JP2019067934A - Ac power transformer - Google Patents

Ac power transformer Download PDF

Info

Publication number
JP2019067934A
JP2019067934A JP2017192320A JP2017192320A JP2019067934A JP 2019067934 A JP2019067934 A JP 2019067934A JP 2017192320 A JP2017192320 A JP 2017192320A JP 2017192320 A JP2017192320 A JP 2017192320A JP 2019067934 A JP2019067934 A JP 2019067934A
Authority
JP
Japan
Prior art keywords
winding
phase
current
primary
seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017192320A
Other languages
Japanese (ja)
Inventor
松尾 隆之
Takayuki Matsuo
隆之 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2017192320A priority Critical patent/JP2019067934A/en
Publication of JP2019067934A publication Critical patent/JP2019067934A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

To provide an AC power transformer that can make a neutral point leakage current of a primary winding almost zero.SOLUTION: An AC power transformer includes a primary winding in which U, V, and W-phase windings 101u, 101v, and 101w are Y-connected, and the neutral point is grounded, a secondary winding having an A-seat on which the U-phase winding 102ua and the W-phase winding 102wa are roof-connected and a B-seat including a V-phase winding 102vb insulated from the A-seat, and a third winding in which U, V, Wand -phase windings 103u, 103v, 103w are delta-connected.SELECTED DRAWING: Figure 1

Description

本発明は、電鉄・交流き電システムに使用され、超高圧直接接地系の系統から受電する交流電鉄用変電所に設けられる交流電鉄き電用変圧器に関するものである。   TECHNICAL FIELD The present invention relates to an AC electric power transformer provided in an AC electric power transformer substation which is used for an electric iron / AC electric power feeding system and which receives power from a system of an ultra high voltage direct grounding system.

直接接地系の系統から受電する交流電鉄用変電所では、き電用変圧器の一次巻線はY結線とし、中性点を接地する必要が有り、現在の主流は、例えば特許文献1に記載のルーフ・デルタ結線変圧器となっている。しかしながらこの変圧器の弱点として、二次デルタ巻線のインピーダンス不揃いにより一次Y巻線の中性点に漏洩電流(見かけ上の零相電流)が流れてしまう事がある。   In an AC electric power transformer substation that receives power from a direct grounding system, it is necessary to make the primary winding of the feeding transformer Y-connected and to ground the neutral point, and the current mainstream is described in, for example, Patent Document 1 It has become a roof delta connection transformer. However, as a weak point of this transformer, a leakage current (apparent zero phase current) may flow to the neutral point of the primary Y winding due to the impedance irregularity of the secondary delta winding.

図4は、直接接地系の系統から受電する交流電鉄用変電所で用いられるルーフ・デルタ結線変圧器の構成を表し、一次巻線を構成する、一次U相巻線201u、一次V相巻線201v、一次W相巻線201wはY結線され、その中性点は接地されている。前記各巻線201u,201v,201wの中性点と反対側の各端部は図示省略の超高圧(例えば170kV以上、180kV以上)の三相電源(系統)に接続されている。   FIG. 4 shows a configuration of a roof-delta connection transformer used in a substation for AC power transmission which receives power from a direct grounding system, and comprises a primary U-phase winding 201u and a primary V-phase winding which constitute a primary winding. 201 v, the primary W-phase winding 201 w is Y-connected, and its neutral point is grounded. Each end of each of the windings 201u, 201v, 201w on the opposite side to the neutral point is connected to a three-phase power source (system) of ultra high voltage (for example, 170 kV or more, 180 kV or more) not shown.

二次巻線A座は、二次A座U相巻線202uaおよび二次A座W相巻線202waをルーフ結線して構成され、図示省略のき電線などのき電設備に接続されている。   The secondary winding A-seat is constructed by connecting the secondary A-seat U-phase winding 202ua and the secondary A-seat W-phase winding 202wa on a roof, and is connected to a feeding facility such as a feeder cable (not shown). .

二次巻線B座は、前記二次巻線A座とは絶縁され、二次B座U相巻線202ub、二次B座V相巻線202vb、二次B座W相巻線202wbをデルタ結線(Δ結線)して構成されている。   The secondary winding B-seat is insulated from the secondary winding A-seat, and the secondary B-seat U-phase winding 202ub, the secondary B-seat V-phase winding 202vb, and the secondary B-seat W-phase winding 202wb It is configured as delta connection (Δ connection).

前記二次B座V相巻線202vbの両端間にはき電線などのき電設備300が接続されている。   A feeding equipment 300 such as a feeder is connected between both ends of the secondary B-seat V-phase winding 202vb.

一次巻線の一次V相巻線201vを流れる電流IV1は、一次U相巻線201uと一次W相巻線201wに分流(IU1、IW1)して流れるため、中性点電流InはIn=IV1−(IU1+IW1)となる。 Current I V1 flowing through the primary V-phase winding 201v of the primary winding to flow diverted to the primary U-phase winding 201u and primary W-phase winding 201w (I U1, I W1) , the neutral point current I n Becomes I n = I V1 − (I U1 + I W1 ).

また、二次巻線B座の各巻線202ub、202vb、202wbに各々流れる電流IU2、IV2、IW2と、き電設備300に流れる電流IBは各々図示矢印方向となり、IB=IV2+IU2、IU2=IW2の関係がある。 The secondary winding B locus of each winding 202ub, 202vb, the current I U2, I V2, I W2 each flowing in 202Wb, current I B flowing through the feeding circuit arrangement 300 each serve as a direction indicated by an arrow, I B = I There is a relationship of V 2 + I U2 and I U2 = I W2 .

特許第3825661号公報Patent No. 3825661 gazette

図4の構成において、二次巻線B座Δ結線(202ub、202vb、202wb)の各相インピーダンス(Zu、Zv、Zw)と一次巻線Y結線の中性点電流Inの関係は、In=(((Zu+Zw)−2Zv)/((Zu+Zw)+Zv))×IBとなり、二次巻線B座のインピーダンスがZu=Zv=Zwであれば中性点電流Inは流れない。 In the configuration of FIG. 4, the secondary winding B locus Δ connection (202ub, 202vb, 202wb) phase impedance (Zu, Zv, Zw) and the relationship of the neutral current I n of the primary winding Y connection is, I n = (((Zu + Zw ) -2Zv) / ((Zu + Zw) + Zv)) × I B , and the impedance of the secondary winding B locus Zu = Zv = if Zw neutral current I n does not flow.

しかしながら、二次B座V相巻線202vbは他の巻線202ub、202wbの2倍の電流を流すため線径が異なり、各相インピーダンスは完全に同じにはならない。従って一次巻線の中性点には何がしかの対地漏洩電流が流れてしまう。   However, since the secondary B-seat V-phase winding 202vb carries twice as much current as the other windings 202ub and 202wb, the wire diameters are different, and the respective phase impedances are not completely the same. Therefore, the ground leakage current flows to the neutral point of the primary winding.

この値を一定値以下にするため技術的に工夫がされているが、系統側にとっては見かけ上の零相電流が流れている事になり、系統の安定性としてはあまり好ましくない傾向である。   Although the device has been technically devised to reduce this value to a certain value or less, the apparent zero-phase current is flowing to the system side, which tends to be less preferable as the stability of the system.

本発明は、上記課題を解決するものであり、その目的は、一次巻線の中性点漏洩電流をほぼゼロにすることができる交流電鉄き電用変圧器を提供することにある。   The present invention solves the above problem, and an object thereof is to provide an AC electric charging transformer capable of making the neutral point leakage current of the primary winding substantially zero.

上記課題を解決するための請求項1に記載の交流電鉄き電用変圧器は、
U、V、Wの各相をY結線し、中性点を接地した一次巻線と、
U相とW相をルーフ結線したA座および該A座とは絶縁されたV相から成るB座を有した二次巻線と、
U、V、Wの各相をデルタ結線した三次巻線と、
を備えたことを特徴としている。
In order to solve the above-mentioned subject, the transformer for alternating current power supply according to claim 1 is:
Primary winding with each phase of U, V and W connected by Y connection and the neutral point grounded
A secondary winding having a seat A having the U and W phases roof-connected and a seat B comprising a V phase insulated from the seat A;
A tertiary winding in which U, V and W phases are delta-connected,
It is characterized by having.

(1)請求項1に記載の発明によれば、二次巻線B座に流れるV相電流は、一次巻線に流れるV相電流と三次巻線に流れるV相電流によって磁束補償がなされ、三次巻線のU相とW相の電流は、一次巻線のU相とW相の電流によって磁束補償がなされる。 (1) According to the invention of claim 1, the V-phase current flowing to the secondary winding B seat is compensated by the V-phase current flowing to the primary winding and the V-phase current flowing to the tertiary winding, The U-phase and W-phase currents of the tertiary winding are subjected to flux compensation by the U-phase and W-phase currents of the primary winding.

このため、一次巻線のV相からU相、W相に分流する電流には余りが生じないため、一次巻線の中性点漏洩電流をほぼゼロにすることができる。   As a result, there is no surplus in the current divided from the V-phase to the U-phase and the W-phase of the primary winding, so that the neutral point leakage current of the primary winding can be made substantially zero.

これによって、系統側に見かけ上の零相電流が発生せず、系統側の地絡過電流継電器の誤動作防止や正確な動作値設定が可能となり、超高圧系統側の安定性が向上する。   As a result, no apparent zero-phase current is generated on the system side, malfunctioning of the ground fault overcurrent relay on the system side can be prevented, and accurate operation value setting can be performed, and the stability on the ultra-high voltage system side is improved.

本発明の実施形態例による変圧器の構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram of the transformer by embodiment of this invention. 本発明の実施形態例による変圧器の各部に流れる電流を表す説明図。Explanatory drawing showing the electric current which flows into each part of the transformer by embodiment of this invention. 本発明の実施形態例による変圧器の各部に流れる電流値を単位法で表した説明図。Explanatory drawing which represented the electric current value which flows into each part of the transformer by embodiment of this invention with a unit method. 従来のルーフ・デルタ結線変圧器の構成図。The block diagram of the conventional roof delta connection transformer.

以下、図面を参照しながら本発明の実施の形態を説明するが、本発明は下記の実施形態例に限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.

図1は、本実施形態例による交流電鉄き電用変圧器の構成を示しており、一次巻線、二次巻線(1)、二次巻線(2)、三次巻線を備えている。   FIG. 1 shows the configuration of an AC electric charging transformer according to this embodiment, which includes a primary winding, a secondary winding (1), a secondary winding (2), and a tertiary winding. .

図1において、一次巻線を構成する、一次U相巻線101u、一次V相巻線101v、一次W相巻線101wはY結線され、その中性点は接地されている。前記各巻線101u,101v,101wの中性点と反対側の各端部は図示省略の超高圧(例えば170kV以上、180kV以上)の三相電源(系統)に接続されている。   In FIG. 1, a primary U-phase winding 101u, a primary V-phase winding 101v, and a primary W-phase winding 101w, which constitute a primary winding, are Y-connected, and their neutral point is grounded. Each end of each of the windings 101u, 101v, 101w opposite to the neutral point is connected to a three-phase power supply (system) of ultra high voltage (for example, 170 kV or more, 180 kV or more) not shown.

二次巻線A座(二次巻線(1))は、二次A座U相巻線102uaおよび二次A座W相巻線102waをルーフ結線して構成され、図示省略のき電線などのき電設備に接続されている(A座の出力は例えば60kV)。   The secondary winding A-seat (secondary winding (1)) is constructed by connecting the secondary A-seat U-phase winding 102ua and the secondary A-seat W-phase winding 102wa on the roof, and is not shown It is connected to a feeding facility (the output of the A seat is 60 kV, for example).

二次巻線B座(二次巻線(2))は、前記二次巻線A座とは絶縁された二次B座V相巻線102vbで構成され(出力は例えば60kV)、該巻線102vbの両端間には図示省略のき電線などのき電設備が接続されている。   The secondary winding B-seat (secondary winding (2)) is composed of a secondary B-seat V-phase winding 102vb (output is, for example, 60 kV) insulated from the secondary winding A-seat (the output is 60 kV). Feeding equipment such as a wire (not shown) is connected between both ends of the wire 102vb.

三次巻線は、三次U相巻線103u、三次V相巻線103v、三次W相巻線103wをデルタ結線(Δ結線)して構成されている。   The tertiary winding is configured by delta connection (Δ connection) of the tertiary U-phase winding 103u, the tertiary V-phase winding 103v, and the tertiary W-phase winding 103w.

図1の各巻線に流れる電流を図2に示す。図2の300は、二次B座V相巻線102vbの両端間に接続されるき電設備である。   The current flowing in each winding of FIG. 1 is shown in FIG. Reference numeral 300 in FIG. 2 denotes a feeding facility connected between both ends of the secondary B-seat V-phase winding 102vb.

図2において、一次巻線の一次V相巻線101vを流れる電流IV1は、一次U相巻線101uと一次W相巻線101wに分流(IU1、IW1)して流れるため、中性点電流InはIn=IV1−(IU1+IW1)であり、IU1とIW1の合計がIV1と一致していれば中性点電流In=0となる。 2, since current I V1 flowing through the primary V-phase winding 101v of the primary winding flows diverted to the primary U-phase winding 101u and primary W-phase winding 101w (I U1, I W1) , neutral point current I n is I n = I V1 - a (I U1 + I W1), the I U1 and I total I V1 if they match the neutral point current I n = 0 in W1.

また、き電設備300に流れる電流IBは二次B座V相巻線102vbの電流IV2と等しい(IB=IV2)。 Further, the current I B flowing through the feeding equipment 300 is equal to the current I V2 of the secondary B-seat V-phase winding 102 vb (I B = I V2 ).

三次巻線はデルタ結線であるため、三次U相巻線103uに流れる電流IU3、三次V相巻線103vに流れる電流IV3、三次W相巻線103wに流れる電流IW3はともに等しく、IU3=IV3=IW3である。 Since the tertiary winding is a delta connection, the current I U3 flowing through the tertiary U-phase winding 103 u, the current I V3 flowing through the tertiary V-phase winding 103 v, and the current I W3 flowing through the tertiary W-phase winding 103 w are all equal. U3 = I V3 = I W3 .

図2の結線方式では、IV2(=IB)に対応する電流が一次電流IV1と三次電流IV3に分流する。IU3=IV3=IW3であることから、IU3、IW3に対応する一次電流もIU1=IW1となる。 In the connection scheme of FIG. 2, the current corresponding to I V2 (= I B ) is divided into the primary current I V1 and the tertiary current I V3 . Since I U3 = I V3 = I W3 , the primary current corresponding to I U3 and I W3 is also I U1 = I W1 .

V1とIV3の電流比(p.u.(perunit:単位法))が2:1の関係になると、一次電流もIU1=IW1=0.5IV1で分岐するため、各巻線の電流はこの状態で安定し、従って一次巻線の電流は中性点で余剰分が発生せず、中性点電流は殆ど流れない。 Current ratio of I V1 and I V3 (p.u. (perunit: unit normal)) of 2: As the 1 relationship, for branching the primary current also I U1 = I W1 = 0.5I V1 , of each winding The current is stable in this state, so the primary winding current has no surplus at the neutral point, and almost no neutral point current flows.

これら動作を、図2の各部に流れる電流の方向を矢印で表し、その電流値を単位法で示した図3とともに説明する。図3では、図2における一次巻線と三次巻線の配置を入れ換えて図示している。   These operations will be described with reference to FIG. 3 in which the direction of the current flowing in each part of FIG. 2 is indicated by an arrow and the current value is indicated by a unit method. In FIG. 3, the arrangement of the primary winding and the tertiary winding in FIG. 2 is interchanged and illustrated.

二次巻線のA座(二次A座U相巻線102uaおよび二次A座W相巻線102wa)は二相(U相とW相)の線間電圧をき電線(き電設備300)へ送り、二次巻線のB座(二次B座V相巻線102vb)は一相(V相)のみの相電圧をき電線(き電設備300)へ送る。   Secondary winding A-seat (secondary A-seat U-phase winding 102ua and secondary A-seat W-phase winding 102wa) carries a line voltage between two phases (U-phase and W-phase) and a wire (feeding equipment 300) And the B-seat of the secondary winding (secondary B-seat V-phase winding 102vb) sends a phase voltage of only one phase (V-phase) to the feeder (the feeding equipment 300).

二次巻線のA座とB座の位相差は、従来のルーフ・デルタ結線変圧器と同様に90°である。   The phase difference between the A and B seats of the secondary winding is 90 ° as in the conventional roof delta connection transformer.

二次巻線のA座とB座の負荷が等しい時には一次電流は各相でバランスする。三次巻線は、一次巻線の分流をきれいに半分づつにする作用がある。   When the loads on the A and B seats of the secondary winding are equal, the primary current balances in each phase. The tertiary winding has the effect of cleanly halving the shunt of the primary winding.

すなわち、二次B座V相巻線102vbに流れる1.5pu分の電流は一次V相巻線101vに流れる1.0puと三次V相巻線103vに流れる0.5puで磁束補償される。   That is, the current of 1.5 pu flowing in the secondary B-seat V-phase winding 102vb is compensated for the magnetic flux by 1.0 pu flowing in the primary V-phase winding 101v and 0.5 pu flowing in the tertiary V-phase winding 103v.

三次巻線はデルタ結線のため、各相巻線103u、103v、103wに流れる電流は等しく全て0.5puとなる。従って、三次U相巻線103uと三次W相巻線103wに各々流れる0.5pu分の電流は、一次U相巻線101uと一次W相巻線101wに各々流れる0.5puで磁束補償される。   Since the tertiary windings are delta connections, the currents flowing through the phase windings 103u, 103v and 103w are all equal to 0.5 pu. Therefore, the current of 0.5 pu flowing in each of the tertiary U-phase winding 103 u and the tertiary W-phase winding 103 w is compensated by 0.5 pu flowing in each of the primary U-phase winding 101 u and the primary W-phase winding 101 w. .

一次巻線では、一次V相巻線101vの1.0puの電流は一次U相巻線101uと一次W相巻線101wの0.5puづつに分流するため余りが出ず、中性点漏洩電流は発生しないことになる(上記磁束補償の考え方から常に上記のような電流分布となるため、中性点漏洩電流は発生しない)。   In the primary winding, the current of 1.0 pu of primary V-phase winding 101 v is split into 0.5 pu each of primary U-phase winding 101 u and primary W-phase winding 101 w, so there is no surplus, and the neutral point leakage current (There is no such a neutral point leakage current because the above-mentioned current distribution is always obtained from the concept of the above-mentioned magnetic flux compensation).

本実施形態例による交流電鉄き電用変圧器は、二次巻線のB座出力は単純な相電圧となっており、従来の変圧器に比べて巻線構造が簡単である。   The AC transformer transformer according to this embodiment has a simple phase voltage at the B-seat output of the secondary winding, and the winding structure is simple as compared with the conventional transformer.

以上のように本実施形態例によれば、各巻線のインピーダンスが多少不揃いでも、B座負荷電流に起因する一次Y巻線中性点漏洩電流は殆ど流れないため、系統側に見かけ上の零相電流が発生せず、系統側の地絡過電流継電器の誤動作防止や正確な動作値設定が可能となり、超高圧系統側の安定性が向上する。   As described above, according to the present embodiment, since the primary Y winding neutral point leakage current caused by the B-seat load current hardly flows even if the impedances of the respective windings are somewhat uneven, the apparent zero in the system side Since no phase current is generated, malfunction of the ground fault overcurrent relay on the system side can be prevented and accurate operation value setting can be performed, and the stability of the extra-high voltage system can be improved.

101u…一次U相巻線
101v…一次V相巻線
101w…一次W相巻線
102ua…二次A座U相巻線
102wa…二次A座W相巻線
102vb…二次B座V相巻線
103u…三次U相巻線
103v…三次V相巻線
103w…三次W相巻線
101u ... primary U-phase winding 101v ... primary V-phase winding 101w ... primary W-phase winding 102ua ... secondary A-seat U-phase winding 102 wa ... secondary A-seat W-phase winding 102vb ... secondary B-seat V-phase winding Wire 103 u ... tertiary U-phase winding 103 v ... tertiary V-phase winding 103 w ... tertiary W-phase winding

Claims (1)

U、V、Wの各相をY結線し、中性点を接地した一次巻線と、
U相とW相をルーフ結線したA座および該A座とは絶縁されたV相から成るB座を有した二次巻線と、
U、V、Wの各相をデルタ結線した三次巻線と、
を備えたことを特徴とする交流電鉄き電用変圧器。
Primary winding with each phase of U, V and W connected by Y connection and the neutral point grounded
A secondary winding having a seat A having the U and W phases roof-connected and a seat B comprising a V phase insulated from the seat A;
A tertiary winding in which U, V and W phases are delta-connected,
AC transformer for transformers characterized by having.
JP2017192320A 2017-10-02 2017-10-02 Ac power transformer Pending JP2019067934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017192320A JP2019067934A (en) 2017-10-02 2017-10-02 Ac power transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017192320A JP2019067934A (en) 2017-10-02 2017-10-02 Ac power transformer

Publications (1)

Publication Number Publication Date
JP2019067934A true JP2019067934A (en) 2019-04-25

Family

ID=66338474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017192320A Pending JP2019067934A (en) 2017-10-02 2017-10-02 Ac power transformer

Country Status (1)

Country Link
JP (1) JP2019067934A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918024U (en) * 1972-05-19 1974-02-15
JPS62291907A (en) * 1986-06-12 1987-12-18 Toshiba Corp 3-phase/2-phase conversion transformer
JP2015512569A (en) * 2012-04-06 2015-04-27 イスパノ・シユイザ Three-phase two-phase fixed transformer with forcibly coupled magnetic flux

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918024U (en) * 1972-05-19 1974-02-15
JPS62291907A (en) * 1986-06-12 1987-12-18 Toshiba Corp 3-phase/2-phase conversion transformer
JP2015512569A (en) * 2012-04-06 2015-04-27 イスパノ・シユイザ Three-phase two-phase fixed transformer with forcibly coupled magnetic flux

Similar Documents

Publication Publication Date Title
US11081883B2 (en) Device for earth fault current compensation in power networks
US7233506B1 (en) Low kVA/kW transformers for AC to DC multipulse converters
AU2013297151B2 (en) A device comprising a controllable earthing transformer
JPS62501659A (en) AC power supply
WO2018192845A1 (en) Longitudinal voltage regulation at the line terminals of a phase shifting transformer
US9893640B2 (en) Methods and apparatus for supplying three phase power
CN105939548B (en) Induction heating system
EP3335289B1 (en) Phase compensation system
JP5026029B2 (en) Current balancer and low voltage distribution system
JP2019067934A (en) Ac power transformer
RU2552377C2 (en) Voltage balancer in three-phase network
CN113632337B (en) Method and system for AC power grid with increased power throughput
US10680439B2 (en) Phase compensation system
US4831352A (en) Rectifier transformer
RU2686303C2 (en) Device for phase-to-phase current distribution
US1932973A (en) Means for suppressing ground currents in polyphase high voltage networks
US1712520A (en) Single-phase operation of polyphase machines
US1752942A (en) Protection of electric systems
US2148289A (en) System of electrical distribution
US1932088A (en) Alternating-current-network distribution system
US1559017A (en) Electrical power-transmission system
US1242937A (en) System of control.
US2277860A (en) Ground fault neutralizer
Sleva Symmetrical Components for Power System Analysis
US710067A (en) System of electrical distribution.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220118