JP2019070548A - Method for preparing prediction formula for predicting brewing characteristics of brewing raw material grain, and method for producing grain varieties using prediction formula - Google Patents

Method for preparing prediction formula for predicting brewing characteristics of brewing raw material grain, and method for producing grain varieties using prediction formula Download PDF

Info

Publication number
JP2019070548A
JP2019070548A JP2017195979A JP2017195979A JP2019070548A JP 2019070548 A JP2019070548 A JP 2019070548A JP 2017195979 A JP2017195979 A JP 2017195979A JP 2017195979 A JP2017195979 A JP 2017195979A JP 2019070548 A JP2019070548 A JP 2019070548A
Authority
JP
Japan
Prior art keywords
analysis
rice
raw material
brewing
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017195979A
Other languages
Japanese (ja)
Other versions
JP7064739B2 (en
Inventor
岩下 和裕
Kazuhiro Iwashita
和裕 岩下
拓嗣 小林
Takuji Kobayashi
拓嗣 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute of Brewing
Original Assignee
National Research Institute of Brewing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute of Brewing filed Critical National Research Institute of Brewing
Priority to JP2017195979A priority Critical patent/JP7064739B2/en
Publication of JP2019070548A publication Critical patent/JP2019070548A/en
Application granted granted Critical
Publication of JP7064739B2 publication Critical patent/JP7064739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

To provide new means for predicting the brewing characteristics of a raw material grain from data obtained from a small amount of raw material grain samples.SOLUTION: Provided is a method for preparing a prediction formula for predicting brewing characteristics when producing a brewed material by using a raw material grain having unknown brewing characteristics. In the method, one or more samples for metabolome analysis are prepared from each of the raw material grain samples, a plurality of sets of metabolome analysis data are acquired, and brewing characteristic data are acquired for each of the sample raw material grain samples. Then, the metabolome analysis data are subjected to multiple regression analysis for each objective variable using the explanatory variables and the brewing characteristic data as the objective variables. The prediction formula prepared by the method can be used, for example, for growing a new grain variety having desired brewing characteristics.SELECTED DRAWING: Figure 1

Description

本発明は、所望の醸造原料穀類の醸造特性(醸造関連分析値)を予測するための予測式の作成方法と、その予測式を用いた新規穀類品種の作出方法に関する。   The present invention relates to a method of creating a prediction formula for predicting the brewing characteristics (brewing related analysis values) of desired brewing material grains, and a method of creating a new cereal cultivar using the prediction formula.

原料穀類の性質は、清酒をはじめ、味噌や醤油、ビール、ウイスキー、焼酎など、様々な穀類を用いた醸造製品において重要であることから、より高品質の原料を開発すると共に、原料を評価する様々な方法が開発されてきた。しかしながら、原料穀類の評価方法は十分ではなく種々の問題も有している。   As the properties of raw material grains are important in brewed products using various grains such as sake, miso and soy sauce, beer, whiskey, shochu etc., we will develop higher quality raw materials and evaluate the raw materials Various methods have been developed. However, evaluation methods of raw material grains are not sufficient and have various problems.

例えば、清酒や焼酎は水と米、米麹を発酵させたものであり、原料穀類である米の性質は、これらの製造工程での作業性や、製麹・発酵経過、最終的には清酒・焼酎の品質に多大な影響を与える。そのため、より良質な原料米を開発、栽培するために、新たな原料米の育種や栽培方法の改良など様々な取り組みが行われている。近年、地域独自の原料米を使った清酒を製造する動きが盛んになっており、ますます育種の必要性が増していると言える。清酒用の原料米品種の中でとりわけ人気が高いのは山田錦であり、この理由として、加工性に優れ良質な清酒が造れることや、酒造経験や醸造技術の蓄積が多く使いやすいことが挙げられる。しかし、山田錦は誕生から80年以上が経つものの、いまだにこれを超える原料米が少ないのも現状である。その理由には、原料米品種の育種・選抜を効率的に進めるのが難しいということが挙げられる。   For example, sake and shochu are fermented with water, rice and rice bran, and the properties of rice, which is the raw material cereals, are the workability in these production processes, the process of rice making and fermentation, and finally, sake.・ It greatly affects the quality of shochu. Therefore, in order to develop and cultivate higher quality raw material rice, various efforts are being made such as breeding of new raw material rice and improvement of the cultivation method. In recent years, movement to produce sake using local rice original raw material rice is prosperous, and it can be said that the need for breeding is increasing more and more. Among the raw rice varieties for sake, the most popular one is Yamada, which is why it is easy to use sake with excellent processability and high quality sake, and it is easy to use sake breweries and brewing techniques. Be However, although over 80 years have passed since the birth of Yamada, there is still a small amount of raw rice that exceeds this. The reason is that it is difficult to efficiently promote breeding and selection of raw rice varieties.

原料米の育種では、交配後の初期選抜を栽培特性や玄米の粒大、心白の発現といった外観を指標にして行われてきた。この選抜指標により、最初の個体選抜で500〜4,400個体から10〜399個体に選抜され、さらに醸造特性を調べる頃には数系統に絞られることがほとんどである(非特許文献1-8)。そこで近年では、育種の早い段階で数点の指標(精米特性や吸水性、タンパク質含量など)を調べることで選抜を効率化する取り組みがなされている(非特許文献4, 7, 9, 10)。しかし、この場合でも個体選抜から2世代後の3回目の選抜である。育種の初期段階から醸造特性による選抜が行われない理由として、分析に必要な玄米の量が挙げられる。例えば、精米特性を調べるためには100 gオーダー(少ない例でも数十g)の玄米が必要であり、この量の玄米を収穫するためには、対象とする選抜イネ個体に対し、十分量の栽培面積と、必要量の種籾を得るための相応の世代(年月)とが必要になる。さらに、試験醸造をする場合には、小仕込みスケールでも kg オーダーの玄米が必要となり、栽培面積はより広いスペースが必要となる、加えて試験精米機や相応の製麹装置、蒸し器、恒温槽などの施設や十分量のスペースも必要である。例えば、原料米の玄米収量を500 kg/10aとして、精米特性を調べるのに300 g、小仕込みスケールの試験醸造に3 kg、大仕込みスケールの試験醸造に300 kgの玄米が必要であるとする。1,000系統の原料米を調べるには、精米特性の調査に600 m2(テニスコート (261 m2)2面分)、小仕込みスケールの試験醸造に6,000 m2(アメフトのフィールド (5,400 m2) 1面分)、大仕込みスケールの試験醸造に600,000 m2(東京ドーム (46,755 m2) 約13個分)の栽培面積が必要である。また、小仕込みスケールの試験醸造を行うには、1,000系統をn = 3で45 m2(27帖、2LDKほどの大きさ)の恒温槽が必要になる。特に、玄米中のミネラル分の拡散移動が少ない期間内で精米を終わらせる必要があり、200gを15分で70%精米出来たとしても、1,000系統では3,000時間が必要である。10台のテストミルで行ったとしても、1ヶ月程度かかることになる。50%精米では、6倍の90分が必要であることから、半年程度かかってしまう。つまり、醸造特性の評価に必要な玄米の量が第1のネックであり、より少ない試料で醸造特性を評価することができれば、より効率的な原料米の育種が可能になると言える。 In the breeding of raw rice, the initial selection after mating has been carried out using the characteristics of cultivation characteristics, grain size of brown rice, and appearance of heart white as an index. By this selection index, it is mostly selected from 500-4,400 individuals to 10-399 individuals in the first individual selection, and it is mostly narrowed to several lines by the time the brew characteristics are examined (Non-Patent Document 1-8). Therefore, in recent years, efforts have been made to make selection more efficient by examining several indicators (rice milling characteristics, water absorbency, protein content, etc.) at an early stage of breeding (Non Patent Literatures 4, 7, 9, 10) . However, even in this case, it is the third selection two generations after the individual selection. The reason why selection by brewing characteristics is not performed from the early stage of breeding is the amount of brown rice necessary for analysis. For example, in order to investigate the characteristics of polished rice, brown rice of the order of 100 g (or even several tens of g) is required. To harvest this amount of brown rice, a sufficient amount of the target rice is selected. The cultivation area and the corresponding generation (years and months) to obtain the required amount of seed meal are required. Furthermore, in case of test brewing, even in small-scaled scale, brown rice of the order of kg is needed, and the cultivation area requires a larger space. In addition, the test rice milling machine and the corresponding rice making equipment, steamer, thermostatic bath etc. Facilities and sufficient space are also needed. For example, assuming that the raw rice yield is 500 kg / 10a, 300 g of brown rice is required for examining rice properties, 3 kg for small scale preparation and 3 kg for small scale preparation, and 300 kg for large preparation scale. . To investigate 1,000 varieties of raw rice, 600 m 2 (tennis court (261 m 2 ) for 2 sides) for investigation of rice grain characteristics, 6,000 m 2 for small preparation scale test brewery (American football field (5,400 m 2 ) A large surface area of 600,000 m 2 (approximately 13 Tokyo Dome (46,755 m 2 )) is required for large-scale trial brewing. In addition, in order to carry out the test brewing of a small preparation scale, a thermostatic bath of 45 m 2 (27 帖, about 2 LDK) with n = 3 is necessary for 1,000 lines. In particular, it is necessary to finish the milling within a period in which the migration of minerals in brown rice is small, and even if 200 grams can be milled 70% in 15 minutes, it takes 3,000 hours for 1,000 lines. Even with 10 test mills, it will take about a month. In 50% milled rice, it takes about half a year because it takes six minutes, 90 minutes. In other words, it can be said that more efficient breeding of raw rice can be achieved if the amount of brown rice required for evaluation of brewing characteristics is the first bottleneck, and the brewing characteristics can be evaluated with fewer samples.

さらに、原料米の品質は、栽培地の気候や土壌環境、施肥の量や組成なども大きな影響を与える。このような栽培環境は毎年異なり、そのため原料米の醸造特性も毎年変動することとなる。原料米の特性の変化は、醸造工程での物理的特性や成分の変化、さらに最終産物である醸造物の成分や品質、醸造物の収得率や原料利用率に大きく影響を与える。しかし、製造前に醸造試験を行うためには月単位の時間が必要で、時間的に不可能である。そのため、本格的な醸造シーズンに入る前に、いち早く原料米の特徴をとらえ、精米方法や製麹方法、発酵方法など醸造法を調整する必要がある。   In addition, the quality of raw rice is greatly influenced by the climate and soil environment of the cultivation area, the amount and composition of fertilization, and so on. Such cultivation environment is different every year, and therefore, the brewing characteristics of the raw material rice also fluctuate every year. Changes in the characteristics of the raw material rice greatly affect changes in physical characteristics and ingredients in the brewing process, and further, the ingredients and quality of the final product, the yield of the brew and the utilization of the raw material. However, in order to conduct a brewing test before manufacturing, monthly time is required, which is impossible in time. Therefore, before entering into a full-scale brewing season, it is necessary to quickly grasp the characteristics of the raw material rice and to adjust the brewing methods such as the rice milling method, the koji making method, and the fermentation method.

そのため、原料米の評価には、酒米研究会の酒造用原料米全国統一分析法(非特許文献11)(以降、酒米統一分析法)が多く用いられている。酒米統一分析法による分析結果は、原料米の溶けや麹菌・酵母の生育等の傾向と関連があるため、発酵管理や醸造特性を推測することに用いられている。しかし、酒米統一分析法の分析項目は14項目あり、醸造特性の評価には多大な労力を要する。そのため、本法中の比較的分析が容易な分析項目から他の分析値を予測する試み(非特許文献12)や、全く異なる方法から予測する試み(非特許文献13)がなされているが、特定の分析値に限られ、十分な精度の予測モデルは構築されていない。さらに、酒米統一分析法による分析値では、原料米そのものの分析値は得られるものの、麹の経過や酵素活性、発酵中の成分変化や製成酒成分など、醸造工程中、醸造産物の特性を予測する事は出来ない。つまり、原料米の評価方法にも大いに改善の余地があると言える。   Therefore, for the evaluation of the raw material rice, the raw material rice nationwide uniform analysis method (non-patent document 11) (hereinafter referred to as the sake-rice uniform analysis method) of the sake-rice research group is widely used. Since the analysis results by the sake-rice unified analysis method are related to the tendency of melting of raw rice, growth of Aspergillus oryzae, yeast, etc., they are used to estimate fermentation management and brew characteristics. However, there are 14 analysis items in the Sake-US unified analysis method, and it takes a lot of effort to evaluate the brewing characteristics. Therefore, there are attempts to predict other analysis values from analysis items that are relatively easy to analyze in this method (Non-Patent Document 12), and attempts to predict from completely different methods (Non-Patent Document 13), A prediction model limited to a specific analysis value and not accurate enough has not been built. Furthermore, in the analysis value by the liquor-rice unified analysis method, although the analysis value of the raw material rice itself is obtained, the characteristics of the brewed product during the brewing process, such as the course of the koji and the enzyme activity Can not predict. In other words, it can be said that there is much room for improvement in the evaluation method of raw material rice.

近年、GC-MSやLC-MS、UPLC-QTof-MS等によるメタボローム分析により取得したデータから、projections to latent structures (PLS) 回帰分析等により、最終製品に含まれる成分から官能評価スコアや品評会のランキングを予測するモデルが報告されている。これは、日本酒(非特許文献14)や醤油(非特許文献15)、ワイン(非特許文献16)、ビール(非特許文献17)、Chinese rice wine(非特許文献18)、チーズ(特許文献1、2)、カカオマス(特許文献3)、コーヒー(特許文献4)、茶葉(特許文献5)で報告がある。一方、原料のメタボローム解析により、醸造上の特性や発酵経過、最終製品の成分や品質を予測するモデルは報告されていない。   In recent years, from data obtained by metabolomic analysis by GC-MS, LC-MS, UPLC-QTof-MS, etc., components to be included in the final product are evaluated by sensory evaluation score or exposition from projection to latent structures (PLS) regression analysis etc. A model has been reported that predicts the ranking of the. This is sake (non-patent document 14), soy sauce (non-patent document 15), wine (non-patent document 16), beer (non-patent document 17), Chinese rice wine (non-patent document 18), cheese (patent document 1). 2), cacao mass (patent document 3), coffee (patent document 4), and tea leaves (patent document 5). On the other hand, no model has been reported that predicts brewing characteristics, fermentation process, components and quality of final products by metabolome analysis of raw materials.

特開2013-7732号公報JP, 2013-7732, A 特開2015-55494号公報JP 2015-55494 A 特開2017-26558号公報JP, 2017-26558, A 特開2017-32326号公報Unexamined-Japanese-Patent No. 2017-32326 特開2009-14700号公報JP, 2009-14700, A

酒造好適米新品種「夢吟香」の育成, 加藤満, 杉浦直樹, 辻孝子, 中村充, 城田雅毅, 加藤恭宏, 船生岳人, 工藤悟, 加藤博美, 澤田恭彦, 鈴木敏夫, 釋一郎, 井上正勝, 山本晃司, 伊藤彰敏, 愛知農総試研報, 43, 17-24 (2011)Breeding of a new rice cultivar suitable for brewing sake, Mitsuru Kato, Naoki Sugiura, Takako Tsuji, Mitsuhiro Nakamura, Shirota Masahiro, Kato Takehiro, Takeo Funao, Satoru Kudo, Hiromi Kato, Akihiko Sawada, Toshio Suzuki, Toichiro Ichiro, Inoue Masakatsu, Yamamoto Koji, Ito Akitoshi, Aichi Agri-Study Report, 43, 17-24 (2011) 酒米品種「山田錦」の育成経過と母本品種「山田穂」, 「短稈渡船」の来歴, 池上勝, 三好昭宏, 世古晴美, 渋谷幾夫, 西田清数, 兵庫農技総セ研報(農業), 53, 37-50 (2005)Breeding progress of sake rice cultivar "Yamada rice cake" and mother cultivar "Yamada Sho", history of "Shokodate Tosen", Ikegami Masaru, Miyoshi Akihiro, Seko Harumi, Shibuya Ikuo, Nishida Kiyomi, Hyogo Agricultural Research Institute (Agriculture), 53, 37-50 (2005) 酒米品種「改良山田錦」の育成経過と灘酒研究会による醸造適性評価, 池上勝, 西田清数, 兵庫農技総セ研報(農業), 55, 27-38 (2007)Breeding progress of sake rice cultivar "Improved Yamada-Saki" and evaluation of brewing aptitude by the Suishu Research Group, Ikegami Masaru, Nishida Kiyokazu, Hyogo Agricultural Technology Research Institute (Agriculture), 55, 27-38 (2007) 水稲酒造好適米新品種「越淡麗」, 石崎和彦, 小林和幸, 松井崇晃, 金田智, 星豊一, 佐々木行雄, 東聡志, 阿部徳文, 近藤敬, 阿部聖一, 樋口恭子, 重山博信, 平尾賢一, 新潟県農業総合研究所研究報告, 9, 81-87 (2008)New rice cultivar suitable for rice cultivar "Etsubari", Kazuhiko Ishizaki, Kazuyuki Kobayashi, Takaya Matsui, Satoshi Kanada, Toyoda Hoshi, Yukio Sasaki, Toshifumi Abe, Tokubun Abe, Keiichi Abe, Keiko Higuchi, Hironobu Shigeyama, Hirao Kenichi, Niigata Prefectural Agricultural Research Institute Research Report, 9, 81-87 (2008) 水稲新品種「フクノハナ」について, 平野哲也, 内山田博士, 近藤幸悦, 前田浩敬, 松本顕, 赤間芳洋, 東北農業試験場研究速報, 7, 9-16 (1967)A New Rice Variety “Fukunohana”, Tetsuya Hirano, Dr. Uchiyamada, Koji Kondo, Hirotaka Maeda, Akira Matsumoto, Yoshihiro Akama, Bulletin of Tohoku Agricultural Research Station Research Bulletin, 7, 9-16 (1967) 酒造好適米新品種「八反錦1号」の育成について, 前重道雅, 鳥生久嘉, 江戸義治, 滝広徳男, 広島県立農業試験場報告, 48, 1-6 (1984)On the breeding of a new rice cultivar suitable for sake making, “Hatore No. 1”, Masashi Maejima, Toka Hisaka, Edo Yoshiharu, Takihiro Tokuo, Hiroshima Prefectural Agricultural Experiment Station Report, 48, 1-6 (1984) 酒米新品種「山形酒49号」の育成, 櫻田博, 佐藤晨一, 菊池栄一, 中場勝, 佐野智義, 谷藤雄二, 中場理恵子, 黒木斌雄, 横尾信彦, 結城和博, 後藤清三, 山川淳, 山形県立農業試験場研究報告, 30, 1-15 (1996)Breeding of new rice cultivar "Yamagata Sake No. 49", Hiroshi Shibata, Sato Koichi, Kikuchi Eiichi, Nakaba Masato, Sano Tomoyoshi, Tanifuji Yuji, Nakaba Rieko, Kuroki Ikuo, Yokoo Nobuhiko, Yukio Kazuhiro, Goto Kiyozo , Yamakawa Minoru, Yamagata Prefectural Agricultural Experiment Station Research Report, 30, 1-15 (1996) 水稲新品種「秋の精」の育成, 眞崎聡, 加藤武光, 畠山俊彦, 松本眞一, 川本朋彦, 山本寅雄, 嶽石進, 斎藤正一, 福田兼四郎, 嶋貫和夫, 池田直美, 秋田県農業試験場研究報告, 40, 23-43 (1999)Breeding of new rice varieties "Autumn spirit", Shibasaki Takumi, Kato Takemitsu, Kashiyama Toshihiko, Matsumoto Shinichi, Kawamoto Yoshihiko, Yamamoto Tatsuhiko, Shizukuishi Susumu, Saito Shoichi, Fukuda Kenshiro, Shikinuki Kazuo, Ikeda Naomi, Akita agriculture Laboratory research report, 40, 23-43 (1999) 水稲酒米新品種「越淡麗(こしたんれい)」の開発と新潟県の酒米育種, 小林和幸, 金田智, 松井崇晃, 石崎和彦, 鍋倉義仁, 渡邊健一, 育種学研究, 8, 55-61 (2006)Development of rice cultivar rice variety "Kotan Rei" and sake rice breeding in Niigata prefecture, Kobayashi Kazuyuki, Kanada Satoshi, Matsuda Takaya, Ishizaki Kazuhiko, Nabekura Yoshihito, Watanabe Kenichi, Breeding Research, 8, 55 -61 (2006) 酒造好適米新品種「秋田酒こまち」の開発と酒造特性, 高橋仁, 田口隆信, 醸協, 98, 598-609 (2003)Development and sake brewing characteristics of sake brewing suitable rice new breed "Akita sake komachi", Takahashi Hitoshi, Taguchi Takanobu, Hokei, 98, 598-609 (2003) 酒米研究会編:「酒造用原料米全国統一分析法」, 酒米研究会 (1996)Sake-rice Study Group ed .: "Rate-wide integrated analysis method for raw materials for sake brewing", Sake-rice study group (1996) 酒米適性についての研究(第11報)−蒸米の被消化性、蒸米の消化残渣および麹の消化残渣の予測について, 花本秀生, 中沢英五郎, 竹村成三, 醸協, 73, 580-581 (1978)Studies on the suitability of rice for sake. (11)-On digestibility of steamed rice and prediction of digestion residue of steamed rice and digestion residue of rice bran, Hideo Hanamoto, Hidego Nakazawa, Seizo Takemura, Jyokyo, 73, 580-581 (1978) 気象データと原料米の酒造適性との関係, 奥田将生, 橋爪克己, 沼田美子代, 上用みどり, 後藤奈美, 三上重明, 醸協, 104, 699-711 (2009)The relationship between meteorological data and sake brewing suitability of raw material rice, Masao Okuda, Katsumi Hashizume, Mikuyo Numata, Midori Upuse, Nami Goto, Shigeaki Mikami, Keikyo, 104, 699-711 (2009) Gas chromatography/mass spectrometry based component profiling and quality prediction for Japanese sake, Natsuki Mimura, Atsuko Isogai, Kazuhiro Iwashita, Takeshi Bamba, and Eiichiro Fukusaki, Journal of Bioscience and Bioengineering, 118, 4, 406-414 (2014)Gas chromatography / mass spectrometry based component profiling and quality prediction for Japanese sake, Natsuki Mimura, Atsuko Isogai, Kazuhiro Iwashita, Takeshi Bamba, and Eiichiro Fukushima, Journal of Bioscience and Bioengineering, 118, 4, 406-414 (2014) Metabolite profiling of soy sauce using gas chromatography with time-of-flight mass spectrometry and analysis of correlation with quantitative descriptive analysis, Shinya Yamamoto, Takeshi Bamba, Atsushi Sano, Yukako Kodama, Miho Imamura, Akio Obata, and Eiichiro Fukusaki, Journal of Bioscience and Bioengineering, 114, 2, 170-175 (2012)Metabolite profiling of soy sauce using gas chromatography with time-of-flight mass spectrometry and analysis of correlation with quantitative descriptive analysis, Shinya Yamamoto, Takeshi Bamba, Atsushi Sano, Yukako Kodama, Miho Imamura, and Bioengineering, 114, 2, 170-175 (2012) Wine Metabolomics: Objective Measures of Sensory Properties of Semillon from GC-MS Profiles, Leigh M. Schmidtke, John W. Blackman, Andrew C. Clark, and Paris Grant-Preece, J. Agric. Food Chem., 61, 49, 11957-11967 (2013)Wine Metabolomics: Objective Measures of Sensory Properties of Semillon from GC-MS Profiles, Leigh M. Schmidtke, John W. Blackman, Andrew C. Clark, and Paris Grant-Preece, J. Agric. Food Chem., 61, 49, 11957 -11967 (2013) Predictive analysis of beer quality by correlating sensory evaluation with higher alcohol and ester production using multivariate statistics methods, Jian-Jun Dong, Qing-Liang Li, Hua Yin, Cheng Zhong, Jun-Guang Hao, Pan-Fei Yang, Yu-Hong Tian, Shi-Ru Jia, Food Chemistry, 161, 15, 376-382 (2014)Predictive analysis of beer quality by correlating sensory evaluation with higher alcohol and ester production using multivariate statistics methods, Jian-Jun Dong, Qing-Liang Li, Hua Yin, Cheng Zhong, Jun-Guang Hao, Pan-Fei Yang, , Shi-Ru Jia, Food Chemistry, 161, 15, 376-382 (2014) Intelligent sensing sensory quality of Chinese rice wine using near infrared spectroscopy and nonlinear tools, Qin Ouyang, Quansheng Chen, Jiewen Zhao, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 154, 5, 42-46 (2016)Intelligent sensing sensory quality of Chinese rice wine using near infrared spectroscopy and nonlinear tools, Qin Ouyang, Quansheng Chen, Jiewen Zhao, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 154, 5, 42-46 (2016)

本発明は、少量の原料穀類サンプルから得られるデータから当該原料穀類の醸造特性を予測することを可能にする新規な手段を提供することを目的とする。   An object of the present invention is to provide a novel means that makes it possible to predict the brewing characteristics of raw material cereals from data obtained from small amounts of raw material cereal samples.

本願発明者らは、鋭意研究の結果、清酒原料米のメタボローム分析データから当該原料米の醸造特性を予測するための予測式を構築する手法を開発し、当該手法を清酒原料米だけではなく各種の醸造物の原料穀類に適用可能であることを見出し、本願発明を完成した。   The inventors of the present invention developed a method of constructing a prediction formula for predicting the brewing characteristics of the raw material rice from metabolomic analysis data of the raw material rice as a result of keen research, The present invention has been completed by finding that it is applicable to raw material grains of brewed products.

すなわち、本発明は、醸造特性が未知の原料穀類について、該原料穀類を用いて醸造物を製造する際の醸造特性を予測するための、醸造特性予測式の作成方法であって、
複数の醸造物原料穀類サンプルのそれぞれより、1以上のメタボローム分析用サンプルを調製する工程;
前記メタボローム分析用サンプルを用いて、原料穀類中に含まれる化合物群を網羅的に解析するメタボローム分析を行い、各化合物の原料穀類中存在量についての定量的数値データで構成されるメタボローム分析データを取得する工程;
前記醸造物原料穀類サンプルのそれぞれについて、醸造特性に関連する少なくとも1つの醸造特性データを取得する工程;
各メタボローム分析データから選択される2個以上の定量的数値データを説明変数とし、醸造特性データを目的変数として、目的変数ごとに重回帰分析を行なう工程;
を含む、方法を提供する。
また、本発明は、上記本発明の方法により、醸造特性予測式を作成する工程;
育成中の穀類個体集団又は穀類系統集団より穀類サンプルを取得し、該サンプルよりメタボローム分析用サンプルを調製し、メタボローム分析データを取得する工程;
取得されたメタボローム分析データを醸造特性予測式に代入し、醸造特性の予測値を算出する工程;
前記予測値に基づいて所望の醸造特性を有すると予測された個体又は系統を、前記集団より選抜する工程;
を含む、穀類品種の作出方法を提供する。
That is, the present invention is a method of creating a brewing characteristic prediction equation for predicting brewing characteristics when producing brews using raw material cereals for raw material cereals of unknown brewing characteristics,
Preparing one or more samples for metabolomic analysis from each of a plurality of brew raw material cereal samples;
Using the metabolome analysis sample, metabolomic analysis is conducted to comprehensively analyze compounds contained in raw material grains, and metabolome analysis data composed of quantitative numerical data on the abundance of each compound in raw material grains is used. Acquiring process;
Obtaining at least one brewing characteristic data related to brewing characteristics for each of said brew material cereal samples;
Performing multiple regression analysis for each objective variable using two or more quantitative numerical data selected from each metabolome analysis data as an explanatory variable, and using a brewery characteristic data as an objective variable;
To provide a method, including:
Further, the present invention provides a step of preparing a brewing characteristic prediction equation by the method of the present invention described above;
Obtaining a cereal sample from a growing population of cereals or a population of cereal lines, preparing a sample for metabolomic analysis from the sample, and acquiring metabolomic analysis data;
Substituting the acquired metabolomic analysis data into a brewing characteristic prediction equation to calculate a prediction value of the brewing characteristic;
Selecting from the population individuals or lines predicted to have desired brewing characteristics based on the predicted value;
Provide a method of producing cereal varieties, including

本発明により、原料米のメタボローム分析データにより、原料米そのものの特性分析値、米麹の酵素活性、発酵経過等の醸造中の特性、最終製品または蒸留原料であるもろみの成分、最終醸造物の成分や品質を予測できる予測モデルが初めて提供される。本発明の方法により作成される予測式を用いることで、醸造関連分析値が未知の原料米系統について、その系統の原料米のメタボローム分析データから醸造関連分析値(酒米統一分析法により評価される原料米特性、麹の酵素力価、モロミ経過、製成酒の特性)を予測することができる。メタボローム分析では、0.1g程度とごく少量の原料米サンプルからでも十分なデータを取得できることから、原料米の育種過程の早い段階で醸造特性を予測し評価することが可能になり、原料米の育種の迅速化に大いに貢献する。また、本発明により得られる予測式は、育種の選抜の指標のみならず、醸造方法の検討や発酵管理の指標にも応用することができる。また、米や清酒に限らず、焼酎、ビール、ウイスキー、醤油、味噌などの各種醸造物の原料穀類、例えば大麦麦芽、小麦、大豆などについても、その醸造特性を予測する予測式を本発明の方法により作成することができる。   According to the present invention, metabolome analysis data of raw material rice, characteristic analysis value of raw material rice itself, enzyme activity of rice bran, characteristics during brewing such as fermentation process, components of moromi which is final product or distillation raw material, final brew For the first time, a prediction model that can predict components and quality is provided. By using the prediction formula prepared by the method of the present invention, with regard to a raw material rice line whose brewery related analysis value is unknown, the brewery related analysis value (evaluated by the liquor-rice unified analysis method from metabolomic analysis data of the raw material rice of that line) Characteristics of raw material rice, enzyme titer of persimmon, moromi course, characteristics of sake made). In metabolomic analysis, sufficient data can be obtained even from a small amount of raw material rice sample of about 0.1 g, so that it becomes possible to predict and evaluate the brew characteristics at an early stage of the raw rice breeding process, and the raw rice breeding Contribute significantly to speeding up Moreover, the prediction equation obtained by the present invention can be applied not only to an index of selection for breeding but also to an index of examination of a brewing method and fermentation management. Furthermore, the present invention is not limited to rice and sake, but also for raw material grains of various brews such as shochu, beer, whiskey, soy sauce, and miso, such as barley malt, wheat, soybean, etc. It can be created by the method.

本発明による予測式作成方法の概要を説明する図である。It is a figure explaining the outline of the prediction equation creation method by the present invention. 予測式作成のための実際の作業手順を説明する図である。It is a figure explaining the actual work procedure for prediction expression creation.

本発明は、醸造特性が未知の原料穀類について、該原料穀類を用いて醸造物を製造する際の醸造特性を予測するための、醸造特性予測式の作成方法である。「醸造特性が未知の原料穀類」という語は、新たに作出された原料穀類系統であるために醸造特性が未知であるものの他、既に実用化されている公知の品種であるが、栽培環境の違いにより醸造特性に変動が生じている可能性のある原料穀類も包含される。   The present invention is a method of creating a brewing characteristics prediction equation for predicting brewing characteristics when producing brews using raw material cereals for raw material cereals of unknown brewing characteristics. The term "raw grain with unknown brewery characteristics" is a well-known variety that has already been put to practical use, in addition to those whose brewery characteristics are unknown because it is a newly produced raw material grain line. Also included are raw material grains that may have caused variations in brewing characteristics due to differences.

原料穀類の具体例としては、米、大麦、大麦麦芽、小麦、大豆等を挙げることができる。また醸造物の具体例としては、清酒、焼酎(特に米焼酎)、ビール、ウイスキー、醤油、味噌等を挙げることができる。醸造物と原料穀類の組み合わせの具体例としては、ビールと麦芽(大麦麦芽);ウイスキーと発芽させた穀類;大麦、小麦、醤油と小麦、大豆;味噌と小麦、米、大豆を挙げることができる。下記実施例では、清酒製造における原料米の醸造特性の予測式を構築し、該予測式はそのまま米焼酎製造における原料米の醸造特性予測にも利用できるが、本発明の範囲はこれに限定されるものではなく、各種の原料穀類、醸造物に対して本発明の方法を適用できる。   Specific examples of the raw material cereals include rice, barley, barley malt, wheat, soybean and the like. Further, specific examples of the brew can include sake, shochu (especially rice shochu), beer, whiskey, soy sauce, miso and the like. Specific examples of combinations of brews and raw material grains include beer and malt (wheat malt); grains sprouted with whiskey; germinated grains; barley, wheat, soy sauce and wheat, soy; miso and wheat, rice, soy . In the following example, a prediction equation of the brewing characteristics of raw material rice in sake production is constructed, and the prediction equation can be used as it is to predict the brewing characteristics of raw material rice in rice shochu production, but the scope of the present invention is limited thereto. However, the method of the present invention can be applied to various raw material grains and brews.

本発明の方法では、醸造物原料穀類のサンプルを複数サンプル使用する。1つの原料穀類サンプルより、1以上のメタボローム分析用サンプルを調製する。従って、本発明では、原料穀類サンプル数と同数又はそれ以上の複数のメタボローム分析用サンプルを調製することになる。原料穀類サンプルは、品種や栽培環境が異なるサンプルをできるだけ多数使用することが望ましい。1つの原料穀類サンプルよりメタボローム分析用サンプルを1つだけ調製し、メタボローム分析データを1セットだけ取得する場合、原料穀類サンプルとして最低限必要な数は、予測式構築のために3サンプル、検証用に1サンプルの合計4サンプルである。すなわち、メタボローム分析用サンプルの数は4サンプル以上必要である。予測精度が十分に高い予測式を得るためには、メタボローム分析用サンプルを9サンプル以上調製する(メタボローム分析データは9セット以上得られる)ことが望ましい。原料穀類サンプルを9サンプル以上用いてもよいし、原料穀類サンプルを3サンプル以上とし、各原料穀類サンプルからそれぞれ3つ以上のメタボローム分析用サンプルを調製してもよい。   In the method of the present invention, a plurality of samples of brew material grains are used. From one raw grain sample, one or more samples for metabolomic analysis are prepared. Therefore, in the present invention, a plurality of metabolome analysis samples as many as or more than the number of raw grain samples are prepared. As for the raw material cereal samples, it is desirable to use a large number of samples having different varieties and cultivation environments as much as possible. When preparing only one sample for metabolomic analysis from one raw material grain sample and acquiring only one set of metabolomic analysis data, the minimum required number of raw material grain samples is 3 for verification equation construction, for verification There are four samples in total for one sample. That is, four or more samples for metabolome analysis are required. In order to obtain a prediction formula with sufficiently high prediction accuracy, it is desirable to prepare nine or more samples for metabolomic analysis (9 or more sets of metabolomic analysis data can be obtained). Nine or more samples of raw material cereal samples may be used, or three or more samples of raw material cereal samples may be prepared, and three or more samples for metabolomic analysis may be prepared from each of the raw material cereal samples.

メタボローム分析では、複数のメタボローム分析用サンプルをそれぞれ分析して、複数セットのメタボローム分析データを取得する。メタボローム分析データとは、原料穀類より調製されたメタボローム分析用サンプルを用いて、原料穀類中に含まれる化合物群(主として低分子量の代謝産物)を網羅的に解析して得られるデータ群であり、各化合物の原料穀類中存在量に関する定量的数値データで構成される。ここでいう定量的数値データとは、典型的には、各化合物の原料穀類中存在量を相対的に定量した数値データである。   In metabolomic analysis, a plurality of metabolomic analysis samples are analyzed to obtain multiple sets of metabolomic analysis data. The metabolome analysis data is a data group obtained by comprehensively analyzing a group of compounds (mainly low molecular weight metabolites) contained in raw material grains using a sample for metabolome analysis prepared from raw material grains, It consists of quantitative numerical data on the abundance of each compound in the raw material grains. The quantitative numerical data as referred to herein is typically numerical data obtained by relatively quantifying the amount of each compound in the raw material grains.

本発明でメタボローム分析の対象となる化合物群には、メタボロミクスの分野における「メタボローム」の一般的な意味と同様に、アミノ酸、アミン、ヌクレオチド、糖、脂質等の低分子量の代謝産物や、DNA、RNA、タンパク質等の高分子量の生体化合物の分解物及び断片、並びに2次代謝物が含まれる。従って、本明細書において、メタボローム分析対象の化合物群を「メタボローム」と呼ぶことがある。特に限定されないが、本発明では、概ね分子量50〜1,000程度の低分子量の化合物群を対象にメタボローム分析を行えばよい。   The compounds to be subjected to the metabolome analysis in the present invention include low molecular weight metabolites such as amino acids, amines, nucleotides, sugars and lipids, and DNA, as in the general meaning of "metabolome" in the field of metabolomics. Included are degradation products and fragments of high molecular weight biological compounds such as RNA, proteins and the like, and secondary metabolites. Therefore, in the present specification, a group of compounds to be analyzed in metabolome may be referred to as "metabolome". Although not particularly limited, in the present invention, metabolome analysis may be performed on a low molecular weight compound group having a molecular weight of about 50 to about 1,000.

メタボローム分析用サンプルとしては、原料穀類サンプル中に含まれる種々の化合物群を網羅的に抽出した抽出物を用いればよい。例えば、原料穀類サンプル(原料米の玄米など)を適当な溶媒中で破砕して化合物群を抽出した抽出液をメタボローム分析サンプルとして用いることができる。本発明では、主として親水性の化合物群がメタボローム分析のターゲットとなるので、溶媒としては低級アルコール溶液などの親水性溶媒を好ましく用いることができる。低級アルコール溶液は、例えば、濃度30〜70%程度のメタノールやアルコールの水溶液でよい。もっとも、本発明では、疎水性の化合物群をメタボローム分析のターゲットとしてもよいので、疎水性溶媒を用いて化合物群を抽出した抽出液をメタボローム分析用サンプルとして用いることも可能である。原料穀類抽出物は、穀類粉砕後に遠心等により残渣を除いた後、限外濾過に付してもよい。   As a sample for metabolome analysis, an extract obtained by exhaustively extracting various compound groups contained in a raw material cereal sample may be used. For example, an extract obtained by crushing a raw material grain sample (raw rice such as raw rice grain) in a suitable solvent and extracting a compound group can be used as a metabolomic analysis sample. In the present invention, a hydrophilic compound group such as a lower alcohol solution can be preferably used as the solvent, since a group of hydrophilic compounds is mainly a target of metabolomic analysis. The lower alcohol solution may be, for example, an aqueous solution of methanol or alcohol having a concentration of about 30 to 70%. However, in the present invention, since a hydrophobic compound group may be used as a target of metabolomic analysis, it is also possible to use an extract obtained by extracting the compound group using a hydrophobic solvent as a sample for metabolomic analysis. The raw material grain extract may be subjected to ultrafiltration after removing the residue by centrifugation or the like after grain crushing.

メタボローム分析における化合物の分離工程がガスクロマトグラフィーにより行われる場合には、ジエチルエーテル、イソペンタン、ペンタン等の有機溶媒を用いて抽出した後、分析対象の化合物群を気化しやすいように誘導体化したサンプルや、原料穀類サンプルの熱分解物をメタボローム分析用サンプルとして用いることができる。生体内物質の上記誘導体化の方法は周知の常法である。   When the separation process of the compound in metabolome analysis is performed by gas chromatography, after extracting using an organic solvent such as diethyl ether, isopentane, pentane and the like, a sample derivatized so that the compound group to be analyzed is easily vaporized Or, the thermal decomposition product of the raw material grain sample can be used as a sample for metabolomic analysis. The above-mentioned method of derivatization of in vivo substances is a well-known conventional method.

メタボローム分析における分析手法自体は特に限定されず、メタボローム分析用サンプル中の化合物群を網羅的に解析できる方法であればよい。一般的には、液体クロマトグラフィー、キャピラリー電気泳動又はガスクロマトグラフィーと質量分析とを組み合わせた方法や、NMR解析によりメタボローム分析を実施できる。メタボローム分析に適した各種の液体クロマトグラフ、キャピラリー電気泳動、ガスクロマトグラフ、及び質量分析システムが公知であり、市販品も存在する。そのような市販の分析装置を用いてメタボローム分析を実施することができる。あるいは、メタボローム分析サービスが種々の企業から提供されているので、そのような分析サービスを利用してメタボローム分析データセットを取得してもよい。   The analysis method itself in metabolomic analysis is not particularly limited as long as it is a method that can comprehensively analyze a group of compounds in a sample for metabolomic analysis. In general, metabolome analysis can be performed by liquid chromatography, capillary electrophoresis or a method combining gas chromatography and mass spectrometry or NMR analysis. Various liquid chromatographs, capillary electrophoresis, gas chromatographs, and mass spectrometry systems suitable for metabolome analysis are known, and there are also commercially available products. Metabolomic analysis can be performed using such commercially available analyzers. Alternatively, as metabolome analysis services are provided by various companies, such analysis services may be used to acquire a metabolome analysis data set.

液体クロマトグラフィーには、高速液体クロマトグラフィー(HPLC)、超高速液体クロマトグラフィー(UHPLC、UPLC(登録商標))が包含される。膨大な数の化合物を分析するメタボローム分析では、一般に超高速液体クロマトグラフィーが好ましく用いられるが、特に限定されず、本発明においてはHPLCとUHPLCのいずれを用いてもよい。分離モードとしては、一般に親水性相互作用クロマトグラフィーを好ましく用いることができるが、これに限定されるものではなく、原料米から抽出した化合物群の性質、例えば親水性であるか疎水性であるか等に応じて、適当な分離モードや移動相を組み合わせて液体クロマトグラフィーを行なえばよい。   Liquid chromatography includes high performance liquid chromatography (HPLC), ultra high performance liquid chromatography (UHPLC, UPLC (registered trademark)). In metabolomic analysis for analyzing a large number of compounds, generally, high performance liquid chromatography is preferably used, but it is not particularly limited, and either HPLC or UHPLC may be used in the present invention. In general, hydrophilic interaction chromatography can be preferably used as the separation mode, but it is not limited to this, and the nature of the compound group extracted from the raw material rice, for example, is it hydrophilic or hydrophobic? Depending on the situation, liquid chromatography may be performed by combining an appropriate separation mode or mobile phase.

ガスクロマトグラフィーを採用する場合は、GC/質量分析によりメタボローム分析を行なう場合の一般的な方法によりガスクロマトグラフィー工程を実施すればよい。   In the case of employing gas chromatography, the gas chromatography step may be performed by a general method in the case of performing metabolomic analysis by GC / mass spectrometry.

質量分析の手法も特に限定されず、メタボロミクス分野で一般的に採用されている、一定以上の定量性能を有する質量分析法を用いることができる。そのような質量分析法としては、磁場型フーリエ変換質量分析計、QMS(四重極型質量分析)、TOF-MS(飛行時間型質量分析)、Triple QMS(三連四重極型質量分析)、QMS/TOF-MS等を挙げることができ、中でもTOF-MS及びQMS/TOF-MSを好ましく採用することができるが、これらに限定されない。本発明において、単に「飛行時間型質量分析」といった場合、飛行時間型質量分析計を含む質量分析システムによる質量分析を指し、TOF-MS及びQMS/TOF-MS等が包含される。   The method of mass spectrometry is also not particularly limited, and mass spectrometry generally employed in the metabolomics field and having a constant or higher quantitative performance can be used. As such mass spectrometry methods, a magnetic field type Fourier transform mass spectrometer, QMS (quadrupole mass spectrometry), TOF-MS (time-of-flight mass spectrometry), Triple QMS (triple quadrupole mass spectrometry) And QMS / TOF-MS etc., among which TOF-MS and QMS / TOF-MS can be preferably adopted, but not limited thereto. In the present invention, simply referring to “time-of-flight mass spectrometry” refers to mass analysis by a mass spectrometry system including a time-of-flight mass spectrometer, and includes TOF-MS and QMS / TOF-MS.

メタボローム分析により得られた各化合物の含有量に関する生データは、適当なソフトウェアを用いて相対定量値の数値データに変換すればよい。各化合物の相対定量値を算出する方法としては、マススペクトルの各ピークの相対面積値として算出する方法や、マススペクトルの測定値を質量、時間、強度の3次元データとして円錐状のピーク体積を算出する方法などがあり、本発明ではいずれの方法を採用してもよい。クロマトグラフと質量分析計を連結したメタボローム分析用の市販の分析システムを用いる場合、通常はシステムに相対定量値を算出するためのソフトウェアが付属されているので、そのような付属のソフトウェアを使用すればよい。   Raw data on the content of each compound obtained by metabolomic analysis may be converted into numerical data of relative quantitative values using an appropriate software. As a method of calculating the relative quantitative value of each compound, the method of calculating as the relative area value of each peak of the mass spectrum, or the conical peak volume as the three-dimensional data of mass, time, and intensity of the measured value of the mass spectrum There is a method of calculating, etc., and any method may be adopted in the present invention. When using a commercially available analysis system for metabolomic analysis combining a chromatograph and a mass spectrometer, the system usually includes software for calculating relative quantitative values, so it is preferable to use such software. Just do it.

本発明において、「醸造特性データ」という語は、原料穀類の醸造特性に関わる、原料穀類又はそれから得られる麹、モロミについての種々の分析データをいう。原料穀類が米であり、醸造物が清酒又は焼酎である場合の醸造特性データの具体例としては、酒米統一分析法により得られる原料米分析値、原料米より製造した米麹の酵素力価、原料米より清酒又は焼酎を製造する過程でのモロミ経過、原料米より製造した清酒又は焼酎の一般成分及び香気成分の分析値などが挙げられる。これらの醸造関連分析値より選択される少なくとも1種、好ましくは複数の分析値を含む分析データを、醸造特性データとして取得すればよい。麹、モロミ、及び清酒又は焼酎は、標準的な清酒又は焼酎の製造方法により製造すればよい。   In the present invention, the term "brewing property data" refers to various analysis data on raw material grains or straws and mash obtained therefrom, which are related to the brewing properties of raw material grains. Specific examples of brewing characteristics data when raw material grains are rice and brewed products are sake or shochu, analysis values of raw material rice obtained by sake-rice uniform analysis method, enzyme titer of rice bran produced from raw material rice The process of producing a sake or shochu from raw material rice may include the course of the course of moromi, and analysis values of general components and aroma components of sake or shochu produced from raw material rice. Analysis data including at least one, preferably a plurality of analysis values selected from these brewery-related analysis values may be acquired as brewery characteristic data. The persimmon, moromi and sake or shochu may be produced by a standard method for producing sake or shochu.

酒米統一分析法により得られる原料米分析値とは、原料米の玄米水分、調整前千粒重、調整後千粒重、みかけ精米歩合、真精米歩合、無効精米歩合、砕米率、白米水分、20分吸水率、120分吸水率、蒸米吸水率、消化性 brix、粗タンパク質、カリウムについての分析値である。これら14項目の分析値は、酒米研究会の酒造用原料米全国統一分析法に従い常法により取得することができる。   Analysis value of raw material rice obtained by Sake-rice unified analysis method: Brown rice moisture of raw material rice, thousand grain weight before adjustment, thousand grain weight after adjustment, apparent grain proportion, true grain proportion, invalid grain proportion, broken grain rate, white rice moisture, 20 minutes water absorption It is an analysis value about rate, 120 minutes water absorption rate, steamed rice water absorption rate, digestibility brix, crude protein, and potassium. The analysis values of these 14 items can be obtained according to the conventional method according to the Rice National Standard Analysis Method for Sake Brewing Materials of Sake Rice Research Group.

原料米より製造した米麹の酵素力価には、α−アミラーゼ(AAase)活性、グルコアミラーゼ(GAase)活性、酸性カルボキシペプチダーゼ(ACPase)活性、酸性プロテアーゼ(APase)活性、及びα-グルコシターゼ活性の測定値が包含される。原料米の精米歩合を変えて米麹を作製し、それぞれの米麹について酵素力価を測定してもよい。第四回改正国税庁所定分析法注解に従い、米麹から酵素を抽出して米麹酵素液とし、市販のキット等を用いてこの酵素液の各種酵素活性を測定すればよい。   The enzyme titers of rice bran produced from raw material rice include α-amylase (AAase) activity, glucoamylase (GAase) activity, acid carboxypeptidase (ACPase) activity, acid protease (APase) activity, and α-glucosidase activity. Measurement values are included. It is also possible to produce rice bran by changing the proportion of rice used as raw material rice, and to measure the enzyme titer of each rice bran. The enzyme may be extracted from rice bran to make a rice bran enzyme solution according to the fourth revised National Tax Agency prescribed analysis method annotation, and various enzyme activities of this enzyme solution may be measured using a commercially available kit or the like.

原料米より清酒又は焼酎を製造する過程でのモロミ経過(発酵経過)の分析値としては、一日当たりの炭酸ガス減量の最大値、一日当たりの炭酸ガス減量が最大値に達した日数、炭酸ガス減量の積算値、粕歩合のデータを挙げることができる。粕歩合とは、モロミを遠心分離または濾紙による濾過、圧搾などで固液分離した際の固体部分の重量を原料米重量で割り100をかけた値である。一般的な条件で小仕込み試験を行ない、これらの項目について調べればよい。モロミ経過についても、原料米の精米歩合を変えて小仕込み試験を行い、各試験からモロミ経過の分析データを得ることができる。   Analysis values of the course of fermentation (process of fermentation) in the process of producing sake or shochu from raw material rice, the maximum value of carbon dioxide weight loss per day, the number of days when the carbon dioxide weight loss per day reached the maximum value, carbon dioxide gas The integrated value of weight loss and the data of yield can be mentioned. The percolation rate is a value obtained by dividing the weight of the solid part when solid or liquid is separated by filtration, squeezing or the like of sorghum by centrifugation or filter paper, divided by the weight of raw rice and multiplied by 100. You can do a small charge test under general conditions and check these items. With regard to the moromi course, it is possible to carry out a small preparation test by changing the proportion of milled rice for raw rice, and to obtain analytical data of the moromi course from each test.

モロミ上清又は製成酒の一般成分の分析値としては、エタノール濃度、酸度、アミノ酸度、日本酒度、原エキス分の測定値を挙げることができる。また製成酒の香気成分としては、酢酸エチル(EtOAc)、n-プロピルアルコール(nPrOH)、イソブチルアルコール(iBuOH)、酢酸イソアミル(iAmOAc)、イソアミルアルコール(iAmOH)、カプロン酸エチル(EtOCap)を挙げることができる。これらの製成酒成分は常法通りに測定すればよい。製成酒の一般成分及び香気成分についても、適宜原料米の精米歩合を変えて小仕込み試験を行い、得られた製成酒それぞれについて一般成分及び香気成分を測定し、醸造特性データとして用いることができる。   As analytical values of the general components of the moromi supernatant or the sake liquor, there can be mentioned measured values of ethanol concentration, acidity, amino acidity, Japanese sake, and raw extract. Moreover, as an aroma component of the prepared sake, ethyl acetate (EtOAc), n-propyl alcohol (nPrOH), isobutyl alcohol (iBuOH), isoamyl acetate (iAmOAc), isoamyl alcohol (iAmOH), ethyl caproate (EtOCap) are mentioned. be able to. These components for producing sake may be measured in the usual manner. With regard to the general ingredients and aroma components of the made sake, conduct the small preparation test by changing the proportion of the raw rice rice as appropriate, and measure the general components and the aroma components of each of the obtained made liquor and use it as the brewing characteristics data. Can.

焼酎の一般成分の分析値としては、pH、酸度、紫外部吸収、チオバルビツール酸(TBA)価、着色度、2,4,6-トリクロロアニソール(TCA)を挙げることができる。また焼酎の香気成分としては、アセトアルデヒド、酢酸エチル、n-プロピルアルコール、イソブチルアルコール、酢酸イソアミル、イソアミルアルコール、フルフラール、モノテルペンアルコール(リナロール、α-テルピネオール、シトロネロール、ネロール、ゲラニオール)、カプロン酸エチル、カプリル酸エチル、カプリン酸エチル、β-フェネチルアルコール、酢酸β-フェネチル、高級脂肪酸エチルエステル(ラウリン酸エチル、ミリスチン酸エチル、パルミチン酸エチル、リノール酸エチル、オレイン酸エチル、ステアリン酸エチル)を挙げることができる。これらの成分についても、適宜原料米の精米歩合を変えて一般的な条件で焼酎を製造し、常法により測定を行い、醸造特性データとして用いることができる。   As analytical values of general components of shochu, pH, acidity, ultraviolet absorption, thiobarbituric acid (TBA) value, coloring degree, 2,4,6-trichloroanisole (TCA) can be mentioned. As aroma components of shochu, acetaldehyde, ethyl acetate, n-propyl alcohol, isobutyl alcohol, isoamyl acetate, isoamyl alcohol, furfural, monoterpene alcohol (linalool, α-terpineol, citronellol, nerol, geraniol), ethyl capronate, Ethyl caprylate, ethyl caprate, β-phenethyl alcohol, β-phenethyl acetate, higher fatty acid ethyl ester (ethyl laurate, ethyl myristate, ethyl palmitate, ethyl linoleate, ethyl oleate, ethyl stearate) Can. These ingredients can also be used as brewing characteristics data by appropriately preparing shochu under general conditions by changing the proportion of rice used as the raw material rice, and measuring it according to a conventional method.

醸造特性データは、メタボローム分析に供する原料穀類サンプルの全てについて取得する。予測したい醸造特性の項目を選択し、その項目について、原料穀類サンプルの分析を行えばよい。下記実施例では、合計28サンプルの原料米サンプルより28×3のメタボローム分析用サンプルを調製し、28×3のメタボローム分析データと28サンプル分の醸造特性データを重回帰分析した結果、玄米水分含量;調整前千粒重;調整後千粒重;真精米歩合;無効精米歩合;砕米率;120分吸水率;消化性brix;玄米カリウム含量;原料米より製造した米麹のα−アミラーゼ活性、グルコアミラーゼ活性、α−グルコシダーゼ活性、酸性カルボキシペプチダーゼ活性、及び酸性プロテアーゼ活性;原料米より製造したモロミの粕歩合、1日当たり炭酸ガス減量最大値、1日当たりの炭酸ガス減量の最大値に達した日数、及び炭酸ガス減量の積算値;原料米より製造した清酒のエタノール含量、酸度、アミノ酸度、日本酒度、酢酸エチル含量、n-プロピルアルコール含量、イソブチルアルコール含量、酢酸イソアミル含量、イソアミルアルコール含量、及びカプロン酸エチル含量について、予測性能の高い予測式を作成できたことが示されている。作成された予測式は、焼酎(特に米焼酎)の製造における原料米の醸造特性予測にもそのまま利用することができる。これらの醸造特性項目は、本発明の方法で予測式を作成できる項目の具体例であるが、本発明の範囲はこれらに限定されるものではない。   Brewing property data are obtained for all of the raw grain samples to be subjected to metabolome analysis. The items of the brewing characteristics to be predicted may be selected, and the analysis of the raw material cereal samples may be performed on the items. In the following example, 28 × 3 samples for metabolomic analysis were prepared from a total of 28 samples of raw rice samples, and 28 × 3 metabolomic analysis data and 28 samples of brewing characteristics data were subjected to multiple regression analysis. 1000 grain weight before adjustment; 1000 grain weight after adjustment; true milled rice ratio; broken rice ratio; broken rice rate; 120 minutes water absorption rate; digestible brix; brown rice potassium content; α-amylase activity, glucoamylase activity, glucoamylase activity of rice bran prepared from raw material rice α-glucosidase activity, acid carboxypeptidase activity, and acid protease activity; Percentage ratio of moromi produced from raw material rice, maximum amount of CO 2 reduction per day, number of days when maximum amount of CO 2 reduction per day was reached, and carbon dioxide Integrated value of weight loss; ethanol content, acidity, amino acid degree, sake, ethyl acetate content, n-pe of sake produced from raw material rice It has been shown that a prediction equation with high prediction performance can be created for the ropyl alcohol content, isobutyl alcohol content, isoamyl acetate content, isoamyl alcohol content, and ethyl caproate content. The created prediction equation can be used as it is to predict the brewing characteristics of raw material rice in the production of shochu (especially rice shochu). Although these brewing characteristic items are specific examples of the items for which the prediction formula can be created by the method of the present invention, the scope of the present invention is not limited thereto.

重回帰分析の工程では、メタボローム分析データから選択される2個以上の定量的数値データを説明変数とし、醸造特性データを目的変数として、目的変数ごとに重回帰分析を行ない、重回帰式を求める。この重回帰式が本発明の方法で作成される予測式の候補となる。説明変数の数は特に限定されず、例えば5個以上、7個以上、又は10個以上の定量的変数データを説明変数として用いてもよい。1つのメタボローム分析データを構成する定量的数値データの全てを説明変数として用いることも可能であるが、数個〜十数個程度の定量的数値データを説明変数として用いるのが一般的である。   In the step of multiple regression analysis, multiple regression analysis is performed for each objective variable using two or more quantitative numerical data selected from metabolomic analysis data as an explanatory variable and brewing characteristic data as an objective variable to obtain a multiple regression equation . This multiple regression equation is a candidate for the prediction equation generated by the method of the present invention. The number of explanatory variables is not particularly limited, and for example, five or more, seven or more, or ten or more quantitative variable data may be used as the explanatory variables. Although it is possible to use all of the quantitative numerical data constituting one metabolome analysis data as an explanatory variable, it is general to use several to a dozen or so pieces of quantitative numerical data as an explanatory variable.

重回帰分析の手法としては、PLS(projections to latent structures)回帰分析やOPLS(orthogonal PLS)回帰分析を好ましく用いることができる。いずれもメタボロミクスの分野で広く知られる多変量解析法であり、そのためのソフトウェアが多数市販されているので、そのようなソフトウェアを用いてこれらの重回帰分析を実施することができる。   As a method of multiple regression analysis, PLS (projections to latent structures) regression analysis or OPLS (orthogonal PLS) regression analysis can be preferably used. All of them are multivariate analysis methods widely known in the field of metabolomics, and many softwares therefor are commercially available, and such software can be used to perform these multiple regression analysis.

重回帰分析に先立ち、適当な標準化方法にて説明変数(メタボローム分析で得られた定量的数値データ)及び目的変数(醸造特性データ)の標準化を行なう。通常、重回帰分析に使用するソフトウェアに適当な標準化ツールも搭載されているので、そのようなツールを用いて標準化を行えばよい。   Prior to the multiple regression analysis, standardization of explanatory variables (quantitative numerical data obtained by metabolomic analysis) and objective variables (brewing characteristic data) is performed by an appropriate standardization method. Usually, appropriate standardization tools are also included in software used for multiple regression analysis, so such tools may be used for standardization.

また、重回帰分析用データセット中のメタボローム分析データは、該データに含まれる定量的数値データの全てを重回帰分析に用いても良いし、一定の基準で定量的数値データを選別抽出して重回帰分析に用いてもよい。例えば、下記実施例でも行っているように、定量的数値データが突出して大きいデータを除外したり、複数のメタボローム分析データセット間でバラつきの少ない定量的数値データを抽出したりする等して重回帰分析に供してもよい。バラつきが少ないかどうかは、例えば、各定量的数値データについて、複数のメタボローム分析用サンプル毎の定量的数値データ平均値に占める標準偏差の割合(標準偏差/平均値×100)を算出し、該割合が低いかどうか(例えば50%程度未満となるかどうか)で判断することができる。   In addition, metabolomic analysis data in the data set for multiple regression analysis may use all of the quantitative numerical data included in the data for multiple regression analysis, or selectively extract the quantitative numerical data based on a certain standard You may use for multiple regression analysis. For example, as is performed in the following embodiments, it is important to exclude large data from which quantitative numerical data are prominent or to extract quantitative numerical data with less variation among a plurality of metabolomic analysis data sets. It may be subjected to regression analysis. For each quantitative numerical data, for example, the ratio (standard deviation / average value × 100) of the standard deviation to the average value of the quantitative numerical data for each of a plurality of metabolomic analysis samples is calculated for each quantitative numerical data, It can be judged whether the ratio is low (for example, whether it is less than about 50%).

メタボローム分析データは、複数セットあるうちの一部のセットを用いて重回帰分析を行ない、予測式候補を作成し、次いで、当該予測式候補の作成には使用していない別のメタボローム分析データと醸造特性データのセット、あるいは別のデータセット(検証に使用するために別の穀類サンプルを用いて別途取得した、メタボローム分析データと醸造特性データのセット)を該予測式候補に適用して、該予測式候補の交差検証を行ない、予測性能を検証することが好ましい。予測式候補の予測性能の検証では、例えば、当てはまり度や適合度を表すR2(決定係数)が高い予測式を予測性能が高い予測式として評価することができる。R2は0<R2<1の値をとるので、例えば、予測式の作成に使用していない別のデータセットを予測式に適用してR2値を求め、0.7≦R2、又は0.8≦R2となった予測式を予測性能が高いと評価することができる。また、予測式の予測性能は、RMSEP (Root Mean Square Error of Prediction)(個々の予測値と実測値の差の二乗の合計をサンプル数で割った値の正の平方根)の値、または、標準偏差をRMSEPで割ったRPD (Residual Predictive Deviation) の値を用いて行ってもよい。RMSEPは、値が小さい予測式を予測性能が高いと評価することができる。RPDは、値が大きい予測式を予測性能が高いと評価することができる。 The metabolomic analysis data is subjected to multiple regression analysis using a partial set of a plurality of sets to create a prediction formula candidate, and then another metabolomic analysis data not used for generation of the prediction formula candidate. Applying a set of brewing characteristics data or another data set (a set of metabolomic analysis data and brewing characteristics data obtained separately using another cereal sample to be used for verification) to the prediction formula candidate, It is preferable to cross validate the prediction formula candidates and verify the prediction performance. In the verification of the prediction performance of the prediction formula candidate, for example, a prediction formula having a high R 2 (determination coefficient) representing the degree of fitness or the degree of fitness can be evaluated as a prediction formula having a high prediction performance. Since R 2 takes a value of 0 <R 2 <1, for example, another data set not used for creating the prediction equation is applied to the prediction equation to obtain an R 2 value, 0.7 ≦ R 2 or 0.8 It is possible to evaluate that the prediction formula of ≦ R 2 is high in prediction performance. In addition, the prediction performance of the prediction formula is the value of Root Mean Square Error of Prediction (RMSEP) (the sum of the squares of the differences between the individual predicted values and the actual values divided by the number of samples) or It is also possible to use the value of RPD (Residual Predictive Deviation) obtained by dividing the deviation by RMSEP. The RMSEP can evaluate a prediction formula having a small value as having high prediction performance. RPD can evaluate a prediction formula having a large value as having high prediction performance.

本発明の方法で作出される予測式を穀類新品種の育種に応用する場合、予測式を用いた醸造特性の予測は、育種過程のいずれのステップで実施してもよい。育種過程初期の個体選抜のステップで醸造特性の予測による選抜を行なってもよいし、系統選抜のステップで醸造特性の予測による選抜を行なってもよい。本発明の予測式を用いれば、少量の穀類サンプルから得られるメタボローム分析データを用いて醸造特性を予測できるので、多量の穀類サンプルを得ることが困難な育種過程の早い段階においても、醸造特性予測による選抜を実施することができる。   When the prediction formula produced by the method of the present invention is applied to breeding of a new cereal variety, the prediction of the brewing characteristics using the prediction formula may be performed at any step of the breeding process. Selection may be performed by predicting the brewing characteristics at the individual selection step in the early stage of the breeding process, or selection by prediction of the brewing characteristics may be performed at the line selection step. By using the prediction formula of the present invention, it is possible to predict brewing characteristics using metabolomic analysis data obtained from a small amount of cereal samples, and therefore, it is possible to predict brewing characteristics even at an early stage of the breeding process where it is difficult to obtain a large amount of cereal samples. Selection can be carried out.

醸造特性予測式を用いた穀類品種の作出方法は、具体的には、以下のようにして実施することができる。   Specifically, the method for producing cereal varieties using the brewing characteristics prediction equation can be carried out as follows.

まず、育成中の穀類個体集団又は穀類系統集団より、穀類サンプルを取得する。個体選抜のステップで醸造特性予測による選抜を行う場合には、育成中の穀類集団の各個体から穀類サンプルを取得する。系統選抜のステップで醸造特性予測による選抜を行う場合には、各系統から少なくとも1つの穀類サンプルを得ればよい。   First, cereal samples are obtained from a growing cereal population or cereal lineage population. When the selection based on the brewing characteristics prediction is performed in the individual selection step, a grain sample is obtained from each individual of the growing grain group. In the case of performing selection based on brewing characteristics prediction in the step of line selection, at least one grain sample may be obtained from each line.

次いで、各穀類サンプルよりメタボローム分析用サンプルを調製し、メタボローム分析データを取得する。1の穀類サンプルから1セットのメタボローム分析データを取得(すなわち、1の穀類サンプルから1のメタボローム分析用サンプルを調製)すれば十分であるが、所望により2セット以上のメタボローム分析データを取得してもよい。メタボローム分析用サンプルの調製とメタボローム分析は、使用する醸造特性予測式を作成した際に採用した方法と同じ方法で行なう。   Next, a sample for metabolome analysis is prepared from each grain sample, and metabolome analysis data is acquired. It is sufficient to acquire one set of metabolome analysis data from one cereal sample (ie, prepare one metabolome analysis sample from one cereal sample), but if necessary, acquire two or more sets of metabolome analysis data It is also good. Preparation of samples for metabolomic analysis and metabolomic analysis are carried out by the same method as adopted when formulating brewing characteristics prediction formula to be used.

次いで、取得されたメタボローム分析データを醸造特性予測式に代入し、醸造特性の予測値を算出する。この工程では、当然ながら、メタボローム分析データを構成する定量的数値データのうちで必要なデータ(予測式に採用されている化合物(メタボローム)についてのデータ)のみを用いればよい。   Then, the acquired metabolome analysis data is substituted into a brewing characteristic prediction equation to calculate a prediction value of the brewing characteristic. In this step, of course, only the necessary data (data about the compound (metabolome) employed in the prediction formula) may be used among the quantitative numerical data constituting the metabolome analysis data.

次いで、算出された予測値に基づいて醸造特性を評価し、所望の醸造特性を有すると予測された個体又は系統を、上記の穀類集団より選抜する。予測値に基づく評価と選抜は、育種の目的に応じて行えばよい。清酒原料米の育種を例に説明すると、例えば香気成分の予測を行なう場合、カプロン酸エチルを多く含む清酒の製造に適した原料米(稲)品種を育種したいときにはカプロン酸エチル生成量が多いと予測される個体ないし系統を選抜すればよく、カプロン酸エチル含量が低い清酒の製造に適した原料米(稲)品種を育種したいときにはカプロン酸エチル生成量が低いと予測される個体ないし系統を選抜すればよい。   Brewing characteristics are then evaluated based on the calculated predicted values, and individuals or lines predicted to have the desired brewing characteristics are selected from the above-mentioned cereal populations. Evaluation and selection based on predicted values may be performed according to the purpose of breeding. For example, in the case of predicting aroma components, when it is desired to breed a raw rice (rice) variety suitable for producing sake containing a large amount of ethyl caproate, it is assumed that the amount of ethyl caproate is large. It is sufficient to select a predicted individual or strain, and when it is desired to breed a raw material rice (rice) variety suitable for producing sake having a low ethyl caproate content, a selection is made of an individual or strain expected to have a low ethyl caproate production amount. do it.

醸造特性予測式を用いた育種では、複数の醸造特性に関する複数の予測式を組み合わせて用いることができる。育種の目的に応じて予測式を選択して用いればよい。   In breeding using a brewing characteristics prediction equation, a plurality of prediction equations related to a plurality of brewing characteristics can be used in combination. A prediction equation may be selected and used according to the purpose of breeding.

以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。   Hereinafter, the present invention will be more specifically described based on examples. However, the present invention is not limited to the following examples.

1.予測式作成の概要
メタボローム分析データを説明変数(x)、各種分析データ(酒米統一分析、麹の酵素力価、モロミ経過、一般成分分析、香気成分分析)を目的変数(y)として予測モデルを構築した。3 sets のメタボローム分析データのそれぞれに1 setの各種分析データを結合したデータセットを作成し、Data set 1, 2, 3とした。さらに、Data set 1, 2, 3 を統合したデータセットをData set allとした。モデルの構築は、SIMCA ver.13.0.3 (Umetrics, Umea, Sweden) を用いて orthogonal PLS (OPLS) 回帰分析にて行った。概要を図1に示した。OPLS回帰分析では、説明変数(x)から目的変数(y)の値を求める予測式 (例:y = a*x1 + b*x2 … + j*x10 + k) を作成することができる。実際の予測式作成は、Data set 1, 2, 3で独立に行い、作成した予測式を別のデータ(Data set 1 で予測式を作成した場合には Data set 2, 3)に適用することで交差検証と予測性能の検証を行った。
1. Outline of prediction formula creation Predictive model with metabolomic analysis data as explanatory variable (x), various analysis data (sake-rice uniform analysis, enzyme concentration of persimmon, moromi course, general component analysis, aroma component analysis) as objective variable (y) Built. Data sets 1, 2 and 3 were created by creating data sets in which 1 set of various analysis data was combined with each of the 3 sets of metabolome analysis data. Furthermore, the data set integrated with Data set 1, 2, 3 is called Data set all. The model was constructed by orthogonal PLS (OPLS) regression analysis using SIMCA ver. 13.0.3 (Umetrics, Umea, Sweden). The outline is shown in FIG. In OPLS regression analysis, it is possible to create a prediction formula (for example, y = a * x1 + b * x2 ... + j * x10 + k) for finding the value of the objective variable (y) from the explanatory variable (x). Actual prediction formula creation should be performed independently with Data set 1, 2 and 3, and apply the created prediction formula to other data (Data set 2 and 3 when the prediction formula was created with Data set 1) Cross-validation and prediction performance verification.

玄米サンプルは、一般的な酒米品種を含む5品種のそれぞれについて、圃場等が異なる複数サンプルを取得し、合計28サンプルを使用した。   As brown rice samples, for each of five varieties including common sake rice varieties, multiple samples with different fields etc. were obtained, and a total of 28 samples were used.

2.玄米抽出液のメタボローム分析データ(説明変数(x))の取得
(方法)
1つの玄米サンプルについて、約100 mgの玄米を精秤し、2.0 mLスクリューキャップマイクロチューブに入れた。このチューブに直径5 mmのステンレスボール(株式会社相互理化学硝子製作所、cat no. 1096-04)を加えた。さらに、玄米の10倍量の50%メタノール(Milli-Q水とMethanol LC-MS CHROMASOLV(登録商標)(Cat No. 34966-2.5L)(Sigma-Aldrich Co. LLC, 米国ミズーリ州St. Louis)を1:1(v/v)で混合)を加えた後、4℃で30分間静置した。その後、4℃、3,500rpmで300sec×5の条件で Micro Smash MS-100 (株式会社トミー精工, 日本国東京)を使って試料を粉砕した。粉砕後、4℃、15,000rpmで5分間遠心し、上清を2.0mL容チューブに移した。これを4℃、15,000rpmで10分間遠心し、上清をAmicon Ultra 3K-0.5 filter (Merck KGaA, 独国Darmstadt)を用いた限外濾過に供した(4℃、15,000rpm、60分間)。ここで使用したフィルターの公称分画分子量は3 kDaであり、3 kDa以上の分子がサンプルから除去されると考えられる。
2. Acquisition of metabolome analysis data (explanatory variable (x)) of brown rice extract (method)
For one brown rice sample, approximately 100 mg brown rice was precisely weighed and placed in a 2.0 mL screw cap microtube. To this tube was added a stainless steel ball of 5 mm in diameter (Inter RIKEN GAS MFG. Co., cat no. 1096-04). In addition, 10 times the volume of brown rice with 50% methanol (Milli-Q water and Methanol LC-MS CHROMASOLV® (Cat No. 34966-2.5 L) (Sigma-Aldrich Co. LLC, St. Louis, Mo., USA) Were mixed at a ratio of 1: 1 (v / v), and then allowed to stand at 4 ° C. for 30 minutes. Thereafter, the sample was pulverized using Micro Smash MS-100 (Tomy Seiko Co., Ltd., Tokyo, Japan) under the conditions of 300 ° C. and 3,500 rpm at 4 ° C. After grinding, the mixture was centrifuged at 15,000 rpm for 5 minutes at 4 ° C., and the supernatant was transferred to a 2.0 mL tube. This was centrifuged at 15,000 rpm for 10 minutes at 4 ° C., and the supernatant was subjected to ultrafiltration using an Amicon Ultra 3K-0.5 filter (Merck KGaA, Darmstadt, Germany) (4 ° C., 15,000 rpm, 60 minutes). The nominal molecular weight cut off of the filter used here is 3 kDa, and molecules of 3 kDa or more are considered to be removed from the sample.

玄米サンプル1つにつき、独立して3回の抽出を行ない、メタボローム分析用サンプルを3サンプル調製した(玄米28サンプル分で合計28×3サンプルのメタボローム分析用サンプルを調製)。   Three extractions were performed independently for each brown rice sample, and three samples for metabolomic analysis were prepared (a total of 28 × 3 samples of metabolome analysis samples were prepared for 28 samples of brown rice).

上記で調製した28×3のメタボローム分析用サンプルをUPLC-QTof MSに供し、メタボローム分析を行った。
<UPLC-QTof MSの分析条件>
ACQUITY UPLC system (日本ウォーターズ株式会社, 日本国東京) とWaters Xevo QTOF MS (日本ウォーターズ) を用いて分析を行った。LC条件とMS条件をそれぞれ次に示した。
LC 条件:カラム;ACQUITY UPLC HSS T3 Column, 2.1×150 mm 1.8 μm (日本ウォーターズ)、カラム温度;40℃、流速;0.3 mL/min、移動相;0.1% ギ酸(溶液 A)と 0.1% ギ酸-アセトニトリル(溶液B)、グラジエント;0% 溶液 B (0-5 min)、0-100% 溶液B (5-15 min)、100% 溶液B (15-20 min)、100-0% 溶液B (20-21 min)、0% 溶液 B (21-30 min)、サンプル注入量;3μL
MS 条件:イオン化;ESI positive ion mode、Desolvation gas flow;800 L/h、Desolvation temperature;450℃、Corn gas flow;50 L/h、Source temperature;140℃、Capillary voltage;3 kV、Corn voltage;15 V、Collision energy;6、MS mode;MS (m/z range 50-1,000)、MS scan数;0.2 sec
The 28 × 3 metabolomic analysis sample prepared above was subjected to UPLC-QTof MS, and metabolomic analysis was performed.
<Analytical conditions of UPLC-QTof MS>
The analysis was performed using ACQUITY UPLC system (Japan Waters Co., Ltd., Tokyo, Japan) and Waters Xevo QTOF MS (Japan Waters). The LC and MS conditions are shown below.
LC conditions: Column: ACQUITY UPLC HSS T3 Column, 2.1 × 150 mm 1.8 μm (Nippon Waters), column temperature: 40 ° C., flow rate: 0.3 mL / min, mobile phase: 0.1% formic acid (solution A) and 0.1% formic acid Acetonitrile (solution B), gradient; 0% solution B (0-5 min), 0-100% solution B (5-15 min), 100% solution B (15-20 min), 100-0% solution B ( 20-21 min), 0% solution B (21-30 min), sample injection volume: 3 μL
MS conditions: ionization; ESI positive ion mode, Desolvation gas flow; 800 L / h, Desolvation temperature; 450 ° C., Corn gas flow; 50 L / h, Source temperature; 140 ° C., Capillary voltage; 3 kV, Corn voltage; V, Collision energy; 6, MS mode; MS (m / z range 50-1,000), MS scan number; 0.2 sec

分析で得られた生データから、付属のソフトウェアMassLynxTM (日本ウォーターズ)のMarkerLynxTM XS(日本ウォーターズ)を使って、精密質量と保持時間(Retention time)の誤差をそれぞれ0.02 Da, 0.06 minに設定したメソッドを用いて、ピークの検出とアラインメントを行い、マーカーテーブルを作成した。この結果、3,589個のマーカーが得られた。   From raw data obtained by analysis, using the supplied software MassLynxTM (Japan Waters) MarkerLynxTM XS (Japan Waters), the method of setting the error of accurate mass and retention time (Retention time) to 0.02 Da and 0.06 min, respectively The peak detection and alignment were performed using to create a marker table. As a result, 3,589 markers were obtained.

各玄米サンプルからn = 3で抽出した3つのメタボローム分析用サンプルより得たメタボローム分析データをそれぞれデータ1、データ2、データ3とし、28の玄米サンプル由来のデータをデータ1、データ2、データ3ごとにそれぞれまとめて、3 setsのメタボローム分析データを得た。これら3 setsのメタボローム分析データに、後述するとおりに取得した28の玄米サンプルの各種分析データ1 setを結合し、3つの重回帰分析用データセットData set 1, 2, 3を得た。Data set 1, 2, 3を統合したデータセット(すなわち、28×3のメタボローム分析データの全てを統合し、これに28の玄米サンプルの各種分析データを結合したデータセット)をData set allとして用いた。   Data from metabolomic analysis obtained from three samples for metabolomic analysis extracted from each brown rice sample at n = 3 are data 1, data 2 and data 3, respectively. Data from 28 brown rice samples are data 1, data 2 and data 3 Each set of 3 sets of metabolome analysis data was collected. These three sets of metabolomic analysis data were combined with various sets of analysis data 1 set of 28 brown rice samples obtained as described later, to obtain three multiple regression analysis data sets Data sets 1, 2, and 3. Data set 1, 2 and 3 integrated data set (ie, data set obtained by combining all 28 × 3 metabolome analysis data combined with various analysis data of 28 brown rice samples) as Data set all It was.

3.各種分析データ(目的変数(y))の取得
表1−1〜表1−3に分析項目(目的変数)を示した。
3. Acquisition of Various Analysis Data (Objective Variable (y)) The analysis items (objective variables) are shown in Tables 1-1 to 1-3.

以下、表1−1〜表1−3に示した分析項目の分析方法を記載する。酒米統一分析については、1の玄米サンプルにつき3回の分析を行ない、その平均値をその玄米サンプルの分析値とした。それ以外の分析値は、1の玄米サンプルにつきn = 2で製麹、仕込を行ない、各麹又は仕込について2回ずつ測定を行なって4つの測定データを得て、その平均値をもって当該玄米サンプルの分析値とした。   Hereinafter, analysis methods of the analysis items shown in Tables 1-1 to 1-3 will be described. For the sake-rice unified analysis, three analyzes were performed per brown rice sample, and the average value was taken as the analytical value of the brown rice sample. The other analysis values are prepared by adding rice bran with n = 2 to 1 brown rice sample, and measuring twice for each bran or preparation to obtain 4 measurement data, and the average value is used to obtain the relevant brown rice sample The analysis value of

<酒米統一分析>
酒米研究会の酒造用原料米全国統一分析法に従い、14項目(玄米水分、調整前千粒重、調整後千粒重、みかけ精米歩合、真精米歩合、無効精米歩合、砕米率、白米水分、20分吸水率、120分吸水率、蒸米吸水率、消化性 brix、粗タンパク質、カリウム)の分析を行った。
<Sake rice uniform analysis>
14 items (Brown rice moisture, 1000 grain weight before adjustment, 1000 grain weight after adjustment, pure rice ratio, pure rice ratio, ineffective rice ratio, broken rice rate, broken rice rate, white rice water content, 20 minutes water absorption Analysis of rate, 120 minutes water absorption rate, steamed rice water absorption rate, digestibility brix, crude protein, potassium) was performed.

<米麹酵素力価の測定>
精米歩合70%および50%の米で作製した麹の酵素力価(AAase, GAase, APase, ACPase, α−グルコシダーゼ)を以下の方法で測定した。
<Measurement of rice bran enzyme titer>
Enzyme titers (AAase, GAase, APase, ACPase, α-glucosidase) of rice bran prepared with 70% and 50% of rice were measured by the following method.

(方法)
米麹を次の手順で作製した。玄米を精米機で精米歩合70%もしくは50%に精米した。その後、水に浸漬し、蒸した。60gの蒸米に60mgのAspergillus oryzae RIBOIS01株の分生子を播種し、温度32℃、湿度90%で18時間培養した。培養物を混ぜ返した後、温度32℃、湿度90%でさらに12時間培養した。再度培養物を混ぜ返した後、温度34℃、湿度80%で3時間培養した。その後、温度37℃、湿度70%で3時間培養し、培養物を混ぜ返した後に温度40℃、湿度70%で2時間培養した。さらに、温度42℃、湿度60%で8時間培養し、計46時間培養した。
(Method)
Rice bran was produced in the following procedure. The brown rice was milled to 70% or 50% of the milling rate with a milling machine. Then, it was immersed in water and steamed. 60 mg of steamed rice was inoculated with conidia of 60 mg of Aspergillus oryzae RIBOIS 01 strain, and cultured at a temperature of 32 ° C. and a humidity of 90% for 18 hours. After the culture was mixed back, it was further cultured at a temperature of 32 ° C. and a humidity of 90% for 12 hours. The culture was again mixed and cultured at a temperature of 34 ° C. and a humidity of 80% for 3 hours. Thereafter, the cells were cultured at a temperature of 37 ° C. and a humidity of 70% for 3 hours, mixed with a culture, and cultured at a temperature of 40 ° C. and a humidity of 70% for 2 hours. Furthermore, the cells were cultured at a temperature of 42 ° C. and a humidity of 60% for 8 hours, and cultured for a total of 46 hours.

5gの米麹に25mLの抽出バッファー(0.5% NaCl, 10 mM酢酸バッファー)を加え、4℃で一晩静置した。その後、濾紙(ADVANTEC(登録商標) No.5A, Toyo Roshi Kaisha, Ltd., Tokyo, Japan)を用いて濾過し、濾液を米麹酵素液とした(第四回改正国税庁所定分析法注解)。調製した米麹酵素液は、次に示す方法でAAase, GAase, ACPase, APase, α−グルコシダーゼ活性を測定した。   To 5 g of rice bran, 25 mL of extraction buffer (0.5% NaCl, 10 mM acetate buffer) was added, and allowed to stand at 4 ° C. overnight. Thereafter, the solution was filtered using filter paper (ADVANTEC (registered trademark) No. 5A, Toyo Roshi Kaisha, Ltd., Tokyo, Japan), and the filtrate was used as a rice bran enzyme solution (the fourth revised National Tax Agency prescribed analysis method annotation). The prepared rice bran enzyme solution was measured for AAase, GAase, ACPase, APase and α-glucosidase activities by the following method.

α-アミラーゼ(AAase):
α-アミラーゼ測定キット(キッコーマンバイオケミファ株式会社、日本国東京)を用いて測定した。米麹酵素液を抽出バッファーで50倍希釈し、キットの測定法に従って測定した。
α-Amylase (AAase):
It was measured using an α-amylase measurement kit (Kikkoman Biochemifa Co., Ltd., Tokyo, Japan). The rice bran enzyme solution was diluted 50 times with extraction buffer and measured according to the kit's measurement method.

グルコアミラーゼ(GAase):
糖化力分別定量キット(キッコーマンバイオケミファ株式会社)を用いて測定した。米麹酵素液を抽出バッファーで2倍希釈し、キットの測定法に従って測定した。
Glucoamylase (GAase):
It measured using the saccharification force differential quantification kit (Kidkoman Biochemifa Inc.). The rice bran enzyme solution was diluted 2-fold with extraction buffer and measured according to the kit measurement method.

酸性カルボキシペプチダーゼ(ACPase):
酸性カルボキシペプチダーゼ測定キット(キッコーマンバイオケミファ株式会社)を用いて測定した。米麹酵素液を抽出バッファーで5倍希釈し、キットの測定法に従って測定した。
Acidic Carboxypeptidase (ACPase):
It measured using the acidic carboxypeptidase measurement kit (Kikkoman Biochemifa Inc.). The rice bran enzyme solution was diluted 5-fold with extraction buffer and measured according to the kit measurement method.

酸性プロテアーゼ(APase):
第四回改正国税庁所定分析法注解に従った。米麹酵素液を抽出バッファーで5倍希釈して測定に用いた。
Acid Protease (APase):
The fourth revised National Tax Agency prescribed analysis method comment was followed. The rice bran enzyme solution was diluted 5-fold with extraction buffer and used for measurement.

α−グルコシダーゼ:
糖化力分別定量キット(キッコーマンバイオケミファ株式会社)を用いて測定した。米麹酵素液をそのまま使用し、キットの測定法に従って測定した。
α-glucosidase:
It measured using the saccharification force differential quantification kit (Kidkoman Biochemifa Inc.). The rice bran enzyme solution was used as it was, and it measured according to the measurement method of a kit.

<小仕込み試験(発酵経過)>
精米歩合70%および50%の白米をそれぞれ用いて小仕込み試験を行ない、
・一日当たりの炭酸ガス減量の最大値
・一日当たりの炭酸ガス減量が最大値に達した日数
・炭酸ガス減量の積算値
・粕歩合
を調べた。
<Small preparation test (fermentation progress)>
A small preparation test was conducted using 70% and 50% white rice, respectively.
・ Maximum value of CO2 weight loss per day ・ Number of days when CO2 weight loss amounted to the maximum value per day ・ Integrated value of CO2 weight loss amount ・ Percentage ratio was examined.

(方法)
清酒酵母K1801株を5 mLの麹エキス培地(BOME10)で30℃、一晩静置することで前培養した。200μLの前培養液を200 mLの麹エキス培地に移し、30℃、二晩静置することで本培養した。本培養液を4℃、4,140gで10分間遠心し、酵母菌体を回収した。酵母菌体は、1.0×108 cells/mLに調整し、酵母懸濁液とした。
(Method)
Sake yeast K1801 strain was precultured by standing overnight at 30 ° C. in 5 mL of Koji extract medium (BOME 10). 200 μL of the preculture liquid was transferred to 200 mL of anther extract medium, and main culture was performed by standing at 30 ° C. for two nights. The main culture was centrifuged at 4 140 g at 4 ° C. for 10 minutes to recover yeast cells. The yeast cells were adjusted to 1.0 × 10 8 cells / mL and used as a yeast suspension.

続いて、仕込みを次の手順で行った。129 g(mL)滅菌水と90μLの50%乳酸を入れた450 mL容マヨネーズ瓶に白米20 g相当の米麹(20 gの白米から作製した米麹)を加え、4℃で1時間静置した。その後、1 mLの酵母懸濁液と80 gの白米(精米歩合70%又は50%)を蒸して作製した掛米を加え、よく混ぜた。モロミは、15℃で19日間インキュベートし、その間毎日重量を測定した。その後、モロミを4℃、4,140gで15分間遠心し、上清を回収した。以後、上清を製成酒として分析に用いた。原料白米に対する沈殿重量の割合を粕歩合として算出した。   Then, preparation was performed in the following procedure. Add rice bran equivalent to 20 g of white rice (rice bran prepared from 20 g white rice) to a 450 mL mayonnaise bottle containing 129 g (mL) of sterile water and 90 μL of 50% lactic acid, and leave it at 4 ° C for 1 hour did. Then, 1 mL of yeast suspension and 80 g of white rice (70% or 50% of polished rice) were steamed to prepare hanging rice, which was mixed well. Moromi were incubated at 15 ° C. for 19 days while weighing daily. Thereafter, the moromi was centrifuged at 4 140 g at 4 ° C. for 15 minutes, and the supernatant was recovered. Thereafter, the supernatant was used for analysis as produced sake. The ratio of the precipitation weight to the raw material white rice was calculated as the ratio of rice bran.

<製成酒の分析>
上記の小仕込み試験で得た製成酒を分析し、以下の項目を調べた。
精米歩合70%および50%それぞれのエタノール濃度、酸度・アミノ酸度、日本酒度、香気成分(EtOAc, nPrOH, iBuOH, iAmOAc, iAmOH, EtOCap)、原エキス分
<Analysis of sake making>
The produced sake obtained by the above-mentioned small preparation test was analyzed, and the following items were examined.
70% and 50% ethanol concentration, ethanol concentration, acidity / amino acid degree, Japanese sake, aroma components (EtOAc, nPrOH, iBuOH, iAmOAc, iAmOH, EtOCap), raw extract

(方法)
エタノール濃度:
AOC-20i AUTO INJECTOR(島津製作所, 日本国京都)とGC-17A GAS CHROMATOGRAPH(島津製作所)を用いたガスクロマトグラフィーにより定量した。1.5 mL容バイアルに40μLのサンプルを取り、960μLの1%イソプロパノール(内部標準)と混合した。アルコールは、DB-624キャピラリーカラム(内径 0.53 mm、長さ 30 m、膜厚 3μm; Agilent Technologies Inc., 米国カリフォルニア州Santa Clara)で分離した。条件は以下の通り。Injection temperature, 250℃; oven temperature, 50℃; detector temperature, 250℃, carrier gas, He 6.0 mL/min。(カラム入口圧 28 kPa, スプリット比 1:40)
(Method)
Ethanol concentration:
It quantified by the gas chromatography using AOC-20iAUTO INJECTOR (Shimadzu Corporation, Kyoto, Japan) and GC-17A GAS CHROMATOGRAPH (Shimadzu Corporation). 40 μL samples were taken in 1.5 mL vials and mixed with 960 μL 1% isopropanol (internal standard). The alcohol was separated on a DB-624 capillary column (id 0.53 mm, length 30 m, film thickness 3 μm; Agilent Technologies Inc., Santa Clara, Calif., USA). The conditions are as follows. Injection temperature, 250 ° C .; oven temperature, 50 ° C .; detector temperature, 250 ° C., carrier gas, He 6.0 mL / min. (Column inlet pressure 28 kPa, split ratio 1:40)

酸度・アミノ酸度:
酸度は第四回改正国税庁所定分析法注解 (pp. 20-23) に、アミノ酸度は「エタノールを使用した清酒のアミノ酸度分析方法の検討」に従って測定した。
Acidity / Amino acid:
The acidity was measured in accordance with the 4th revised National Tax Agency's prescribed analysis method annotation (pp. 20-23), and the amino acidity was measured according to "Study on the method for analyzing amino acidity of sake using ethanol".

日本酒度:
日本酒度は、比重 S (15/4℃)(15℃ の製成酒の 4℃ の水の密度に対する比重)を Density/Specific Gravity Meter DA-520(KYOTO ELECTRONICS MANUFACTURING CO., LTD, Kyoto, Japan)を用いて測定し、1443/S - 1443 で算出した。
Japanese sake degree:
For Japanese sake, specific gravity S (15/4 ° C) (specific gravity to the density of water at 4 ° C of 15 ° C) Density / Specific Gravity Meter DA-520 (KYOTO ELECTRONICS MANUFACTURING CO., LTD, Kyoto, Japan ) And was calculated at 1443 / S-1443.

香気成分:
揮発性香気成分 (Volatile aromatic compounds) は、7697A Headspace Sampler (Agilent Technologies) と 7890B GC system (Agilent Technologies) を用いて、T. Katou et al. Yeast 2008; 25: 799-807 と同じ方法で測定した。
Aroma component:
Volatile aromatic compounds were measured using the 7697A Headspace Sampler (Agilent Technologies) and the 7890B GC system (Agilent Technologies) in the same manner as T. Katou et al. Yeast 2008; 25: 799-807. .

原エキス分:
理論的エキス分(主としてブドウ糖)。醪や清酒中のエキス分とアルコール分から、それらを発酵、生成するのに必要なエキス分が発酵前の醪や清酒中にあるものとして算出したもの。清酒製造技術 (p. 247) と第四回改正国税庁所定分析法注解 (pp. 24-25) を参考に算出。
Original extract:
Theoretical extract (mostly glucose). From the extract and alcohol in persimmon and sake, it is calculated that the extract necessary to ferment and produce them is present in persimmon and sake before fermentation. Calculated using sake manufacturing technology (p. 247) and the 4th Revised National Tax Agency prescribed analysis method annotation (pp. 24-25) as a reference.

4.統計解析(予測式の構築)
予測式作成のための実際の作業手順を図2に示した。
4. Statistical analysis (construction of prediction formula)
The actual work procedure for creating a prediction equation is shown in FIG.

まず、玄米メタボローム分析データを説明変数(x)(下記注釈*)、各種分析データを目的変数(y)として、SIMCA ver.13.0.3 (Umetrics, スウェーデン国Umea)を用いてOPLS回帰分析を行った。玄米メタボローム分析データのData set毎もしくは全てのData setで独立して回帰分析を行った。分析の前に、説明変数をPareto scaling((Xi - mean) / √SD))により、また目的変数をAutoscaling((Xi - mean) / SD)により、標準化を行った。Autoscalingは平均を0、分散を1にする標準化であり、Pareto scalingはAutoscalingよりも値の大きさを残す標準化である。   First, OPLS regression analysis is performed using SIMCA ver. 13.0.3 (Umetrics, Umea, Sweden) with brown rice metabolome analysis data as explanatory variables (x) (the following annotations *) and various analysis data as target variables (y). The Regression analysis was performed independently for each Data set or all Data sets of brown rice metabolome analysis data. Prior to analysis, standardization was performed using Pareto scaling ((Xi-mean) / √SD)) as the explanatory variable and Autoscaling ((Xi-mean) / SD) as the target variable. Autoscaling is a normalization that makes the mean 0 and the variance 1 and Pareto scaling is a standardization that leaves a large value than Autoscaling.

次に、実用的かつ精度の高い予測式を作成するために、説明変数の絞り込みを行った。モデルをS-plotで解析し、y軸の絶対値が各データセットで共通して大きい説明変数を5個ずつ計10個選択した。この10個の説明変数のみを用い、潜在変数を 1+4+0 として同様に各Data set毎にOPLS回帰分析を行った。この潜在変数は、Permutation testによりオーバーフィットにならないことを確認した。次に、別のData setもしくはData set allを各予測式に適用し、R2値が高い予測式を最適な予測式として評価した。 Next, we narrowed down the explanatory variables in order to create a practical and highly accurate prediction formula. The model was analyzed by S-plot, and a total of 10 explanatory variables were selected, each having a large y-axis absolute value common to each data set. Similarly, OPLS regression analysis was performed for each data set using latent variables as 1 + 4 + 0 using only these 10 explanatory variables. It was confirmed that this latent variable was not overfit by Permutation test. Next, another Data set or Data set all was applied to each prediction formula, and a prediction formula having a high R 2 value was evaluated as an optimum prediction formula.

(注釈*)説明変数である玄米メタボローム分析データは、3,589個のマーカーのintensityで構成されている。このうち、1022と大きすぎるintensityを含む4つのデータを除いた3,585個を全データ(ALL)とし、統計解析に用いた。さらに、各マーカーについて、原料米サンプル毎(3 sets)の平均値に占める標準偏差の割合(stdev/average*100)を算出し、50%未満となる751個のマーカーをバラつきの少ないデータ(<50%)とし、統計解析に用いた。 (Annotation *) The explanatory variable brown rice metabolome analysis data is composed of the intensities of 3,589 markers. Among the 3,585 pieces excluding the four data including intensity and 10 22 too and all data (ALL), it was used for statistical analysis. Furthermore, for each marker, calculate the ratio (stdev / average * 100) of the standard deviation to the average value for each raw rice sample (3 sets), and the 751 markers that are less than 50% have less variance (< 50%) and used for statistical analysis.

5.予測式の評価結果
表2−1〜表2−3は、上記で作成した各予測式のR2(適合度)およびQ2(予測性)の値である。また、表3−1〜表3−9は、各予測式に各Data set (1, 2, 3, all)を適用した時のR2値と、各予測式のR2値の平均値である。表3−1〜表3−9に示した説明変数について、全データ (ALL) およびバラつきが少ないデータ (<50%) で作成した3つずつの計6個の予測式(allを除く1〜3)より、良いモデル及び優れたモデルを選択した。6つの予測式のうち、適用後のR2平均値が0.7≦R2 Avg.<0.8のものを良いモデルとして、同じく0.8≦R2 Avg.のものを優れたモデルとして選択した。選択したモデルの実際の予測式を表4−1〜表4−4に示した。
5. Evaluation Results of Prediction Formulas Table 2-1 to Table 2-3 show values of R 2 (degree of fitness) and Q 2 (predictability) of each prediction formula created above. Tables 3-1 to 3-9 show the average values of R 2 values when each Data set (1, 2, 3, all) is applied to each prediction equation, and the R 2 values of each prediction equation. is there. For the explanatory variables shown in Tables 3-1 to 3-9, a total of six prediction equations (1 to 1, excluding all) created with all data (ALL) and data with less variation (<50%) 3) We selected better and better models. Among the six prediction formulas, those with an R 2 average value of 0.7 ≦ R 2 Avg. <0.8 after application were selected as good models, and those with 0.8 ≦ R 2 Avg. The actual prediction formulas of the selected model are shown in Tables 4-1 to 4-4.

以上の結果を表5にまとめた。54個の目的変数のうち、25個で優れたモデルを構築することができた(表中の「優」)。このうち、14個は全データ (All)、11個はバラつきが少ないデータ (<50%) で構築したモデルが選択された。同様に、11個の説明変数で良いモデルを構築することができた(表中の「良」)。このうち、6個は全データ (All)、5個はバラつきが少ないデータ (<50%) で構築したモデルが選択された。このことから、必ずしもバラつきが少ないデータが良い予測式を作成することができるとは言えなかった。   The above results are summarized in Table 5. Of the 54 objective variables, 25 were able to construct an excellent model ("excellent" in the table). Of these, 14 models were all data (All), and 11 models were selected from data with less variation (<50%). Similarly, a good model could be constructed with 11 explanatory variables ("Good" in the table). Of these, 6 models were all data (All), and 5 models with less variation (<50%) were selected. From this, it can not be said that data with less variation can always create a good prediction formula.

以上のことから、54個の目的変数のうち36個で原料米の特性や麹の酵素力価、モロミ経過、製成酒の特性を予測するモデルを構築することができることが示された。ここで得られた予測式は、清酒のみならず、米焼酎に対する予測式(米焼酎の原料米についての醸造特性の予測式)としてもそのまま利用することができる。   From the above, it was shown that it is possible to construct a model that predicts the characteristics of raw rice, the enzyme titer of malt, the moromi course, and the characteristics of mature sake with 36 out of 54 objective variables. The prediction equation obtained here can be used as it is not only for sake but also as a prediction equation for rice shochu (a prediction equation for brewing characteristics of raw material rice of rice shochu).

Claims (12)

醸造特性が未知の原料穀類について、該原料穀類を用いて醸造物を製造する際の醸造特性を予測するための、醸造特性予測式の作成方法であって、
複数の醸造物原料穀類サンプルのそれぞれより、1以上のメタボローム分析用サンプルを調製する工程;
前記メタボローム分析用サンプルを用いて、原料穀類中に含まれる化合物群を網羅的に解析するメタボローム分析を行い、各化合物の原料穀類中存在量についての定量的数値データで構成されるメタボローム分析データを取得する工程;
前記醸造物原料穀類サンプルのそれぞれについて、醸造特性に関連する少なくとも1つの醸造特性データを取得する工程;
各メタボローム分析データから選択される2個以上の定量的数値データを説明変数とし、醸造特性データを目的変数として、目的変数ごとに重回帰分析を行なう工程;
を含む、方法。
A method of creating a brewing characteristic prediction equation for predicting brewing characteristics when producing brews using raw material cereals for raw material cereals of which the brewing characteristics are unknown,
Preparing one or more samples for metabolomic analysis from each of a plurality of brew raw material cereal samples;
Using the metabolome analysis sample, metabolomic analysis is conducted to comprehensively analyze compounds contained in raw material grains, and metabolome analysis data composed of quantitative numerical data on the abundance of each compound in raw material grains is used. Acquiring process;
Obtaining at least one brewing characteristic data related to brewing characteristics for each of said brew material cereal samples;
Performing multiple regression analysis for each objective variable using two or more quantitative numerical data selected from each metabolome analysis data as an explanatory variable, and using a brewery characteristic data as an objective variable;
Method, including.
前記原料穀類が、米、大麦、大麦麦芽、小麦、又は大豆である、請求項1記載の方法。   The method according to claim 1, wherein the raw material cereal is rice, barley, barley malt, wheat or soybean. 前記醸造物が、清酒、焼酎、ビール、ウイスキー、醤油、又は味噌である、請求項1又は2記載の方法。   The method according to claim 1 or 2, wherein the brew is sake, shochu, beer, whiskey, soy sauce, or miso. 前記原料穀類が米であり、前記醸造物が清酒又は焼酎である、請求項1記載の方法。   The method according to claim 1, wherein the raw material cereal is rice and the brewed product is sake or shochu. 前記醸造特性データが、酒米統一分析法により得られる原料米分析値、原料米より製造した米麹の酵素力価、原料米より清酒又は焼酎を製造する過程でのモロミ経過、並びに原料米より製造した清酒又は焼酎の一般成分及び香気成分の分析値から選択される少なくとも1種を含む、請求項4記載の方法。   The above-mentioned brewery characteristic data is an analysis value of raw material rice obtained by sake-rice unified analysis method, an enzyme titer of rice bran produced from raw material rice, a course of mash in the process of producing sake or shochu from raw material rice, and raw material rice The method according to claim 4, comprising at least one selected from analysis values of general components and aroma components of manufactured sake or shochu. 複数のメタボローム分析データのうちの一部を用いて重回帰分析を行ない、予測式候補を作成し、次いで、該予測式候補に別のメタボローム分析データを適用して交差検証を行ない、該予測式候補の予測性能を検証することを含む、請求項1〜5のいずれか1項に記載の方法。   Perform multiple regression analysis using a part of multiple metabolome analysis data, create a prediction formula candidate, and then cross-validate the other prediction formula candidate with another metabolome analysis data, and perform the prediction formula 6. A method according to any one of the preceding claims, comprising verifying the predictive performance of the candidate. 重回帰分析がOPLS回帰分析である、請求項1〜6のいずれか1項に記載の方法。   The method according to any one of claims 1 to 6, wherein the multiple regression analysis is OPLS regression analysis. メタボローム分析用サンプルは、原料穀類を親水性溶媒中で粉砕して化合物群を抽出した抽出液である、請求項1〜7のいずれか1項に記載の方法。   The method according to any one of claims 1 to 7, wherein the sample for metabolomic analysis is an extract obtained by grinding raw material grains in a hydrophilic solvent to extract a group of compounds. メタボローム分析は、液体クロマトグラフィー又はガスクロマトグラフィーと質量分析との組み合わせにより行われる、請求項1〜8のいずれか1項に記載の方法。   The method according to any one of claims 1 to 8, wherein the metabolome analysis is performed by liquid chromatography or a combination of gas chromatography and mass spectrometry. 前記質量分析が飛行時間型質量分析である、請求項9記載の方法。   10. The method of claim 9, wherein the mass spectrometry is time of flight mass spectrometry. 5個以上の定量的数値データを説明変数として用いる、請求項1〜10のいずれか1項に記載の方法。   The method according to any one of claims 1 to 10, wherein five or more quantitative numerical data are used as an explanatory variable. 請求項1〜11のいずれか1項に記載の方法により、醸造特性予測式を作成する工程;
育成中の穀類個体集団又は穀類系統集団より穀類サンプルを取得し、該サンプルよりメタボローム分析用サンプルを調製し、メタボローム分析データを取得する工程;
取得されたメタボローム分析データを醸造特性予測式に代入し、醸造特性の予測値を算出する工程;
前記予測値に基づいて所望の醸造特性を有すると予測された個体又は系統を、前記集団より選抜する工程;
を含む、穀類品種の作出方法。
A step of creating a brewing characteristic prediction equation by the method according to any one of claims 1 to 11;
Obtaining a cereal sample from a growing population of cereals or a population of cereal lines, preparing a sample for metabolomic analysis from the sample, and acquiring metabolomic analysis data;
Substituting the acquired metabolomic analysis data into a brewing characteristic prediction equation to calculate a prediction value of the brewing characteristic;
Selecting from the population individuals or lines predicted to have desired brewing characteristics based on the predicted value;
How to produce cereal varieties, including
JP2017195979A 2017-10-06 2017-10-06 A method for creating a predictive formula for predicting the brewing characteristics of raw cereals for brewing and a method for producing cereal varieties using the predictive formula. Active JP7064739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017195979A JP7064739B2 (en) 2017-10-06 2017-10-06 A method for creating a predictive formula for predicting the brewing characteristics of raw cereals for brewing and a method for producing cereal varieties using the predictive formula.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017195979A JP7064739B2 (en) 2017-10-06 2017-10-06 A method for creating a predictive formula for predicting the brewing characteristics of raw cereals for brewing and a method for producing cereal varieties using the predictive formula.

Publications (2)

Publication Number Publication Date
JP2019070548A true JP2019070548A (en) 2019-05-09
JP7064739B2 JP7064739B2 (en) 2022-05-11

Family

ID=66441842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017195979A Active JP7064739B2 (en) 2017-10-06 2017-10-06 A method for creating a predictive formula for predicting the brewing characteristics of raw cereals for brewing and a method for producing cereal varieties using the predictive formula.

Country Status (1)

Country Link
JP (1) JP7064739B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111579692A (en) * 2020-06-16 2020-08-25 茅台学院 Method for identifying Maotai-flavor liquor
CN111579691A (en) * 2020-06-16 2020-08-25 茅台学院 Method for identifying Maotai-flavor liquor
CN112175779A (en) * 2020-09-24 2021-01-05 陕西科技大学 White spirit based on ultrasonic wave and ultraviolet light synergistic ripening acceleration and ripening acceleration method and metabolic flux analysis method thereof
CN113325113A (en) * 2021-06-09 2021-08-31 贵州省产品质量检验检测院 Method for detecting content of acetaldehyde and furfural in wine
CN113917061A (en) * 2021-10-22 2022-01-11 贵州大学 Detection and identification method for volatile substances of Maotai-flavor base liquor
CN111383722B (en) * 2020-02-25 2023-04-25 武汉轻工大学 Data-driven model analysis method and device for solving grape wine raw material index range

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247869A (en) * 2010-04-27 2011-12-08 Kobe Univ Inspection method of specific disease using metabolome analysis method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247869A (en) * 2010-04-27 2011-12-08 Kobe Univ Inspection method of specific disease using metabolome analysis method

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
HENNING REDESTIG ET AL.: "Exploring molecular backgrounds of quality traits in rice by predictive models based on high-coverag", BMC SYSTEMS BIOLOGY, vol. 5, no. 176, JPN6021028642, 2011, pages 1 - 11, ISSN: 0004555365 *
HONGXIA CHEN ET AL.: "Metabolic Changes during the Pu-erh Tea Pile-Fermentation Revealed by a Liquid Chromatography Tandem", JOURNAL OF FOOD SCIENCE, vol. 78, no. 11, JPN6021028651, 2013, pages 1665 - 1672, ISSN: 0004555373 *
JOAO L. GONCALVES ET AL.: "A powerful methodological approach combining headspace solid phase microextraction, mass spectrometr", FOOD CHEMISTRY, vol. 160, JPN6021028647, 2014, pages 266 - 280, XP028660363, ISSN: 0004555368, DOI: 10.1016/j.foodchem.2014.03.065 *
北和海 他: "酒造原料米(11種類)を対照としたプロテオーム解析", 日本農芸化学会大会講演要旨集, JPN6021028649, 2016, ISSN: 0004555371 *
奥田将生: "酒造原料米のデンプン分子構造と酒造適性", 日本醸造協会誌, vol. 102, no. 7, JPN6021028650, 2007, pages 510 - 519, ISSN: 0004555372 *
奥田将生: "酒造用原料米の澱粉の分子構造および老化特性と酒造適性", 応用糖質科学, vol. 4, no. 3, JPN6021028644, 2014, pages 193 - 201, ISSN: 0004555366 *
小里孟 他: "2P-1p074 清酒メタボロームへの原料米品種、精米歩合、酵母菌株の影響", 第68回日本生物工学会大会講演要旨集, JPN6022013171, 25 August 2016 (2016-08-25), pages 187, ISSN: 0004740784 *
清野珠美 他: "メタボローム解析による栽培履歴の異なる酒米の醸造適性評価", 第69回日本生物工学会大会講演要旨集, JPN6021028652, 2017, pages 296, ISSN: 0004555370 *
若井芳則: "清酒醸造における原料米の酒造適性", 日本醸造協会誌, vol. 92, no. 1, JPN6021028646, 1997, pages 7 - 14, ISSN: 0004555367 *
藤村由紀 他: "LC/MSを用いたメタボリック・プロファイリング法の応用−農産物の生体調節機能の評価−", SHIMADZU APPLICATION NOTE NO.32, JPN6021028648, 2012, ISSN: 0004555369 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111383722B (en) * 2020-02-25 2023-04-25 武汉轻工大学 Data-driven model analysis method and device for solving grape wine raw material index range
CN111579692A (en) * 2020-06-16 2020-08-25 茅台学院 Method for identifying Maotai-flavor liquor
CN111579691A (en) * 2020-06-16 2020-08-25 茅台学院 Method for identifying Maotai-flavor liquor
CN112175779A (en) * 2020-09-24 2021-01-05 陕西科技大学 White spirit based on ultrasonic wave and ultraviolet light synergistic ripening acceleration and ripening acceleration method and metabolic flux analysis method thereof
CN112175779B (en) * 2020-09-24 2023-04-28 陕西科技大学 White spirit ripening based on ultrasonic wave and ultraviolet light cooperation and ripening method and metabolic flow analysis method thereof
CN113325113A (en) * 2021-06-09 2021-08-31 贵州省产品质量检验检测院 Method for detecting content of acetaldehyde and furfural in wine
CN113917061A (en) * 2021-10-22 2022-01-11 贵州大学 Detection and identification method for volatile substances of Maotai-flavor base liquor

Also Published As

Publication number Publication date
JP7064739B2 (en) 2022-05-11

Similar Documents

Publication Publication Date Title
JP7064739B2 (en) A method for creating a predictive formula for predicting the brewing characteristics of raw cereals for brewing and a method for producing cereal varieties using the predictive formula.
Wang et al. Uncover the flavor code of strong-aroma baijiu: Research progress on the revelation of aroma compounds in strong-aroma baijiu by means of modern separation technology and molecular sensory evaluation
Lentz The impact of simple phenolic compounds on beer aroma and flavor
Cuadros-Inostroza et al. Discrimination of wine attributes by metabolome analysis
Bonino et al. Aroma compounds of an Italian wine (Ruché) by HS–SPME analysis coupled with GC–ITMS
Vararu et al. Selection of aroma compounds for the differentiation of wines obtained by fermenting musts with starter cultures of commercial yeast strains
Kyraleou et al. The impact of terroir on the flavour of single malt whisk (E) y new make spirit
Papotti et al. Application of one-and two-dimensional NMR spectroscopy for the characterization of protected designation of origin Lambrusco wines of Modena
Yorke et al. Brewing with unmalted cereal adjuncts: Sensory and analytical impacts on beer quality
Mazzei et al. Metabolomic by 1H NMR spectroscopy differentiates “Fiano Di Avellino” white wines obtained with different yeast strains
CN101149362B (en) Brewing white spirit and alcohol concocted white spirit discrimination method
Arnold et al. Assessing the impact of corn variety and Texas terroir on flavor and alcohol yield in new-make bourbon whiskey
Cao et al. Characterization of the key aroma volatile compounds in nine different grape varieties wine by headspace gas chromatography–ion mobility spectrometry (HS-GC-IMS), odor activity values (OAV) and sensory analysis
Wang et al. Correlation analysis between aroma components and microbial communities in Wuliangye-flavor raw liquor based on HS-SPME/LLME-GC–MS and PLFA
Zhang et al. Profiling the influence of physicochemical parameters on the microbial community and flavor substances of zaopei
Kawa-Rygielska et al. The potential of traditional Norwegian kveik yeast for brewing novel beer on the example of foreign extra stout
Feng et al. Microbial and chemical analysis of non-Saccharomyces yeasts from Chambourcin hybrid grapes for potential use in winemaking
Shi et al. Effects of endogenous capsaicin stress and fermentation time on the microbial succession and flavor compounds of chili paste (a Chinese fermented chili pepper)
Zhang et al. Effects of S. cerevisiae strains on the sensory characteristics and flavor profile of kiwi wine based on E-tongue, GC-IMS and 1H-NMR
Liu et al. Oenological property analysis of selected Hanseniaspora uvarum isolated from Rosa roxburghii Tratt
Yaqun et al. SPME-GC–MS combined with chemometrics to assess the impact of fermentation time on the components, flavor, and function of Laoxianghuang
Verzera et al. Varietal aromas of fortified wines from different Moscato Var.(Vitis vinifera L.) under the same pedoclimatic conditions
KR101423941B1 (en) Method for assessing the quality of makgeolli from rice by statistical analysis with visualization procedure
Liu et al. Solid-state fermentation of grain sorghum to produce Chinese liquor: Effect of grain properties and fermenting culture
Lopes et al. Production and characterization of a new sweet sorghum distilled beverage

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20171030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210721

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220418

R150 Certificate of patent or registration of utility model

Ref document number: 7064739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150