JP2018194768A - Zoom lens and imaging apparatus using the same - Google Patents

Zoom lens and imaging apparatus using the same Download PDF

Info

Publication number
JP2018194768A
JP2018194768A JP2017100475A JP2017100475A JP2018194768A JP 2018194768 A JP2018194768 A JP 2018194768A JP 2017100475 A JP2017100475 A JP 2017100475A JP 2017100475 A JP2017100475 A JP 2017100475A JP 2018194768 A JP2018194768 A JP 2018194768A
Authority
JP
Japan
Prior art keywords
lens
lens group
zoom
negative
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017100475A
Other languages
Japanese (ja)
Inventor
明彦 結城
Akihiko Yuki
明彦 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017100475A priority Critical patent/JP2018194768A/en
Publication of JP2018194768A publication Critical patent/JP2018194768A/en
Pending legal-status Critical Current

Links

Abstract

To provide a zoom lens having favorably corrected chromatic aberration in the entire zoom range and high resolution performance while achieving reduction in size and highly variable magnifications, and an imaging apparatus using the zoom lens.SOLUTION: The zoom lens comprises, successively from an object side to an image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a rear group including at least one lens group, in which upon zooming from a wide angle end to a telephoto end, at least the first to third lens groups move. The second lens group has at least three negative lenses and at least one positive lens. A focal distance f2 of the second lens, a focal distance ft at the telephoto end, an average Abbe number v2nave of negative lenses included in the second lens group, and an average Abbe number v2pave of positive lenses included in the second lens group are appropriately set.SELECTED DRAWING: Figure 1

Description

本発明は、ズームレンズおよびこれを用いた撮像装置に関し、例えばビデオカメラ、デジタルカメラなどに好適なものである。   The present invention relates to a zoom lens and an image pickup apparatus using the same, and is suitable for a video camera, a digital camera, and the like.

近年、固体撮像素子を用いた撮像装置においては、装置全体の小型化と高機能化に加えて、高画質化が強く要望されている。それに伴い、これらに用いる撮影光学系として、小型高変倍であることに加え、色収差が良好に補正された高い解像力を有するズームレンズが強く要求されている。   In recent years, in an imaging apparatus using a solid-state imaging element, in addition to downsizing and high functionality of the entire apparatus, there has been a strong demand for higher image quality. Accordingly, there is a strong demand for a zoom lens having a high resolving power in which chromatic aberration is well corrected, in addition to being small and highly variable, as a photographing optical system used for these.

このような要求に応えるために、様々なズームレンズが提唱されており、特許文献1、2に開示したような、物体側より像側へ順に、正群、負群、正群の屈折力を有するポジティブリード型のズームレンズが知られている。例えば、正負正群を有するズームレンズ群構成で、小型高変倍のズームレンズの高画質化を図った例として、特許文献1では、銀塩カメラ換算焦点距離で35mm、ズーム比8.0倍程度、また、特許文献2では、銀塩カメラ換算焦点距離で22mm、ズーム比11.8倍程度のズームレンズが開示されている。   In order to meet such a demand, various zoom lenses have been proposed. As disclosed in Patent Documents 1 and 2, the refractive powers of the positive group, the negative group, and the positive group are sequentially increased from the object side to the image side. A positive lead type zoom lens is known. For example, as an example of improving the image quality of a small zoom lens with a zoom lens group configuration having positive and negative groups, in Patent Document 1, the focal length converted to a silver salt camera is 35 mm and the zoom ratio is 8.0 times. In addition, Patent Document 2 discloses a zoom lens with a silver salt camera equivalent focal length of 22 mm and a zoom ratio of about 11.8 times.

特開平9−068653号公報JP-A-9-068653 特開2012−255893号公報JP 2012-255893 A

一般に、正負正群を有するズームレンズ群構成にて、高変倍化と小型化を実現するためには、変倍群である第2レンズ群の屈折力(光学的パワー=焦点距離の逆数)を強めることが有効である。しかしながら、単純に、第2レンズ群の屈折力を強めてしまうと、第2レンズ群で発生する色収差により、ズーム全域で高い解像力を得ることが困難となる。そのため、屈折力の設定に合わせて、第2レンズ群の構成と材料を適切に選択し、色収差を補正する必要がある。   In general, in order to achieve high zoom ratio and miniaturization in a zoom lens group configuration having positive and negative groups, the refractive power of the second lens group that is the zoom group (optical power = reciprocal of focal length). It is effective to strengthen However, simply increasing the refractive power of the second lens group makes it difficult to obtain a high resolving power over the entire zoom range due to chromatic aberration generated in the second lens group. Therefore, it is necessary to correct the chromatic aberration by appropriately selecting the configuration and material of the second lens group in accordance with the refractive power setting.

特許文献1は、第2レンズ群の屈折力が弱いことにより、十分なズームレンズの小型化と高変倍化を両立できているとは言えない。   In Patent Document 1, it cannot be said that the zoom lens has a sufficient size reduction and a high zoom ratio due to the weak refractive power of the second lens group.

特許文献2は、第2レンズ群の屈折力を強めることで、ズームレンズの小型化と高変倍化を図っているが、ズーム全域において十分な色収差補正を図れているとは言えない。   Although Patent Document 2 attempts to reduce the size and increase the zoom ratio of the zoom lens by increasing the refractive power of the second lens group, it cannot be said that sufficient chromatic aberration correction is achieved throughout the entire zoom range.

そこで、本発明は、正負正群を有するズームレンズ群構成にて、第2レンズ群の屈折力、レンズ構成枚数、材料を適切に設定することで、小型化と高変倍化を実現しながらも、ズーム全域で色収差を良好に補正した、高い解像性能を有するズームレンズおよびこれを用いた撮像装置を提供することを目的とする。   Therefore, the present invention achieves downsizing and high zooming by appropriately setting the refractive power, the number of lens components, and the material of the second lens unit in a zoom lens unit configuration having positive and negative groups. Another object of the present invention is to provide a zoom lens having a high resolution performance in which chromatic aberration is corrected well over the entire zoom range, and an imaging apparatus using the zoom lens.

上記の目的を達成するために、本発明に係るズームレンズは、
物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群と、少なくとも1つ以上のレンズ群を含む後群を有して構成され、広角端から望遠端へのズーミングに際して、少なくとも第1から第3レンズ群が移動するズームレンズにおいて、第2レンズ群に少なくとも3枚以上の負レンズと、1枚以上の正レンズを有し、第2レンズの焦点距離をf2、望遠端の焦点距離ft、第2レンズ群に含まれる負レンズの平均アッベ数をv2nave、第2レンズ群に含まれる正レンズの平均アッベ数をv2paveとした時、以下の条件式を満足することを特徴としている。
To achieve the above object, a zoom lens according to the present invention provides:
A rear group including a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and at least one lens group in order from the object side to the image side. In a zoom lens in which at least the first to third lens units move during zooming from the wide-angle end to the telephoto end, at least three negative lenses and at least one negative lens are included in the second lens unit. It has a positive lens, the focal length of the second lens is f2, the focal length ft at the telephoto end, the average Abbe number of the negative lens included in the second lens group is v2nave, and the average Abbe of the positive lens included in the second lens group When the number is v2pave, the following conditional expression is satisfied.

0.050<|f2|/ft<0.140
40.0<v2nave−v2pave<100.0
0.050 <| f2 | / ft <0.140
40.0 <v2nave−v2pave <100.0

本発明によれば、正負正群を有するズームレンズにおいて、小型、高変倍でありながらも、ズーム全域で色収差を良好に補正した、高い解像力を有するズームレンズおよびこれを用いた撮像装置が得られる。   According to the present invention, in a zoom lens having a positive / negative positive group, there is obtained a zoom lens having a high resolving power and a zoom lens having a high resolving power in which the chromatic aberration is corrected satisfactorily while being small in size and having a high zoom ratio, and an imaging apparatus using the same. It is done.

本発明の数値実施例1のレンズ断面図Lens sectional view of Numerical Example 1 of the present invention 本発明の数値実施例1の広角端における収差図Aberration diagram at the wide angle end according to Numerical Example 1 of the present invention. 本発明の数値実施例1の中間位置における収差図Aberration diagram at intermediate position of Numerical Example 1 of the present invention 本発明の数値実施例1の望遠端における収差図Aberration diagram at the telephoto end according to Numerical Example 1 of the present invention. 本発明の数値実施例2のレンズ断面図Lens sectional view of Numerical Example 2 of the present invention 本発明の数値実施例2の広角端における収差図Aberration diagram at the wide angle end according to Numerical Example 2 of the present invention. 本発明の数値実施例2の中間位置における収差図Aberration diagram at intermediate position of Numerical Example 2 of the present invention 本発明の数値実施例2の望遠端における収差図Aberration diagram at the telephoto end according to Numerical Example 2 of the present invention. 本発明の数値実施例3のレンズ断面図Lens sectional view of Numerical Example 3 of the present invention 本発明の数値実施例3の広角端における収差図Aberration diagram at the wide angle end according to Numerical Example 3 of the present invention. 本発明の数値実施例3の中間位置における収差図Aberration diagram at intermediate position of Numerical Example 3 of the present invention 本発明の数値実施例3の望遠端における収差図Aberration diagram at the telephoto end according to Numerical Example 3 of the present invention 本発明の数値実施例4のレンズ断面図Lens sectional view of Numerical Example 4 of the present invention 本発明の数値実施例4の広角端における収差図Aberration diagram at the wide angle end according to Numerical Example 4 of the present invention. 本発明の数値実施例4の中間位置における収差図Aberration diagram at intermediate position of Numerical Example 4 of the present invention 本発明の数値実施例4の望遠端における収差図Aberration diagram at the telephoto end according to Numerical Example 4 of the present invention. 本発明の数値実施例5のレンズ断面図Lens sectional view of Numerical Example 5 of the present invention 本発明の数値実施例5の広角端における収差図Aberration diagram at the wide-angle end according to Numerical Example 5 of the present invention 本発明の数値実施例5の中間位置における収差図Aberration diagram at intermediate position of Numerical Example 5 of the present invention 本発明の数値実施例5の望遠端における収差図Aberration diagram at the telephoto end according to Numerical Example 5 of the present invention. 本発明の数値実施例6のレンズ断面図Lens sectional drawing of Numerical Example 6 of the present invention 本発明の数値実施例6の広角端における収差図Aberration diagram at the wide angle end according to Numerical Example 6 of the present invention. 本発明の数値実施例6の中間位置における収差図Aberration diagram at intermediate position of Numerical Example 6 according to the present invention 本発明の数値実施例6の望遠端における収差図Aberration diagram at the telephoto end according to Numerical Example 6 of the present invention. 本発明の光学機器の要概略図Schematic diagram of the optical apparatus of the present invention

以下に本発明の好ましい実施形態を添付の図面に基いて詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明の実施例1のズームレンズの広角端(短焦点距離端)におけるレンズ断面図である。図2、図3、図4はそれぞれ実施例1のズームレンズの広角端、中間のズーム位置、望遠端(長焦点距離端)における収差図である。実施例1はズーム比11.8、開口比2.88〜2.88程度のズームレンズである。   FIG. 1 is a lens cross-sectional view at the wide-angle end (short focal length end) of the zoom lens according to Embodiment 1 of the present invention. 2, 3, and 4 are aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end (long focal length end) of the zoom lens of Example 1, respectively. Embodiment 1 is a zoom lens having a zoom ratio of 11.8 and an aperture ratio of about 2.88 to 2.88.

図5は本発明の実施例2のズームレンズの広角端(短焦点距離端)におけるレンズ断面図である。図6、図7、図8はそれぞれ実施例2のズームレンズの広角端、中間のズーム位置、望遠端(長焦点距離端)における収差図である。実施例2はズーム比12.6、開口比2.88〜3.00程度のズームレンズである。   FIG. 5 is a lens cross-sectional view at the wide-angle end (short focal length end) of the zoom lens according to the second embodiment of the present invention. 6, 7 and 8 are aberration diagrams of the zoom lens of Example 2 at the wide-angle end, the intermediate zoom position, and the telephoto end (long focal length end), respectively. The second embodiment is a zoom lens having a zoom ratio of 12.6 and an aperture ratio of about 2.88 to 3.00.

図9は本発明の実施例3のズームレンズの広角端(短焦点距離端)におけるレンズ断面図である。図10、図11、図12はそれぞれ実施例3のズームレンズの広角端、中間のズーム位置、望遠端(長焦点距離端)における収差図である。実施例3はズーム比13.2、開口比2.88〜3.50程度のズームレンズである。   FIG. 9 is a lens cross-sectional view at the wide-angle end (short focal length end) of the zoom lens according to Embodiment 3 of the present invention. 10, 11 and 12 are aberration diagrams of the zoom lens of Example 3 at the wide-angle end, the intermediate zoom position, and the telephoto end (long focal length end), respectively. Example 3 is a zoom lens having a zoom ratio of 13.2 and an aperture ratio of about 2.88 to 3.50.

図13は本発明の実施例4のズームレンズの広角端(短焦点距離端)におけるレンズ断面図である。図14、図15、図16はそれぞれ実施例4のズームレンズの広角端、中間のズーム位置、望遠端(長焦点距離端)における収差図である。実施例4はズーム比13.7、開口比2.88〜4.00程度のズームレンズである。   FIG. 13 is a lens cross-sectional view at the wide-angle end (short focal length end) of the zoom lens according to the fourth exemplary embodiment of the present invention. FIGS. 14, 15, and 16 are aberration diagrams of the zoom lens of Example 4 at the wide-angle end, the intermediate zoom position, and the telephoto end (long focal length end), respectively. The fourth embodiment is a zoom lens having a zoom ratio of 13.7 and an aperture ratio of about 2.88 to 4.00.

図17は本発明の実施例5のズームレンズの広角端(短焦点距離端)におけるレンズ断面図である。図18、図19、図20はそれぞれ実施例5のズームレンズの広角端、中間のズーム位置、望遠端(長焦点距離端)における収差図である。実施例5はズーム比14.3、開口比2.88〜5.60程度のズームレンズである。   FIG. 17 is a lens cross-sectional view at the wide-angle end (short focal length end) of a zoom lens according to Example 5 of the present invention. 18, 19 and 20 are aberration diagrams of the zoom lens of Example 5 at the wide-angle end, the intermediate zoom position, and the telephoto end (long focal length end), respectively. Example 5 is a zoom lens having a zoom ratio of 14.3 and an aperture ratio of about 2.88 to 5.60.

図21は本発明の実施例6のズームレンズの広角端(短焦点距離端)におけるレンズ断面図である。図22、図23、図24はそれぞれ実施例6のズームレンズの広角端、中間のズーム位置、望遠端(長焦点距離端)における収差図である。実施例6はズーム比11.1、開口比2.88〜5.60程度のズームレンズである。   FIG. 21 is a lens cross-sectional view at the wide-angle end (short focal length end) of a zoom lens according to Example 6 of the present invention. FIGS. 22, 23, and 24 are aberration diagrams of the zoom lens of Example 6 at the wide-angle end, the intermediate zoom position, and the telephoto end (long focal length end), respectively. Example 6 is a zoom lens having a zoom ratio of 11.1 and an aperture ratio of about 2.88 to 5.60.

レンズ断面図において、iは物体側から像側への各レンズ群の順序を示し、Liは第iレンズ群である。SPは開放Fナンバー(Fno)光束を決定(制限)する開口絞りの作用をするFナンバー決定部材(以下「開口絞り」と呼ぶ)である。Gは光学フィルタ、フェースプレート、水晶ローパスフィルタ、赤外カットフィルタ等に相当する光学ブロックである。IPは像面であり、ビデオカメラやデジタルスチルカメラの撮影光学系として使用する際にはCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面が置かれる。又、銀塩フィルム用カメラの撮影光学系として使用する際にはフィルム面に相当する感光面が置かれている。   In the lens cross-sectional view, i indicates the order of the lens groups from the object side to the image side, and Li is the i-th lens group. SP is an F-number determining member (hereinafter referred to as “aperture stop”) that functions as an aperture stop that determines (limits) an open F-number (Fno) light beam. G is an optical block corresponding to an optical filter, a face plate, a crystal low-pass filter, an infrared cut filter, or the like. IP is an image plane, and when used as a photographing optical system of a video camera or a digital still camera, an imaging plane of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor is placed. Further, when used as a photographing optical system for a silver salt film camera, a photosensitive surface corresponding to the film surface is provided.

収差図において、d、Fは各々d線及びg線、ΔM、ΔSはメリディオナル像面、サジタル像面を表している。また、軸上および倍率色収差は、g線によって表している。   In the aberration diagrams, d and F represent d-line and g-line, respectively, and ΔM and ΔS represent a meridional image plane and a sagittal image plane, respectively. On-axis and lateral chromatic aberration are represented by g-line.

次に、各実施例に共通して、本発明の効果を得る上で特徴となる点について説明する。物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群と、少なくとも1つ以上のレンズ群を含む後群を有して構成され、広角端から望遠端へのズーミングに際して、少なくとも第1から第3レンズ群が移動するズームレンズにおいて、第2レンズ群に少なくとも3枚以上の負レンズと、1枚以上の正レンズを有して構成され、以下の条件を満足している。   Next, points common to the embodiments will be described for obtaining the effects of the present invention. A rear group including a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and at least one lens group in order from the object side to the image side. In a zoom lens in which at least the first to third lens units move during zooming from the wide-angle end to the telephoto end, at least three negative lenses and at least one negative lens are included in the second lens unit. It is configured with a positive lens and satisfies the following conditions.

0.050<|f2|/ft<0.140・・・(1)
40.0<v2nave−v2pave<100.0・・・(2)
ただし、第2レンズの焦点距離をf2、望遠端の焦点距離ft、第2レンズ群に含まれる負レンズの平均アッベ数をv2nave、第2レンズ群に含まれる正レンズの平均アッベ数v2paveとする。
0.050 <| f2 | / ft <0.140 (1)
40.0 <v2nave−v2pave <100.0 (2)
However, the focal length of the second lens is f2, the focal length ft at the telephoto end, the average Abbe number of the negative lens included in the second lens group is v2nave, and the average Abbe number of the positive lens included in the second lens group is v2pave. .

本発明では、主に、第2レンズ群と第3レンズ群を移動することで、変倍を行っている。特に、第2レンズ群の屈折力を強めることで、第2レンズ群の変倍効果を高めつつ、ズーム時の移動量を抑えることで、高変倍化と小型化を達成している。   In the present invention, zooming is performed mainly by moving the second lens group and the third lens group. In particular, by increasing the refracting power of the second lens group, the zooming effect of the second lens group is enhanced and the movement amount during zooming is suppressed, thereby achieving high zooming and miniaturization.

また、第2レンズ群に含まれる負レンズの構成枚数を3枚以上とすることで屈折力を分担し、かつ、第2レンズ群に含まれる負レンズと正レンズの平均アッベ数差を適切に設定することで、第2レンズ群の屈折力を強めた際に発生する色収差を補正している。   Further, by making the number of negative lenses included in the second lens group three or more, the refractive power is shared, and the average Abbe number difference between the negative lens and the positive lens included in the second lens group is appropriately set. By setting, the chromatic aberration generated when the refractive power of the second lens group is increased is corrected.

条件式(1)が上限を超えると、第2レンズ群の屈折力が弱まり過ぎてしまい、高変倍化時に、2群の移動量が大きくなり過ぎてしまい、ズームレンズの全長を小型化することが難しくなる。下限を超えると、第2レンズ群の屈折力が強まり過ぎてしまい、望遠端において、軸上色収差の補正が困難となる。   If the conditional expression (1) exceeds the upper limit, the refractive power of the second lens group becomes too weak, and the amount of movement of the second group becomes too large at the time of high zooming, thereby reducing the overall length of the zoom lens. It becomes difficult. If the lower limit is exceeded, the refractive power of the second lens group becomes too strong, and it becomes difficult to correct axial chromatic aberration at the telephoto end.

条件式(2)は第2レンズ群に含まれる負レンズの平均アッベ数第2レンズ群に含まれる正レンズの平均アッベ数の差を規定する式である。第2レンズ群に含まれる負レンズと正レンズのアッベ数差が大きいほど、1次の色補正に必要な各レンズの屈折力は小さくてすむ。   Conditional expression (2) is an expression that defines the difference between the average Abbe numbers of the negative lenses included in the second lens group and the average Abbe numbers of the positive lenses included in the second lens group. The larger the Abbe number difference between the negative lens and the positive lens included in the second lens group, the smaller the refractive power of each lens necessary for the primary color correction.

条件式(2)が上限を越えると、1次の色補正には有利となるが、実在する材料では、負レンズと正レンズの部分分散比の差が大きくなりすぎてしまい、望遠端の二次スペクトルの増大が課題となる。下限を超えると、アッベ数の差が小さくなりすぎてしまい、1次の色補正をするのに必要な各レンズの屈折力が大きくなりすぎてしまう。その結果、広角端の像面彎曲と望遠側の球面収差の補正が困難となる。   If conditional expression (2) exceeds the upper limit, it is advantageous for primary color correction. However, in the case of an actual material, the difference in partial dispersion ratio between the negative lens and the positive lens becomes too large. Increasing the next spectrum becomes a problem. If the lower limit is exceeded, the difference in Abbe number becomes too small, and the refractive power of each lens necessary for the primary color correction becomes too large. As a result, it becomes difficult to correct curvature of field at the wide-angle end and spherical aberration on the telephoto side.

上記の構成と(1)、(2)の条件を満たすことによって本発明の課題である、小型、高変倍でありながらも、ズーム全域で色収差を補正した、高い解像力を有するズームレンズを実現することが可能となる。   By satisfying the above-described configuration and the conditions (1) and (2), the zoom lens having a high resolving power in which the chromatic aberration is corrected in the entire zoom range, which is a subject of the present invention, is small and has a high zoom ratio. It becomes possible to do.

なお更に好ましくは、実施の形態の効果を大きくするために、条件式(1)(2)の範囲を以下の範囲に設定することが好ましい。   Still more preferably, in order to increase the effect of the embodiment, it is preferable to set the ranges of conditional expressions (1) and (2) to the following ranges.

0.070<|f2|/ft<0.135・・・(1a)
41.0<v2nave−v2pave<80・・・(2a)
更に好ましくは、条件式(1a)(2a)の範囲を以下の範囲に設定することが好ましい。
0.070 <| f2 | / ft <0.135 (1a)
41.0 <v2nave−v2pave <80 (2a)
More preferably, the ranges of conditional expressions (1a) and (2a) are set to the following ranges.

0.090<|f2|/ft<0.135・・・(1b)
42<v2nave−v2pave<75・・・(2b)
更に、広角端における第2レンズ群の横倍率をβ2w、望遠端における横倍率をβ2tとした時、以下の条件式を満足することが好ましい。
0.090 <| f2 | / ft <0.135 (1b)
42 <v2nave−v2pave <75 (2b)
Furthermore, when the lateral magnification of the second lens group at the wide-angle end is β2w and the lateral magnification at the telephoto end is β2t, it is preferable that the following conditional expression is satisfied.

4.0<β2t/β2w<10.0・・・(3)
条件式(3)が上限を超えると、第2レンズ群の変倍比が大きくなり過ぎてしまい、第2レンズ群の屈折力を強めたままだと、ズーム全域の倍率色収差を補正することが困難となる。下限を超えると、第2レンズ群の変倍比が小さくなり過ぎてしまい、高変倍化時に、第3レンズ群の移動による変倍分担が大きくなるため、同じズーム比を維持しようとすると、望遠端の全長を小型化することが難しくなる。
4.0 <β2t / β2w <10.0 (3)
If the conditional expression (3) exceeds the upper limit, the zoom ratio of the second lens group becomes too large, and it is difficult to correct the chromatic aberration of magnification over the entire zoom range if the refractive power of the second lens group is kept strong. It becomes. When the lower limit is exceeded, the zoom ratio of the second lens group becomes too small, and the zooming share due to movement of the third lens group becomes large at the time of high zooming, so when trying to maintain the same zoom ratio, It becomes difficult to reduce the total length of the telephoto end.

更に、第2レンズ群に含まれる負レンズの平均焦点距離をf2nave、広角端の焦点距離をfwとした時、以下の条件式を満足することが好ましい。   Further, it is preferable that the following conditional expression is satisfied when the average focal length of the negative lens included in the second lens group is f2nave and the focal length at the wide-angle end is fw.

3.0<|f2nave|/fw<10.0・・・(4)
条件式(4)が上限を超えると、第2レンズ群に含まれる負レンズの屈折力が弱くなり過ぎてしまい、広角端にて軸外光束を屈折させる作用が薄れるため、前玉径が大型化することが課題となる。下限を超えると、第2レンズ群に含まれる負レンズの屈折力が強まり過ぎてしまい、広角端において倍率色収差の補正が困難となる。
3.0 <| f2nave | / fw <10.0 (4)
If conditional expression (4) exceeds the upper limit, the refractive power of the negative lens included in the second lens group becomes too weak, and the effect of refracting off-axis light beams at the wide-angle end is reduced, so the front lens diameter is large. It becomes a problem to become. If the lower limit is exceeded, the refractive power of the negative lens included in the second lens group becomes too strong, and it becomes difficult to correct lateral chromatic aberration at the wide-angle end.

更に、第2レンズ群に含まれる負レンズの平均屈折率をN2naveとした時、以下の条件式を満足することが好ましい。   Furthermore, when the average refractive index of the negative lens included in the second lens group is N2nave, it is preferable that the following conditional expression is satisfied.

1.500<N2nave<1.800・・・(5)
条件式(5)が上限を超えると、実在する材料では、第2レンズ群内に含まれる負レンズの分散が高分散となりすぎてしまい、1次の色収差補正を行うことが困難となる。下限を超えると、第2レンズ群に含まれる負レンズの屈折率が低くなり過ぎてしまい、広角端において発生する像面彎曲の補正が困難となる。
1.500 <N2nave <1.800 (5)
When the conditional expression (5) exceeds the upper limit, with the actual material, the dispersion of the negative lens included in the second lens group becomes too high, making it difficult to perform the primary chromatic aberration correction. If the lower limit is exceeded, the refractive index of the negative lens included in the second lens group becomes too low, making it difficult to correct field curvature that occurs at the wide-angle end.

更に、第2レンズ群は、物体側から順に、負の屈折力の21レンズ、負の屈折力の22レンズ、負の屈折力の23レンズを配置して構成されていることが好ましい。このように、第2レンズ群内のレンズ配置を、物体側から負レンズを3枚並べた構成とすることにより、広角端にて軸外光束を緩やかに屈折させることができ、広角端における像高間の倍率色収差の曲がりを良好に補正している。   Furthermore, it is preferable that the second lens group includes 21 lenses having a negative refractive power, 22 lenses having a negative refractive power, and 23 lenses having a negative refractive power in order from the object side. As described above, the arrangement of the lenses in the second lens group is such that three negative lenses are arranged from the object side, whereby the off-axis light beam can be gently refracted at the wide-angle end, and the image at the wide-angle end. Bending of chromatic aberration of magnification between high is corrected well.

更に、21レンズの物体面の曲率半径をR21o、像側面の曲率半径をR21i、22レンズの物体側面の曲率半径をR22o、22レンズの像側面の曲率半径をR22i、23レンズの物体側面の曲率半径をR23o、23レンズの像側面の曲率半径をR23iとした時、以下の条件式を満足することが好ましい。   Further, the radius of curvature of the object surface of the 21 lens is R21o, the radius of curvature of the image side surface is R21i, the radius of curvature of the object side surface of the 22 lens is R22o, the radius of curvature of the image side surface of the 22 lens is R22i, and the curvature of the object side surface of the 23 lens. When the radius is R23o and the curvature radius of the image side surface of the 23 lens is R23i, it is preferable that the following conditional expression is satisfied.

0.90<(R21o+R21i)/(R21o−R21i)<2.00・・・(6)
−1.00<(R22o+R22i)/(R22o−R22i)<2.00・・・(7)
−3.00<(R23o+R23i)/(R23o−R23i)<−1.00・・・(8)
条件式(6)は、第2レンズ群の負レンズ21の形状因子を規定する式である。上限を越えると、負レンズ21の物体側レンズ面の形状が、凸面側にきつくなりすぎてしまい、望遠側において球面収差補正が過剰となってくる。下限を超えると、物体側レンズ面の形状が、凹面側にきつくなりすぎてしまい、広角端において高次の倍率色収差を補正することが困難となる。
0.90 <(R21o + R21i) / (R21o−R21i) <2.00 (6)
−1.00 <(R22o + R22i) / (R22o−R22i) <2.00 (7)
−3.00 <(R23o + R23i) / (R23o−R23i) <− 1.00 (8)
Conditional expression (6) is an expression that defines the shape factor of the negative lens 21 of the second lens group. When the upper limit is exceeded, the shape of the object side lens surface of the negative lens 21 becomes too tight on the convex side, and spherical aberration correction becomes excessive on the telephoto side. If the lower limit is exceeded, the shape of the object-side lens surface becomes too tight on the concave surface side, making it difficult to correct high-order lateral chromatic aberration at the wide-angle end.

条件式(7)は、第2レンズ群の負レンズ22の形状因子を規定する式である。上限を越えると、負レンズ22の物体側レンズ面の形状が、凸面側にきつくなりすぎてしまい、望遠側において球面収差補正が過剰となってくる。下限を超えると、物体側レンズ面の形状が、凹面側にきつくなりすぎてしまい、広角端において高次の倍率色収差を補正することが困難となる。   Conditional expression (7) is an expression that defines the shape factor of the negative lens 22 of the second lens group. When the upper limit is exceeded, the shape of the object side lens surface of the negative lens 22 becomes too tight on the convex side, and spherical aberration correction becomes excessive on the telephoto side. If the lower limit is exceeded, the shape of the object-side lens surface becomes too tight on the concave surface side, making it difficult to correct high-order lateral chromatic aberration at the wide-angle end.

条件式(8)は、第2レンズ群の負レンズ23の形状因子を規定する式である。上限を越えると、負レンズ23の像側レンズ面の形状が凹面側にきつくなりすぎてしまい、広角端において非点収差の補正が過剰となってくる。下限を超えると、負レンズ23の像側レンズ面の形状が凸面側にきつくなりすぎてしまい、望遠端において短波長域の色の球面収差補正が困難となる。   Conditional expression (8) is an expression that defines the shape factor of the negative lens 23 of the second lens group. If the upper limit is exceeded, the shape of the image side lens surface of the negative lens 23 becomes too tight on the concave side, and astigmatism correction becomes excessive at the wide angle end. If the lower limit is exceeded, the shape of the image side lens surface of the negative lens 23 becomes too tight on the convex side, and it becomes difficult to correct spherical aberration of colors in the short wavelength region at the telephoto end.

更に、第1レンズ群の焦点距離をf1とした時、以下の条件式を満足することが好ましい。   Furthermore, it is preferable that the following conditional expression is satisfied when the focal length of the first lens unit is f1.

0.500<f1/ft<1.000・・・(9)
条件式(9)が上限を超えると、第1レンズ群の屈折力が弱まり過ぎてしまい、高変倍化を図った際に、第1レンズ群の移動量が増大してしまい、望遠端でズームレンズの全長が大型化してしまう。下限を超えると、第1レンズ群の屈折力が強まり過ぎてしまい、望遠端において、軸上色収差を補正することが困難となる。
更に、第1レンズ群は、少なくとも1枚以上の正レンズと負レンズを有して構成され、第1レンズ群に含まれる正レンズの平均アッベ数をv1pave、負レンズの平均アッベ数をv1naveとした時、以下の条件式を満足することが好ましい。
0.500 <f1 / ft <1.000 (9)
If the conditional expression (9) exceeds the upper limit, the refractive power of the first lens group becomes too weak, and the amount of movement of the first lens group increases when zooming is performed, and at the telephoto end. The overall length of the zoom lens is increased. If the lower limit is exceeded, the refractive power of the first lens group becomes too strong, and it becomes difficult to correct axial chromatic aberration at the telephoto end.
Further, the first lens group includes at least one positive lens and a negative lens. The average Abbe number of positive lenses included in the first lens group is v1pave, and the average Abbe number of negative lenses is v1nave. It is preferable that the following conditional expression is satisfied.

40.0<v1pave−v1nave<80.0・・・(10)
条件式(10)が上限を越えると、正レンズと負レンズのアッベ数の差が大きくなりすぎてしまい、実在する材料では、正レンズと負レンズの部分分散比の差が大きくなりすぎてしまい、望遠端の二次スペクトルの増大が課題となる。下限を超えると、アッベ数の差が小さくなりすぎてしまい、1次の色補正をするのに必要な各レンズの屈折力が大きくなりすぎてしまう。その結果、望遠端の球面収差の補正が困難となる。
40.0 <v1pave−v1nave <80.0 (10)
If the conditional expression (10) exceeds the upper limit, the difference between the Abbe numbers of the positive lens and the negative lens becomes too large, and the difference in the partial dispersion ratio between the positive lens and the negative lens becomes too large with existing materials. An increase in the secondary spectrum at the telephoto end becomes a problem. If the lower limit is exceeded, the difference in Abbe number becomes too small, and the refractive power of each lens necessary for the primary color correction becomes too large. As a result, it becomes difficult to correct spherical aberration at the telephoto end.

更に、第3レンズ群の焦点距離をf3とした時、以下の条件式を満足することが好ましい。   Furthermore, it is preferable that the following conditional expression is satisfied when the focal length of the third lens group is f3.

0.100<f3/ft<0.250・・・(11)
条件式(11)が上限を超えると、第3レンズ群の屈折力が弱まり過ぎてしまい、高変倍化を図った際に、第3レンズ群の移動量が増大してしまい、望遠端でズームレンズの全長が大型化してしまう。下限を超えると、第3レンズ群の屈折力が強まり過ぎてしまい、ズーム全域において軸上色収差を補正することが困難となる。
0.100 <f3 / ft <0.250 (11)
If the conditional expression (11) exceeds the upper limit, the refractive power of the third lens group becomes too weak, and the amount of movement of the third lens group increases when zooming is performed at the telephoto end. The overall length of the zoom lens is increased. If the lower limit is exceeded, the refractive power of the third lens group becomes too strong, and it is difficult to correct axial chromatic aberration over the entire zoom range.

更に、第3レンズ群は、少なくとも1枚以上の正レンズと負レンズを有して構成され、第3レンズ群に含まれる正レンズの平均アッベ数をv3pave、負レンズの平均アッベ数をv3naveとした時、以下の条件式を満足することが好ましい。   Furthermore, the third lens group includes at least one positive lens and a negative lens. The average Abbe number of positive lenses included in the third lens group is v3pave, and the average Abbe number of negative lenses is v3nave. It is preferable that the following conditional expression is satisfied.

40.0<v3pave−v3nave<80.0・・・(12)
条件式(12)が上限を越えると、1次の色補正には有利となるが、実在する材料では、正レンズと負レンズの部分分散比の差が大きくなりすぎてしまい、広角端の二次スペクトルの増大が課題となる。下限を超えると、アッベ数の差が小さくなりすぎてしまい、1次の色補正をするのに必要な各レンズの屈折力が大きくなりすぎてしまう。その結果、ズーム全域で球面収差と非点収差の補正が困難となる。
40.0 <v3pave−v3nave <80.0 (12)
If the conditional expression (12) exceeds the upper limit, it is advantageous for primary color correction. However, with the actual material, the difference in partial dispersion ratio between the positive lens and the negative lens becomes too large, and the two at the wide-angle end. Increasing the next spectrum becomes a problem. If the lower limit is exceeded, the difference in Abbe number becomes too small, and the refractive power of each lens necessary for the primary color correction becomes too large. As a result, it is difficult to correct spherical aberration and astigmatism over the entire zoom range.

更に好ましくは、実施の形態の効果を大きくするために、条件式(3)〜(11)の範囲を以下の範囲に設定することが好ましい。   More preferably, in order to increase the effect of the embodiment, it is preferable to set the ranges of conditional expressions (3) to (11) to the following ranges.

4.0<β2t/β2w<7.0・・・(3a)
4.00<|f2nave|/fw<7.00・・・(4a)
1.520<N2nave<1.700・・・(5a)
0.95<(R21o+R21i)/(R21o−R21i)<1.50・・・(6a)
−0.90<(R22o+R22i)/(R22o−R22i)<1.70
・・・(7a)
−2.50<(R23o+R23i)/(R23o−R23i)<−1.50
・・・(8a)
0.600<f1/ft<0.900・・・(9a)
41.0<v1pave−v1nave<75.0・・・(10a)
0.150<f3/ft<0.240・・・(11a)
42.0<v3pave−v3nave<75.0・・・(12a)
さらに、本発明が提案するズームレンズは、歪曲収差と倍率色収差を含んだ電気信号を画像処理によって補正するシステムと合わせて使用することにより、全ズーム領域でさらに高い性能を達成することができる。
4.0 <β2t / β2w <7.0 (3a)
4.00 <| f2nave | / fw <7.00 (4a)
1.520 <N2nave <1.700 (5a)
0.95 <(R21o + R21i) / (R21o−R21i) <1.50 (6a)
−0.90 <(R22o + R22i) / (R22o−R22i) <1.70
... (7a)
−2.50 <(R23o + R23i) / (R23o−R23i) <− 1.50
... (8a)
0.600 <f1 / ft <0.900 (9a)
41.0 <v1pave−v1nave <75.0 (10a)
0.150 <f3 / ft <0.240 (11a)
42.0 <v3pave−v3nave <75.0 (12a)
Furthermore, the zoom lens proposed by the present invention can achieve higher performance in the entire zoom range by using it together with a system that corrects an electrical signal including distortion and lateral chromatic aberration by image processing.

次に、本発明のズームレンズの実施例について詳細を述べる。各実施例のズームレンズにおいて共通の特徴として、広角端から望遠端へ変倍に際して、各レンズ群L1〜L3が移動している。具体的には、変倍に際して、第1レンズ群L1は像側へ凸状の軌跡を描くように移動し、望遠端で広角端より物体側に位置する。第2レンズ群L2は、像側へ移動する。第3レンズ群L3は、物体側へ移動する。このとき、広角端に比べて望遠端で第1レンズ群L1と第2レンズ群L2の間隔が大きくなるように移動している。また第2レンズ群L2と第3レンズ群L3の間隔が小さくなるように移動している。また、各実施例のズームレンズは、第2レンズ群L2と第3レンズ群L3の間にFナンバー決定部材SPを設けている。Fナンバー決定部材SPは、ズーミングに際し、他のレンズ群と独立に移動し、ズーム中間域で物体側へ凸状の軌跡を描くように移動させることにより、前玉有効径の小型化を図っている。   Next, details of an embodiment of the zoom lens of the present invention will be described. As a common feature of the zoom lenses of the embodiments, the lens units L1 to L3 move during zooming from the wide-angle end to the telephoto end. Specifically, at the time of zooming, the first lens unit L1 moves so as to draw a convex locus toward the image side, and is positioned closer to the object side than the wide angle end at the telephoto end. The second lens unit L2 moves to the image side. The third lens unit L3 moves to the object side. At this time, the distance between the first lens unit L1 and the second lens unit L2 is increased at the telephoto end compared to the wide-angle end. Further, the second lens unit L2 and the third lens unit L3 are moved so that the distance between them is small. In the zoom lens of each embodiment, an F-number determining member SP is provided between the second lens group L2 and the third lens group L3. The F-number determining member SP moves independently of the other lens units during zooming, and moves so as to draw a convex trajectory toward the object side in the zoom intermediate region, thereby reducing the effective diameter of the front lens. Yes.

実施例1〜5のズームレンズについては、第3レンズ群より像側の後群として、負の屈折力を有する第4レンズ群L4、正の屈折力を有する第5レンズ群L5を配置して構成されている。第4レンズ群L4は像側に凸状の軌跡を描くように移動し、望遠端で広角端より物体側に位置する。第5レンズ群L5は、像側へ移動する。ズーミングに伴うピント変動の補正は主に第4レンズ群L4もしくはL5の移動で実現される。フォーカシングは第4レンズ群L4もしくは第5レンズ群L5を光軸方向に移動させることで行う。   For the zoom lenses of Examples 1 to 5, the fourth lens unit L4 having negative refractive power and the fifth lens unit L5 having positive refractive power are arranged as a rear unit on the image side from the third lens unit. It is configured. The fourth lens unit L4 moves so as to draw a convex locus on the image side, and is positioned closer to the object side than the wide-angle end at the telephoto end. The fifth lens unit L5 moves to the image side. The correction of the focus variation accompanying zooming is realized mainly by the movement of the fourth lens unit L4 or L5. Focusing is performed by moving the fourth lens unit L4 or the fifth lens unit L5 in the optical axis direction.

実施例6のズームレンズについては、第3レンズ群より像側の後群として、正の屈折力を有する第4レンズ群L4を配置して構成されている。第4レンズ群L4は、広角端から望遠端へ変倍に際して、像側へ移動する。ズーミングに伴うピント変動の補正は主に第4レンズ群L4の移動で実現される。フォーカシングは第4レンズ群を光軸方向に移動させることで行う。   The zoom lens according to the sixth exemplary embodiment is configured by disposing a fourth lens unit L4 having a positive refractive power as a rear unit on the image side of the third lens unit. The fourth lens unit L4 moves toward the image side upon zooming from the wide-angle end to the telephoto end. Correction of focus fluctuations accompanying zooming is realized mainly by movement of the fourth lens unit L4. Focusing is performed by moving the fourth lens group in the optical axis direction.

以下、各レンズ群の群内の構成について説明する。第1レンズ群L1は、物体側より順に負レンズ11と正レンズ12で構成された接合レンズ14、物体側に凸面を向けた正メニスカスレンズ13で構成している。このように構成することで、第1レンズ群L1の正の屈折力を接合レンズ14と正レンズ13とで分担し、第1レンズ群L1で発生する諸収差、特に望遠側における軸上色収差と倍率色収差の発生を低減している。   Hereinafter, the configuration in each lens group will be described. The first lens unit L1 includes, in order from the object side, a cemented lens 14 including a negative lens 11 and a positive lens 12, and a positive meniscus lens 13 having a convex surface directed toward the object side. With this configuration, the positive refractive power of the first lens unit L1 is shared by the cemented lens 14 and the positive lens 13, and various aberrations that occur in the first lens unit L1, particularly axial chromatic aberration on the telephoto side. The occurrence of lateral chromatic aberration is reduced.

第2レンズ群L2は物体側より順に、像側に強い凹面を向けた負レンズ21、像側に強い凹面を向けた負レンズ22、物体側に強い凹面を向けた負レンズ23、物体側に凸面を向けた正レンズ24で構成している。このように構成することで、第2レンズ群L2の負の屈折力を負レンズ3枚で分担し、第2レンズ群L2で発生する諸収差、特に、広角側における像高間の倍率色収差の曲がりと、望遠側における短波長域の色の球面収差を低減している。   The second lens unit L2 includes, in order from the object side, a negative lens 21 having a strong concave surface facing the image side, a negative lens 22 having a strong concave surface facing the image side, a negative lens 23 having a strong concave surface facing the object side, and an object side. It is composed of a positive lens 24 having a convex surface. With this configuration, the negative refractive power of the second lens unit L2 is shared by the three negative lenses, and various aberrations that occur in the second lens unit L2, in particular, the chromatic aberration of magnification between the image heights on the wide angle side. Bending and spherical aberration of color in the short wavelength region on the telephoto side are reduced.

第3レンズ群L3は、物体側より順に、物体側に凸面を向けた正レンズ31、物体側に凸面を向けた正レンズ32と像側に凹面を向けた負レンズ33で構成された接合レンズ35、両凸の正レンズ34で構成している。このように構成することで、第3レンズ群L3の正の屈折力を正レンズ3枚以上で分担し、第3レンズ群で発生する諸収差、特に変倍全域に渡る球面収差、コマ収差、軸上色収差の発生を低減している。   The third lens unit L3 includes, in order from the object side, a positive lens 31 having a convex surface facing the object side, a positive lens 32 having a convex surface facing the object side, and a negative lens 33 having a concave surface facing the image side. 35, a biconvex positive lens 34. With this configuration, the positive refractive power of the third lens unit L3 is shared by three or more positive lenses, and various aberrations generated in the third lens unit, particularly spherical aberration, coma, The occurrence of axial chromatic aberration is reduced.

実施例1〜5の第4レンズ群L4は1つの負レンズ41で構成している。1枚で構成することにより、第4レンズ群でフォーカシングを行う場合に迅速なフォーカシングができるようにしている。   The fourth lens unit L4 of Examples 1 to 5 includes one negative lens 41. By using a single lens, it is possible to perform rapid focusing when focusing with the fourth lens group.

実施例6の第4レンズ群L4は1つの正レンズ41で構成している。1枚で構成することにより、第4レンズ群でフォーカシングを行う場合に迅速なフォーカシングができるようにしている。   The fourth lens unit L4 according to the sixth exemplary embodiment includes one positive lens 41. By using a single lens, it is possible to perform rapid focusing when focusing with the fourth lens group.

実施例1〜5の第5レンズ群L5は物体側より順に正レンズ51、負レンズ52で構成している。正負2枚のレンズで構成することで、変倍全域にて倍率色収差の発生を低減している。   The fifth lens unit L5 of Examples 1 to 5 includes a positive lens 51 and a negative lens 52 in order from the object side. By comprising two positive and negative lenses, the occurrence of lateral chromatic aberration is reduced over the entire zoom range.

なお各実施例では任意のレンズ群を光軸と垂直な方向に移動させて手ぶれ補正を行うことが可能である。   In each embodiment, camera shake correction can be performed by moving an arbitrary lens group in a direction perpendicular to the optical axis.

次に本発明の各実施例の数値実施例を示す。各数値実施例において、iは物体側からの面の順序を示し、Riはレンズ面の曲率半径、Diは第i面と第i+1面との間のレンズ肉厚および空気間隔、Ndi、νdiはそれぞれd線に対する屈折率、アッベ数を示す。また、もっとも像側の2面は水晶ローパスフィルタ、赤外カットフィルタ等のフィルタ部材である。   Next, numerical examples of the respective embodiments of the present invention will be shown. In each numerical example, i indicates the order of the surfaces from the object side, Ri is the radius of curvature of the lens surface, Di is the lens thickness and air space between the i-th surface and the i + 1-th surface, and Ndi and νdi are The refractive index and Abbe number for d line are shown. The two surfaces closest to the image side are filter members such as a crystal low-pass filter and an infrared cut filter.

各数値実施例において使用する記号の意味は次に示すとおりである。数値実施例においてRiは物体側より順に第i番目のレンズ面の曲率半径、Diは物体側より順に第i番目のレンズ厚及び空気間隔、Niとνiは各々物体側より順に第i番目のレンズのガラスのd線に対する屈折率、アッベ数である。又前述の各条件式と数値実施例の関係を表1に示す。   The meanings of symbols used in each numerical example are as follows. In the numerical examples, Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness and air spacing in order from the object side, and Ni and νi are the i-th lens in order from the object side. The refractive index and the Abbe number of the glass with respect to the d-line. Table 1 shows the relationship between the above-described conditional expressions and numerical examples.

非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、光の進行方向を正としRを近軸曲率半径、Kを円錐定数、A4,A6,A8を各々非球面係数としたとき   The aspherical shape is the X axis in the optical axis direction, the H axis in the direction perpendicular to the optical axis, the light traveling direction is positive, R is the paraxial radius of curvature, K is the conic constant, and A4, A6, and A8 are the aspheric coefficients. When

なる式で表している。また、[e+X]は[×10+x]を意味し、[e−X]は[×10−x]を意味している。 It is expressed by the following formula. [E + X] means [× 10 + x], and [e−X] means [× 10−x].

非球面は面番号の後に*を付加して示す。   An aspherical surface is indicated by adding * after the surface number.



[数値実施例1]
単位 mm

面データ
面番号 r d nd vd
1 97.951 1.40 1.85478 24.8
2 61.592 5.70 1.53775 74.7
3 -2285.817 0.50
4 58.986 4.40 1.59282 68.6
5 251.393 (可変)
6 447.003 0.90 1.72916 54.7
7 18.892 3.09
8 -279.492 0.80 1.55332 71.7
9 28.963 3.65
10* -18.505 0.80 1.69680 55.5
11* -53.337 0.17
12 53.525 1.60 1.95906 17.5
13 748.577 (可変)
14(絞り) ∞ (可変)
15* 17.079 5.00 1.55332 71.7
16* 1083.651 0.50
17 17.186 3.80 1.59282 68.6
18 28.516 1.20 1.85478 24.8
19 13.210 3.00
20* 22.372 3.30 1.61881 63.9
21* -49.804 (可変)
22* -80.982 1.31 1.61881 63.9
23* 34.591 (可変)
24* 35.448 5.00 1.62263 58.2
25* -30.710 0.15
26 -71.585 0.90 1.80809 22.8
27 749.486 (可変)
28 ∞ 1.50 1.48749 70.2
29 ∞ (可変)
像面 ∞

非球面データ
第10面
K = 0.00000e+000 A 4=-1.18698e-005 A 6= 2.45459e-007 A 8=-9.91207e-010

第11面
K = 0.00000e+000 A 4= 4.14596e-008 A 6= 2.35342e-007 A 8=-8.81437e-010

第15面
K =-3.51356e-002 A 4=-1.30996e-005 A 6=-1.29163e-007 A 8= 2.45824e-010

第16面
K =-6.71333e+003 A 4= 1.32107e-005 A 6=-1.64420e-007 A 8= 4.94942e-010

第20面
K = 1.83562e+000 A 4=-1.21088e-005 A 6=-2.17210e-007 A 8= 2.35505e-009

第21面
K =-1.15322e+001 A 4= 2.77417e-005 A 6=-7.31070e-008 A 8= 3.08082e-009

第22面
K = 7.97629e+001 A 4= 2.39052e-004 A 6=-1.69187e-006 A 8= 1.02934e-008

第23面
K = 1.68614e+000 A 4= 2.38798e-004 A 6=-1.10583e-006 A 8= 6.02308e-009

第24面
K = 0.00000e+000 A 4=-7.53270e-006 A 6= 6.27479e-007 A 8=-1.01813e-009

第25面
K = 0.00000e+000 A 4= 2.90055e-006 A 6= 4.35069e-007 A 8=-1.65396e-009

各種データ
ズーム比 11.81

焦点距離 9.10 47.95 107.50
Fナンバー 2.88 2.88 2.88
画角 34.27 9.34 4.20
像高 6.20 7.89 7.89
レンズ全長 111.76 127.95 136.56
BF 1.01 1.01 1.01

d 5 1.20 37.93 51.76
d13 29.00 2.03 1.89
d14 13.86 10.18 2.00
d21 2.25 14.01 13.57
d23 6.76 10.15 14.59
d27 9.00 3.98 3.07
d29 1.01 1.01 1.01

ズームレンズ群データ
群 始面 焦点距離
1 1 87.29
2 6 -14.32
3 15 20.79
4 22 -39.00
5 24 39.80


[数値実施例2]
単位 mm

面データ
面番号 r d nd vd
1 95.172 1.40 1.85478 24.8
2 61.371 5.70 1.53775 74.7
3 -30938.631 0.50
4 61.110 4.40 1.59282 68.6
5 240.237 (可変)
6 202.989 0.90 1.72916 54.7
7 16.769 3.85
8 -67.534 0.80 1.55332 71.7
9 42.924 3.42
10* -16.945 0.80 1.55332 71.7
11* -42.153 0.17
12 61.768 1.60 1.95906 17.5
13 748.577 (可変)
14(絞り) ∞ (可変)
15* 16.723 5.00 1.55332 71.7
16* 1904.173 0.50
17 17.690 3.80 1.59282 68.6
18 28.012 1.20 1.85478 24.8
19 13.128 3.00
20* 22.716 3.30 1.61881 63.9
21* -55.065 (可変)
22* -81.504 1.31 1.61881 63.9
23* 34.496 (可変)
24* 35.762 5.00 1.62263 58.2
25* -30.736 0.15
26 -69.062 0.90 1.80809 22.8
27 -34057.238 (可変)
28 ∞ 1.50 1.48749 70.2
29 ∞ (可変)
像面 ∞

非球面データ
第10面
K = 0.00000e+000 A 4=-1.95940e-005 A 6= 1.10974e-007 A 8=-4.10487e-011

第11面
K = 0.00000e+000 A 4=-9.61703e-006 A 6= 1.52418e-007 A 8=-8.47747e-011

第15面
K =-3.89399e-002 A 4=-1.49999e-005 A 6=-1.29031e-007 A 8= 4.41196e-010

第16面
K =-2.36413e+004 A 4= 1.13878e-005 A 6=-1.67725e-007 A 8= 8.37720e-010

第20面
K = 1.76399e+000 A 4=-9.05466e-006 A 6=-1.72536e-007 A 8= 1.97293e-009

第21面
K =-1.09481e+001 A 4= 3.04102e-005 A 6=-2.51025e-008 A 8= 2.34302e-009

第22面
K = 7.72881e+001 A 4= 2.23103e-004 A 6=-1.53039e-006 A 8= 6.80309e-009

第23面
K =-4.69151e-001 A 4= 2.25407e-004 A 6=-9.86519e-007 A 8= 2.16444e-009

第24面
K = 0.00000e+000 A 4=-1.69965e-005 A 6= 3.75989e-007 A 8=-5.23077e-010

第25面
K = 0.00000e+000 A 4=-5.02682e-006 A 6= 6.74979e-008 A 8= 2.38833e-010

各種データ
ズーム比 12.64
広角 中間 望遠
焦点距離 9.10 50.79 115.00
Fナンバー 2.88 3.00 3.00
画角 34.27 8.83 3.92
像高 6.20 7.89 7.89
レンズ全長 112.92 132.55 142.17
BF 1.00 1.00 1.00

d 5 1.20 40.28 54.40
d13 28.99 3.15 1.89
d14 14.08 8.83 2.00
d21 2.78 15.37 15.33
d23 6.40 10.44 15.36
d27 9.26 4.27 2.99
d29 1.00 1.00 1.00

ズームレンズ群データ
群 始面 焦点距離
1 1 90.70
2 6 -14.27
3 15 21.26
4 22 -39.00
5 24 39.07


[数値実施例3]
単位 mm

面データ
面番号 r d nd vd
1 97.129 1.40 2.00069 25.5
2 64.431 5.70 1.53775 74.7
3 -2529.364 0.50
4 60.935 4.40 1.59282 68.6
5 261.371 (可変)
6 190.335 0.90 1.72916 64.0
7 16.678 3.67
8 -73.195 0.80 1.55332 71.7
9 40.912 3.46
10* -16.886 0.80 1.55332 71.7
11* -41.789 0.17
12 62.864 1.60 1.95906 17.5
13 748.577 (可変)
14(絞り) ∞ (可変)
15* 16.849 5.00 1.55332 71.7
16* -1053.741 0.50
17 16.814 3.80 1.49700 81.5
18 27.100 1.20 1.85478 24.8
19 13.277 3.00
20* 21.776 3.30 1.59201 67.0
21* -51.793 (可変)
22* -82.477 1.31 1.62263 58.2
23* 34.625 (可変)
24* 44.709 5.00 1.62263 58.2
25* -34.412 0.15
26 -112.612 0.90 1.80518 25.4
27 -1952.359 (可変)
28 ∞ 1.50 1.48749 70.2
29 ∞ (可変)
像面 ∞

非球面データ
第10面
K = 0.00000e+000 A 4=-5.09858e-005 A 6= 4.80930e-007 A 8=-2.18466e-009

第11面
K = 0.00000e+000 A 4=-3.82608e-005 A 6= 5.37359e-007 A 8=-2.35012e-009

第15面
K =-1.39687e-001 A 4=-1.45766e-005 A 6=-1.24264e-007 A 8= 6.44146e-010

第16面
K =-1.60431e+004 A 4= 7.38481e-006 A 6=-1.83260e-007 A 8= 1.11516e-009

第20面
K = 1.51088e+000 A 4=-1.02221e-006 A 6=-3.09103e-007 A 8= 2.05882e-009

第21面
K =-8.48382e+000 A 4= 4.32813e-005 A 6=-1.50150e-007 A 8= 2.27648e-009

第22面
K = 7.13821e+001 A 4= 2.31416e-004 A 6=-1.56293e-006 A 8= 7.33062e-009

第23面
K = 1.03097e+000 A 4= 2.31346e-004 A 6=-9.31031e-007 A 8= 4.05836e-009

第24面
K = 0.00000e+000 A 4=-2.80208e-005 A 6= 6.91767e-007 A 8=-3.32504e-009

第25面
K = 0.00000e+000 A 4=-1.65840e-005 A 6= 3.37024e-007 A 8=-2.74555e-009

各種データ
ズーム比 13.19
広角 中間 望遠
焦点距離 9.10 53.80 120.00
Fナンバー 2.88 3.00 3.50
画角 34.27 8.34 3.76
像高 6.20 7.89 7.89
レンズ全長 112.28 135.45 144.41
BF 1.00 1.00 1.00

d 5 1.20 43.55 57.34
d13 28.77 3.48 1.89
d14 13.93 8.44 2.00
d21 3.04 14.54 14.12
d23 6.28 11.36 16.01
d27 9.00 4.01 2.99
d29 1.00 1.00 1.00

ズームレンズ群データ
群 始面 焦点距離
1 1 92.89
2 6 -14.22
3 15 21.10
4 22 -39.00
5 24 40.29


[数値実施例4]
単位 mm

面データ
面番号 r d nd vd
1 91.749 1.40 2.00069 25.5
2 61.489 5.70 1.53775 74.7
3 2578.023 0.50
4 63.187 4.40 1.59282 68.6
5 306.149 (可変)
6 155.616 0.90 1.72916 68.0
7 15.690 4.56
8 -33.472 0.80 1.49700 81.5
9 121.521 2.81
10* -17.621 0.80 1.49700 81.5
11* -46.593 0.17
12 79.154 1.60 2.10205 16.8
13 748.577 (可変)
14(絞り) ∞ (可変)
15* 16.711 5.00 1.55332 71.7
16* -225.666 0.50
17 16.748 3.80 1.49700 81.5
18 25.786 1.20 1.85478 24.8
19 12.825 3.00
20* 21.947 3.30 1.59201 67.0
21* -65.678 (可変)
22* -71.318 1.31 1.62263 58.2
23* 37.078 (可変)
24* 40.546 5.00 1.62263 58.2
25* -34.382 0.15
26 -64.820 0.90 1.80518 25.4
27 -123.084 (可変)
28 ∞ 1.50 1.48749 70.2
29 ∞ (可変)
像面 ∞

非球面データ
第10面
K = 0.00000e+000 A 4=-3.63412e-005 A 6= 1.69083e-007 A 8= 4.13746e-012

第11面
K = 0.00000e+000 A 4=-2.91538e-005 A 6= 2.39419e-007 A 8=-2.51096e-010

第15面
K = 7.86705e-002 A 4=-1.84850e-005 A 6=-1.19843e-007 A 8= 1.38907e-010

第16面
K =-5.33738e+002 A 4= 1.02313e-005 A 6=-1.84726e-007 A 8= 7.90810e-010

第20面
K = 6.90829e-001 A 4= 2.39218e-005 A 6=-2.73743e-007 A 8= 1.56823e-009

第21面
K =-6.73995e+000 A 4= 5.50644e-005 A 6=-1.02355e-007 A 8= 1.37322e-009

第22面
K = 5.48958e+001 A 4= 2.23624e-004 A 6=-1.31730e-006 A 8= 1.76060e-009

第23面
K = 2.89917e-001 A 4= 2.19267e-004 A 6=-6.40083e-007 A 8=-5.32807e-009

第24面
K = 0.00000e+000 A 4=-2.02395e-005 A 6= 4.21169e-007 A 8= 1.71228e-009

第25面
K = 0.00000e+000 A 4=-1.24532e-005 A 6= 4.74019e-008 A 8= 4.02476e-009

各種データ
ズーム比 13.74
広角 中間 望遠
焦点距離 9.10 50.20 125.00
Fナンバー 2.88 3.50 4.00
画角 34.27 8.93 3.61
像高 6.20 7.89 7.89
レンズ全長 112.75 136.03 147.11
BF 1.00 1.00 1.00

d 5 1.20 41.99 58.18
d13 28.98 4.69 1.89
d14 13.60 8.39 2.00
d21 1.94 14.40 15.14
d23 6.68 11.96 16.62
d27 10.04 4.29 2.97
d29 1.00 1.00 1.00

ズームレンズ群データ
群 始面 焦点距離
1 1 94.52
2 6 -14.28
3 15 21.29
4 22 -39.00
5 24 37.08


[数値実施例5]
単位 mm

面データ
面番号 r d nd vd
1 88.847 1.40 2.00069 25.5
2 60.759 5.70 1.53775 74.7
3 1064.834 0.50
4 64.876 4.40 1.59282 68.6
5 282.888 (可変)
6 189.488 0.90 1.72916 70.0
7 14.962 5.22
8 -27.815 0.80 1.43875 94.9
9 464.502 2.59
10* -20.541 0.80 1.43875 94.9
11* -74.667 0.17
12 85.908 1.60 2.10205 16.8
13 748.577 (可変)
14(絞り) ∞ (可変)
15* 16.769 5.00 1.55332 71.7
16* -259.351 0.50
17 16.877 3.80 1.49700 81.5
18 26.084 1.20 1.85478 24.8
19 12.989 3.00
20* 21.999 3.30 1.59201 67.0
21* -68.840 (可変)
22* -59.852 1.31 1.62263 58.2
23* 41.203 (可変)
24* 38.063 5.00 1.62263 58.2
25* -33.527 0.15
26 -56.757 0.90 1.80518 25.4
27 -106.537 (可変)
28 ∞ 1.50 1.48749 70.2
29 ∞ (可変)
像面 ∞

非球面データ
第10面
K = 0.00000e+000 A 4=-8.93602e-005 A 6= 9.66023e-007 A 8=-9.29084e-009

第11面
K = 0.00000e+000 A 4=-8.49546e-005 A 6= 1.01486e-006 A 8=-8.24865e-009

第15面
K = 1.20576e-001 A 4=-1.95899e-005 A 6=-6.36481e-008 A 8= 6.36857e-010

第16面
K =-6.03568e+002 A 4= 8.20967e-006 A 6=-8.21368e-008 A 8= 1.30004e-009

第20面
K = 7.29996e-001 A 4= 1.14766e-005 A 6=-1.98352e-007 A 8= 1.97528e-009

第21面
K =-2.04654e+001 A 4= 4.12681e-005 A 6=-6.71293e-008 A 8= 2.04500e-009

第22面
K = 4.52232e+001 A 4= 2.13137e-004 A 6=-1.45940e-006 A 8= 7.13566e-009

第23面
K =-2.24344e+000 A 4= 2.03415e-004 A 6=-1.11315e-006 A 8= 2.51129e-010

第24面
K = 0.00000e+000 A 4= 1.90568e-006 A 6= 1.91865e-007 A 8= 1.58924e-009

第25面
K = 0.00000e+000 A 4= 1.65797e-005 A 6=-1.13900e-007 A 8= 3.17191e-009

各種データ
ズーム比 14.42
広角 中間 望遠
焦点距離 9.01 47.89 130.00
Fナンバー 2.80 4.00 5.60
画角 34.52 9.36 3.47
像高 6.20 7.89 7.89
レンズ全長 113.60 140.52 151.81
BF 1.00 1.00 1.00

d 5 1.20 44.92 62.98
d13 29.00 5.73 1.89
d14 13.38 8.58 1.99
d21 1.87 13.30 14.26
d23 7.13 11.96 15.86
d27 10.27 5.29 4.09
d29 1.00 1.00 1.00

ズームレンズ群データ
群 始面 焦点距離
1 1 98.44
2 6 -14.22
3 15 21.47
4 22 -39.00
5 24 36.16


[数値実施例6]
単位 mm

面データ
面番号 r d nd vd
1 146.951 1.20 1.85478 24.8
2 74.247 4.80 1.59522 67.7
3 -620.072 0.59
4 53.627 3.50 1.60311 60.6
5 169.449 (可変)
6 -7270.894 1.04 1.72916 58.2
7 16.584 2.55
8 100.958 0.93 1.55332 71.7
9 23.390 3.54
10* -24.102 0.93 1.59282 68.6
11* -90.356 0.20
12 67.809 1.86 2.10205 16.8
13 868.349 (可変)
14(絞り) ∞ (可変)
15* 18.138 5.80 1.55332 71.7
16* -386.305 0.59
17 22.656 4.41 1.49700 81.5
18 40.030 1.39 1.85478 24.8
19 15.811 3.48
20* 28.331 3.83 1.59282 68.6
21* -58.310 (可変)
22 123.796 3.00 1.59282 68.6
23* -120.048 (可変)
24 ∞ 1.50 1.51633 64.1
25 ∞ (可変)
像面 ∞

非球面データ
第10面
K = 0.00000e+000 A 4=-2.83945e-004 A 6= 1.61447e-006 A 8= 9.80609e-010

第11面
K = 0.00000e+000 A 4=-2.62516e-004 A 6= 2.15045e-006 A 8=-3.20770e-009

第15面
K = 5.78925e-001 A 4=-2.72589e-005 A 6=-1.22980e-007 A 8=-6.84194e-010

第16面
K = 2.15531e+002 A 4= 1.07879e-005 A 6=-1.85649e-007 A 8= 2.49618e-010

第20面
K = 2.05414e+000 A 4=-4.27490e-006 A 6=-1.48953e-007 A 8=-1.12446e-009

第21面
K =-2.34619e+001 A 4= 4.38736e-006 A 6= 7.20270e-008 A 8=-1.68803e-009

第23面
K = 0.00000e+000 A 4= 8.99440e-007 A 6=-2.86521e-008

各種データ
ズーム比 11.05
広角 中間 望遠
焦点距離 9.97 24.00 110.15
Fナンバー 2.88 4.00 5.60
画角 31.88 18.01 4.05
像高 6.20 7.80 7.80
レンズ全長 112.86 121.12 150.95
BF 1.00 1.00 1.00

d 5 2.23 19.98 54.62
d13 19.31 3.36 2.10
d14 22.37 17.19 2.00
d21 13.41 24.12 39.26
d23 9.43 10.36 6.86
d25 1.00 1.00 1.00

ズームレンズ群データ
群 始面 焦点距離
1 1 91.03
2 6 -14.80
3 14 ∞
4 15 25.87
5 22 103.28

前述の各条件式と数値実施例における諸数値の関係を表1に示す。


[Numerical Example 1]
Unit mm

Surface data surface number rd nd vd
1 97.951 1.40 1.85478 24.8
2 61.592 5.70 1.53775 74.7
3 -2285.817 0.50
4 58.986 4.40 1.59282 68.6
5 251.393 (variable)
6 447.003 0.90 1.72916 54.7
7 18.892 3.09
8 -279.492 0.80 1.55332 71.7
9 28.963 3.65
10 * -18.505 0.80 1.69680 55.5
11 * -53.337 0.17
12 53.525 1.60 1.95906 17.5
13 748.577 (variable)
14 (Aperture) ∞ (Variable)
15 * 17.079 5.00 1.55332 71.7
16 * 1083.651 0.50
17 17.186 3.80 1.59282 68.6
18 28.516 1.20 1.85478 24.8
19 13.210 3.00
20 * 22.372 3.30 1.61881 63.9
21 * -49.804 (variable)
22 * -80.982 1.31 1.61881 63.9
23 * 34.591 (variable)
24 * 35.448 5.00 1.62263 58.2
25 * -30.710 0.15
26 -71.585 0.90 1.80809 22.8
27 749.486 (variable)
28 ∞ 1.50 1.48749 70.2
29 ∞ (variable)
Image plane ∞

Aspheric data 10th surface
K = 0.00000e + 000 A 4 = -1.18698e-005 A 6 = 2.45459e-007 A 8 = -9.91207e-010

11th page
K = 0.00000e + 000 A 4 = 4.14596e-008 A 6 = 2.35342e-007 A 8 = -8.81437e-010

15th page
K = -3.51356e-002 A 4 = -1.30996e-005 A 6 = -1.29163e-007 A 8 = 2.45824e-010

16th page
K = -6.71333e + 003 A 4 = 1.32107e-005 A 6 = -1.64420e-007 A 8 = 4.94942e-010

20th page
K = 1.83562e + 000 A 4 = -1.21088e-005 A 6 = -2.17210e-007 A 8 = 2.35505e-009

21st page
K = -1.15322e + 001 A 4 = 2.77417e-005 A 6 = -7.31070e-008 A 8 = 3.08082e-009

22nd page
K = 7.97629e + 001 A 4 = 2.39052e-004 A 6 = -1.69187e-006 A 8 = 1.02934e-008

23rd page
K = 1.68614e + 000 A 4 = 2.38798e-004 A 6 = -1.10583e-006 A 8 = 6.02308e-009

24th page
K = 0.00000e + 000 A 4 = -7.53270e-006 A 6 = 6.27479e-007 A 8 = -1.01813e-009

25th page
K = 0.00000e + 000 A 4 = 2.90055e-006 A 6 = 4.35069e-007 A 8 = -1.65396e-009

Various data Zoom ratio 11.81

Focal length 9.10 47.95 107.50
F number 2.88 2.88 2.88
Angle of view 34.27 9.34 4.20
Image height 6.20 7.89 7.89
Total lens length 111.76 127.95 136.56
BF 1.01 1.01 1.01

d 5 1.20 37.93 51.76
d13 29.00 2.03 1.89
d14 13.86 10.18 2.00
d21 2.25 14.01 13.57
d23 6.76 10.15 14.59
d27 9.00 3.98 3.07
d29 1.01 1.01 1.01

Zoom lens group data group Start surface Focal length
1 1 87.29
2 6 -14.32
3 15 20.79
4 22 -39.00
5 24 39.80


[Numerical example 2]
Unit mm

Surface data surface number rd nd vd
1 95.172 1.40 1.85478 24.8
2 61.371 5.70 1.53775 74.7
3 -30938.631 0.50
4 61.110 4.40 1.59282 68.6
5 240.237 (variable)
6 202.989 0.90 1.72916 54.7
7 16.769 3.85
8 -67.534 0.80 1.55332 71.7
9 42.924 3.42
10 * -16.945 0.80 1.55332 71.7
11 * -42.153 0.17
12 61.768 1.60 1.95906 17.5
13 748.577 (variable)
14 (Aperture) ∞ (Variable)
15 * 16.723 5.00 1.55332 71.7
16 * 1904.173 0.50
17 17.690 3.80 1.59282 68.6
18 28.012 1.20 1.85478 24.8
19 13.128 3.00
20 * 22.716 3.30 1.61881 63.9
21 * -55.065 (variable)
22 * -81.504 1.31 1.61881 63.9
23 * 34.496 (variable)
24 * 35.762 5.00 1.62263 58.2
25 * -30.736 0.15
26 -69.062 0.90 1.80809 22.8
27 -34057.238 (variable)
28 ∞ 1.50 1.48749 70.2
29 ∞ (variable)
Image plane ∞

Aspheric data 10th surface
K = 0.00000e + 000 A 4 = -1.95940e-005 A 6 = 1.10974e-007 A 8 = -4.10487e-011

11th page
K = 0.00000e + 000 A 4 = -9.61703e-006 A 6 = 1.52418e-007 A 8 = -8.47747e-011

15th page
K = -3.89399e-002 A 4 = -1.49999e-005 A 6 = -1.29031e-007 A 8 = 4.41196e-010

16th page
K = -2.36413e + 004 A 4 = 1.13878e-005 A 6 = -1.67725e-007 A 8 = 8.37720e-010

20th page
K = 1.76399e + 000 A 4 = -9.05466e-006 A 6 = -1.72536e-007 A 8 = 1.97293e-009

21st page
K = -1.09481e + 001 A 4 = 3.04102e-005 A 6 = -2.51025e-008 A 8 = 2.34302e-009

22nd page
K = 7.72881e + 001 A 4 = 2.23103e-004 A 6 = -1.53039e-006 A 8 = 6.80309e-009

23rd page
K = -4.69151e-001 A 4 = 2.25407e-004 A 6 = -9.86519e-007 A 8 = 2.16444e-009

24th page
K = 0.00000e + 000 A 4 = -1.69965e-005 A 6 = 3.75989e-007 A 8 = -5.23077e-010

25th page
K = 0.00000e + 000 A 4 = -5.02682e-006 A 6 = 6.74979e-008 A 8 = 2.38833e-010

Various data Zoom ratio 12.64
Wide angle Medium Telephoto focal length 9.10 50.79 115.00
F number 2.88 3.00 3.00
Angle of view 34.27 8.83 3.92
Image height 6.20 7.89 7.89
Total lens length 112.92 132.55 142.17
BF 1.00 1.00 1.00

d 5 1.20 40.28 54.40
d13 28.99 3.15 1.89
d14 14.08 8.83 2.00
d21 2.78 15.37 15.33
d23 6.40 10.44 15.36
d27 9.26 4.27 2.99
d29 1.00 1.00 1.00

Zoom lens group data group Start surface Focal length
1 1 90.70
2 6 -14.27
3 15 21.26
4 22 -39.00
5 24 39.07


[Numerical Example 3]
Unit mm

Surface data surface number rd nd vd
1 97.129 1.40 2.00069 25.5
2 64.431 5.70 1.53775 74.7
3 -2529.364 0.50
4 60.935 4.40 1.59282 68.6
5 261.371 (variable)
6 190.335 0.90 1.72916 64.0
7 16.678 3.67
8 -73.195 0.80 1.55332 71.7
9 40.912 3.46
10 * -16.886 0.80 1.55332 71.7
11 * -41.789 0.17
12 62.864 1.60 1.95906 17.5
13 748.577 (variable)
14 (Aperture) ∞ (Variable)
15 * 16.849 5.00 1.55332 71.7
16 * -1053.741 0.50
17 16.814 3.80 1.49700 81.5
18 27.100 1.20 1.85478 24.8
19 13.277 3.00
20 * 21.776 3.30 1.59201 67.0
21 * -51.793 (variable)
22 * -82.477 1.31 1.62263 58.2
23 * 34.625 (variable)
24 * 44.709 5.00 1.62263 58.2
25 * -34.412 0.15
26 -112.612 0.90 1.80518 25.4
27 -1952.359 (variable)
28 ∞ 1.50 1.48749 70.2
29 ∞ (variable)
Image plane ∞

Aspheric data 10th surface
K = 0.00000e + 000 A 4 = -5.09858e-005 A 6 = 4.80930e-007 A 8 = -2.18466e-009

11th page
K = 0.00000e + 000 A 4 = -3.82608e-005 A 6 = 5.37359e-007 A 8 = -2.35012e-009

15th page
K = -1.39687e-001 A 4 = -1.45766e-005 A 6 = -1.24264e-007 A 8 = 6.44146e-010

16th page
K = -1.60431e + 004 A 4 = 7.38481e-006 A 6 = -1.83260e-007 A 8 = 1.11516e-009

20th page
K = 1.51088e + 000 A 4 = -1.02221e-006 A 6 = -3.09103e-007 A 8 = 2.05882e-009

21st page
K = -8.48382e + 000 A 4 = 4.32813e-005 A 6 = -1.50150e-007 A 8 = 2.27648e-009

22nd page
K = 7.13821e + 001 A 4 = 2.31416e-004 A 6 = -1.56293e-006 A 8 = 7.33062e-009

23rd page
K = 1.03097e + 000 A 4 = 2.31346e-004 A 6 = -9.31031e-007 A 8 = 4.05836e-009

24th page
K = 0.00000e + 000 A 4 = -2.80208e-005 A 6 = 6.91767e-007 A 8 = -3.32504e-009

25th page
K = 0.00000e + 000 A 4 = -1.65840e-005 A 6 = 3.37024e-007 A 8 = -2.74555e-009

Various data Zoom ratio 13.19
Wide angle Medium telephoto focal length 9.10 53.80 120.00
F number 2.88 3.00 3.50
Angle of view 34.27 8.34 3.76
Image height 6.20 7.89 7.89
Total lens length 112.28 135.45 144.41
BF 1.00 1.00 1.00

d 5 1.20 43.55 57.34
d13 28.77 3.48 1.89
d14 13.93 8.44 2.00
d21 3.04 14.54 14.12
d23 6.28 11.36 16.01
d27 9.00 4.01 2.99
d29 1.00 1.00 1.00

Zoom lens group data group Start surface Focal length
1 1 92.89
2 6 -14.22
3 15 21.10
4 22 -39.00
5 24 40.29


[Numerical Example 4]
Unit mm

Surface data surface number rd nd vd
1 91.749 1.40 2.00069 25.5
2 61.489 5.70 1.53775 74.7
3 2578.023 0.50
4 63.187 4.40 1.59282 68.6
5 306.149 (variable)
6 155.616 0.90 1.72916 68.0
7 15.690 4.56
8 -33.472 0.80 1.49700 81.5
9 121.521 2.81
10 * -17.621 0.80 1.49700 81.5
11 * -46.593 0.17
12 79.154 1.60 2.10205 16.8
13 748.577 (variable)
14 (Aperture) ∞ (Variable)
15 * 16.711 5.00 1.55332 71.7
16 * -225.666 0.50
17 16.748 3.80 1.49700 81.5
18 25.786 1.20 1.85478 24.8
19 12.825 3.00
20 * 21.947 3.30 1.59201 67.0
21 * -65.678 (variable)
22 * -71.318 1.31 1.62263 58.2
23 * 37.078 (variable)
24 * 40.546 5.00 1.62263 58.2
25 * -34.382 0.15
26 -64.820 0.90 1.80518 25.4
27 -123.084 (variable)
28 ∞ 1.50 1.48749 70.2
29 ∞ (variable)
Image plane ∞

Aspheric data 10th surface
K = 0.00000e + 000 A 4 = -3.63412e-005 A 6 = 1.69083e-007 A 8 = 4.13746e-012

11th page
K = 0.00000e + 000 A 4 = -2.91538e-005 A 6 = 2.39419e-007 A 8 = -2.51096e-010

15th page
K = 7.86705e-002 A 4 = -1.84850e-005 A 6 = -1.19843e-007 A 8 = 1.38907e-010

16th page
K = -5.33738e + 002 A 4 = 1.02313e-005 A 6 = -1.84726e-007 A 8 = 7.90810e-010

20th page
K = 6.90829e-001 A 4 = 2.39218e-005 A 6 = -2.73743e-007 A 8 = 1.56823e-009

21st page
K = -6.73995e + 000 A 4 = 5.50644e-005 A 6 = -1.02355e-007 A 8 = 1.37322e-009

22nd page
K = 5.48958e + 001 A 4 = 2.23624e-004 A 6 = -1.31730e-006 A 8 = 1.76060e-009

23rd page
K = 2.89917e-001 A 4 = 2.19267e-004 A 6 = -6.40083e-007 A 8 = -5.32807e-009

24th page
K = 0.00000e + 000 A 4 = -2.02395e-005 A 6 = 4.21169e-007 A 8 = 1.71228e-009

25th page
K = 0.00000e + 000 A 4 = -1.24532e-005 A 6 = 4.74019e-008 A 8 = 4.02476e-009

Various data Zoom ratio 13.74
Wide angle Medium Tele focal length 9.10 50.20 125.00
F number 2.88 3.50 4.00
Angle of view 34.27 8.93 3.61
Image height 6.20 7.89 7.89
Total lens length 112.75 136.03 147.11
BF 1.00 1.00 1.00

d 5 1.20 41.99 58.18
d13 28.98 4.69 1.89
d14 13.60 8.39 2.00
d21 1.94 14.40 15.14
d23 6.68 11.96 16.62
d27 10.04 4.29 2.97
d29 1.00 1.00 1.00

Zoom lens group data group Start surface Focal length
1 1 94.52
2 6 -14.28
3 15 21.29
4 22 -39.00
5 24 37.08


[Numerical Example 5]
Unit mm

Surface data surface number rd nd vd
1 88.847 1.40 2.00069 25.5
2 60.759 5.70 1.53775 74.7
3 1064.834 0.50
4 64.876 4.40 1.59282 68.6
5 282.888 (variable)
6 189.488 0.90 1.72916 70.0
7 14.962 5.22
8 -27.815 0.80 1.43875 94.9
9 464.502 2.59
10 * -20.541 0.80 1.43875 94.9
11 * -74.667 0.17
12 85.908 1.60 2.10205 16.8
13 748.577 (variable)
14 (Aperture) ∞ (Variable)
15 * 16.769 5.00 1.55332 71.7
16 * -259.351 0.50
17 16.877 3.80 1.49700 81.5
18 26.084 1.20 1.85478 24.8
19 12.989 3.00
20 * 21.999 3.30 1.59201 67.0
21 * -68.840 (variable)
22 * -59.852 1.31 1.62263 58.2
23 * 41.203 (variable)
24 * 38.063 5.00 1.62263 58.2
25 * -33.527 0.15
26 -56.757 0.90 1.80518 25.4
27 -106.537 (variable)
28 ∞ 1.50 1.48749 70.2
29 ∞ (variable)
Image plane ∞

Aspheric data 10th surface
K = 0.00000e + 000 A 4 = -8.93602e-005 A 6 = 9.66023e-007 A 8 = -9.29084e-009

11th page
K = 0.00000e + 000 A 4 = -8.49546e-005 A 6 = 1.01486e-006 A 8 = -8.24865e-009

15th page
K = 1.20576e-001 A 4 = -1.95899e-005 A 6 = -6.36481e-008 A 8 = 6.36857e-010

16th page
K = -6.03568e + 002 A 4 = 8.20967e-006 A 6 = -8.21368e-008 A 8 = 1.30004e-009

20th page
K = 7.29996e-001 A 4 = 1.14766e-005 A 6 = -1.98352e-007 A 8 = 1.97528e-009

21st page
K = -2.04654e + 001 A 4 = 4.12681e-005 A 6 = -6.71293e-008 A 8 = 2.04500e-009

22nd page
K = 4.52232e + 001 A 4 = 2.13137e-004 A 6 = -1.45940e-006 A 8 = 7.13566e-009

23rd page
K = -2.24344e + 000 A 4 = 2.03415e-004 A 6 = -1.11315e-006 A 8 = 2.51129e-010

24th page
K = 0.00000e + 000 A 4 = 1.90568e-006 A 6 = 1.91865e-007 A 8 = 1.58924e-009

25th page
K = 0.00000e + 000 A 4 = 1.65797e-005 A 6 = -1.13900e-007 A 8 = 3.17191e-009

Various data Zoom ratio 14.42
Wide angle Medium Telephoto focal length 9.01 47.89 130.00
F number 2.80 4.00 5.60
Angle of view 34.52 9.36 3.47
Image height 6.20 7.89 7.89
Total lens length 113.60 140.52 151.81
BF 1.00 1.00 1.00

d 5 1.20 44.92 62.98
d13 29.00 5.73 1.89
d14 13.38 8.58 1.99
d21 1.87 13.30 14.26
d23 7.13 11.96 15.86
d27 10.27 5.29 4.09
d29 1.00 1.00 1.00

Zoom lens group data group Start surface Focal length
1 1 98.44
2 6 -14.22
3 15 21.47
4 22 -39.00
5 24 36.16


[Numerical Example 6]
Unit mm

Surface data surface number rd nd vd
1 146.951 1.20 1.85478 24.8
2 74.247 4.80 1.59522 67.7
3 -620.072 0.59
4 53.627 3.50 1.60311 60.6
5 169.449 (variable)
6 -7270.894 1.04 1.72916 58.2
7 16.584 2.55
8 100.958 0.93 1.55332 71.7
9 23.390 3.54
10 * -24.102 0.93 1.59282 68.6
11 * -90.356 0.20
12 67.809 1.86 2.10205 16.8
13 868.349 (variable)
14 (Aperture) ∞ (Variable)
15 * 18.138 5.80 1.55332 71.7
16 * -386.305 0.59
17 22.656 4.41 1.49700 81.5
18 40.030 1.39 1.85478 24.8
19 15.811 3.48
20 * 28.331 3.83 1.59282 68.6
21 * -58.310 (variable)
22 123.796 3.00 1.59282 68.6
23 * -120.048 (variable)
24 ∞ 1.50 1.51633 64.1
25 ∞ (variable)
Image plane ∞

Aspheric data 10th surface
K = 0.00000e + 000 A 4 = -2.83945e-004 A 6 = 1.61447e-006 A 8 = 9.80609e-010

11th page
K = 0.00000e + 000 A 4 = -2.62516e-004 A 6 = 2.15045e-006 A 8 = -3.20770e-009

15th page
K = 5.78925e-001 A 4 = -2.72589e-005 A 6 = -1.22980e-007 A 8 = -6.84194e-010

16th page
K = 2.15531e + 002 A 4 = 1.07879e-005 A 6 = -1.85649e-007 A 8 = 2.49618e-010

20th page
K = 2.05414e + 000 A 4 = -4.27490e-006 A 6 = -1.48953e-007 A 8 = -1.12446e-009

21st page
K = -2.34619e + 001 A 4 = 4.38736e-006 A 6 = 7.20270e-008 A 8 = -1.68803e-009

23rd page
K = 0.00000e + 000 A 4 = 8.99440e-007 A 6 = -2.86521e-008

Various data Zoom ratio 11.05
Wide angle Medium Tele focal length 9.97 24.00 110.15
F number 2.88 4.00 5.60
Angle of view 31.88 18.01 4.05
Image height 6.20 7.80 7.80
Total lens length 112.86 121.12 150.95
BF 1.00 1.00 1.00

d 5 2.23 19.98 54.62
d13 19.31 3.36 2.10
d14 22.37 17.19 2.00
d21 13.41 24.12 39.26
d23 9.43 10.36 6.86
d25 1.00 1.00 1.00

Zoom lens group data group Start surface Focal length
1 1 91.03
2 6 -14.80
3 14 ∞
4 15 25.87
5 22 103.28

Table 1 shows the relationship between the above-described conditional expressions and various numerical values in the numerical examples.

次に本発明のズームレンズを撮影光学系として用いたデジタルカメラ(光学機器)の実施形態について、図25を用いて説明する。図25において、60はデジタルカメラ本体、61は上述の実施形態のズームレンズによって構成された撮影光学系、62は撮影光学系61によって被写体像を受光するCCD等の撮像素子、63は撮像素子62が受光した被写体像を記録する記録手段、64は不図示の表示素子に表示された被写体像を観察するためのファインダーである。上記表示素子は液晶パネル等によって構成され、撮像素子62上に形成された被写体像が表示される。65は、前記ファインダーと同等の機能を有する液晶表示パネルである。このように本発明のズームレンズをデジタルカメラ等の光学機器に適用することにより、小型で高い光学性能を有する光学機器を実現している。   Next, an embodiment of a digital camera (optical apparatus) using the zoom lens of the present invention as a photographing optical system will be described with reference to FIG. In FIG. 25, reference numeral 60 denotes a digital camera body, 61 denotes a photographing optical system constituted by the zoom lens of the above-described embodiment, 62 denotes an imaging element such as a CCD that receives a subject image by the photographing optical system 61, and 63 denotes an imaging element 62. A recording means 64 for recording the received subject image, and a viewfinder 64 for observing the subject image displayed on a display element (not shown). The display element is constituted by a liquid crystal panel or the like, and a subject image formed on the image sensor 62 is displayed. Reference numeral 65 denotes a liquid crystal display panel having a function equivalent to that of the finder. Thus, by applying the zoom lens of the present invention to an optical apparatus such as a digital camera, an optical apparatus having a small size and high optical performance is realized.

Li 第iレンズ群、SP 開口絞り Li i-th lens group, SP aperture stop

Claims (15)

物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群と、少なくとも1つ以上のレンズ群を含む後群を有して構成され、
広角端から望遠端へのズーミングに際して、少なくとも第1から第3レンズ群が移動するズームレンズにおいて、
第2レンズ群に少なくとも3枚以上の負レンズと1枚以上の正レンズを有して構成され、
前記第2レンズの焦点距離をf2、望遠端の焦点距離ft、前記第2レンズ群に含まれる負レンズの平均アッベ数をv2nave、前記第2レンズ群に含まれる正レンズの平均アッベ数をv2paveとした時、以下の式を満足することを特徴とするズームレンズ。
0.050<|f2|/ft<0.140
40.0<v2nave−v2pave<100.0
A rear group including a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and at least one lens group in order from the object side to the image side. Comprising
In zoom lenses in which at least the first to third lens units move during zooming from the wide-angle end to the telephoto end,
The second lens group has at least three negative lenses and one or more positive lenses,
The focal length of the second lens is f2, the focal length ft at the telephoto end, the average Abbe number of the negative lens included in the second lens group is v2nave, and the average Abbe number of the positive lens included in the second lens group is v2pave. A zoom lens that satisfies the following formula:
0.050 <| f2 | / ft <0.140
40.0 <v2nave−v2pave <100.0
広角端における前記第2レンズ群の横倍率をβ2w、望遠端における横倍率をβ2tとした時、以下の式を満足することを特徴とした請求項1に記載のズームレンズ。
4.0<β2t/β2w<10.0
2. The zoom lens according to claim 1, wherein when the lateral magnification of the second lens group at the wide-angle end is β2w and the lateral magnification at the telephoto end is β2t, the following expression is satisfied.
4.0 <β2t / β2w <10.0
前記第2レンズ群に含まれる負レンズの平均焦点距離をf2nave、広角端の焦点距離をfwとした時、以下の式を満足することを特徴とした請求項1又は請求項2に記載のズームレンズ。
3.00<|f2nave|/fw<10.00
3. The zoom according to claim 1, wherein when the average focal length of the negative lens included in the second lens group is f2nave and the focal length at the wide-angle end is fw, the following expression is satisfied. lens.
3.00 <| f2nave | / fw <10.00
前記第2レンズ群に含まれる負レンズの平均屈折率をN2naveとした時、以下の式を満足することを特徴とした請求項1乃至請求項3の何れか一項に記載のズームレンズ。
1.500<N2nave<1.800
4. The zoom lens according to claim 1, wherein the following expression is satisfied when an average refractive index of a negative lens included in the second lens group is N2nave. 5.
1.500 <N2nave <1.800
前記第2レンズ群は、物体側から順に、負の屈折力の21レンズ、負の屈折力の22レンズ、負の屈折力の23レンズを配置して構成されていることを特徴とした請求項1乃至請求項4の何れか一項に記載のズームレンズ。   The second lens group includes 21 lenses having a negative refractive power, 22 lenses having a negative refractive power, and 23 lenses having a negative refractive power in order from the object side. The zoom lens according to any one of claims 1 to 4. 前記第2レンズ群の21レンズの物体側面の曲率半径をR21o、像側面の曲率半径をR21iとした時、以下の式を満足することを特徴とした請求項5に記載のズームレンズ。
0.90<(R21o+R21i)/(R21o−R21i)<2.00
6. The zoom lens according to claim 5, wherein when the radius of curvature of the object side surface of the 21 lens of the second lens group is R21o and the radius of curvature of the image side surface is R21i, the following expression is satisfied.
0.90 <(R21o + R21i) / (R21o−R21i) <2.00
前記第2レンズ群の22レンズの物体側面の曲率半径をR22o、像側面の曲率半径をR22iとした時、以下の式を満足することを特徴とした請求項5又は請求項6に記載のズームレンズ。
−1.00<(R22o+R22i)/(R22o−R22i)<2.00
The zoom according to claim 5 or 6, wherein when the radius of curvature of the object side surface of the 22 lenses of the second lens group is R22o and the radius of curvature of the image side surface is R22i, the following expression is satisfied. lens.
−1.00 <(R22o + R22i) / (R22o−R22i) <2.00
前記第2レンズ群の23レンズの物体側面の曲率半径をR23o、像側面の曲率半径をR23iとした時、以下の式を満足することを特徴とした請求項5乃至請求項7の何れか一項に記載のズームレンズ。
−3.00<(R23o+R23i)/(R23o−R23i)<−1.00
The following expression is satisfied, where R23o is the radius of curvature of the object side surface of the 23 lenses of the second lens group, and R23i is the radius of curvature of the image side surface. The zoom lens according to item.
−3.00 <(R23o + R23i) / (R23o−R23i) <− 1.00
前記1レンズ群の焦点距離をf1とした時、以下の式を満足することを特徴とした請求項1乃至請求項8の何れか一項に記載のズームレンズ。
0.500<f1/ft<1.000
9. The zoom lens according to claim 1, wherein the following expression is satisfied when a focal length of the one lens group is f <b> 1.
0.500 <f1 / ft <1.000
前記第1レンズ群は、少なくとも1枚以上の正レンズと負レンズを有して構成され、前記第1レンズ群に含まれる正レンズの平均アッベ数をv1pave、負レンズの平均アッベ数をv1naveとした時、以下の式を満足することを特徴とした請求項1乃至請求項9の何れか一項に記載のズームレンズ。
40.0<v1pave−v1nave<80.0
The first lens group includes at least one positive lens and a negative lens. The average Abbe number of positive lenses included in the first lens group is v1pave, and the average Abbe number of negative lenses is v1nave. The zoom lens according to claim 1, wherein the following expression is satisfied.
40.0 <v1pave−v1nave <80.0
前記3レンズ群の焦点距離をf3とした時、以下の式を満足することを特徴とした請求項1乃至請求項10の何れか一項に記載のズームレンズ。
0.100<f3/ft<0.250
11. The zoom lens according to claim 1, wherein the following expression is satisfied when a focal length of the three lens groups is f <b> 3.
0.100 <f3 / ft <0.250
前記第3レンズ群は、少なくとも1枚以上の正レンズと負レンズを有して構成され、前記第3レンズ群に含まれる正レンズの平均アッベ数をv3pave、負レンズの平均アッベ数をv3naveとした時、以下の式を満足することを特徴とした請求項1乃至請求項11の何れか一項に記載のズームレンズ。
40.0<v3pave−v3nave<80.0
The third lens group includes at least one positive lens and a negative lens. The average Abbe number of positive lenses included in the third lens group is v3pave, and the average Abbe number of negative lenses is v3nave. The zoom lens according to any one of claims 1 to 11, wherein the following expression is satisfied.
40.0 <v3pave−v3nave <80.0
前記後群は、最も物体側に負の屈折力の第4レンズ群を有して構成されることを特徴とする請求項1乃至請求項12の何れか一項に記載のズームレンズ。   The zoom lens according to any one of claims 1 to 12, wherein the rear group includes a fourth lens group having a negative refractive power closest to the object side. 前記後群は、最も物体側に正の屈折力の第4レンズ群を有して構成されることを特徴とする請求項1乃至請求項12の何れか一項に記載のズームレンズ。   The zoom lens according to any one of claims 1 to 12, wherein the rear group includes a fourth lens group having a positive refractive power closest to the object side. 請求項1乃至請求項14の何れか一項に記載のズームレンズと、該当ズームレンズによって形成される像を受光する固体撮像素子を有していることを特徴とする撮像装置。   An image pickup apparatus comprising: the zoom lens according to claim 1; and a solid-state image pickup device that receives an image formed by the zoom lens.
JP2017100475A 2017-05-22 2017-05-22 Zoom lens and imaging apparatus using the same Pending JP2018194768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017100475A JP2018194768A (en) 2017-05-22 2017-05-22 Zoom lens and imaging apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017100475A JP2018194768A (en) 2017-05-22 2017-05-22 Zoom lens and imaging apparatus using the same

Publications (1)

Publication Number Publication Date
JP2018194768A true JP2018194768A (en) 2018-12-06

Family

ID=64571380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017100475A Pending JP2018194768A (en) 2017-05-22 2017-05-22 Zoom lens and imaging apparatus using the same

Country Status (1)

Country Link
JP (1) JP2018194768A (en)

Similar Documents

Publication Publication Date Title
JP6192338B2 (en) Zoom lens and imaging apparatus having the same
JP5436518B2 (en) Zoom lens and imaging apparatus having the same
JP5858829B2 (en) Zoom lens and image pickup apparatus using the same
JP2013190741A (en) Zoom lens and image capturing device having the same
JP2013190453A (en) Zoom lens and image capturing device having the same
JP2014202841A5 (en)
JP2009223008A (en) Zoom lens and image pickup apparatus with the same
JP2011075975A (en) Zoom lens and imaging apparatus having the same
JP2013140307A (en) Zoom lens and imaging apparatus including the same
JP2017090773A (en) Zoom lens and imaging apparatus including the same
JP5921220B2 (en) Zoom lens and imaging apparatus having the same
JP6425463B2 (en) Zoom lens and imaging device having the same
JP2013130676A (en) Zoom lens and imaging apparatus including the same
JP2014029375A (en) Zoom lens and imaging apparatus including the same
JP2011145566A (en) Zoom lens and optical apparatus having the same
JP6579828B2 (en) Zoom lens and imaging apparatus having the same
JP6164894B2 (en) Zoom lens and imaging apparatus having the same
JP2014202806A5 (en)
JP2017191126A (en) Zoom lens and imaging device using the same
JP2017111172A (en) Zoom lens and imaging device having the same
JP2017037163A (en) Zoom lens and imaging device having the same
US9706095B2 (en) Zoom lens and image pickup apparatus including the same
JP2015004989A (en) Zoom lens and image capturing device having the same
JP6584089B2 (en) Zoom lens and imaging apparatus having the same
JP2016191764A (en) Zoom lens and image capturing device having the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20191125