Waste water produced in the process of producing a polarizing film used in liquid crystal displays etc. contains inorganic matter components such as iodine, boron and potassium, and organic matter components such as polyvinyl alcohol (PVA), and such waste water treatment The method has been studied conventionally.

例えば、特許文献1には、ヨウ素およびホウ素を含む排水のpH値を8〜14に調整した後に蒸発濃縮して冷却し、得られた濃縮排水のpH値を硫酸等のpH調整剤により1〜7に調整した後に晶析を行うことにより、ホウ素分を析出させて除去する排水の処理方法が開示されている。   For example, in Patent Document 1, after adjusting the pH value of waste water containing iodine and boron to 8 to 14, the solution is concentrated by evaporation and cooled, and the pH value of the obtained concentrated waste water is 1 to 1 with a pH adjuster such as sulfuric acid. A method of treating waste water is disclosed in which the boron content is precipitated and removed by performing crystallization after adjustment to 7.

特開2006−231325号公報JP, 2006-231325, A

ところが、上記従来の排水の処理方法は、濃縮排水のpHを酸性にして晶析を行うため腐食の問題が生じ易いことから、晶析装置に高耐食性の材料を使用する必要があり、処理コストが高くなるという問題があった。   However, since the above-mentioned conventional waste water treatment method causes crystallization problems by acidifying the pH of concentrated waste water, it is necessary to use a highly corrosion-resistant material in the crystallizer, since the problem of corrosion is likely to occur. Was a problem.

そこで、本発明は、偏光フィルム製造排水に含まれるヨウ化カリウムを安価に効率良く回収することができる偏光フィルム製造排水の処理方法の提供を目的とする。   Then, an object of this invention is to provide the processing method of the polarizing film manufacturing drainage which can collect | recover potassium iodide contained in a polarizing film manufacturing drainage cheaply and efficiently.

本発明の前記目的は、偏光フィルム製造排水からヨウ化カリウムを回収する偏光フィルム製造排水の処理方法であって、偏光フィルム製造排水のpH値を8.5〜11に調整して蒸発濃縮を行う第1の濃縮工程と、前記第1の濃縮工程で得られた濃縮排水のpH値を8.5〜11に維持したまま冷却晶析を行い析出物を含むスラリーを生成する冷却晶析工程と、前記冷却晶析工程で得られたスラリーから析出物を分離してヨウ化カリウム溶液の濾液を生成する固液分離工程と、前記固液分離工程で得られた濾液を蒸発濃縮する第2の濃縮工程とを備える偏光フィルム製造排水の処理方法により達成される。   The object of the present invention is a method for treating a polarizing film production wastewater which recovers potassium iodide from a polarizing film production wastewater, wherein the pH value of the polarizing film production wastewater is adjusted to 8.5 to 11 to carry out evaporation and concentration A first concentration step, and a cooling crystallization step of performing cooling crystallization while maintaining the pH value of the concentrated waste water obtained in the first concentration step at 8.5 to 11 to generate a slurry containing precipitates; A solid-liquid separation step of separating a precipitate from the slurry obtained in the cooling crystallization step to form a filtrate of a potassium iodide solution, and secondly evaporating and concentrating the filtrate obtained in the solid-liquid separation step And a concentration step.

この偏光フィルム製造排水の処理方法において、前記第1の濃縮工程は、蒸発缶内に伝熱管を備える前段蒸発装置により偏光フィルム製造排水を蒸発濃縮する前濃縮工程と、前記前濃縮工程で濃縮された偏光フィルム製造排水を、蒸発缶内に伝熱管を備えないフラッシュ型の後段蒸発装置により更に蒸発濃縮する後濃縮工程とを備えることが好ましい。   In this method of treating a polarizing film production wastewater, the first concentration step is a preconcentration step of evaporating and concentrating the polarizing film production wastewater by a front-stage evaporator provided with a heat transfer tube in an evaporator, and being concentrated in the preconcentration step. It is preferable to further include a post-concentration step of further evaporating and concentrating the polarizing film production drainage with a flash type post-evaporator without a heat transfer pipe in the evaporator.

また、前記固液分離工程は、析出物に付着するヨウ化カリウムを水洗により回収する工程を備えることが好ましい。   The solid-liquid separation step preferably includes a step of recovering potassium iodide adhering to the precipitate by washing with water.

本発明によれば、偏光フィルム製造排水に含まれるヨウ化カリウムを安価に効率良く回収することができる偏光フィルム製造排水の処理方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the processing method of the polarizing film manufacturing drainage which can collect | recover potassium iodide contained in a polarizing film manufacturing drainage cheaply and efficiently can be provided.

本発明の一実施形態に係る偏光フィルム製造排水の処理装置のブロック図である。It is a block diagram of the processing device of the polarizing film production drainage concerning one embodiment of the present invention. 図1に示す偏光フィルム製造排水の処理装置の要部を示す構成図である。It is a block diagram which shows the principal part of the processing apparatus of the polarizing film production drainage shown in FIG. 図1に示す偏光フィルム製造排水の処理装置の他の要部を示す構成図である。It is a block diagram which shows the other principal part of the processing apparatus of the polarizing film production drainage shown in FIG. 図1に示す偏光フィルム製造排水の処理装置の更に他の要部を示す構成図である。It is a block diagram which shows the other principal part of the processing apparatus of the polarizing film production drainage shown in FIG.

以下、本発明の一実施形態について添付図面を参照して説明する。図1は、本発明の一実施形態に係る偏光フィルム製造排水の処理装置のブロック図である。図1に示すように、偏光フィルム製造排水の処理装置は、第1の蒸発濃縮装置10、冷却晶析装置20、固液分離装置30、および、第2の蒸発濃縮装置40を備えている。第1の蒸発濃縮装置10には、pH調整剤によりpH調整された偏光フィルム製造排水が供給され、冷却晶析装置20、固液分離装置30、および、第2の蒸発濃縮装置40において順次処理が行われることにより、ヨウ化カリウム(KI)溶液が生成される。   Hereinafter, an embodiment of the present invention will be described with reference to the attached drawings. FIG. 1 is a block diagram of a treatment apparatus for polarizing film production drainage according to an embodiment of the present invention. As shown in FIG. 1, the treatment apparatus for polarizing film production wastewater includes a first evaporation / concentration device 10, a cooling crystallization device 20, a solid-liquid separation device 30, and a second evaporation / concentration device 40. The first evaporative concentration apparatus 10 is supplied with the polarized film production wastewater pH-adjusted by the pH adjuster, and is sequentially treated by the cooling crystallization apparatus 20, the solid-liquid separation apparatus 30, and the second evaporative concentration apparatus 40 To produce a potassium iodide (KI) solution.

図2は、図1に示す偏光フィルム製造排水の処理装置が備える第1の蒸発濃縮装置10の構成図である。図2に示すように、第1の蒸発濃縮装置10は、前段蒸発装置11、後段蒸発装置12および加熱器13を備えている。   FIG. 2: is a block diagram of the 1st evaporative concentration apparatus 10 with which the processing apparatus of the polarizing film production drainage shown in FIG. 1 is provided. As shown in FIG. 2, the first evaporative concentration apparatus 10 includes a front stage evaporator 11, a rear stage evaporator 12, and a heater 13.

前段蒸発装置11は、密閉型の蒸発缶11aの内部に複数の伝熱管11bを備えており、供給ライン11cから蒸発缶11aに供給された偏光フィルム製造排水を、循環ライン11dにより循環させて、ノズル11eから伝熱管11bに散布する。伝熱管11bは、左右のヘッダ11f,11g同士を連結する。伝熱管11bの表面に散布された偏光フィルム製造排水は、伝熱管11bの内部を通過する加熱流体との熱交換により加熱されて、蒸発濃縮される。循環ライン11dには分岐ライン11hが接続されており、前段蒸発装置11により濃縮された偏光フィルム製造排水が、分岐ライン11hを介して後段蒸発装置12に供給される。   The pre-stage evaporator 11 includes a plurality of heat transfer tubes 11b inside the closed-type evaporator 11a, and the polarized film production drainage supplied from the supply line 11c to the evaporator 11a is circulated by the circulation line 11d, The heat transfer tubes 11b are dispersed from the nozzles 11e. The heat transfer tube 11b connects the left and right headers 11f and 11g to each other. The polarized film production drainage sprayed on the surface of the heat transfer tube 11b is heated by heat exchange with the heating fluid passing through the inside of the heat transfer tube 11b, and is evaporated and concentrated. A branch line 11h is connected to the circulation line 11d, and the polarizing film production drainage concentrated by the front stage evaporator 11 is supplied to the rear stage evaporator 12 via the branch line 11h.

前段蒸発装置11は、ターボ圧縮機からなるヒートポンプ11iを更に備えている。蒸発缶11aの内部で発生した偏光フィルム製造排水の蒸気は、ヒートポンプ11iにより圧縮されてヘッダ11fに導入され、加熱流体として伝熱管11bの内部を通過することにより凝縮されて、ヘッダ11gに供給される。ヘッダ11gには、真空ポンプ11jが接続されており、真空ポンプ11jの作動により蒸発缶11aの内部が真空雰囲気に維持される。   The pre-stage evaporator 11 further includes a heat pump 11i which is a turbo compressor. The vapor of the polarizing film production drainage generated inside the evaporator 11a is compressed by the heat pump 11i and introduced into the header 11f, condensed as it passes through the inside of the heat transfer tube 11b as a heating fluid, and supplied to the header 11g Ru. A vacuum pump 11j is connected to the header 11g, and the inside of the evaporator 11a is maintained in a vacuum atmosphere by the operation of the vacuum pump 11j.

後段蒸発装置12は、前段蒸発装置11により濃縮された偏光フィルム製造排水を貯留可能なフラッシュ缶12aを備えるフラッシュ型蒸発器である。後段蒸発装置12は、蒸発缶であるフラッシュ缶12aの内部に伝熱管を備えておらず、ノズル12bからフラッシュ缶12a内に偏光フィルム製造排水を散布して、フラッシュ蒸発させる。フラッシュ缶12aから排出される蒸気の一部は、エジェクタからなるヒートポンプ12cの駆動蒸気により吸引されて昇圧され、駆動蒸気と共に加熱器13で加熱された後、フラッシュ缶12aから排出される蒸気の残部と合流して、前段蒸発装置11のヘッダ11gに導入される。   The post-stage evaporator 12 is a flash type evaporator equipped with a flash can 12 a capable of storing the polarized film production wastewater concentrated by the front-stage evaporator 11. The post-stage evaporation device 12 does not have a heat transfer pipe inside the flash can 12a which is an evaporator, and sprays polarized film production drainage into the flash can 12a from the nozzle 12b to flash evaporate. A part of the steam discharged from the flash can 12a is sucked and boosted by the drive steam of the heat pump 12c consisting of an ejector, and is heated by the heater 13 together with the drive steam, and the remainder of the steam discharged from the flash can 12a And is introduced into the header 11 g of the pre-stage evaporator 11.

後段蒸発装置12で更に濃縮された偏光フィルム製造排水は、排出ライン12dを介して一部が加熱器13に導入され、残部が濃縮排水として回収される。   A part of the polarizing film production drainage further concentrated by the post-stage evaporator 12 is introduced into the heater 13 through the discharge line 12d, and the remaining part is recovered as concentrated drainage.

加熱器13は、後段蒸発装置12で濃縮された偏光フィルム製造排水が導入される複数の伝熱管13aをケーシング13bの内部に備えている。伝熱管13aの内部を通過する偏光フィルム製造排水は、後段蒸発装置12のヒートポンプ12cからケーシング13b内に供給される蒸気により加熱された後、ノズル12bからフラッシュ缶12aの内部に散布される。一方、凝縮された蒸気は凝縮水となってケーシング14b内に貯留され、前段蒸発装置11のヘッダ11gに導入される。   The heater 13 is provided with a plurality of heat transfer tubes 13a into which the polarized film production wastewater concentrated by the rear-stage evaporator 12 is introduced, inside the casing 13b. The polarized film production drainage passing through the inside of the heat transfer tube 13a is heated by the steam supplied from the heat pump 12c of the rear-stage evaporator 12 into the casing 13b, and then dispersed from the nozzle 12b into the inside of the flash can 12a. On the other hand, the condensed vapor is condensed in the casing 14 b as condensed water, and is introduced into the header 11 g of the front stage evaporator 11.

図3は、図1に示す偏光フィルム製造排水の処理装置が備える冷却晶析装置20および固液分離装置30の構成図である。図3に示すように、冷却晶析装置20は、周囲がジャケット21により覆われた容器22を備えており、容器22の内部には撹拌装置23が設けられている。第1の蒸発濃縮装置10(図2参照)から供給ライン22aを介して容器22に供給された濃縮排水は、ジャケット21を通過するチラー水との熱交換により冷却され、析出物が生成されてスラリーとなり、排出部24から排出される。容器22の冷却方式は特に限定されるものではなく、例えば、ジャケット21を備える代わりに内部コイル式であってもよく、あるいは外部循環冷却式等であってもよい。   FIG. 3: is a block diagram of the cooling crystallization apparatus 20 and the solid-liquid separation apparatus 30 with which the processing apparatus of the polarizing film production drainage shown in FIG. 1 is provided. As shown in FIG. 3, the cooling crystallization apparatus 20 includes a container 22 whose periphery is covered by a jacket 21, and a stirring device 23 is provided inside the container 22. Concentrated drainage water supplied to the vessel 22 from the first evaporation / concentration device 10 (see FIG. 2) through the supply line 22a is cooled by heat exchange with chiller water passing through the jacket 21 to form precipitates. It becomes a slurry and is discharged from the discharge unit 24. The cooling system of the container 22 is not particularly limited, and may be, for example, an internal coil system instead of the jacket 21 or an external circulation cooling system.

固液分離装置30は、不図示のモータにより回転駆動される円筒状のバスケット31がケーシング32の内部に配置されており、冷却晶析装置20から供給されたスラリーが分散板33に衝突してバスケット31内に飛散する。これにより、スラリーに含まれる析出部が、バスケット31の内壁面に付着して落下することにより回収され、スラリーの濾液がバスケット31とケーシング32との間を通過して濾液タンク34に貯留される。ケーシング32の内部には、バスケット31の内壁面に付着した析出物に向けて噴射孔35aから洗浄水を噴射する噴射管35が配置されている。固液分離装置30は、本実施形態のように遠心分離方式とする代わりに、例えば、加圧ろ過(フィルタープレス)、真空ろ過、遠心ろ過などの各種ろ過方式であってもよい。   In the solid-liquid separation device 30, a cylindrical basket 31 rotationally driven by a motor (not shown) is disposed inside the casing 32, and the slurry supplied from the cooling crystallization device 20 collides with the dispersion plate 33. Scatter into the basket 31. Thereby, the precipitation part contained in the slurry adheres to the inner wall surface of the basket 31 and is recovered by falling, and the filtrate of the slurry passes between the basket 31 and the casing 32 and is stored in the filtrate tank 34 . In the inside of the casing 32, the injection pipe 35 which injects wash water from the injection hole 35a toward the deposit adhering to the inner wall surface of the basket 31 is arrange | positioned. The solid-liquid separator 30 may be, for example, various filtration methods such as pressure filtration (filter press), vacuum filtration, centrifugal filtration or the like instead of using the centrifugal separation method as in the present embodiment.

図4は、図1に示す偏光フィルム製造排水の処理装置が備える第2の蒸発濃縮装置40の構成図である。図4に示すように、第2の蒸発濃縮装置40は、蒸発装置41および凝縮器42を備えている。   FIG. 4 is a block diagram of a second evaporative concentration apparatus 40 provided in the processing apparatus for treatment of polarizing film production shown in FIG. As shown in FIG. 4, the second evaporation and concentration device 40 includes an evaporation device 41 and a condenser 42.

蒸発装置41は、密閉型の蒸発缶41aの内部に複数の伝熱管41bを備えており、固液分離装置30(図3参照)から供給ライン41cを介して蒸発缶41aに供給された濾液を、循環ライン41dにより循環させて、ノズル41eから伝熱管41bに散布する。伝熱管41bは、左右のヘッダ41f,41g同士を連結する。伝熱管41bの表面に散布された濾液は、伝熱管41bの内部を通過する加熱流体との熱交換により加熱されて、蒸発濃縮される。循環ライン41dには回収ライン41hが接続されており、蒸発装置41により濃縮されたKI溶液の濾液が、回収ライン41hを介して回収される。   The evaporator 41 includes a plurality of heat transfer tubes 41b inside the closed-type evaporator 41a, and the filtrate supplied from the solid-liquid separator 30 (see FIG. 3) to the evaporator 41a through the supply line 41c is The heat is circulated by the circulation line 41d and dispersed from the nozzle 41e to the heat transfer pipe 41b. The heat transfer tube 41b connects the left and right headers 41f and 41g to each other. The filtrate spread on the surface of the heat transfer tube 41b is heated by heat exchange with the heating fluid passing through the inside of the heat transfer tube 41b, and is evaporated and concentrated. A recovery line 41h is connected to the circulation line 41d, and the filtrate of the KI solution concentrated by the evaporator 41 is recovered through the recovery line 41h.

凝縮器42は、冷却水が導入される複数の伝熱管42aをケーシング42bの内部に備えている。蒸発装置41からケーシング42b内に供給される蒸気は、伝熱管42aの内部を通過する冷却水と熱交換することにより凝縮水となってケーシング42bに貯留され、蒸発装置41のヘッダ41gに導入される。 凝縮器42には、ケーシング42bの内部を減圧する真空ポンプ42cが接続されている。   The condenser 42 includes a plurality of heat transfer pipes 42a into which the cooling water is introduced, inside the casing 42b. The steam supplied from the evaporator 41 to the inside of the casing 42 b exchanges heat with the cooling water passing through the inside of the heat transfer pipe 42 a to be condensed water and stored in the casing 42 b and introduced into the header 41 g of the evaporator 41 Ru. Connected to the condenser 42 is a vacuum pump 42c that reduces the pressure inside the casing 42b.

次に、上記の偏光フィルム製造排水の処理装置を用いた偏光フィルム製造排水の処理方法を説明する。   Next, the treatment method of the polarizing film production drainage using the above-mentioned treatment apparatus of the polarizing film production drainage will be described.

まず、偏光フィルム製造排水が、pH調整された後、第1の蒸発濃縮装置10に供給されて蒸発濃縮される(第1の濃縮工程)。偏光フィルム製造排水は、液晶ディスプレイ等に使用される偏光板の製造工程で生じる排水である。偏光板の製造工程においては、一般に、ポリビニルアルコール(PVA)からなるフィルムをヨウ化カリウム(KI)溶液に浸漬させた後、ホウ酸(HBO)水溶液中で延伸させ、水洗および乾燥を経て偏光板が製造される。このため、偏光フィルム製造排水には、PVAが含まれており、更に、KIやHBO等が主にイオンの状態で含まれている。 First, after the pH adjustment of the polarizing film-producing wastewater, it is supplied to the first evaporative concentration apparatus 10 and is evaporated and concentrated (first concentration step). The polarizing film production drainage is drainage produced in the manufacturing process of the polarizing plate used for a liquid crystal display etc. In the manufacturing process of the polarizing plate, generally, a film made of polyvinyl alcohol (PVA) is immersed in a potassium iodide (KI) solution, then stretched in an aqueous solution of boric acid (H 3 BO 3 ), washed with water and dried. Then, a polarizing plate is manufactured. For this reason, the polarizing film production drainage contains PVA, and further, KI, H 3 BO 3 and the like are mainly contained in the state of ions.

偏光フィルム製造排水のpHは、3.5〜8.0の範囲にあり、ホウ酸溶液を含むため通常は酸性であるが、本実施形態においては、水酸化ナトリウムや水酸化カリウム等のpH調整剤を偏光フィルム製造排水に添加することにより、偏光フィルム製造排水のpHをアルカリ性に調整した後に、蒸発濃縮を行う。pH調整後の偏光フィルム製造排水のpH値は、8.5〜11であることが好ましく、8.5〜9.5であることがより好ましい。   The pH of the polarizing film production wastewater is in the range of 3.5 to 8.0 and is usually acidic because it contains a boric acid solution, but in the present embodiment, the pH adjustment of sodium hydroxide, potassium hydroxide, etc. The agent is added to the polarizing film production wastewater to adjust the pH of the polarizing film production wastewater to alkalinity, and then evaporation concentration is performed. It is preferable that it is 8.5-11, and, as for the pH value of the polarizing film manufacture drainage after pH adjustment, it is more preferable that it is 8.5-9.5.

第1の蒸発濃縮装置10は、偏光フィルム製造排水を蒸発により濃縮可能であれば特に限定されず、公知の濃縮装置を挙げることができ、これらを一種または二種以上用いて構成することができる。   The first evaporative concentration apparatus 10 is not particularly limited as long as the polarizing film production wastewater can be concentrated by evaporation, and a known concentration apparatus can be mentioned, and one or two or more of these can be used. .

本実施形態の第1の蒸発濃縮装置10は、図2に示すように、偏光フィルム製造排水が前段蒸発装置11において蒸発濃縮され(前濃縮工程)、濃縮後の偏光フィルム製造排水が後段蒸発装置12において更に蒸発濃縮される(後濃縮工程)。前段蒸発装置11は、蒸発缶11aの内部に設けられた伝熱管11bと、伝熱管11bとの熱交換により発生した偏光フィルム製造排水の蒸気を昇圧するヒートポンプ11iとを備える一方、後段蒸発装置12は、フラッシュ缶12aの内部に伝熱管を備えておらず、フラッシュ缶12a内でフラッシュ蒸発により発生した偏光フィルム製造排水の蒸気を昇圧するヒートポンプ12cとを備えている。この構成によれば、濃縮の初期段階において前段蒸発装置11により偏光フィルム製造排水を高濃縮した後、後段蒸発装置12でフラッシュ蒸発により更に濃縮することができるので、偏光フィルム製造排水を効率良く濃縮することができる。   In the first evaporation and concentration apparatus 10 of the present embodiment, as shown in FIG. 2, the polarization film production wastewater is evaporated and concentrated in the front stage evaporator 11 (pre-concentration step), and the polarization film production wastewater after concentration is the rear stage evaporation device It is further evaporated at 12 (post-concentration step). The pre-stage evaporator 11 includes a heat transfer pipe 11b provided inside the evaporator 11a and a heat pump 11i for boosting the vapor of the polarizing film production drainage generated by heat exchange with the heat transfer pipe 11b, while the post-stage evaporator 12 The heat pump 12c does not include a heat transfer tube inside the flash can 12a, and includes a heat pump 12c that pressurizes the vapor of the polarizing film production drainage generated by the flash evaporation in the flash can 12a. According to this configuration, after the polarizing film production drainage is highly concentrated by the front-stage evaporator 11 in the initial stage of concentration, it can be further concentrated by flash evaporation by the rear-stage evaporator 12, so the polarizing film production drainage is efficiently concentrated can do.

前段蒸発装置11および後段蒸発装置12においてそれぞれ使用するヒートポンプ11i,12cは、生成された蒸気を昇圧可能であれば特に限定されないが、後段蒸発装置12で処理される偏光フィルム製造排水は、前段蒸発装置11で処理される偏光フィルム製造排水と比較して濃縮されていることから、本実施形態では前者をターボ圧縮機とし、後者をエジェクタとしている。このような好ましい他の組み合わせとしては、例えば、前者をターボ圧縮機とし、後者をルーツ圧縮機とすることが挙げられる。   The heat pumps 11i and 12c used in the first-stage evaporator 11 and the second-stage evaporator 12 are not particularly limited as long as the generated vapor can be boosted, but the polarized film production wastewater treated by the second-stage evaporator 12 In the present embodiment, the former is used as a turbo compressor and the latter is used as an ejector because it is concentrated in comparison with the polarizing film production drainage processed by the device 11. As such a preferable other combination, for example, the former may be a turbo compressor and the latter may be a roots compressor.

第1の蒸発濃縮装置10で生成された濃縮排水は、図3に示す冷却晶析装置20に供給されて、例えば20℃程度まで冷却され、濃縮排水に含まれる溶質が結晶化して析出する(冷却晶析工程)。この冷却晶析は、従来とは異なりpH調整剤を添加することなく、濃縮排水のpH値を8.5〜11に維持して(より好ましくはpH値を8.5〜9.5に維持して)行われるため、ホウ酸ソーダやホウ酸カリウムを主体とする結晶が析出され、更に、PVAが重合してコロイド状になって析出する。   Concentrated wastewater generated by the first evaporation / concentrator 10 is supplied to the cooling crystallizer 20 shown in FIG. 3 and cooled to, for example, about 20 ° C., and the solute contained in the concentrated wastewater crystallizes and precipitates ( Cooling crystallization process). Unlike the prior art, this cooling crystallization maintains the pH value of concentrated drainage at 8.5 to 11 (more preferably, the pH value is maintained at 8.5 to 9.5, without adding a pH adjuster). As a result, crystals consisting mainly of sodium borate and potassium borate are precipitated, and further, PVA is polymerized to form a colloid and precipitate.

こうして、冷却晶析装置20で生成された析出物を含むスラリーは、固液分離装置30に供給されて析出物が分離され、濾液が生成される(固液分離工程)。上記のとおり、スラリーはアルカリ性を維持したまま冷却晶析が行われたものであるため、析出物に含まれるホウ酸ソーダやホウ酸カリウムの結晶からはホウ素の回収が困難である一方、純度の高いヨウ化カリウム溶液を濾液として回収することができる。   Thus, the slurry containing the precipitate generated by the cooling crystallizer 20 is supplied to the solid-liquid separator 30, where the precipitate is separated, and a filtrate is produced (solid-liquid separation step). As described above, since the slurry is subjected to cooling crystallization while maintaining the alkalinity, recovery of boron from the crystals of sodium borate and potassium borate contained in the precipitate is difficult, while the purity is low. The high potassium iodide solution can be recovered as a filtrate.

固液分離装置30において分離された析出物には、ヨウ化カリウムが若干付着しているため、噴射管35から析出物に向けて洗浄水を噴射することにより、析出物に付着したヨウ化カリウムを水洗により回収することができる。洗浄水の温度は、析出物が溶解し難い低温であることが好ましく、例えば、15〜20℃である。析出物を洗浄後の洗浄水は、濾液と共に濾液タンク34に貯留される。洗浄水は、例えば、第1の蒸発濃縮装置10の前段蒸発装置11から排出される凝縮水を使用することができる。   Since some potassium iodide is attached to the precipitate separated in the solid-liquid separator 30, potassium iodide attached to the precipitate by injecting washing water from the injection pipe 35 toward the precipitate Can be recovered by water washing. The temperature of the washing water is preferably a low temperature at which the precipitates do not easily dissolve, and is, for example, 15 to 20 ° C. The washing water after washing the deposit is stored in the filtrate tank 34 together with the filtrate. As the washing water, for example, condensed water discharged from the pre-evaporator 11 of the first evaporative concentrator 10 can be used.

固液分離装置30で生成された濾液は、第2の蒸発濃縮装置40に供給されて、再度蒸発濃縮される(第2の濃縮工程)。濾液に含まれる不純物は、冷却晶析装置20および固液分離装置30において十分除去可能であることから、濾液に含まれるヨウ化カリウムの飽和濃度近くまで蒸発濃縮することが可能であり、高濃度のヨウ化カリウム溶液を得ることができる。   The filtrate produced by the solid-liquid separator 30 is supplied to the second evaporation / concentrator 40 and is again evaporated / concentrated (second concentration step). Impurities contained in the filtrate can be sufficiently removed by the cooling crystallizer 20 and the solid-liquid separator 30, and therefore, it is possible to evaporate and concentrate to near the saturation concentration of potassium iodide contained in the filtrate. Potassium iodide solution can be obtained.

第2の蒸発濃縮装置40で蒸発濃縮される濾液は、第1の蒸発濃縮装置10、冷却晶析装置20および固液分離装置30によって大きく濃縮されていることから、蒸発装置41は、ヒートポンプを使用せずに、ボイラの生蒸気等を熱源として利用してもよい。   Since the filtrate evaporated and concentrated by the second evaporation and concentration device 40 is largely concentrated by the first evaporation and concentration device 10, the cooling and crystallization device 20, and the solid-liquid separation device 30, the evaporation device 41 has a heat pump. Instead of using it, raw steam or the like of the boiler may be used as a heat source.

上記のように、本実施形態の偏光フィルム製造排水の処理方法は、偏光フィルム製造排水のpHをアルカリ性に調整した後、アルカリ性を維持したまま蒸発濃縮および冷却晶析が行われるので、偏光フィルム製造排水の処理装置に高価な耐食性の材料を使用する必要がなく、更に、フィルタ等の消耗品の発生がなく、薬剤も不要であることから、偏光フィルム製造排水に含まれるヨウ化カリウムを安価に効率良く回収することができる。   As described above, in the method of treating wastewater for producing a polarizing film according to this embodiment, after the pH of the wastewater for producing a polarizing film is adjusted to be alkaline, evaporation concentration and cooling crystallization are performed while maintaining the alkalinity. There is no need to use expensive corrosion-resistant materials in waste water treatment equipment, and no consumables such as filters are generated, and no chemicals are needed. It can be recovered efficiently.

10 第1の蒸発濃縮装置
11 前段蒸発装置
12 後段蒸発装置
20 冷却晶析装置
30 固液分離装置
40 第2の蒸発濃縮装置
DESCRIPTION OF SYMBOLS 10 1st evaporative concentration apparatus 11 prestage evaporation apparatus 12 2nd stage evaporation apparatus 20 cooling crystallization apparatus 30 solid-liquid separation apparatus 40 2nd evaporative concentration apparatus

Claims (3)

偏光フィルム製造排水からヨウ化カリウムを回収する偏光フィルム製造排水の処理方法であって、
偏光フィルム製造排水のpH値を8.5〜11に調整して蒸発濃縮を行う第1の濃縮工程と、
前記第1の濃縮工程で得られた濃縮排水のpH値を8.5〜11に維持したまま冷却晶析を行い析出物を含むスラリーを生成する冷却晶析工程と、
前記冷却晶析工程で得られたスラリーから析出物を分離してヨウ化カリウム溶液の濾液を生成する固液分離工程と、
前記固液分離工程で得られた濾液を蒸発濃縮する第2の濃縮工程とを備える偏光フィルム製造排水の処理方法。
It is a processing method of a polarizing film manufacturing drainage which recovers potassium iodide from a polarizing film manufacturing drainage,
A first concentration step of performing evaporation and concentration by adjusting the pH value of the polarizing film production wastewater to 8.5-11;
A cooling crystallization step of performing cooling crystallization while maintaining the pH value of the concentrated drainage obtained in the first concentration step at 8.5 to 11 to generate a slurry containing precipitates;
A solid-liquid separation step of separating a precipitate from the slurry obtained in the cooling crystallization step to form a filtrate of a potassium iodide solution;
And a second concentration step of evaporating and concentrating the filtrate obtained in the solid-liquid separation step.
前記第1の濃縮工程は、蒸発缶内に伝熱管を備える前段蒸発装置により偏光フィルム製造排水を蒸発濃縮する前濃縮工程と、前記前濃縮工程で濃縮された偏光フィルム製造排水を、蒸発缶内に伝熱管を備えないフラッシュ型の後段蒸発装置により更に蒸発濃縮する後濃縮工程とを備える請求項1に記載の偏光フィルム製造排水の処理方法。   In the first concentration step, a pre-concentration step of evaporating and concentrating polarized film production wastewater with a front-stage evaporator including a heat transfer tube in an evaporator, and a polarizing film production wastewater concentrated in the pre-concentration step The method according to claim 1, further comprising: a post-concentration step of evaporative concentration by means of a flash type post-evaporator having no heat transfer tube. 前記固液分離工程は、析出物に付着するヨウ化カリウムを水洗により回収する工程を備える請求項1または2に記載の偏光フィルム製造排水の処理方法。   3. The method according to claim 1, wherein the solid-liquid separation step comprises a step of recovering potassium iodide adhering to the precipitate by washing with water.
JP2017202346A 2017-10-19 2017-10-19 Method of treating wastewater in producing polarized film Pending JP2019072697A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017202346A JP2019072697A (en) 2017-10-19 2017-10-19 Method of treating wastewater in producing polarized film
TW107131750A TWI757543B (en) 2017-10-19 2018-09-10 Treating method for polarizing film manufacturing waste liquid
CN201811226465.3A CN109678182A (en) 2017-10-19 2018-10-19 The processing method of polarizing film production draining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017202346A JP2019072697A (en) 2017-10-19 2017-10-19 Method of treating wastewater in producing polarized film

Publications (1)

Publication Number Publication Date
JP2019072697A true JP2019072697A (en) 2019-05-16

Family

ID=66184543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017202346A Pending JP2019072697A (en) 2017-10-19 2017-10-19 Method of treating wastewater in producing polarized film

Country Status (3)

Country Link
JP (1) JP2019072697A (en)
CN (1) CN109678182A (en)
TW (1) TWI757543B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111099770A (en) * 2020-01-07 2020-05-05 昆山之奇美材料科技有限公司 System and method for extracting iodine from waste solution of polaroid manufacturing process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11169864A (en) * 1997-12-09 1999-06-29 Kurita Water Ind Ltd Treatment of boron-containing water
KR101055395B1 (en) * 2010-12-09 2011-08-08 타운마이닝캄파니(주) Method for recovering high purity potassium iodide and borides from aqueous waste from polarizing film manufacturing process
KR20120088897A (en) * 2011-02-01 2012-08-09 주식회사 재세 Method for recovering potassium iodide and recovery system for the same
KR20130131044A (en) * 2012-05-23 2013-12-03 타운마이닝캄파니(주) Method for recovering high purity potassium iodide and borides from aqueous waste from polarizing film manufacturing process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11169864A (en) * 1997-12-09 1999-06-29 Kurita Water Ind Ltd Treatment of boron-containing water
KR101055395B1 (en) * 2010-12-09 2011-08-08 타운마이닝캄파니(주) Method for recovering high purity potassium iodide and borides from aqueous waste from polarizing film manufacturing process
KR20120088897A (en) * 2011-02-01 2012-08-09 주식회사 재세 Method for recovering potassium iodide and recovery system for the same
KR20130131044A (en) * 2012-05-23 2013-12-03 타운마이닝캄파니(주) Method for recovering high purity potassium iodide and borides from aqueous waste from polarizing film manufacturing process

Also Published As

Publication number Publication date
TWI757543B (en) 2022-03-11
TW201922629A (en) 2019-06-16
CN109678182A (en) 2019-04-26

Similar Documents

Publication Publication Date Title
JP6841481B2 (en) Method for treating polarizing plate manufacturing waste liquid
CN104291511A (en) Method and device for zero-emission treatment of high-hardness waste water containing sulfate
KR102221524B1 (en) Treating method and treating device for polarizer manufacturing waste liquid
JP6289413B2 (en) Power generation / desalination method and system
CN101928084B (en) Treatment method and device of liquid waste containing inorganic salt
JP2015029932A (en) Desalinator and desalinating method as well as method for simultaneously producing freshwater, salt, and valuable matters
CN102838134A (en) Sal prunella coproduction technology and device adopting sodium sulfate type bittern mechanical vapour recompression method
JP2019072697A (en) Method of treating wastewater in producing polarized film
KR102212585B1 (en) Seawater desalination system using heat pump with mixing valve and cyclone, and operating method thereof
KR102221509B1 (en) Treating method and treating device for polarizer manufacturing waste liquid
JP7048950B2 (en) Method for treating polarizing plate manufacturing waste liquid
CN113562910A (en) Wastewater non-discharge treatment device and method
JP2023072964A (en) Processing method and processing device of polarizer production waste liquid
KR102499569B1 (en) Apparatus and method for treating development waste liquid
SU747486A1 (en) Method of crystallizing salts from solutions
TWI398412B (en) Process and apparatus for treating waste liquid containing inorganic salt
SE126301C1 (en)
JPS627402A (en) Apparatus for making pure water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220107