JP2018157717A - Rotation position estimation device of synchronous motor and rotation position estimation method of synchronous motor - Google Patents

Rotation position estimation device of synchronous motor and rotation position estimation method of synchronous motor Download PDF

Info

Publication number
JP2018157717A
JP2018157717A JP2017054310A JP2017054310A JP2018157717A JP 2018157717 A JP2018157717 A JP 2018157717A JP 2017054310 A JP2017054310 A JP 2017054310A JP 2017054310 A JP2017054310 A JP 2017054310A JP 2018157717 A JP2018157717 A JP 2018157717A
Authority
JP
Japan
Prior art keywords
voltage
phase
rotational position
open phase
synchronous motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017054310A
Other languages
Japanese (ja)
Other versions
JP6810421B2 (en
Inventor
勇介 柴野
Yusuke Shibano
勇介 柴野
佐理 前川
Sari Maekawa
佐理 前川
寿夫 久保田
Toshio Kubota
寿夫 久保田
夢悦 呉
Mengyue Wu
夢悦 呉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Meiji University
Original Assignee
Toshiba Corp
Meiji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Meiji University filed Critical Toshiba Corp
Priority to JP2017054310A priority Critical patent/JP6810421B2/en
Priority to CN201810233211.8A priority patent/CN108631685B/en
Publication of JP2018157717A publication Critical patent/JP2018157717A/en
Application granted granted Critical
Publication of JP6810421B2 publication Critical patent/JP6810421B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Abstract

PROBLEM TO BE SOLVED: To provide a rotation position estimation device of a synchronous motor capable of coping even with a wider energization system.SOLUTION: According to a rotation position estimation device of a synchronous motor of an embodiment, an inverter which is connected with a three-phase synchronous motor, and constituted of a plurality of switching elements is provided with: an opening phase generation part which makes any one phase of three phases into a non-conductive state to be made into an opening phase; an opening phase determination part which determines what phase is made into the opening phase; an opening phase voltage detection part which detects voltage of the opening phase; an opening phase voltage storage part which stores the voltage; a voltage zero point estimation part which estimates a zero point of the voltage from the opening phase voltage stored by the opening phase voltage storage part; and a position estimation part which estimates a rotation position of the motor on the basis of the zero point.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、同期電動機の回転位置を推定する装置及び方法に関する。   Embodiments described herein relate generally to an apparatus and a method for estimating a rotational position of a synchronous motor.

従来から、電動機を適切に制御するために回転位置の検出が行われている。回転位置の検出とは、電動機の電気角座標上の位置である電気角位相を検出することである。回転位置の検出には、ロータリーエンコーダやレゾルバ,ホール素子等の位置センサを用いる方法がある。しかし、製品のコストや構造上の制約等から位置センサを設けることができない場合もある。   Conventionally, the rotation position is detected in order to appropriately control the electric motor. The detection of the rotational position is to detect an electrical angle phase that is a position on the electrical angle coordinate of the electric motor. For detecting the rotational position, there is a method using a position sensor such as a rotary encoder, a resolver, or a Hall element. However, there are cases where a position sensor cannot be provided due to product cost, structural limitations, and the like.

そこで、位置センサを用いることなく、電流や電圧の情報から回転位置を推定する方法が実施されている。かかる方法の種類として、例えば、誘起電圧利用型とインダクタンス利用型とがある。誘起電圧利用型は、電動機の速度に比例する誘起電圧を電動機への入力電圧と電流とにより演算し、この誘起電圧に基づいて推定する手法である。これは、電動機の回転により発生する誘起電圧が、回転位置である電動機の電気角に応じて変化することを利用した推定方法である。   Therefore, a method for estimating the rotational position from current and voltage information without using a position sensor has been implemented. Examples of such methods include an induced voltage utilization type and an inductance utilization type. The induced voltage utilization type is a method in which an induced voltage proportional to the speed of the electric motor is calculated from the input voltage and current to the electric motor, and is estimated based on this induced voltage. This is an estimation method using the fact that the induced voltage generated by the rotation of the electric motor changes according to the electric angle of the electric motor at the rotational position.

誘起電圧利用型の場合、電動機の回転数が高い領域では十分な精度が得られる。しかし、回転数が低い領域では誘起電圧の振幅が小さくなるか発生しなくなるため、誘起電圧利用型では電動機の停止時や低速時に正確な推定ができない。   In the case of using the induced voltage, sufficient accuracy can be obtained in a region where the rotational speed of the motor is high. However, since the amplitude of the induced voltage becomes small or does not occur in the region where the rotational speed is low, the induced voltage utilization type cannot accurately estimate when the motor is stopped or at a low speed.

一方、インダクタンス利用型は、電動機のインダクタンスを電流や電圧情報から算出して回転位置を推定する手法であり、電動機のインダクタンスが電気角に応じて2倍の周期で変化することを利用したものである。この推定方法としては、例えば、駆動周波数に関係しないセンシングのための交流信号を電動機に印加し、電圧電流の関係から回転位置を推定する方法がいくつか提案されている。   On the other hand, the inductance utilization type is a method of estimating the rotational position by calculating the inductance of the motor from current and voltage information, and utilizes the fact that the inductance of the motor changes at a cycle twice according to the electrical angle. is there. As this estimation method, for example, several methods have been proposed in which an AC signal for sensing not related to the drive frequency is applied to the motor, and the rotational position is estimated from the relationship between the voltage and current.

このようにインダクタンスを求めるために印加する交流信号の周波数は、一般にPWM制御におけるキャリア周波数よりも低く設定され、例えば数100Hz〜数kHz程度である。しかしこの場合、人間の可聴域に電動機の電流リップル周波数が入るため、騒音が増加してしまう。また、電流は少なくともキャリア周期以内に検出する必要があるため、キャリア周波数が高くなると検出が困難になる。   In this way, the frequency of the AC signal applied for obtaining the inductance is generally set lower than the carrier frequency in the PWM control, and is, for example, about several hundred Hz to several kHz. However, in this case, since the current ripple frequency of the motor enters the human audible range, noise increases. In addition, since the current needs to be detected at least within the carrier cycle, detection becomes difficult when the carrier frequency increases.

上記以外の回転位置推定方法として、特許文献1では、開放相電圧を利用した回転位置推定方法が提案されている。この方法は、3相インバータのうち何れか1相を非通電状態とした際に、回転位置に応じて生じる他の2相のインダクタンス差により発生する電圧差に基づいて回転位置を推定する手法である。この開放相電圧利用型によれば、インダクタンス利用型の推定方法と同様に低速でも回転位置推定が可能であり、しかも電圧を検出するためキャリア周波数を高く設定できる。   As a rotational position estimation method other than the above, Patent Document 1 proposes a rotational position estimation method using an open phase voltage. This method is a method for estimating the rotational position based on the voltage difference generated by the inductance difference between the other two phases generated according to the rotational position when any one of the three-phase inverters is in a non-energized state. is there. According to this open phase voltage utilization type, the rotational position can be estimated even at a low speed as in the inductance utilization type estimation method, and the carrier frequency can be set high to detect the voltage.

特開2009−189176号公報JP 2009-189176 A

しかしながら、特許文献1では120度通電方式を前提としているため、基本的に非通電状態の相が発生しない180度通電方式等には適用することができない。
そこで、より広範な通電方式にも対応できる同期電動機の回転位置推定装置及び同期電動機の回転位置推定方法を提供する。
However, since Patent Document 1 is premised on the 120-degree energization method, it cannot be applied to a 180-degree energization method in which a non-energized phase is basically not generated.
Therefore, a rotational position estimation device for a synchronous motor and a rotational position estimation method for a synchronous motor that can support a wider range of energization methods are provided.

実施形態の同期電動機の回転位置推定装置によれば、3相同期電動機に接続され、複数のスイッチング素子により構成されるインバータについて、3相のうち何れか1相を非通電状態にして開放相とする開放相生成部と、
何れの相を前記開放相とするか決定する開放相決定部と、
前記開放相の電圧を検出する開放相電圧検出部と、
前記電圧を記憶する開放相電圧記憶部と、
この開放相電圧記憶部により記憶された開放相電圧から、当該電圧のゼロ点を推定する電圧ゼロ点推定部と、
前記ゼロ点に基づいて、前記電動機の回転位置を推定する位置推定部とを備える。
According to the rotational position estimation device for a synchronous motor of an embodiment, for an inverter connected to a three-phase synchronous motor and configured by a plurality of switching elements, any one of the three phases is deenergized and the open phase is set. An open phase generator to
An open phase determination unit for determining which phase is the open phase;
An open phase voltage detector for detecting the voltage of the open phase;
An open phase voltage storage unit for storing the voltage;
From the open phase voltage stored by the open phase voltage storage unit, a voltage zero point estimation unit for estimating the zero point of the voltage,
A position estimation unit that estimates a rotational position of the electric motor based on the zero point.

一実施形態であり、回転位置推定装置を含む電動機駆動制御装置の構成を示す機能ブロック図1 is a functional block diagram showing the configuration of an electric motor drive control device including a rotational position estimation device according to an embodiment 開放相電圧検出部の構成の一部を示す図(その1)The figure which shows a part of structure of an open phase voltage detection part (the 1) 開放相電圧検出部の構成の一部を示す図(その2)A figure showing a part of composition of an open phase voltage detection part (the 2) 回転位置の推定処理を示すフローチャートFlowchart showing rotation position estimation processing 開放相電圧の近似関数を示す図Diagram showing approximate function of open phase voltage 開放相電圧のゼロ点を推定し、回転位置を推定する処理を説明する図The figure explaining the process which estimates the zero point of an open phase voltage, and estimates a rotation position 回転位置の推定結果を示す図The figure which shows the estimation result of the rotation position 180度通電方式による3相PWM信号を示す図The figure which shows the three-phase PWM signal by a 180 degree energization system 180度通電方式において、開放相区間を設けた場合の3相PWM信号を示す図The figure which shows the three-phase PWM signal at the time of providing an open phase area in a 180 degree energization system 開放相電圧を説明する図Diagram explaining open phase voltage 開放相電圧と回転位置との関係を示す図Diagram showing the relationship between open phase voltage and rotational position

以下、一実施形態について図面を参照して説明する。図1は、回転位置推定装置を含む電動機制御装置の構成を示す機能ブロック図である。直流電源1は、直流電源を生成してインバータ部2に供給する。直流電源1には、交流電源を整流して生成するものも含む。インバータ部2の各相出力端子は、それぞれ同期電動機3の対応する各相巻線の一端に接続されている。インバータ部2及び電動機3は、何れも3相構成である。直流電圧検出部4は、直流電源1の電圧Vdcを検出し、検出結果をPWM生成部5に出力する。   Hereinafter, an embodiment will be described with reference to the drawings. FIG. 1 is a functional block diagram showing a configuration of an electric motor control device including a rotational position estimation device. The DC power source 1 generates a DC power source and supplies it to the inverter unit 2. The DC power supply 1 includes one that rectifies and generates an AC power supply. Each phase output terminal of the inverter unit 2 is connected to one end of each corresponding phase winding of the synchronous motor 3. Both the inverter unit 2 and the electric motor 3 have a three-phase configuration. The DC voltage detector 4 detects the voltage Vdc of the DC power supply 1 and outputs the detection result to the PWM generator 5.

インバータ部2の各相出力端子は、相電流検出部6の各相入力端子に接続されている。相電流検出部6により検出された各相電流は、3相/dq変換部7に入力されてd軸電流Id,q軸電流Iqに変換される。変換されたd軸電流Id,q軸電流Iqは、電流制御部8に入力される。電流制御部8には、電流指令部9により生成されたd軸電流指令Id_ref,q軸電流指令Iq_refが入力されている。電流制御部8は、各電流指令Id_ref,Iq_refと各電流Id,Iqとの差に応じてd軸電圧Vd,q軸電圧Vqを生成する。   Each phase output terminal of the inverter unit 2 is connected to each phase input terminal of the phase current detection unit 6. Each phase current detected by the phase current detector 6 is input to the three-phase / dq converter 7 and converted into a d-axis current Id and a q-axis current Iq. The converted d-axis current Id and q-axis current Iq are input to the current control unit 8. The d-axis current command Id_ref and q-axis current command Iq_ref generated by the current command unit 9 are input to the current control unit 8. The current control unit 8 generates a d-axis voltage Vd and a q-axis voltage Vq according to the difference between each current command Id_ref, Iq_ref and each current Id, Iq.

d軸電圧Vd,q軸電圧Vqは、dq/3相変換部10に入力されて3相電圧Vu’,Vv’,Vw’に変換される。3相電圧Vu’,Vv’,Vw’は、開放相決定部11に入力されて開放相区間を含む3相電圧Vu,Vv,Vwとなり、それらはPWM生成部5に入力される。すなわち、開放相決定部11は開放相生成部としての機能も含んでいる。PWM生成部5は、3相電圧Vu,Vv,Vwに基づいて、インバータ部2を構成する各相アームのスイッチング素子を駆動するためのPWM信号Vu±,Vv±,Vw±を生成し、インバータ部2に入力する。   The d-axis voltage Vd and the q-axis voltage Vq are input to the dq / 3-phase converter 10 and converted into three-phase voltages Vu ′, Vv ′, and Vw ′. The three-phase voltages Vu ′, Vv ′, and Vw ′ are input to the open phase determination unit 11 to become the three-phase voltages Vu, Vv, and Vw including the open phase period, and are input to the PWM generation unit 5. That is, the open phase determination unit 11 includes a function as an open phase generation unit. The PWM generation unit 5 generates PWM signals Vu ±, Vv ±, Vw ± for driving the switching elements of the respective phase arms constituting the inverter unit 2 based on the three-phase voltages Vu, Vv, Vw. Input to part 2.

また、インバータ部2の各相出力端子は、開放相電圧検出部12の各相入力端子に接続されている。開放相電圧検出部12は各相の開放相電圧を検出し、検出結果を回転位置推定部13に入力する。回転位置推定部13は、入力される開放相電圧に基づいて電動機3の回転位置θestを推定し、3相/dq変換部7,dq/3相変換部10,開放相決定部11及び開放相電圧検出部12に入力する。回転位置推定部13は、開放相電圧記憶部及び電圧ゼロ点推定部としての機能も備えている。   In addition, each phase output terminal of the inverter unit 2 is connected to each phase input terminal of the open phase voltage detection unit 12. The open phase voltage detector 12 detects the open phase voltage of each phase and inputs the detection result to the rotational position estimator 13. The rotational position estimation unit 13 estimates the rotational position θest of the electric motor 3 based on the input open phase voltage, the three-phase / dq conversion unit 7, the dq / 3-phase conversion unit 10, the open phase determination unit 11, and the open phase. Input to the voltage detector 12. The rotational position estimation unit 13 also has functions as an open phase voltage storage unit and a voltage zero point estimation unit.

図2及び図3に示すように、開放相電圧検出部12は、一端がインバータ部2の各相出力端子に接続される,各相に対応した電圧検出抵抗の直列回路21U及び22U,21V及び22V,21W及び22Wを備えている。これらの直列回路の他端は共通に接続されている。開放相電圧検出部12は、電圧バッファ23及び24並びに差動増幅回路25からなる検出回路を各相毎に備え、開放相区間における各相抵抗21及び22の共通接続点Aと各相直列回路の共通接続点Bとの差電圧を、開放相電圧として検出する。   As shown in FIGS. 2 and 3, the open-phase voltage detection unit 12 includes one end connected to each phase output terminal of the inverter unit 2, and voltage detection resistor series circuits 21 U and 22 U and 21 V corresponding to each phase. 22V, 21W and 22W are provided. The other ends of these series circuits are connected in common. The open phase voltage detection unit 12 includes a detection circuit including voltage buffers 23 and 24 and a differential amplifier circuit 25 for each phase, and a common connection point A of each phase resistance 21 and 22 and each phase series circuit in the open phase section. The difference voltage from the common connection point B is detected as an open phase voltage.

ここで、本実施形態における回転位置推定方法の原理について図10及び図11を参照して説明する。開放相電圧は、3相電動機のある1相を非通電状態とし、残りの2相に電圧を印加している時に、前記非通電状態とした開放相に発生する電圧である。   Here, the principle of the rotational position estimation method in the present embodiment will be described with reference to FIGS. The open phase voltage is a voltage generated in the open phase that is in the non-energized state when one phase of the three-phase motor is in a non-energized state and voltage is applied to the remaining two phases.

回転子が停止しており誘起電圧が0Vのとき、図10に示すようにU相を開放相とし、V−W相間にパルス電圧を印加した場合を考える。この時、V相とW相には同じ電流が流れるため、V,W相のインダクタンスが変わらない場合はV,W相の電圧は等しく,点Oの電圧つまりU相の電圧は変化しない。しかし実際は、回転子の回転位置に応じて磁束量が変化するため、V,W相のインダクタンスは変化する。   When the rotor is stopped and the induced voltage is 0 V, consider a case where the U phase is an open phase and a pulse voltage is applied between the V and W phases as shown in FIG. At this time, since the same current flows in the V phase and the W phase, when the inductance of the V and W phases does not change, the voltages of the V and W phases are equal, and the voltage at the point O, that is, the U phase voltage does not change. However, in practice, the amount of magnetic flux changes according to the rotational position of the rotor, so that the V and W phase inductances change.

V,W相のうち、回転位置に近い相ほど磁束量が大きいためインダクタンスが小さくなり、V,W相のインダクタンスに差が生じる。すると、V相とW相とには、それぞれ相電流iv,iwが同じ電流iとして流れるため、インダクタンスの変化が開放相であるU相に電圧として現れる。この電圧は、図11に示すように位置依存性があるため、開放相の電圧を検出することで回転子の位置が検出できる。   Of the V and W phases, the closer to the rotational position, the larger the amount of magnetic flux, the smaller the inductance and the difference between the V and W phase inductances. Then, since the phase currents iv and iw flow as the same current i in the V phase and the W phase, the change in inductance appears as a voltage in the U phase that is an open phase. Since this voltage has position dependency as shown in FIG. 11, the position of the rotor can be detected by detecting the open-phase voltage.

上述したように開放相電圧を検出するためには、電動機の何れか1相を非通電状態の開放相にする必要がある。例えば図8に示すように、電動機を180度通電方式により2相変調で正弦波駆動する際のPWM信号波形には開放相が生じないため、開放相電圧が検出できない。   As described above, in order to detect the open phase voltage, any one phase of the motor needs to be an open phase in a non-energized state. For example, as shown in FIG. 8, an open phase voltage cannot be detected because an open phase does not occur in the PWM signal waveform when the motor is driven in a sinusoidal wave with two-phase modulation by the 180-degree conduction method.

そこで本実施形態では、図9に示すように正弦波駆動中において、ある相の開放相電圧がゼロ点となる付近で開放相を発生させる。その期間に開放相電圧を検出し、検出した電圧よりゼロ点となるタイミングを決定する。そして、決定したタイミングから回転位置を推定し、推定した回転位置から電動機の速度も計算し、電動機の制御に使用する。   Therefore, in the present embodiment, as shown in FIG. 9, during the sine wave drive, an open phase is generated in the vicinity where the open phase voltage of a certain phase becomes a zero point. The open phase voltage is detected during that period, and the timing at which the zero point is reached is determined from the detected voltage. Then, the rotational position is estimated from the determined timing, and the speed of the motor is also calculated from the estimated rotational position and used for controlling the motor.

ここで、開放相の発生期間が長い程、開放相電圧を検出できる期間は長くなるが、駆動状態が矩形波駆動に近付くため、騒音やトルクリップルが発生し易くなる。つまり、正弦波駆動状態を極力維持するためには、開放相の発生期間を極力短くする必要がある。以下、開放相の発生期間を開放相区間と称する。また、ある相を非通電状態にすることを「開放」と称する場合がある。一方で、開放相区間を短くし過ぎるとその区間中にゼロ点が現れないか、又はゼロ点を精度良く検出できない可能性があり、回転位置の推定精度が悪化する懸念がある。   Here, the longer the open phase generation period, the longer the period during which the open phase voltage can be detected. However, since the drive state approaches rectangular wave drive, noise and torque ripple are likely to occur. That is, in order to maintain the sine wave drive state as much as possible, it is necessary to shorten the generation period of the open phase as much as possible. Hereinafter, the generation period of the open phase is referred to as an open phase section. Moreover, putting a certain phase into a non-energized state may be referred to as “open”. On the other hand, if the open phase section is too short, the zero point may not appear in the section, or the zero point may not be detected with high accuracy, and the estimation accuracy of the rotational position may be deteriorated.

そこで、本実施形態では、開放相区間を短くするために、開放相電圧の近似関数から当該電圧のゼロ点を求める。これにより、開放相区間を短くしても、回転位置を精度良く推定することが可能となる。   Therefore, in the present embodiment, in order to shorten the open phase interval, the zero point of the voltage is obtained from the approximate function of the open phase voltage. Thereby, even if the open phase section is shortened, the rotational position can be accurately estimated.

ここで、図5に示すように、電動機のある相を、開放相電圧のゼロ点が発生すると推定した前後の期間に亘って開放し、横軸を開放相電圧,縦軸をn回目の検出として、最小二乗法を用いて1次の近似関数を求めると式(1)となる。aは近似関数の傾き,bは切片である。
n=a×(開放相電圧)+b …(1)
図5には、一例として傾きa=−4.43,切片b=4.56を示している。尚、図5中に示す開放相電圧の各プロットはイメージ的に図示しているが、上記傾き及び切片の一例は、実測に基づいて決定したものである。
Here, as shown in FIG. 5, a certain phase of the motor is opened over the period before and after the zero point of the open phase voltage is estimated to occur, the horizontal axis is the open phase voltage, and the vertical axis is the nth detection. As a first-order approximation function is obtained using the least square method, Equation (1) is obtained. a is the slope of the approximate function, and b is the intercept.
n = a × (open phase voltage) + b (1)
FIG. 5 shows an inclination a = −4.43 and an intercept b = 4.56 as an example. In addition, although each plot of the open phase voltage shown in FIG. 5 is illustrated in an image, an example of the slope and intercept is determined based on actual measurement.

以下、回転位置を推定する処理の一連の流れについて図6を参照して説明する。最初に求める開放相のゼロ点の回転位置をθ1とする。開放相電圧のゼロ点のタイミングn01を求めるには、開放相電圧に0を代入すれば良く、b=n01である。   Hereinafter, a series of processes for estimating the rotational position will be described with reference to FIG. The rotation position of the zero point of the open phase obtained first is defined as θ1. In order to obtain the timing n01 of the zero point of the open phase voltage, 0 may be substituted into the open phase voltage, and b = n01.

次に、電動機が回転し、他の相の開放相電圧のゼロ点の前後で同様に開放相を発生させてタイミングn02を求める。この時の開放相ゼロ点の回転位置をθ2とする。開放相電圧のサンプリング周期を△tとすると、1回目の開放相電圧ゼロ点のタイミングn01と2回目の開放相電圧ゼロ点のタイミングn02間の時間T12は、式(2)となる。
T12=(n02−n01)×△t …(2)
T12間の電動機回転数ω21は、式(3)で求めることができる
ω21=(θ2−θ1)/360/(T12) …(3)
つまり、2回目の開放相電圧の検出が終了したタイミングN02で、式(2)及び(3)により開放相電圧に基づいた回転数が計算できる。
Next, the electric motor rotates, and the open phase is similarly generated before and after the zero point of the open phase voltage of the other phase to obtain the timing n02. The rotational position of the open phase zero point at this time is θ2. Assuming that the open-phase voltage sampling period is Δt, the time T12 between the first open-phase voltage zero point timing n01 and the second open-phase voltage zero point timing n02 is expressed by Equation (2).
T12 = (n02−n01) × Δt (2)
The motor rotation speed ω21 during T12 can be obtained by Expression (3). Ω21 = (θ2−θ1) / 360 / (T12) (3)
That is, at the timing N02 when the detection of the second open-phase voltage is completed, the number of revolutions based on the open-phase voltage can be calculated by the equations (2) and (3).

さらに、タイミングN02の回転位置θ02’は、式(4)を用いて求める。
θ02’=θ2+ω21×(N02−n02) …(4)
なお、2回目の開放相区間を終了させる従来の回転位置θ02は、上述した1回目の開放相電圧のゼロ点と同様の方法で検出した、0回目の開放相電圧のゼロ点から式(5)で求める。
θ02=θ1+ω10×(N02−n01) …(5)
そして、N02のタイミングで回転位置をθ02からθ02’に更新し、以降はθ2とω21とに基づいて回転位置を計算する。
Further, the rotational position θ02 ′ at the timing N02 is obtained using Expression (4).
θ02 ′ = θ2 + ω21 × (N02−n02) (4)
Note that the conventional rotational position θ02 for ending the second open phase interval is expressed by the equation (5) from the zero point of the zero open phase voltage detected in the same manner as the zero point of the first open phase voltage described above. )
θ02 = θ1 + ω10 × (N02−n01) (5)
Then, the rotational position is updated from θ02 to θ02 ′ at the timing of N02, and thereafter the rotational position is calculated based on θ2 and ω21.

3回目の開放相区間は同様に、ω12とθ2とに基づいて回転位置を計算し、次の開放相区間の開始タイミングを決定する。次の開放相区間を終了する回転位置θ03は式(6)で求める。
θ03=θ2+ω21×(N03−n02) …(6)
そして、タイミングN03で式(7)によりω32を、式(8)によりθ03’を求める。
ω32=(θ3−θ2)/360/(T32) …(7)
θ03’=θ3+ω32×(N03−n03) …(8)
Similarly, in the third open phase section, the rotational position is calculated based on ω12 and θ2, and the start timing of the next open phase section is determined. The rotational position θ03 for ending the next open phase section is obtained by Expression (6).
θ03 = θ2 + ω21 × (N03−n02) (6)
Then, at timing N03, ω32 is obtained from equation (7), and θ03 ′ is obtained from equation (8).
ω32 = (θ3-θ2) / 360 / (T32) (7)
θ03 ′ = θ3 + ω32 × (N03−n03) (8)

以降、上記のように処理を繰返すことで、開放相電圧に基づいて推定した回転位置、速度を順次更新して電動機を制御する。つまり、前回までの情報から、次の開放相と開放相区間とを決定し、開放相が終了したタイミングで近似関数から開放相のゼロ点を求め、それによって速度を計算する。速度と開放相ゼロ点の回転位置から、開放相が終了したタイミングの回転位置を再計算し、以降は再計算した回転位置と速度に基づいて推定した回転位置を更新し、電動機を制御すると共に次の開放相区間を決定する。   Thereafter, by repeating the process as described above, the rotational position and speed estimated based on the open phase voltage are sequentially updated to control the electric motor. That is, the next open phase and the open phase section are determined from the information up to the previous time, and the zero point of the open phase is obtained from the approximate function at the timing when the open phase is completed, thereby calculating the speed. Recalculate the rotational position at the timing when the open phase ends from the rotational position of the speed and the open phase zero point, and then update the estimated rotational position based on the recalculated rotational position and speed, and control the motor Determine the next open phase interval.

図4は、上記の原理に基づいた回転位置の推定処理を示すフローチャートである。先ず、何れの相を開放とするかを決定し、また開放相区間の開始回転位置θAn,終了回転位置θBnを決定する(S1)。現在推定中の回転位置θestが開始回転位置θAnに達していなければ(NO)、回転位置θestの更新を式(9)により行う(S13)。尚、ωnn−1はnステップ時の回転数であり、Δtは制御周期である。
θest=θest+ωnn−1×Δt …(9)
そして、更新した回転位置θestに基づいてモータ制御を行い(S14)、ステップS2に戻る。
FIG. 4 is a flowchart showing a rotational position estimation process based on the above principle. First, which phase is to be opened is determined, and the start rotation position θAn and the end rotation position θBn of the open phase section are determined (S1). If the currently estimated rotational position θest has not reached the starting rotational position θAn (NO), the rotational position θest is updated by equation (9) (S13). Note that ω nn-1 is the number of rotations at n steps, and Δt is a control period.
θest = θest + ω nn−1 × Δt (9)
Then, motor control is performed based on the updated rotational position θest (S14), and the process returns to step S2.

回転位置θestが開始回転位置θAnに達すると(S2;YES)、回転位置θestが終了回転位置θBnに達していなければ(S3;NO)、選択した相を開放相として(S4)開放相電圧を検出する(S5)。検出した電圧は、回転位置推定部13に内蔵される記憶部に記憶される。それから、ステップS13に移行する。回転位置θestが終了回転位置θBnに達すると(S3;YES)開放相区間を終了して(S6)、当該区間内に得られた開放相電圧より近似関数を演算する(S7)。   When the rotational position θest reaches the start rotational position θAn (S2; YES), if the rotational position θest does not reach the end rotational position θBn (S3; NO), the selected phase is set as the open phase (S4) and the open phase voltage is set. Detect (S5). The detected voltage is stored in a storage unit built in the rotational position estimation unit 13. Then, the process proceeds to step S13. When the rotational position θest reaches the final rotational position θBn (S3; YES), the open phase section is terminated (S6), and an approximate function is calculated from the open phase voltage obtained in the section (S7).

次に、近似関数より開放相電圧がゼロ点に達する時間t0nを推定し(S8)、その時間t0nに基づいて、ゼロ点に対応する回転位置θ0nを特定する(S9)。それから、前回求めたゼロ点対応の時間t0n−1及び回転位置θ0n−1を用いて回転数ωnn−1を求め(S10)、回転位置θestを式(10)で推定する(S11)。
θest=θ0n+ωnn−1×t0n …(10)
その後、ステップ数nをインクリメントしてから(S12)ステップS1に移行する。
Next, a time t 0n when the open phase voltage reaches the zero point is estimated from the approximate function (S8), and the rotational position θ 0n corresponding to the zero point is specified based on the time t 0n (S9). Then, the rotational speed ω nn-1 is obtained using the time t 0n-1 and the rotational position θ 0n-1 corresponding to the zero point obtained last time (S10), and the rotational position θest is estimated by the equation (10) (S11). .
θest = θ 0n + ω nn−1 × t 0n (10)
Thereafter, after the step number n is incremented (S12), the process proceeds to step S1.

図7は、本実施形態の方法による回転位置の推定結果を示す。図4及び図6に示す処理により60度分解能で検出した開放相電圧のゼロ点に基づいて、回転位置が精度良く推定できている。この推定方法によれば、開放相電圧のゼロ点を正確に検出できなくても、近似関数により求めることができるので開放相区間を短くできる。その結果、180度通電方式に適用しても正弦波駆動状態を極力維持できるので、騒音やトルクリップルが低減される。   FIG. 7 shows the estimation result of the rotational position by the method of this embodiment. The rotational position can be accurately estimated based on the zero point of the open-phase voltage detected with a resolution of 60 degrees by the processing shown in FIGS. According to this estimation method, even if the zero point of the open phase voltage cannot be accurately detected, the open phase interval can be shortened because it can be obtained by an approximation function. As a result, the sine wave drive state can be maintained as much as possible even when applied to the 180-degree energization method, so that noise and torque ripple are reduced.

以上のように本実施形態によれば、開放相決定部11は、3相のうち何れの相を開放相とするか決定し、決定した相を非通電状態にする。回転位置推定部13は、開放相電圧検出部12により検出された開放相電圧を記憶して、その開放相電圧から当該電圧のゼロ点を近似関数を用いて推定すると、そのゼロ点に基づいて電動機3の回転位置θestを推定する。   As described above, according to the present embodiment, the open phase determination unit 11 determines which of the three phases is the open phase, and sets the determined phase in a non-energized state. The rotational position estimation unit 13 stores the open-phase voltage detected by the open-phase voltage detection unit 12 and estimates the zero point of the voltage from the open-phase voltage using an approximation function. Based on the zero point The rotational position θest of the electric motor 3 is estimated.

これにより、従来の正弦波駆動センサレス方式を行う制御装置とほぼ同様の構成により、電動機3を停止状態から極低速の領域で駆動できる。したがって、特殊な位置検出電圧を印加することなく、電動機3のスムーズな加速を得ることが可能となる。また、電動機3の電圧を検出すれば良く、キャリア周波数に応じた電流の変化を検出するよりも検出が容易であり、キャリア周波数を高く設定できる。これは特に、インダクタンスが非常に小さい小型電動機の回転位置を推定する際に有効である。   As a result, the motor 3 can be driven from a stopped state to a very low speed region with a configuration substantially similar to a control device that performs a conventional sinusoidal drive sensorless system. Therefore, smooth acceleration of the electric motor 3 can be obtained without applying a special position detection voltage. In addition, the voltage of the electric motor 3 may be detected, detection is easier than detecting a change in current according to the carrier frequency, and the carrier frequency can be set high. This is particularly effective when estimating the rotational position of a small motor having a very small inductance.

そして、回転位置推定部13は、記憶した開放相電圧より計算した1次近似関数を用いて、開放相電圧がゼロ点に達するタイミングを決定するので、簡単な近似関数を用いて前記タイミングを決定できる。た、開放相決定部11は、回転位置θestに基づいて、何れの相を開放相とするかを容易に決定できる。   Then, the rotational position estimation unit 13 determines the timing at which the open-phase voltage reaches the zero point using the primary approximation function calculated from the stored open-phase voltage, so the timing is determined using a simple approximate function. it can. Further, the open phase determination unit 11 can easily determine which phase is the open phase based on the rotational position θest.

(その他の実施形態)
近似関数は、1次近似するものに限らず、例えば2次近似により曲線を求めても良い。
開放相決定部は、必ずしも回転位置に基づいて開放相を決定する必要は無い。
180度通電方式以外の通電方式に適用しても良い。
本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
(Other embodiments)
The approximation function is not limited to linear approximation, and for example, a curve may be obtained by secondary approximation.
The open phase determination unit does not necessarily have to determine the open phase based on the rotational position.
The present invention may be applied to energization methods other than the 180-degree energization method.
Although several embodiments of the present invention have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

図面中、2はインバータ部、3は同期電動機、5はPWM生成部、6は相電流検出部、11は開放相決定部、12は開放相電圧検出部、13は回転位置推定部である。   In the drawings, 2 is an inverter unit, 3 is a synchronous motor, 5 is a PWM generation unit, 6 is a phase current detection unit, 11 is an open phase determination unit, 12 is an open phase voltage detection unit, and 13 is a rotational position estimation unit.

Claims (8)

3相同期電動機に接続され、複数のスイッチング素子により構成されるインバータについて、3相のうち何れか1相を非通電状態にして開放相とする開放相生成部と、
何れの相を前記開放相とするか決定する開放相決定部と、
前記開放相の電圧を検出する開放相電圧検出部と、
前記電圧を記憶する開放相電圧記憶部と、
この開放相電圧記憶部により記憶された開放相電圧から、当該電圧のゼロ点を推定する電圧ゼロ点推定部と、
前記ゼロ点に基づいて、前記電動機の回転位置を推定する位置推定部とを備える同期電動機の回転位置推定装置。
An open phase generation unit that is connected to a three-phase synchronous motor and includes a plurality of switching elements, and makes any one of the three phases non-energized to be an open phase;
An open phase determination unit for determining which phase is the open phase;
An open phase voltage detector for detecting the voltage of the open phase;
An open phase voltage storage unit for storing the voltage;
From the open phase voltage stored by the open phase voltage storage unit, a voltage zero point estimation unit for estimating the zero point of the voltage,
A rotational position estimation device for a synchronous motor, comprising: a position estimation unit that estimates a rotational position of the electric motor based on the zero point.
前記電圧ゼロ点推定部は、前記開放相電圧より求めた近似関数を用いて前記電圧のゼロ点を推定する請求項1記載の同期電動機の回転位置推定装置。   The synchronous motor rotational position estimating device according to claim 1, wherein the voltage zero point estimating unit estimates a zero point of the voltage using an approximation function obtained from the open phase voltage. 前記近似関数として、1次近似関数を用いる請求項2記載の同期電動機の回転位置推定装置。   3. The synchronous motor rotational position estimating apparatus according to claim 2, wherein a linear approximate function is used as the approximate function. 前記開放相決定部は、前記回転位置に基づいて前記開放相を決定する請求項1から3の何れか一項に記載の同期電動機の回転位置推定装置。   The rotational position estimation device for a synchronous motor according to any one of claims 1 to 3, wherein the open phase determination unit determines the open phase based on the rotational position. 3相同期電動機に接続され、複数のスイッチング素子により構成されるインバータについて、3相のうち何れか1相を開放相とするかを決定すると、決定した相を非通電状態にし、
前記開放相の電圧を検出して記憶し、
記憶した開放相電圧から、当該電圧のゼロ点を推定し、
前記ゼロ点に基づいて、前記電動機の回転位置を推定する同期電動機の回転位置推定方法。
For an inverter that is connected to a three-phase synchronous motor and is configured by a plurality of switching elements, when determining whether one of the three phases is an open phase, the determined phase is set to a non-energized state,
Detecting and storing the voltage of the open phase;
From the stored open phase voltage, estimate the zero point of the voltage,
A synchronous motor rotational position estimating method for estimating the rotational position of the electric motor based on the zero point.
前記開放相電圧より求めた近似関数を用いて前記電圧のゼロ点を推定する請求項5記載の同期電動機の回転位置推定方法。   6. The method for estimating a rotational position of a synchronous motor according to claim 5, wherein a zero point of the voltage is estimated using an approximation function obtained from the open phase voltage. 前記近似関数として、1次近似関数を用いる請求項6記載の同期電動機の回転位置推定方法。   The method for estimating a rotational position of a synchronous motor according to claim 6, wherein a linear approximation function is used as the approximation function. 前記推定した回転位置に基づいて前記開放相を決定する請求項5から7の何れか一項に記載の同期電動機の回転位置推定方法。   The synchronous motor rotational position estimation method according to any one of claims 5 to 7, wherein the open phase is determined based on the estimated rotational position.
JP2017054310A 2017-03-21 2017-03-21 Rotational position estimation device for synchronous motor and rotation position estimation method for synchronous motor Active JP6810421B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017054310A JP6810421B2 (en) 2017-03-21 2017-03-21 Rotational position estimation device for synchronous motor and rotation position estimation method for synchronous motor
CN201810233211.8A CN108631685B (en) 2017-03-21 2018-03-21 Device and method for estimating rotational position of synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017054310A JP6810421B2 (en) 2017-03-21 2017-03-21 Rotational position estimation device for synchronous motor and rotation position estimation method for synchronous motor

Publications (2)

Publication Number Publication Date
JP2018157717A true JP2018157717A (en) 2018-10-04
JP6810421B2 JP6810421B2 (en) 2021-01-06

Family

ID=63696161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017054310A Active JP6810421B2 (en) 2017-03-21 2017-03-21 Rotational position estimation device for synchronous motor and rotation position estimation method for synchronous motor

Country Status (2)

Country Link
JP (1) JP6810421B2 (en)
CN (1) CN108631685B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021151040A (en) * 2020-03-18 2021-09-27 株式会社東芝 Motor controller

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198884A (en) * 1997-09-24 1999-04-09 Fujitsu General Ltd Method for controlling brushless motor
US20020140395A1 (en) * 2001-03-29 2002-10-03 Matsushita Electric Industrial Co., Ltd. Brushless motor control method and controller
JP2002359991A (en) * 2001-03-29 2002-12-13 Matsushita Electric Ind Co Ltd Method and apparatus for controlling brushless motor
JP2012191728A (en) * 2011-03-09 2012-10-04 Fujitsu General Ltd Control device of motor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69012960T2 (en) * 1989-11-30 1995-05-04 Gold Star Co Method and circuit for driving a brushless DC motor without a sensor.
AU751883B2 (en) * 2000-01-18 2002-08-29 Lg Electronics Inc. Apparatus for detecting rotor position in brushless direct current motor
JP5193421B2 (en) * 2005-12-09 2013-05-08 日立アプライアンス株式会社 Electric motor control device
JP2007336641A (en) * 2006-06-13 2007-12-27 Denso Corp Position sensorless driving device for synchronous motor
JP2008113506A (en) * 2006-10-31 2008-05-15 Renesas Technology Corp Motor drive controller and motor start-up method
JP5175569B2 (en) * 2008-02-07 2013-04-03 ルネサスエレクトロニクス株式会社 Synchronous motor drive system
CN101557187B (en) * 2009-04-30 2011-03-30 上海大学 Control device for brushless direct current motor sensorless and method thereof
WO2012147194A1 (en) * 2011-04-28 2012-11-01 新電元工業株式会社 Brushless motor control device and brushless motor control method
JP5634963B2 (en) * 2011-09-01 2014-12-03 日立オートモティブシステムズ株式会社 Synchronous motor drive system and synchronous motor
JP5975830B2 (en) * 2012-10-09 2016-08-23 日立アプライアンス株式会社 Motor control device and refrigeration equipment using the same
JP6389425B2 (en) * 2014-11-28 2018-09-12 ミネベアミツミ株式会社 Motor drive control device and rotation state detection method
CN204836005U (en) * 2015-08-12 2015-12-02 周海波 Brushless DC motor does not have position sensor driver chip and system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198884A (en) * 1997-09-24 1999-04-09 Fujitsu General Ltd Method for controlling brushless motor
US20020140395A1 (en) * 2001-03-29 2002-10-03 Matsushita Electric Industrial Co., Ltd. Brushless motor control method and controller
JP2002359991A (en) * 2001-03-29 2002-12-13 Matsushita Electric Ind Co Ltd Method and apparatus for controlling brushless motor
JP2012191728A (en) * 2011-03-09 2012-10-04 Fujitsu General Ltd Control device of motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021151040A (en) * 2020-03-18 2021-09-27 株式会社東芝 Motor controller
JP7282708B2 (en) 2020-03-18 2023-05-29 株式会社東芝 motor controller

Also Published As

Publication number Publication date
CN108631685A (en) 2018-10-09
CN108631685B (en) 2021-07-20
JP6810421B2 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
US20070296371A1 (en) Position sensorless control apparatus for synchronous motor
JP5900600B2 (en) Electric motor magnetic pole position estimation device and control device using the same
US11463033B2 (en) Apparatus, system, and method for controlling motor
JP6091446B2 (en) Electric motor control device
JP7276188B2 (en) CONTROL DEVICE AND CONTROL METHOD FOR PERMANENT MAGNET MOTOR
JP6233428B2 (en) Motor control device and motor control method
JP7361924B2 (en) Motor control device, motor control method
JP6551473B2 (en) Control device and control method
US20160156294A1 (en) Motor driving module
JP6102768B2 (en) Motor control device
JP4735439B2 (en) Initial magnetic pole position estimation device for permanent magnet type synchronous motor
CN108631685B (en) Device and method for estimating rotational position of synchronous motor
US20230142956A1 (en) Motor controller, motor system and method for controlling motor
JP6458684B2 (en) Power control method and power control apparatus
JP2017205017A (en) Motor control device of air conditioner, and air conditioner
JP6116449B2 (en) Electric motor drive control device
JP5853644B2 (en) Line current detection device and power conversion system
JP2009100544A (en) Motor controller
JP5762794B2 (en) Power converter for motor drive
JP5186352B2 (en) Electric motor magnetic pole position estimation device
JP4470445B2 (en) Method and apparatus for detecting motor cable resistance
JP2007082380A (en) Synchronous motor control device
JP2020036440A (en) Control device for synchronous reluctance motor
JP5854057B2 (en) Step-out detection device and motor drive system
US11942890B2 (en) Semiconductor device, motor drive system, and method of starting motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201203

R150 Certificate of patent or registration of utility model

Ref document number: 6810421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250