JP2019046973A - Dispersion compensator and wavelength sweeping light source using the same - Google Patents

Dispersion compensator and wavelength sweeping light source using the same Download PDF

Info

Publication number
JP2019046973A
JP2019046973A JP2017168815A JP2017168815A JP2019046973A JP 2019046973 A JP2019046973 A JP 2019046973A JP 2017168815 A JP2017168815 A JP 2017168815A JP 2017168815 A JP2017168815 A JP 2017168815A JP 2019046973 A JP2019046973 A JP 2019046973A
Authority
JP
Japan
Prior art keywords
polarized light
cfbg
beam splitter
light
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017168815A
Other languages
Japanese (ja)
Other versions
JP6778164B2 (en
Inventor
明晨 陳
Mingchen Chen
明晨 陳
豊田 誠治
Seiji Toyoda
誠治 豊田
匡 阪本
Tadashi Sakamoto
匡 阪本
上野 雅浩
Masahiro Ueno
雅浩 上野
坂本 尊
Takashi Sakamoto
尊 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2017168815A priority Critical patent/JP6778164B2/en
Publication of JP2019046973A publication Critical patent/JP2019046973A/en
Application granted granted Critical
Publication of JP6778164B2 publication Critical patent/JP6778164B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lasers (AREA)

Abstract

To provide a dispersion compensator capable of continuously compensating group velocity dispersion in a desired wavelength band with a little elements, and a wavelength sweeping light source using the dispersion compensator.SOLUTION: A polarization controller 201 performs control in such a manner that polarized light emitted from a circulator 202 is on an axis which is vertical to an optical axis within a page space, and is transmitted through a polarization beam splitter 203 as it is. A 1/4 wavelength plate 204 is disposed on the optical axis of the light that is transmitted through the polarization beam splitter 203, and disposed in such a manner that a Fast axis of the 1/4 wavelength plate 204 and a deflection axis of the polarized light form 45 degrees. Reflection in a first CFBG 205-1 is capable of giving dispersion that is reverse to dispersion of a resonator, to incident light. Reflection light from the first CFBG 205-1 passes through the 1/4 wavelength plate 204 again, is converted into linearly polarized light of which the polarization axis is rotated at 90 degrees from a polarization axis of the incident light, is reflected by the polarization beam splitter 203, and is made incident to a second CFBG 205-2.SELECTED DRAWING: Figure 3

Description

本発明は、分散補償器およびそれを用いた波長掃引光源に関し、より詳細には光干渉断層計(Optical coherence tomography:OCT)応用の光源に用いることができる分散補償器およびそれを用いた波長掃引光源に関する。   The present invention relates to a dispersion compensator and a wavelength swept light source using the dispersion compensator, and more specifically, a dispersion compensator that can be used as a light source for optical coherence tomography (OCT) applications and a wavelength sweep using the same. It relates to the light source.

OCTの一方式に、波長が連続的にある一定範囲に渡って掃引され、かつ掃引が周期的に繰り返される波長掃引光源を用いたスウェプトソースOCT(SS−OCT)がある。SS−OCTは、フーリエドメインOCT(FD−OCT)の一種で、従来のFD−OCTで必要な分光器を用いることなく、高感度なOCT信号が得られることで知られる。   One type of OCT is a swept source OCT (SS-OCT) using a wavelength swept light source in which the wavelength is swept continuously over a certain range and the sweep is periodically repeated. SS-OCT is a kind of Fourier domain OCT (FD-OCT), and it is known that a highly sensitive OCT signal can be obtained without using a spectroscope necessary for conventional FD-OCT.

SS−OCTでは、分光器で必要となるアレイディテクタの代わりに、一般的な光検出器や差分検出器でOCT信号である干渉波形を取得できるため、アレイディテクタの速度でFD−OCTの速度性能が制限される1m帯や1.3m帯のOCTで主に用いられる。   In SS-OCT, an interference waveform that is an OCT signal can be acquired with a general photodetector or differential detector instead of an array detector required for a spectrometer. Therefore, the speed performance of FD-OCT at the speed of the array detector. Mainly used in 1m band and 1.3m band OCT, where

波長掃引光源を用いるSS−OCTで重要となるのが、深さ方向の計測深度に関わる波長掃引光源の瞬時のレーザー線幅である。OCT信号が6dB減衰する距離はコヒーレンス長(光速をレーザー線幅で割った値)で決まる。一般的にレーザーが発振し、線幅が狭窄化するまでには一定の時間を要するため、発振波長が常に変化する波長掃引光源ではレーザー線幅は掃引速度とトレードオフの関係にあることが知られている(非特許文献1参照)。つまり速い波長掃引光源ではレーザー線幅が広くなる。   What is important in SS-OCT using a wavelength swept light source is the instantaneous laser line width of the wavelength swept light source related to the measurement depth in the depth direction. The distance at which the OCT signal attenuates by 6 dB is determined by the coherence length (the value obtained by dividing the speed of light by the laser line width). In general, it takes a certain amount of time for the laser to oscillate and the line width to narrow, so it is known that the laser line width is in a trade-off relationship with the sweep speed in a wavelength swept light source whose oscillation wavelength constantly changes. (See Non-Patent Document 1). That is, the laser line width is widened with a fast wavelength swept light source.

そのため、このトレードオフの関係を改善する技術としてフーリエドメインモードロック(FDML)が提案されている。FDMLでは掃引帯域内の全波長のレーザー光が共振器の光路内に常に蓄積されており、レーザー発振を自然放出光により一から立ち上げる必要が無いためレーザーの立ち上がり時間が短く、速い波長掃引でもレーザー線幅を狭くすることが可能である(非特許文献2参照)。   Therefore, Fourier domain mode lock (FDML) has been proposed as a technique for improving the trade-off relationship. In FDML, laser light of all wavelengths in the sweep band is always accumulated in the optical path of the resonator, and it is not necessary to start up laser oscillation from scratch with spontaneous emission light. The laser line width can be reduced (see Non-Patent Document 2).

図1に、従来のFDMLを用いた波長掃引光源100の基本構成を示す。波長掃引光源100はリング型の共振器を備え、波長選択部101、分散補償部102、光取り出し部103、光遅延部104、光増幅部105とそれら構成要素を光学的に接続する光接続部106からなる。光増幅部105には、SOA、ファイバ増幅器、個体増幅器、色素増幅器等を用いることができる。   FIG. 1 shows a basic configuration of a wavelength swept light source 100 using a conventional FDML. The wavelength swept light source 100 includes a ring-type resonator, and an optical connection unit that optically connects the wavelength selection unit 101, the dispersion compensation unit 102, the light extraction unit 103, the optical delay unit 104, and the optical amplification unit 105 to these components. 106. For the optical amplification unit 105, an SOA, a fiber amplifier, a solid amplifier, a dye amplifier, or the like can be used.

光増幅部105で発生した広帯域光は、波長選択部101において所定の狭いスペクトル領域のみが選択的に取り出される。選択的に取り出された光は、分散補償部102、光取り出し部103、光遅延部104をそれぞれ経由し、再び光増幅部105で増幅され、波長選択部101に入射する。   From the broadband light generated by the optical amplification unit 105, only a predetermined narrow spectral region is selectively extracted by the wavelength selection unit 101. The selectively extracted light passes through the dispersion compensation unit 102, the light extraction unit 103, and the optical delay unit 104, is amplified again by the optical amplification unit 105, and enters the wavelength selection unit 101.

波長選択部101における選択波長は逐次変化しており、掃引周波数がfsweepであるとすると、共振器内を周回する光が無損失で波長選択部101を再び通過するためには、共振器を一周するのに要する時間troundがこの掃引周波数fsweepの逆数の整数倍である必要がある。波長掃引の周期1/fsweepと共振器内を周回する時間troundが一致している場合、波長選択部101で選択された所定の波長の光が共振器を一周して再び波長選択部101に戻ってくると、波長選択部101が同じ所定の波長を選択していることになる。そのため、光は無損失で波長選択部101を再び通過することができ、これを繰り返すことで共振器内を周回し続けることができる。 The selection wavelength in the wavelength selection unit 101 is sequentially changed, and if the sweep frequency is f sweep , the light circulating in the resonator passes through the wavelength selection unit 101 again without loss, so that the resonator The time t round required for one round needs to be an integral multiple of the reciprocal of this sweep frequency f sweep . When the wavelength sweep period 1 / f sweep and the time t round that circulates in the resonator coincide with each other, the light having a predetermined wavelength selected by the wavelength selection unit 101 goes around the resonator and travels again. When returning to, the wavelength selection unit 101 selects the same predetermined wavelength. Therefore, light can pass through the wavelength selection unit 101 again without loss, and by repeating this, light can continue to circulate in the resonator.

例えば、掃引周波数が200kHzのとき、共振器の周回時間troundは5μsとなり、共振器の光路長Lcavは1500mとなる。共振器が光ファイバで構成され、その光ファイバの屈折率がおおよそ1.46とすると、共振器の物理長は1027mとなる。 For example, when the sweep frequency is 200 kHz, the circulation time t round of the resonator is 5 μs, and the optical path length L cav of the resonator is 1500 m. If the resonator is composed of an optical fiber and the refractive index of the optical fiber is approximately 1.46, the physical length of the resonator is 1027 m.

このようなことから、掃引帯域内のすべての波長で光を共振器に無損失に蓄積するためには、周回時間が等しくなるように共振器長が各波長に対して不変である必要がある。しかし、FDMLは数kmの共振器長を有しており、上述のように通常光ファイバなどの導波路により構成される。そのため光ファイバの屈折率分散により共振器長の波長依存性が生じる。そのため光ファイバの屈折率分散により共振器長の波長依存性が生じる。   For this reason, in order to accumulate light without loss in the resonator at all wavelengths within the sweep band, the resonator length needs to be invariant with respect to each wavelength so that the circulation times are equal. . However, FDML has a resonator length of several kilometers, and is usually constituted by a waveguide such as an optical fiber as described above. Therefore, the wavelength dependence of the resonator length occurs due to the refractive index dispersion of the optical fiber. Therefore, the wavelength dependence of the resonator length occurs due to the refractive index dispersion of the optical fiber.

波長掃引光源の中心波長が1050nmの場合、分散を現すDパラメータから計算される共振器を一周したときに生じる群遅延量は、図2に示すように、中心波長を基準として1000nmと1100nmではそれぞれ2000psと−1600ps程度となる。マイナスの符号は速く到達することを表している。図2の分散曲線を以下の2次関数を用いて近似を行い、1次と2次の分散係数D2、D3を求めると、 When the center wavelength of the wavelength swept light source is 1050 nm, the group delay amount generated when making a round of the resonator calculated from the D parameter expressing the dispersion is 1000 nm and 1100 nm with respect to the center wavelength as shown in FIG. It becomes about 2000 ps and -1600 ps. A minus sign indicates that it arrives fast. Approximating the dispersion curve of FIG. 2 using the following quadratic function and obtaining the first and second order dispersion coefficients D 2 and D 3 ,

2は−38.68ps/nm、D3は+0.106ps/nm2となる。この1次の分散レートD2の値は波長が1nm異なるごとに共振器長に約11.6mmの光学的な光路長差が生じることを示している。波長選択部101では透過帯域が時間的に変化するため、各波長におけるゲート時間は以下の式で表される(非特許文献2参照)。 D 2 is −38.68 ps / nm, and D 3 is +0.106 ps / nm 2 . The value of the first-order dispersion rate D 2 indicates that an optical path length difference of about 11.6 mm occurs in the resonator length every time the wavelength is different by 1 nm. Since the transmission band varies with time in the wavelength selection unit 101, the gate time at each wavelength is expressed by the following equation (see Non-Patent Document 2).

Δλfilterは透過帯域の3dB帯域幅、Δλrangeは掃引帯域幅である。透過帯域幅を0.3nmとし、掃引帯域幅を100nmとすると、τgateは4.8nsである。掃引帯域の中心波長である1050nmを群遅延0の基準とすると、波長λの光は以下の関係を満たす回数Nしか共振器を周回することができない。 Δλ filter is a 3 dB bandwidth of the transmission band, and Δλ range is a sweep bandwidth. When the transmission bandwidth is 0.3 nm and the sweep bandwidth is 100 nm, τ gate is 4.8 ns. If 1050 nm, which is the center wavelength of the sweep band, is used as a reference for the group delay 0, light of wavelength λ can circulate the resonator only N times satisfying the following relationship.

左辺がゲート時間以上となったとき、その波長の光が波長選択部に到達したときの透過帯波長は他波長にあることとなり、光は遮断される。例えば、1000nmではN=2.5と求められ光は共振器を2回のみしか周回できない。レーザー線幅は共振器周回数に反比例して減少するため、分散が存在する共振器ではFDMLのレーザー線幅の狭窄化は制限される。これにより、掃引帯域の両端の波長では、レーザー光を共振器内に効率よく蓄積できないため、線幅の増大や発振帯域の制限を受ける。そのため、図1にある分散補償部102で分散補償を行うことによって群遅延補償を行う必要がある。   When the left side is equal to or longer than the gate time, the transmission band wavelength when the light of that wavelength reaches the wavelength selection unit is at another wavelength, and the light is blocked. For example, at 1000 nm, N = 2.5 is obtained, and light can only circulate the resonator only twice. Since the laser line width decreases in inverse proportion to the number of times of resonator circulation, narrowing of the FDML laser line width is limited in a resonator in which dispersion exists. As a result, at the wavelengths at both ends of the sweep band, the laser beam cannot be efficiently stored in the resonator, so that the line width is increased and the oscillation band is limited. For this reason, it is necessary to perform group delay compensation by performing dispersion compensation in the dispersion compensation unit 102 shown in FIG.

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005)R. Huber, M. Wojtkowski, K. Taira, JG Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005 ) R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006)R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006)

しかし、分散補償を行うことにより波長ごとの共振器長を揃えることで波長掃引光源の性能向上を行うことはできるが、低コスト化や連続的な分散補償が難しいという課題があった。   However, by performing dispersion compensation, it is possible to improve the performance of the wavelength swept light source by aligning the resonator length for each wavelength, but there are problems that cost reduction and continuous dispersion compensation are difficult.

本発明は、このような課題に鑑みてなされたもので、その目的とするところは、少ない素子数で、群速度分散を所望の波長帯域において連続的に補償することができる分散補償器およびそれを用いた波長掃引光源を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a dispersion compensator capable of continuously compensating group velocity dispersion in a desired wavelength band with a small number of elements. It is another object of the present invention to provide a wavelength swept light source using the above.

上記の課題を解決するために、本発明は、分散補償器であって、入力された光から所定の偏光軸を有する偏光を出力する偏波制御部と、前記偏波制御部から出力された偏光が入力される光サーキュレータと、互いに垂直な2軸の偏光の一方を透過し、他方を90度に反射し、前記光サーキュレータから出力された偏光を透過するように配置された偏光ビームスプリッタと、前記偏光ビームスプリッタを透過した偏光が入力され、前記光サーキュレータから出力された偏光とfast軸が45度をなすように配置された1/4波長板と、前記1/4波長板を透過した円偏光が入力される第1のCFBGと、前記第1のCFBGからの反射光が前記1/4波長板を透過して前記偏光ビームスプリッタに入力され、前記偏光ビームスプリッタで90度に反射された偏光が入力される第2のCFBGと、を備えたことを特徴する。   In order to solve the above problems, the present invention is a dispersion compensator, which outputs a polarized light having a predetermined polarization axis from input light, and is output from the polarization controller An optical circulator to which polarized light is input, and a polarization beam splitter disposed so as to transmit one of two mutually perpendicular polarized lights, reflect the other at 90 degrees, and transmit the polarized light output from the optical circulator The polarized light that has been transmitted through the polarizing beam splitter is input, the polarized light output from the optical circulator and the quarter wavelength plate arranged so that the fast axis forms 45 degrees, and transmitted through the quarter wavelength plate. The first CFBG to which circularly polarized light is input and the reflected light from the first CFBG pass through the quarter-wave plate and are input to the polarizing beam splitter. Reflected polarized light is characterized by comprising a second CFBG inputted to.

請求項2に記載の発明は、請求項1記載の分散補償器において、前記第2のCFBGと前記偏光ビームスプリッタとの間に、前記光サーキュレータから出力された偏光とfast軸が45度をなすように配置された第2の1/4波長板と、前記第2のCFBGからの反射光が前記第2の1/4波長板を透過して前記偏光ビームスプリッタに入力され、前記偏光ビームスプリッタを透過した偏光が入力される第3のCFBGと、をさらに備えたことを特徴とする。   According to a second aspect of the present invention, in the dispersion compensator according to the first aspect, between the second CFBG and the polarization beam splitter, the polarization output from the optical circulator and the fast axis form 45 degrees. And the reflected light from the second CFBG passes through the second quarter wave plate and is input to the polarizing beam splitter, and the polarizing beam splitter. And a third CFBG to which the polarized light that has passed through is input.

請求項3に記載の発明は、分散補償器であって、光サーキュレータと、前記光サーキュレータから出力された光の互いに垂直な2軸の偏光の一方を透過し、他方を90度に反射するように配置された偏光ビームスプリッタと、前記偏光ビームスプリッタを透過した偏光が入力され、前記光サーキュレータから出力された偏光とfast軸が45度をなすように配置された第1の1/4波長板と、前記第1の1/4波長板を透過した円偏光が入力される第1のCFBGと、前記第1のCFBGからの反射光が前記第1の1/4波長板を透過して前記偏光ビームスプリッタに入力され、前記偏光ビームスプリッタで90度に反射された偏光が入力され、前記光サーキュレータから出力された偏光とfast軸が45度をなすように配置された第2の1/4波長板と、前記第2の1/4波長板を透過した円偏光が入力される第2のCFBGと、前記第2のCFBGからの反射光が前記第2の1/4波長板を透過して前記偏光ビームスプリッタに入力され、前記偏光ビームスプリッタを透過した偏光が入力され、前記光サーキュレータから出力された偏光とfast軸が45度をなすように配置された第3の1/4波長板と、前記第3の1/4波長板を透過した円偏光が入力される第3のCFBGと、を備えたことを特徴する。   The invention according to claim 3 is a dispersion compensator, which transmits the optical circulator and one of two perpendicularly polarized light beams output from the optical circulator and reflects the other at 90 degrees. And a first quarter-wave plate arranged such that the polarized light transmitted through the polarization beam splitter is input and the polarization output from the optical circulator and the fast axis form 45 degrees. And the first CFBG to which the circularly polarized light transmitted through the first quarter-wave plate is input, and the reflected light from the first CFBG passes through the first quarter-wave plate and is Polarized light that is input to the polarizing beam splitter, reflected at 90 degrees by the polarizing beam splitter, is input, and the polarized light output from the optical circulator and the fast axis are arranged to form 45 degrees. A quarter wavelength plate, a second CFBG to which circularly polarized light transmitted through the second quarter wavelength plate is input, and reflected light from the second CFBG is the second quarter wavelength plate. Is transmitted to the polarization beam splitter, the polarized light transmitted through the polarization beam splitter is input, and the third 1 / is arranged so that the polarization output from the optical circulator and the fast axis form 45 degrees. And a third CFBG to which circularly polarized light transmitted through the third quarter-wave plate is input.

請求項4に記載の発明は、波長掃引光源であって、所定の波長帯域を含む広帯域光を発生する光増幅部、前記広帯域光から所定の波長帯域の光を所定の掃引周波数で選択的に透過する波長選択部、前記波長選択部を透過した光が入力される請求項1乃至3のいずれかに記載の分散補償器、および前記分散補償器から出力された光を所定の遅延量を与えて前記光増幅部に入力する光遅延部を含む共振器と、前記共振器内を伝搬する光の一部を取り出す光取り出し部と、を備えたことを特徴とする。   According to a fourth aspect of the present invention, there is provided a wavelength swept light source, an optical amplifying unit that generates broadband light including a predetermined wavelength band, and selectively transmits light in a predetermined wavelength band from the broadband light at a predetermined sweep frequency. The wavelength compensator for transmission and the light transmitted through the wavelength selector are input, and the light output from the dispersion compensator is given a predetermined delay amount. A resonator including an optical delay unit that is input to the optical amplification unit, and a light extraction unit that extracts a part of the light propagating through the resonator.

本発明は、偏光回転を利用したマルチパス構成を採用することにより、少ない素子数で所望の分散補償効果を得ることができる。また、中心波長が異なるCFBGをカスケード接続するような構成に比べ、群速度分散を所望の波長帯域において連続的に補償することが容易に可能になる。これにより全波長帯域の光がFDMLの共振器内を周回する回数を増大させることができ、瞬時にレーザー線幅を狭窄化することができる。   In the present invention, a desired dispersion compensation effect can be obtained with a small number of elements by adopting a multipath configuration using polarization rotation. Further, compared to a configuration in which CFBGs having different center wavelengths are cascade-connected, group velocity dispersion can be easily compensated continuously in a desired wavelength band. As a result, the number of times that light in the entire wavelength band circulates in the FDML resonator can be increased, and the laser line width can be narrowed instantaneously.

従来のFDMLを用いた波長掃引光源100の基本構成を示す図である。It is a figure which shows the basic composition of the wavelength sweep light source 100 using the conventional FDML. 中心波長が1050nmの場合の分散を現すDパラメータから計算される共振器を一周したときに生じる波長毎の群遅延量を示す図である。It is a figure which shows the group delay amount for every wavelength produced when making a round the resonator calculated from D parameter which shows dispersion | distribution in case a center wavelength is 1050 nm. 本発明の実施形態1に係るチャープファイバブラッググレーティング(CFBG)を用いたマルチパス分散補償部の構成を示す図である。It is a figure which shows the structure of the multipath dispersion compensation part using the chirp fiber Bragg grating (CFBG) which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係るCFBGを用いたマルチパス分散補償部の構成を示す図である。It is a figure which shows the structure of the multipath dispersion compensation part using CFBG which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係るCFBGを用いたマルチパス分散補償部の構成を示す図である。It is a figure which shows the structure of the multipath dispersion compensation part using CFBG which concerns on Embodiment 3 of this invention.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(実施形態1)
図3に、本発明の一実施形態に係るチャープファイバブラッググレーティング(CFBG)を用いたマルチパス分散補償部の構成を示す。本発明の分散補償部は、図1に示すような波長掃引光源100の分散補償部102として用いることができる。
(Embodiment 1)
FIG. 3 shows a configuration of a multipath dispersion compensation unit using a chirped fiber Bragg grating (CFBG) according to an embodiment of the present invention. The dispersion compensation unit of the present invention can be used as the dispersion compensation unit 102 of the wavelength swept light source 100 as shown in FIG.

上記の分散レートの群遅延を広い波長帯域にわたって1つのCFBGで補償するには長さが必要になるが、そのような分散補償を可能にする長さのCFBGを作製することは難しい。そのため本発明では、広い波長帯域を有するが分散量が小さい複数のCFBGを用いる。例えば3つのCFBGを用いることで、それぞれのCFBGが補償する分散量が全分散量の1/3になり、各CFBGの必要な長さを抑えることができる。加えて、図3に示す実施形態1の構成では、2つのCFBG205−1、205−2で3パスを実現することができ、素子数も抑えることができる。   A length is required to compensate the group delay of the dispersion rate with one CFBG over a wide wavelength band, but it is difficult to produce a CFBG having a length that enables such dispersion compensation. Therefore, in the present invention, a plurality of CFBGs having a wide wavelength band but a small amount of dispersion are used. For example, by using three CFBGs, the dispersion amount compensated by each CFBG becomes 1/3 of the total dispersion amount, and the necessary length of each CFBG can be suppressed. In addition, in the configuration of the first embodiment shown in FIG. 3, three paths can be realized by two CFBGs 205-1 and 205-2, and the number of elements can be suppressed.

偏光制御器201により光を直線偏光に変換し、偏光をサーキュレータ202に入射する。入射された偏光は、光サーキュレータ202に接続された光ファイバの端面からレンズ206−1に出力されてコリメートされる。偏光制御器201は、光サーキュレータ202から出射された偏光の偏向軸が紙面内の光軸と垂直の軸上にあり、偏光ビームスプリッタ203をそのまま透過するように制御する。   The polarization controller 201 converts the light into linearly polarized light and makes the polarized light enter the circulator 202. The incident polarized light is output from the end face of the optical fiber connected to the optical circulator 202 to the lens 206-1 and collimated. The polarization controller 201 performs control so that the polarization axis of polarized light emitted from the optical circulator 202 is on an axis perpendicular to the optical axis in the drawing and is transmitted through the polarization beam splitter 203 as it is.

偏光ビームスプリッタ203を透過する光の光軸上に1/4波長板204を配置し、1/4波長板204のFast軸と偏光の偏向軸とが45度をなすように配置する。これにより、1/4波長板204を通過した偏光が円偏光になるようにする。1/4波長板204から出射された円偏光は、レンズ206−2によって集光されて第1のCFBG205−1に入射される。   A quarter-wave plate 204 is disposed on the optical axis of the light transmitted through the polarization beam splitter 203, and the Fast axis of the quarter-wave plate 204 and the polarization deflection axis are disposed at 45 degrees. As a result, the polarized light that has passed through the quarter-wave plate 204 becomes circularly polarized light. The circularly polarized light emitted from the quarter-wave plate 204 is collected by the lens 206-2 and is incident on the first CFBG 205-1.

第1のCFBG205−1での反射は、CFBGのグレーティング周期を入射端から徐々に長くすることで長波長ほど深部で反射させることができ、共振器の分散とは逆の分散を入射した光に与えることができる。またCFBG内部における複屈折は十分に小さく、長さも数10cmであるため偏光状態に影響しないと考えられ、反射光の偏光状態は円偏光のままである。後述する第2のCFBG205−2での反射も同様である。   The reflection at the first CFBG 205-1 can be reflected at a deeper portion with a longer wavelength by gradually increasing the grating period of the CFBG from the incident end, and the incident light has a dispersion opposite to the dispersion of the resonator. Can be given. In addition, the birefringence inside the CFBG is sufficiently small and the length is several tens of centimeters, so it is considered that the polarization state is not affected, and the polarization state of the reflected light remains circularly polarized. The same applies to reflection by a second CFBG 205-2, which will be described later.

第1のCFBG205−1からの反射光は、レンズ206−2を介して再び1/4波長板204を通過し、偏光軸が入射光の偏光軸から90度回転した直線偏光に変換される。これにより復路では偏光ビームスプリッタ203で反射され、レンズ206−3を介して第2のCFBG205−2に入射する。第2のCFBG205−2で反射された光は、偏光状態が保存されているため、偏光ビームスプリッタ203により再び第1のCFBG205−1方向に反射される。   The reflected light from the first CFBG 205-1 passes through the quarter wavelength plate 204 again via the lens 206-2 and is converted into linearly polarized light whose polarization axis is rotated 90 degrees from the polarization axis of the incident light. Thereby, in the return path, it is reflected by the polarization beam splitter 203 and enters the second CFBG 205-2 via the lens 206-3. The light reflected by the second CFBG 205-2 is reflected again in the direction of the first CFBG 205-1 by the polarization beam splitter 203 because the polarization state is preserved.

偏光ビームスプリッタ203により反射された偏光は、1/4波長板204で円偏光に変換され、レンズ206−2を介して再び第1のCFBG205−1に入射される。第1のCFBG205−1で反射された円偏光は、再度1/4波長板204を通過することでさらに90度回転した直線偏光となり、偏光ビームスプリッタ203を透過することになる。   The polarized light reflected by the polarizing beam splitter 203 is converted into circularly polarized light by the quarter wavelength plate 204 and is incident on the first CFBG 205-1 again via the lens 206-2. The circularly polarized light reflected by the first CFBG 205-1 passes through the quarter wavelength plate 204 again to become linearly polarized light that is further rotated by 90 degrees, and is transmitted through the polarization beam splitter 203.

つまり実施形態1では、光サーキュレータ202から入射された光は、第1のCFBG205−1、第2のCFBG205−2、第1のCFBG205−1という順番でCFBGを通過した後、光サーキュレータ202により分散補償部102から出力される。この構成では2つのCFBG205−1、205−2を計3回通過させることで3つのCFBGと同様の分散量を補償することを可能としている。   That is, in the first embodiment, the light incident from the optical circulator 202 passes through the CFBG in the order of the first CFBG 205-1, the second CFBG 205-2, and the first CFBG 205-1 and is then dispersed by the optical circulator 202. Output from the compensation unit 102. In this configuration, it is possible to compensate for the same amount of dispersion as the three CFBGs by passing the two CFBGs 205-1 and 205-2 a total of three times.

(実施形態2)
図4に、本発明の実施形態2に係るCFBGを用いたマルチパス分散補償部の構成を示す。この構成では、3つのCFBG305−1〜305−3を用いて実施形態1と同様の原理により5つのCFBGを用いた場合と同様の分散補償量を実現することが可能である。
(Embodiment 2)
FIG. 4 shows the configuration of a multipath dispersion compensation unit using CFBG according to the second embodiment of the present invention. In this configuration, it is possible to realize the same dispersion compensation amount as in the case of using five CFBGs by using the three CFBGs 305-1 to 305-3 on the same principle as in the first embodiment.

すなわち、まず偏波制御部301で光サーキュレータ302から出射された偏光が偏光ビームスプリッタ303を透過するように偏光を制御する。レンズ306−1でコリメートされて偏光ビームスプリッタ303を通過した直線偏光は、Fast軸と偏光の偏向軸とが45度をなすように配置された第1の1/4波長板304−1で円偏光に変換され、レンズ306−2で集光されて第1のCFBG305−1に入射される。第1のCFBG305−1で反射された円偏光は、第1の1/4波長板304−1で入射光の偏光軸から90度回転した直線偏光に変換されて偏光ビームスプリッタ303に入射される。入射光の偏光軸から90度回転した直線偏光は偏光ビームスプリッタ303で反射され、Fast軸と偏光の偏向軸とが45度をなすように配置された第2の1/4波長板304−2で円偏光に変換され、レンズ306−3で集光されて第2のCFBG305−2に入射される。第2のCFBG305−2で反射された円偏光は、第2の1/4波長板304−2で入射光の偏光軸から180度回転した直線偏光に変換されて偏光ビームスプリッタ303に入射される。入射光の偏光軸から180度回転した直線偏光は偏光ビームスプリッタ303を透過し、レンズ306−4で集光されて第3のCFBG305−3に入射される。第3のCFBG305−3で反射された偏光は偏光ビームスプリッタ303に入射され、偏光ビームスプリッタ303を透過して第2の1/4波長板304−2で円偏光に変換されて第2のCFBG305−2に入射される。第2のCFBG305−2で反射された円偏光は、第2の1/4波長板304−2で入射光の偏光軸から270度回転した直線偏光に変換されて偏光ビームスプリッタ303に入射され、偏光ビームスプリッタ303で反射されて第1の1/4波長板304−1を介して第1のCFBG305−1に入射される。第1のCFBG305−1で反射された円偏光は、第1の1/4波長板304−1で入射光の偏光軸から360度回転した直線偏光に変換されて偏光ビームスプリッタ303を透過して光サーキュレータ302に入射される。   That is, first, the polarization control unit 301 controls the polarization so that the polarized light emitted from the optical circulator 302 is transmitted through the polarization beam splitter 303. The linearly polarized light that has been collimated by the lens 306-1 and passed through the polarization beam splitter 303 is circularly converted by the first quarter-wave plate 304-1 arranged so that the Fast axis and the polarization deflection axis form 45 degrees. It is converted into polarized light, collected by the lens 306-2, and incident on the first CFBG 305-1. The circularly polarized light reflected by the first CFBG 305-1 is converted into linearly polarized light rotated 90 degrees from the polarization axis of the incident light by the first quarter wavelength plate 304-1 and is incident on the polarization beam splitter 303. . The linearly polarized light rotated by 90 degrees from the polarization axis of the incident light is reflected by the polarization beam splitter 303, and the second quarter-wave plate 304-2 arranged so that the Fast axis and the polarization deflection axis form 45 degrees. Is converted into circularly polarized light, condensed by the lens 306-3, and incident on the second CFBG 305-2. The circularly polarized light reflected by the second CFBG 305-2 is converted into linearly polarized light rotated 180 degrees from the polarization axis of the incident light by the second quarter wavelength plate 304-2, and is incident on the polarization beam splitter 303. . The linearly polarized light rotated by 180 degrees from the polarization axis of the incident light passes through the polarizing beam splitter 303, is condensed by the lens 306-4, and is incident on the third CFBG 305-3. The polarized light reflected by the third CFBG 305-3 enters the polarizing beam splitter 303, passes through the polarizing beam splitter 303, is converted into circularly polarized light by the second quarter wavelength plate 304-2, and is converted into the second CFBG 305. -2. The circularly polarized light reflected by the second CFBG 305-2 is converted into linearly polarized light rotated by 270 degrees from the polarization axis of the incident light by the second quarter wavelength plate 304-2, and is incident on the polarization beam splitter 303. The light is reflected by the polarization beam splitter 303 and enters the first CFBG 305-1 through the first quarter-wave plate 304-1. The circularly polarized light reflected by the first CFBG 305-1 is converted to linearly polarized light rotated 360 degrees from the polarization axis of the incident light by the first quarter wave plate 304-1 and transmitted through the polarization beam splitter 303. The light enters the optical circulator 302.

このようにCFBGを通過する順番は第1のCFBG305−1、第2のCFBG305−2、第3のCFBG305−3、第2のCFBG305−2、第1のCFBG305−1となる。   Thus, the order of passing through the CFBG is the first CFBG 305-1, the second CFBG 305-2, the third CFBG 305-3, the second CFBG 305-2, and the first CFBG 305-1.

(実施形態3)
図5に、本発明の実施形態3に係るCFBGを用いたマルチパス分散補償部の構成を示す。この構成では、偏光無依存の分散補償部102の構成を表している。実施形態3では、実施形態1、2において配置されていた偏波制御器が無く、光サーキュレータ402には偏波制御されていない光が入射される。そのため、光サーキュレータ402から出力された光は、偏光ビームスプリッタ403により偏光を光軸に垂直で互いに垂直な2軸の偏光に分離され、紙面に平行な偏光成分は直進し、紙面に垂直な偏光成分は90度で反射される。紙面に平行な軸をP軸、垂直な軸をS軸とすると、P偏光は、第1のCFBG405−1、第2のCFBG405−2、第3のCFBG405−3という順番でCFBGを通過する。
(Embodiment 3)
FIG. 5 shows a configuration of a multipath dispersion compensation unit using a CFBG according to Embodiment 3 of the present invention. This configuration represents the configuration of the polarization-independent dispersion compensation unit 102. In the third embodiment, there is no polarization controller arranged in the first and second embodiments, and light that is not subjected to polarization control is incident on the optical circulator 402. Therefore, the light output from the optical circulator 402 is separated into two-axis polarized light perpendicular to the optical axis and perpendicular to each other by the polarization beam splitter 403, and the polarization component parallel to the paper surface travels straight, and the polarized light perpendicular to the paper surface. The component is reflected at 90 degrees. When the axis parallel to the paper surface is the P axis and the vertical axis is the S axis, the P-polarized light passes through the CFBG in the order of the first CFBG 405-1, the second CFBG 405-2, and the third CFBG 405-3.

すなわち、光サーキュレータ402から出射された光がレンズ406−1でコリメートされて偏光ビームスプリッタ403に入射されると、P偏光は偏光ビームスプリッタ403を透過する。P偏光はFast軸と偏光軸とが45度をなすように配置された第1の1/4波長板404−1で円偏光に変換され、レンズ406−2で集光されて第1のCFBG405−1に入射される。第1のCFBG405−1で反射された円偏光は、第1の1/4波長板404−1で入射光の偏光軸から90度回転したS偏光に変換されて偏光ビームスプリッタ403に入射される。S偏光は偏光ビームスプリッタ403で90度に反射され、Fast軸と偏光軸とが45度をなすように配置された第2の1/4波長板404−2で円偏光に変換され、レンズ406−3で集光されて第2のCFBG405−2に入射される。第2のCFBG405−2で反射された円偏光は、第2の1/4波長板404−2でS偏光から90度回転したP偏光に変換されて偏光ビームスプリッタ403に入射される。P偏光は偏光ビームスプリッタ403を透過し、波長板のFast軸と偏光軸とが45度をなすように配置された第2の1/4波長板404−3で円偏光に変換され、レンズ406−4で集光されて第3のCFBG405−3に入射される。第3のCFBG405−3で反射された円偏光は、第3の1/4波長板404−3でP偏光から90度回転したS偏光に変換されて偏光ビームスプリッタ403に入射されて90度に反射され、光サーキュレータ402に入射される。   That is, when the light emitted from the optical circulator 402 is collimated by the lens 406-1 and enters the polarizing beam splitter 403, the P-polarized light is transmitted through the polarizing beam splitter 403. The P-polarized light is converted into circularly polarized light by the first quarter-wave plate 404-1 arranged so that the Fast axis and the polarization axis form 45 degrees, condensed by the lens 406-2, and first CFBG 405. -1. The circularly polarized light reflected by the first CFBG 405-1 is converted into S-polarized light rotated 90 degrees from the polarization axis of the incident light by the first quarter-wave plate 404-1, and is incident on the polarization beam splitter 403. . The S-polarized light is reflected by the polarization beam splitter 403 at 90 degrees, converted to circularly polarized light by the second quarter-wave plate 404-2 arranged so that the Fast axis and the polarization axis form 45 degrees, and the lens 406 -3 and is incident on the second CFBG 405-2. The circularly polarized light reflected by the second CFBG 405-2 is converted into P-polarized light rotated by 90 degrees from S-polarized light by the second quarter wave plate 404-2, and is incident on the polarization beam splitter 403. The P-polarized light is transmitted through the polarization beam splitter 403, converted into circularly polarized light by the second quarter-wave plate 404-3 arranged so that the Fast axis of the wave plate and the polarization axis form 45 degrees, and the lens 406 -4 and is incident on the third CFBG 405-3. The circularly polarized light reflected by the third CFBG 405-3 is converted by the third quarter wave plate 404-3 to S-polarized light rotated 90 degrees from the P-polarized light, and is incident on the polarizing beam splitter 403 to 90 degrees. The light is reflected and enters the optical circulator 402.

これに対し入射光のS偏光成分は、第3のCFBG405−3、第2のCFBG405−2、第1のCFBG405−1という順番でCFBGを通過する。すなわち、まず偏光ビームスプリッタ403で90度に反射されて第3のCFBG405−3に入射され、その反射光がP偏光に変換されて偏光ビームスプリッタ403を透過し、第2のCFBG405−2に入射される。第2のCFBG405−2の反射光はS偏光に変換されて偏光ビームスプリッタ403で90度に反射され、第1のCFBG405−1に入射される。第1のCFBG405−1の反射光はP偏光に変換されて偏光ビームスプリッタ403を通過し、光サーキュレータ402に入射される。   In contrast, the S-polarized component of the incident light passes through the CFBG in the order of the third CFBG 405-3, the second CFBG 405-2, and the first CFBG 405-1. That is, the light beam is first reflected by the polarizing beam splitter 403 at 90 degrees and incident on the third CFBG 405-3, and the reflected light is converted to P-polarized light and transmitted through the polarizing beam splitter 403 and incident on the second CFBG 405-2. Is done. The reflected light of the second CFBG 405-2 is converted into S-polarized light, reflected by the polarization beam splitter 403 at 90 degrees, and incident on the first CFBG 405-1. The reflected light of the first CFBG 405-1 is converted into P-polarized light, passes through the polarization beam splitter 403, and enters the optical circulator 402.

尚、2つの偏光状態は互いに共通の経路を通過するため、偏光分散は無視することができる。   Since the two polarization states pass through a common path, polarization dispersion can be ignored.

本構成では、偏光無依存の光サーキュレータ402とCFBGをそれぞれ3つ用いて、CFBGを3回通過させた場合と同様の分散補償量であるが、偏波制御器を必要としないためコンパクトである。   This configuration uses three polarization-independent optical circulators 402 and three CFBGs, and has the same amount of dispersion compensation as when CFBG is passed three times, but is compact because no polarization controller is required. .

100 波長掃引光源
101 波長選択部
102 分散補償部
103 光取り出し部
104 遅延部
105 光増幅部
106 光接続部
201、301 偏光制御器
202、302、402 光サーキュレータ
203、303、403 偏光ビームスプリッタ
204、304、404 1/4波長板
205、305、405 CFBG
206、306、406 レンズ
DESCRIPTION OF SYMBOLS 100 Wavelength sweep light source 101 Wavelength selection part 102 Dispersion compensation part 103 Light extraction part 104 Delay part 105 Optical amplification part 106 Optical connection part 201, 301 Polarization controller 202, 302, 402 Optical circulator 203, 303, 403 Polarization beam splitter 204, 304, 404 1/4 wave plate 205, 305, 405 CFBG
206, 306, 406 Lens

Claims (4)

入力された光から所定の偏光軸を有する偏光を出力する偏波制御部と、
前記偏波制御部から出力された偏光が入力される光サーキュレータと、
互いに垂直な2軸の偏光の一方を透過し、他方を90度に反射し、前記光サーキュレータから出力された偏光を透過するように配置された偏光ビームスプリッタと、
前記偏光ビームスプリッタを透過した偏光が入力され、前記光サーキュレータから出力された偏光とfast軸が45度をなすように配置された1/4波長板と、
前記1/4波長板を透過した円偏光が入力される第1のCFBGと、
前記第1のCFBGからの反射光が前記1/4波長板を透過して前記偏光ビームスプリッタに入力され、前記偏光ビームスプリッタで90度に反射された偏光が入力される第2のCFBGと、
を備えたことを特徴する分散補償器。
A polarization controller that outputs polarized light having a predetermined polarization axis from the input light;
An optical circulator to which the polarized light output from the polarization controller is input;
A polarizing beam splitter arranged to transmit one of the two axes of polarized light perpendicular to each other, reflect the other at 90 degrees, and transmit the polarized light output from the optical circulator;
A quarter wave plate that is input so that the polarized light transmitted through the polarizing beam splitter is input, and the fast axis is 45 degrees with the polarized light output from the optical circulator;
A first CFBG that receives circularly polarized light transmitted through the quarter-wave plate;
Reflected light from the first CFBG passes through the quarter-wave plate and is input to the polarization beam splitter, and second CFBG to which polarized light reflected at 90 degrees by the polarization beam splitter is input;
A dispersion compensator characterized by comprising:
前記第2のCFBGと前記偏光ビームスプリッタとの間に、前記光サーキュレータから出力された偏光とfast軸が45度をなすように配置された第2の1/4波長板と、
前記第2のCFBGからの反射光が前記第2の1/4波長板を透過して前記偏光ビームスプリッタに入力され、前記偏光ビームスプリッタを透過した偏光が入力される第3のCFBGと、
をさらに備えたことを特徴とする請求項1記載の分散補償器。
A second quarter-wave plate disposed between the second CFBG and the polarizing beam splitter so that the polarization output from the optical circulator and the fast axis form 45 degrees;
Reflected light from the second CFBG passes through the second quarter-wave plate and is input to the polarization beam splitter, and third CFBG to which polarized light transmitted through the polarization beam splitter is input;
The dispersion compensator according to claim 1, further comprising:
光サーキュレータと、
前記光サーキュレータから出力された光の互いに垂直な2軸の偏光の一方を透過し、他方を90度に反射するように配置された偏光ビームスプリッタと、
前記偏光ビームスプリッタを透過した偏光が入力され、前記光サーキュレータから出力された偏光とfast軸が45度をなすように配置された第1の1/4波長板と、
前記第1の1/4波長板を透過した円偏光が入力される第1のCFBGと、
前記第1のCFBGからの反射光が前記第1の1/4波長板を透過して前記偏光ビームスプリッタに入力され、前記偏光ビームスプリッタで90度に反射された偏光が入力され、前記光サーキュレータから出力された偏光とfast軸が45度をなすように配置された第2の1/4波長板と、
前記第2の1/4波長板を透過した円偏光が入力される第2のCFBGと、
前記第2のCFBGからの反射光が前記第2の1/4波長板を透過して前記偏光ビームスプリッタに入力され、前記偏光ビームスプリッタを透過した偏光が入力され、前記光サーキュレータから出力された偏光とfast軸が45度をなすように配置された第3の1/4波長板と、
前記第3の1/4波長板を透過した円偏光が入力される第3のCFBGと、
を備えたことを特徴する分散補償器。
An optical circulator,
A polarization beam splitter disposed so as to transmit one of two perpendicularly polarized light beams output from the optical circulator and reflect the other at 90 degrees;
Polarized light that has passed through the polarizing beam splitter is input, and the polarized light output from the optical circulator and a first quarter-wave plate arranged so that the fast axis forms 45 degrees;
A first CFBG that receives circularly polarized light transmitted through the first quarter-wave plate;
Reflected light from the first CFBG passes through the first quarter-wave plate and is input to the polarization beam splitter, and polarized light reflected at 90 degrees by the polarization beam splitter is input, and the optical circulator A second quarter-wave plate arranged so that the polarization output from and the fast axis form 45 degrees;
A second CFBG that receives circularly polarized light transmitted through the second quarter-wave plate;
The reflected light from the second CFBG passes through the second quarter-wave plate and is input to the polarizing beam splitter, and the polarized light transmitted through the polarizing beam splitter is input and output from the optical circulator. A third quarter-wave plate arranged so that the polarization and the fast axis form 45 degrees;
A third CFBG that receives circularly polarized light transmitted through the third quarter-wave plate;
A dispersion compensator characterized by comprising:
所定の波長帯域を含む広帯域光を発生する光増幅部、
前記広帯域光から所定の波長帯域の光を所定の掃引周波数で選択的に透過する波長選択部、
前記波長選択部を透過した光が入力される請求項1乃至3のいずれかに記載の分散補償器、および
前記分散補償器から出力された光を所定の遅延量を与えて前記光増幅部に入力する光遅延部
を含む共振器と、
前記共振器内を伝搬する光の一部を取り出す光取り出し部と、
を備えたことを特徴とする波長掃引光源。
An optical amplifying unit that generates broadband light including a predetermined wavelength band;
A wavelength selector that selectively transmits light in a predetermined wavelength band from the broadband light at a predetermined sweep frequency;
The dispersion compensator according to any one of claims 1 to 3, wherein light transmitted through the wavelength selection unit is input, and the light output from the dispersion compensator is given a predetermined delay amount to the optical amplification unit. A resonator including an optical delay unit for input; and
A light extraction portion for extracting a part of the light propagating in the resonator;
A wavelength-swept light source comprising:
JP2017168815A 2017-09-01 2017-09-01 Dispersion compensator and wavelength sweep light source using it Active JP6778164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017168815A JP6778164B2 (en) 2017-09-01 2017-09-01 Dispersion compensator and wavelength sweep light source using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017168815A JP6778164B2 (en) 2017-09-01 2017-09-01 Dispersion compensator and wavelength sweep light source using it

Publications (2)

Publication Number Publication Date
JP2019046973A true JP2019046973A (en) 2019-03-22
JP6778164B2 JP6778164B2 (en) 2020-10-28

Family

ID=65814712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017168815A Active JP6778164B2 (en) 2017-09-01 2017-09-01 Dispersion compensator and wavelength sweep light source using it

Country Status (1)

Country Link
JP (1) JP6778164B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009082A1 (en) * 2022-07-08 2024-01-11 Coherent Scotland Limited Passively double-passed chirped-fiber-bragg-grating

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138908A (en) * 1984-07-11 1986-02-25 エステイーシー・ピーエルシー Optical fiber transmission system
JPH08285697A (en) * 1995-04-19 1996-11-01 Shimadzu Corp Interferometer
US20050105850A1 (en) * 2002-03-14 2005-05-19 Zervas Mikhail N. Apparatus for dispersion compensating a signal that propagates along a signal path
JP2008233366A (en) * 2007-03-19 2008-10-02 Mitsubishi Electric Corp Polarization mode dispersion compensator
US20090003391A1 (en) * 2007-06-28 2009-01-01 Shenping Li Low-repetition-rate ring-cavity passively mode-locked fiber laser
JP2009042704A (en) * 2007-08-07 2009-02-26 Takeshi Koseki Polarization-mode dispersion equalizer
JP2009169421A (en) * 2008-01-17 2009-07-30 Furukawa Electric North America Inc Tunable dispersion compensator with minimum differential group delay
JP2010225688A (en) * 2009-03-19 2010-10-07 Olympus Corp Optical pulse generation device and optical system including the same
JP2012506636A (en) * 2008-10-22 2012-03-15 マサチューセッツ インスティテュート オブ テクノロジー Fourier domain mode locking
JP2012100006A (en) * 2010-11-01 2012-05-24 Mitsubishi Electric Corp Optical transmitter, optical receiver and optical communication system
JP2013243475A (en) * 2012-05-18 2013-12-05 Mitsubishi Electric Corp Polarization compensation system with quantum cryptography apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138908A (en) * 1984-07-11 1986-02-25 エステイーシー・ピーエルシー Optical fiber transmission system
JPH08285697A (en) * 1995-04-19 1996-11-01 Shimadzu Corp Interferometer
US20050105850A1 (en) * 2002-03-14 2005-05-19 Zervas Mikhail N. Apparatus for dispersion compensating a signal that propagates along a signal path
JP2008233366A (en) * 2007-03-19 2008-10-02 Mitsubishi Electric Corp Polarization mode dispersion compensator
US20090003391A1 (en) * 2007-06-28 2009-01-01 Shenping Li Low-repetition-rate ring-cavity passively mode-locked fiber laser
JP2009042704A (en) * 2007-08-07 2009-02-26 Takeshi Koseki Polarization-mode dispersion equalizer
JP2009169421A (en) * 2008-01-17 2009-07-30 Furukawa Electric North America Inc Tunable dispersion compensator with minimum differential group delay
JP2012506636A (en) * 2008-10-22 2012-03-15 マサチューセッツ インスティテュート オブ テクノロジー Fourier domain mode locking
JP2010225688A (en) * 2009-03-19 2010-10-07 Olympus Corp Optical pulse generation device and optical system including the same
JP2012100006A (en) * 2010-11-01 2012-05-24 Mitsubishi Electric Corp Optical transmitter, optical receiver and optical communication system
JP2013243475A (en) * 2012-05-18 2013-12-05 Mitsubishi Electric Corp Polarization compensation system with quantum cryptography apparatus

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
R. HUBER, ET AL.: ""Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and sc", OPTICS EXPRESS, vol. 13, no. 9, JPN6020037986, 2005, US, pages 3513 - 3528, XP002639587, ISSN: 0004361307, DOI: 10.1364/OPEX.13.003513 *
R. HUBER, ET AL.: ""Fourier Domain Mode Locking (FDML) : A new laser operating regime and applications for optical cohe", OPTICS EXPRESS, vol. 14, no. 8, JPN6020037982, 2006, US, pages 3225 - 3237, XP002545465, ISSN: 0004361306, DOI: 10.1364/OE.14.003225 *
浅野将弘、他: "「共振器中の分散を利用した広帯域・高速波長可変モード同期光ファイバレーザ」", 電子情報通信学会技術研究報告, vol. 105, no. 320, JPN6020037980, 2005, JP, pages 7 - 11, ISSN: 0004361305 *
若林信一: "「FBGを用いた広帯域可変分散補償デバイス」", OPTRONICS, vol. 第24巻、第6号, JPN6020037977, 2005, JP, pages 167 - 173, ISSN: 0004361304 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009082A1 (en) * 2022-07-08 2024-01-11 Coherent Scotland Limited Passively double-passed chirped-fiber-bragg-grating

Also Published As

Publication number Publication date
JP6778164B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
US8582619B2 (en) Methods, systems, and devices for timing control in electromagnetic radiation sources
JP5495506B2 (en) Laser apparatus and optical tomographic imaging apparatus
US9759983B2 (en) Frequency comb source with large comb spacing
JP5738271B2 (en) Optical module
TWI540307B (en) Distributed brillouin sensing systems and methods using few-mode sensing optical fiber
JP5361243B2 (en) Optical tomographic imaging system
JP6211542B2 (en) Sensing system and minority mode optical fiber for use in such a system
US8934507B2 (en) Wavelength-tunable light source
US20120075691A1 (en) Wavelength-Tunable Light Source
US20060187537A1 (en) Mode locking methods and apparatus
US20080252900A1 (en) Optical tomography system
CN104634256B (en) Fiber laser single-wave self-mixing interference displacement measuring system
JP6695912B2 (en) Method for generating laser pulse, spectroscopic method for obtaining spectral response of sample, laser pulse source device, and spectroscopic device
Wang et al. 2-μm switchable dual-wavelength fiber laser with cascaded filter structure based on dual-channel Mach–Zehnder interferometer and spatial mode beating effect
JP6711600B2 (en) Light source device and information acquisition device
JP2019046973A (en) Dispersion compensator and wavelength sweeping light source using the same
JP6748630B2 (en) Wavelength swept light source
Ahmad et al. Frequency switching multiwavelength Brillouin Raman fibre laser based on feedback power adjustment technique
JP2007085754A (en) Optical pulse tester and optical fiber longitudinal direction characteristic test method
US9837785B2 (en) Polarization laser sensor
WO2019073701A1 (en) Dual optical frequency comb generating optical system, laser device and measurement device
CN111323059A (en) Sensing device based on fiber Bragg grating Fabry-Perot cavity
JP2019114720A (en) Wavelength sweeping light source
Fan et al. Novel structure of an ultra-narrow-bandwidth fibre laser based on cascade filters: PGFBG and SA
Lu et al. Study on self-mixing interference using Er3+–Yb3+ codoped distributed Bragg reflector fiber laser with different pump power current

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201009

R150 Certificate of patent or registration of utility model

Ref document number: 6778164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150